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What to expect from my presentation

• Which biomarkers can we predict, and which we cannot? (clinical diagnosis, MRI, cognitive tests)

• What is the state-of-the-art in Alzheimer’s prediction models?

• What are the winner algorithms? Should I use deep learning or not?

• Consensus (averaging over predictions of all teams): good or not?

• Features: which ones are most informative? Do I need to pre-process those DTI scans, are MRIs not enough?

• How well do algorithms work on “real data”, i.e. clinical trials?
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TADPOLE is a Challenge to Predict the Progression of Individuals at Risk of AD

• Identify people that will develop Alzheimer’s disease
(AD) over the next 1-5 years.

• Predict three target domains: clinical diagnosis, MRI
(Ventricle Volume) and cognition (ADAS-Cog 13)

• Evaluation data on 219 subjects acquired by ADNI

• TADPOLE was entirely prospective – evaluation data
acquired after submission deadline: Nov 2017

• Why predict future evolution of AD?
• No treatments for AD currently available
• Select the right subjects for AD clinical trials
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Submission statistics

33 teams from 12 countries

Algorithms

Regression

DPM
Other ML
Other

20

23

17

3

Teams

Above PhD + Industry

School
University

Benchmark50
3

11

4
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Prizes

• 30,000 GBP prize fund offered by sponsors:

• Prizes were split according into six categories:

Prize
amount

Outcome measure Eligibility

£5,000 Diagnosis all
£5,000 Cognition all
£5,000 Ventricles all
£5,000 Overall best all

£5,000 Diagnosis
University

teams

£5,000 Diagnosis
High-school

teams
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Results Outline

• Prediction results:
• Clinical diagnosis
• Ventricle volume
• Cognition

• Overall winners & winning strategy

• Consensus methods

• Results on limited dataset mimicking clinical trial

• Most informative features
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Clinical Diagnosis prediction: Winner algorithms achieve considerable gains over best
benchmarks and state-of-the-art

• MAUC error reduced by 58% compared to the best benchmark

• Winner (Frog) used a method based on gradient boosting (xgboost)

• TADPOLE algorithms pushed ahead the state-of-the-art:
• Best/29 algos in CADDementia challenge had a diagnosis MAUC of 0.78
• Best/15 algos (Morandi, NeuroImage, 2015) obtained AUC of 0.902

• Full results on TADPOLE website:
https://tadpole.grand-challenge.org/Results

Team Name RANK MAUC MAUC

Frog 1 0.931

Threedays 2 0.921

EMC-EB 3 0.907

GlassFrog-SM 4-6 0.902

GlassFrog-Average 4-6 0.902

GlassFrog-LCMEM-HDR 4-6 0.902

Apocalypse 7 0.902

EMC1-Std 8 0.898

CBIL 9 0.897

CN2L-RandomForest 10 0.896

... ... ...

BenchmarkSVM 30 0.836

... ... ...

• MAUC - multiclass area under the
receiver-operator curve
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Ventricle prediction: Winner algorithms achieve considerable gains over best
benchmarks

• MAE reduced by 58% compared to best benchmark

• Winner (EMC1) used a method based on disease
progression models

• No previous state-of-the-art due to lack of studies
predicting ventricles

FileName
Rank

Ventricles

MAE

Ventricles

EMC1-Std 1-2 0.4116

EMC1-Custom 1-2 0.4116

lmaUCL-Covariates 3 0.4155

lmaUCL-Std 4 0.4207

BORREGOTECMTY 5 0.4299

lmaUCL-halfD1 6 0.4402

CN2L-NeuralNetwork 7 0.4409

SBIA 8 0.4410

EMC-EB 9 0.4466

Frog 10 0.4469

VikingAI-Logistic 11-12 0.4534

VikingAI-Sigmoid 11-12 0.4534

CBIL 13 0.4625

... ... ...

BenchmarkMixedEffectsAPOE 23 0.5664

... ... ...

