TADPOLE Competition: Prediction of Alzheimer’s Evolution using Statistical Models and Machine Learning

Răzvan Valentin Marinescu Leon Aksman

Centre for Medical Image Computing, University College London, UK
Introduction

Progression of Neurodegenerative Diseases (POND)

- UCL Centre for Inverse Problems
- Translational Imaging Group (TIG)
- Centre for Medical Image Computing (CMIC)
- Surgical Robot Vision Research Group
- Ultrasound guided interventions
- Radiotherapy group
- Breast Imaging Group
POND Aim: Develop Computational Models for Disease Progression

- **Event-Based Model**
 (Fontejin et al., Neuroimage, 2012)

 - Event 1
 - Event 2
 - Event 3
 - Event 4

- **Differential Equation Model**
 (Oxtoby et al., submitted, 2017)

 - y vs x graph
 - $\hat{x}(t)^{10}$ vs t (years)

- **Gaussian-Process Regression**
 (Lorenzi et al., IPMI, 2015)

 - Brain images with color scale
 - AD (2yrs), HC (2yrs), MCIc (2yrs), MCIc (3yrs), MCIc (4yrs)

- **Subtype and Stage Inference**
 (Young et al., submitted, 2017)

 - SUBTYPES
 - TIME
POND Aim 2: Apply the Models to Distinct Neurodegenerative Diseases

typical AD
(Young et al., submitted, 2017)

Stage 1 | Stage 5 | Stage 9 | Stage 13 | Stage 17

Familial AD
(Oxtoby et al., submitted, 2017)

Multiple sclerosis
(Eshaghi et al., Brain, 2017)

Huntington’s disease
(Wijeratne et al., in preparation)
Alzheimer’s Disease is a Devastating Disease

- 46 million people affected worldwide

![Map showing dementia prevalence worldwide]
Alzheimer’s Disease is a Devastating Disease

- 46 million people affected worldwide

No treatments available that stop or slow down cognitive decline

Q: Why did clinical trials fail? A: Treatments were not administered early enough
Alzheimer’s Disease is a Devastating Disease

- 46 million people affected worldwide

No treatments available that stop or slow down cognitive decline

Q: Why did clinical trials fail? A: Treatments were not administered early enough

Q: How can we then identify subjects early in order to administer treatments?
A: Biomarkers ...
Biomarker Evolution creates a Unique Disease Signature that can be used for Staging Individuals in Clinical Trials

- Accurate disease staging → better patient stratification
- Problem: This is a "hypothetical" (i.e. qualitative) disease progression model
- Why construct a quantitative model?
Benefits of Quantitative Disease Progression Models

- Basic biological insight

![Diagram showing disease progression with biomarker on y-axis and disease stage on x-axis]
Benefits of Quantitative Disease Progression Models

- Basic biological insight
- Staging can help stratification in clinical trials
Basic biological insight
- Staging can help stratification in clinical trials
- Differential diagnosis and prognosis
Benefits of Quantitative Disease Progression Models

- Basic biological insight
- Staging can help stratification in clinical trials
- Differential diagnosis and prognosis
- Predict future evolution of patients
Benefits of Quantitative Disease Progression Models

- Basic biological insight
- Staging can help stratification in clinical trials
- Differential diagnosis and prognosis
- Predict future evolution of patients
- Early detection of disease in at-risk subjects
Benefits of Quantitative Disease Progression Models

- Basic biological insight
- Staging can help stratification in clinical trials
- Differential diagnosis and prognosis
- Predict future evolution of patients
- Early detection of disease in at-risk subjects

Need to identify which models and features are best at above tasks ...
TADPOLE Challenge aims to identify algorithms that best predict future evolution of subjects at-risk of AD

TADPOLE Challenge: Prediction of Longitudinal Evolution in Alzheimer’s Disease
What to do

Input: Large dataset from ADNI:
- $>1,667$ subjects with a total of $12,000$ visits.
- $>2,000$ biomarkers from imaging, demographic, cognitive and genetic data

Task: Estimate the progression over the next 5 years of three key biomarkers:
- Diagnosis
- ADAS-COG13
- Ventricle Volume
Evaluation

Overall winner: lowest sum of ranks in the three categories above

- Diagnosis MAUC
- ADAS-COG13 MAE
- Ventricle Volume MAE

We will offer prizes!

Live leaderboard will show progress of each team this week:

<table>
<thead>
<tr>
<th>RANK</th>
<th>TEAM NAME</th>
<th>MAUC</th>
<th>BCA</th>
<th>ADAS MAE</th>
<th>ADAS MAE WES</th>
<th>VENTS WES</th>
<th>ADAS CPA</th>
<th>VENTS CPA</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TeamAlgosForGood1</td>
<td>0.809</td>
<td>0.856</td>
<td>4.087</td>
<td>4.52e-03</td>
<td>4.087</td>
<td>3.81e-03</td>
<td>0.091</td>
<td>2017-09-18 09:34 (UTC+0)</td>
</tr>
<tr>
<td>2</td>
<td>FPC1</td>
<td>0.758</td>
<td>0.722</td>
<td>5.000</td>
<td>4.19e-03</td>
<td>4.976</td>
<td>4.19e-03</td>
<td>0.350</td>
<td>2017-09-18 09:34 (UTC+0)</td>
</tr>
<tr>
<td>3</td>
<td>FPC3</td>
<td>0.706</td>
<td>0.721</td>
<td>6.369</td>
<td>2.56e-03</td>
<td>6.736</td>
<td>2.56e-03</td>
<td>0.250</td>
<td>2017-09-12 22:51 (UTC+0)</td>
</tr>
<tr>
<td>4</td>
<td>FPC2</td>
<td>0.706</td>
<td>0.721</td>
<td>6.369</td>
<td>2.56e-03</td>
<td>6.711</td>
<td>2.56e-03</td>
<td>0.392</td>
<td>2017-09-18 09:34 (UTC+0)</td>
</tr>
</tbody>
</table>
Join the TADPOLE Challenge!

- URL: https://tadpole.grand-challenge.org/
- Prize fund: £30,000

Welcome to The Alzheimer’s Disease Prediction Of Longitudinal Evolution (TADPOLE) challenge.

Brought to you by the EuroPOND consortium in collaboration with the Alzheimer’s Disease Neuroimaging Initiative (ADNI).