• MAE - mean absolute error
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Cognition prediction: TADPOLE algorithms fail to predict ADAS-Cog13 significantly
better than random

• RandomisedBest - best out of 100 random guesses

• Likely too much noise in cognitive test (ADAS-Cog 13)

• Methods might be better than random over longer
time-windows (> 2 years)

FileName
RANK

Cognition

MAE

Cognition

RandomisedBest - 4.52

FortuneTellerFish-Control 1 4.70

BenchmarkMixedEffectsAPOE 2 4.75

FortuneTellerFish-SuStaIn 3 4.81

Frog 4 4.85

Mayo-BAI-ASU 5 4.98

CyberBrains 6 5.16

VikingAI-Sigmoid 7 5.20

GlassFrog-Average 8 5.26

CN2L-Average 9 5.31

CN2L-NeuralNetwork 10 5.36

DIKU-GeneralisedLog-Std 11-12 5.40

DIKU-GeneralisedLog-Custom 11-12 5.40

... ... ...

• MAE - mean absolute error
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There was no clear winner method. Deep learning not among top entries.

• Deep Learning

Rank Diagnosis

1 Gradient boosting

2 Random forest

3 SVM

4-6 Multi state model

4-6 Multi state model

4-6 Multi state model

7 SVM

8 DPM+SVM

9 LSTM

10 Random Forest

11 DPM+SVM

12 feed-forward NN

13-14 Bayesian classifier/LDA + DPM

13-14 Bayesian classifier/LDA + DPM

15 Aalen model

16 DPM + ordered logit model

17 Random forest

... ...

Rank Ventricles

1-2 DPM + spline regression

1-2 DPM + spline regression

3 Multi-task learning

4 Multi-task learning

5 Ensenble of regression + hazard

6 Multi-task learning

7 RNN

8 Linear mixed effects

9 SVM regressor

10 Gradient boosting

11-12 DPM

11-12 DPM

13 LSTM

14 DPM

15 DPM

16 RNN+RF

17 RF

... ...
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Consensus methods achieve top results

• Compared to the best TADPOLE submissions,
consensus reduced the error by 11% for Cognition
(ADAS) and 8% for Ventricles

• Most methods make systematic errors, either over- or
under-estimating the future measurements

Submission Overall Diagnosis Cognition Ventricles

Rank Rank MAUC Rank MAE Rank MAE

ConsensusMedian - - 0.925 - 5.12 - 0.38

Frog 1 1 0.931 4 4.85 10 0.45

ConsensusMean - - 0.920 - 3.75 - 0.48

EMC1-Std 2 8 0.898 23-24 6.05 1-2 0.41

VikingAI-Sigmoid 3 16 0.875 7 5.20 11-12 0.45

EMC1-Custom 4 11 0.892 23-24 6.05 1-2 0.41

CBIL 5 9 0.897 15 5.66 13 0.46

Apocalypse 6 7 0.902 14 5.57 20 0.52

... ... ... ...
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Prediction results on limited cross-sectional dataset mimicking a clinical trial are
comparable to the full dataset

• Little loss of accuracy for the best methods
• 0.48 vs 0.42 for ventricle MAE
• 0.917 vs 0.931 for diagnosis MAUC

• Results suggest TADPOLE methods could
be applied to clinical trial settings

Overall Diagnosis Cognition Ventricles

Submission Rank Rank MAUC Rank MAE Rank MAE

ConsensusMean - - 0.917 - 4.58 - 0.73

ConsensusMedian - - 0.905 - 5.44 - 0.71

GlassFrog-Average 1 2-4 0.897 5 5.86 3 0.68

GlassFrog-LCMEM-HDR 2 2-4 0.897 9 6.57 1 0.48

GlassFrog-SM 3 2-4 0.897 4 5.77 9 0.82

Tohka-Ciszek-RandomForestLin 4 11 0.865 2 4.92 10 0.83

RandomisedBest - - 0.811 - 4.54 - 0.92

... ... ... ...
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What matters for good predictions?

• DTI and CSF features for
clinical diagnosis prediction

• Augmented features for
ventricle prediction

• However, further analysis needs
to be done to make clear
conclusions

0.4 0.2 0.0 0.2 0.4
MAUC (change)

ML Other (n=10)
Neural Network (n=5)
Random Forest (n=6)

DPM (n=15)
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Conclusions

• Which biomarkers can we predict, and which we cannot?

• YES: diagnosis, ventricles
• NO: cognition (ADAS-Cog 13)

• What is the state-of-the-art in Alzheimer’s prediction
Diagnosis MAUC Cognition MAE Ventricles MAE

0.931 - 0.41

• What are the winner algorithms? Should I use deep
learning or not?

• No clear winner
• Clinical diagnosis: gradient boosting
• Ventricle MAE: disease progression model
• Best deep learning algo: 5th place

• Consensus (averaging over teams’ predictions): good or
not?

• Consensus achieves top results
• ADAS-Cog13: 11% better than TADPOLE best
• Ventricles: 8% better than TADPOLE best

• Features: which ones are most informative? Do I need
to pre-process those DTI scans, are MRIs not enough?

• Diagnosis: CSF and DTI
• Ventricles: Augmented features

• How well do algorithms work on ”real data”? i.e.
clinical trials

• minor loss in prediction performance
• 0.917 vs 0.931 on diagnosis prediction
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Next steps

• Manuscript under review (Nature Comm.)

• TADPOLE SHARE
• share methods for validation and further development
• 11 teams already sharing
• Lead by Esther Bron: e.bron@erasmusmc.nl

• Follow-on evaluations as more ADNI data becomes available

• Challenge still ongoing
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Submissions

Submission Extra Features Nr. of features Missing data imputation Diagnosis prediction ADAS/Vent. prediction

Submission Feature selection Number of features Missing data imputation Diagnosis prediction ADAS/Vent. Prediction

AlgosForGood Manual 16+5* forward-filling Aalen model linear regression

Apocalypse Manual 16 population average SVM linear regression

ARAMIS-Pascal Manual 20 population average Aalen model -

ATRI-Biostat-JMM automatic 15 random forest random forest linear mixed effects model

ATRI-Biostat-LTJMM automatic 15 random forest random forest DPM

ATRI-Biostat-MA automatic 15 random forest random forest DPM + linear mixed effects

model

BGU-LSTM automatic 67 none feed-forward NN LSTM

BGU-RF/ BGU-RFFIX automatic 67+1340* none semi-temporal RF semi-temporal RF

BIGS2 automatic all Iterative Soft-Thresholded SVD RF linear regression

Billabong (all) Manual 15-16 linear regression linear scale non-parametric SM

BORREGOSTECMTY automatic 100 + 400* nearest-neighbour regression ensemble ensemble of regression +

hazard models

BravoLab automatic 25 hot deck LSTM LSTM

CBIL Manual 21 linear interpolation LSTM LSTM

Chen-MCW Manual 9 none linear regression DPM

CN2L-NeuralNetwork automatic all forward-filling RNN RNN

CN2L-RandomForest Manual >200 forward-filling RF RF

CN2L-Average automatic all forward-filling RNN/RF RNN/RF

CyberBrains Manual 5 population average linear regression linear regression

DIKU (all) semi-automatic 18 none Bayesian classifier/LDA +

DPM

DPM

DIVE Manual 13 none KDE+DPM DPM

EMC1 automatic 250 nearest neighbour DPM + 2D spline + SVM DPM + 2D spline

EMC-EB automatic 200-338 nearest-neighbour SVM classifier SVM regressor

FortuneTellerFish-Control Manual 19 nearest neighbour multiclass ECOC SVM linear mixed effects model

FortuneTellerFish-SuStaIn Manual 19 nearest neighbour multiclass ECOC SVM + DPM linear mixed effects model +

DPM

Frog automatic 70+420* none gradient boosting gradient boosting

GlassFrog-LCMEM-HDR semi-automatic all forward-fill multi-state model DPM + regression

GlassFrog-SM Manual 7 linear model multi-state model parametric SM

GlassFrog-Average semi-automatic all forward-fill/linear multi-state model DPM + SM + regression

IBM-OZ-Res Manual Oct-15 filled with zero stochastic gradient boosting stochastic gradient boosting

ITESMCEM Manual 48 mean of previous values RF LASSO + Bayesian ridge

regression

lmaUCL (all) Manual 5 regression multi-task learning multi-task learning

Mayo-BAI-ASU Manual 15 population average linear mixed effects model linear mixed effects model

Orange Manual 17 none clinician’s decision tree clinician’s decision tree

Rocket manual 6 median of diagnostic group linear mixed effects model DPM

SBIA Manual 30-70 dropped visits with missing data SVM + density estimator linear mixed effects model

SPMC-Plymouth (all) Automatic 20 none ? -

SmallHeads-NeuralNetwork automatic 376 nearest neighbour deep fully -connected NN deep fully -connected NN

SmallHeads-LinMixedEffects automatic ? nearest neighbour - linear mixed effects model

Sunshine (all) semi-automatic 6 population average SVM linear model

Threedays Manual 16 none RF -

Tohka-Ciszek-SMNSR Manual 32 nearest neighbour - SMNSR

Tohka-Ciszek-RandomForestLin Manual 32 mean patient value RF linear model

VikingAI (all) Manual 10 none DPM + ordered logit model DPM

BenchmaskLastVisit None 3 none constant model constant model

BenchmarkMixedEffect None 3 none Gaussian model linear mixed effects model

BenchmarkMixedEffectAPOE None 4 none Gaussian model linear mixed effects model

BenchmarkSVM Manual 6 mean of previous values SVM support vector regressor (SVR)
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Performance metrics

Formula Definitions

mAUC =
2

L(L−1)

∑L
i=2

∑i
j=1 Â(ci , cj )

ni , nj – number of points from class i and j . Sij – the sum of

the ranks of the class i test points, after ranking all the class i

and j data points in increasing likelihood of belonging to class

i , L – number of data points

BCA =
1

2L

∑L
i=1

[
TP

TP+FN
+ TN

TN+FP

] TPi , FPi , TNi , FNi – the number of true positives, false

positives, true negatives and false negatives for class i L –

number of data points

MAE = 1
N

∑N
i=1

∣∣∣M̃i −Mi

∣∣∣ Mi is the actual value in individual i in future data. M̃i is the

participant’s best guess at Mi and N is the number of data

points

WES =
∑N

i=1 C̃i |M̃i−Mi |∑N
i=1 C̃i

Mi , M̃i and N defined as above. C̃i = (C+ − C−)−1, where

[C−,C+] is the 50% confidence interval

CPA = |ACP − 0.5|
actual coverage probability (ACP) - the proportion of

measurements that fall within the 50% confidence interval.
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Confidence intervals on longitudinal dataset D2
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lmaUCL-Covariates
EMC-EB

BenchmarkMixedEffects
GlassFrog-Average

GlassFrog-SM

BORREGOTECMTY
Apocalypse

CBIL
EMC1

VikingAI-Sigmoid

EMC1
ConsensusMean

Frog

ConsensusMedian

Diagnosis
MAUC

0.5 0.8

Diagnosis
BCA

101 102

ADAS
MAE

101 102

ADAS
WES

0.1 0.4

ADAS
CPA

2−1 21

Ventricle
MAE

2−1 21

Ventricle
WES

0.1 0.4

Ventricle
CPA
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Prize winners

Category Team Members Institution Country Prize

Overall best Frog Keli Liu, Paul Manser, Christina Rabe Genentech USA £5000

Clinical

Diagnosis

Frog Keli Liu, Paul Manser, Christina Rabe Genentech USA £5000

Ventricle

volume

EMC1 Vikram Venkatraghavan, Esther Bron, Stefan Klein Erasmus MC Netherlands £5000

Best university

team

Apocalypse Manon Ansart ICM, INRIA France £5000

High-School

(best)

Chen-MCW Gang Chen Medical College

Wisconsin

USA £5000

High-School

(runner up)

CyberBrains Ionut Buciuman, Alex Kelner, Raluca Pop, Denisa

Rimocea, Kruk Zsolt

Vasile Lucaciu

College

Romania £2500

Overall best D3

prediction

GlassFrog Steven Hill, Brian Tom, Anais Rouanst, Zhiyue

Huang, James Howlett, Steven Kiddle, Simon R.

White, Sach Mukherjee, Bernd Taschler

Cambridge

University

UK £2500
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