Tutorial on Generative Adversarial Networks - From basics to current state-of-the-art, and towards key applications in medicine

Răzvan V. Marinescu

Medical Vision Group, Massachusetts Institute of Technology

Slides available online: https://people.csail.mit.edu/razvan

Generative adversarial networks

- ► GAN basics
- ► State-of-the-art
- ► Key applications in computer vision and medicine
- ▶ Preliminary results on three different medical datasets

► Generative: can generate new data instances

► Discriminative: discriminates between different kinds of data instances

$$X = \mathsf{image}$$

Y = label/score

Discriminative Model

Generative Model

Introduction to Generative Adversarial Networks

- ► Introduced by Goodfellow et al. 2014
- ► Two adversaries (generator + discriminator) compete with each other
- Over time, the generator gets better at generating images

4 / 24

- ► Generator attempts to generate good images to fool the discriminator
- ▶ Discriminator attempts to tell apart the fake images from the real ones
- ► Loss function:

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\mathbf{x} \sim p_{\mathsf{data}}(\mathbf{x})}[\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p_{\mathbf{z}}(\mathbf{z})}[\log(1 - D(G(\mathbf{z})))].$$

5 / 24

Towards the state-of-the-art in Generative Adversarial Networks

Initial GAN results (DCGAN, Radford et al. 2015)

- ▶ Initial results looked promising, but still a long way from photorealism
- ► Other problems persisted:
 - ► Training collapse
 - ► Mode collapse
 - ► Low coverage

Dynamics between G & D not well understood

Standard samples

Training collapse

Mode collapse

Wasserstein GANs (Arjovski et al, 2017)

- ► Original GANs were very hard to train
- ▶ Problem: They optimise the Jensen-Shannon divergence, a "vertical" distance → no good gradients when distributions far away
- A "horizontal" distance (e.g. Wasserstein) ensures gradients are non-zero when distributions don't have support (i.e. far away)
- ► GAN trained with the new Wasserstein metric collapses less often, and generates better images

Progressive Growing of GANs (Karras et al, 2018)

- ► GAN training unstable if one starts directly in high-resolution
- ► Key idea: start from low-resolution (4x4) and build up to highest-resolution (1024x1024)
- ► Each new layer is faded-in slowly

Mao et al. (2016b) (128 × 128) Gulrajani et al. (2017) (128 × 128)

Our (256 \times 256)

StyleGAN1 (Karras et al, 2019)

- ► Borrows ideas from style-transfer literature
- Uses a mapping network to generate "style vectors" at every level in the generator
- Each style vector is intensity-normalized (AdaIN operation)
- Generated images have unprecedented realism and diversity

11 / 24

Blob-artefacts caused by AdalN normalisation

Solution: bake normalisation straight into convolution weights:

$$w_{ijk}^{\prime\prime} = w_{ijk}^{\prime} / \sqrt{\sum_{i,k} {w_{ijk}^{\prime}}^2 + \epsilon}$$

"phase" artefacts due to progressive growing

Solution: communicate across resolution levels

Training GANs with limited data (Karras et al. 2020)

- Previous StyleGAN2 model needed large number of images for training (\approx 70,000)
- Aim: Enable training on limited datasets (1000 images) through data-augmentation
- Problem: augmentations leak into the generated images
- ► This is mitigated by ensuring augmentation probability p is lower than a threshold (≈ 0.9).

(c) Effect of augmentation probability p

Applications of GANs and other generative models

bicubic (21.59dB/0.6423)

SRResNet (23.53dB/0.7832)

(21.15dB/0.6868)

SRGAN

original

(Ledig et. al., 2017)

- ► *G* generates high-res image from low-res input
- D discriminates whether high-res image is fake or real.

Application 2: In-painting

(a) Input context

(b) Human artist

(c) Context Encoder (L2 loss)

(d) Context Encoder (L2 + Adversarial loss)

https://people.csail.mit.edu/razvan/

(Pathak et al, 2016)

Razvan V. Marinescu razvan@csail.mit.edu https://people.csail.mit.edu/razvan/

17 / 24

MRI super-resolution (Sanchez et al., 2018)

Modality translation (Zhang et al, 2019)

MR Reconstruction from undersampled K-space (Quan et al, 2017, Yang et al, 2017)

MRI motion correction (Usman et al, 2020)

Any image reconstruction task!

Applications of generative models to medicine: prediction of disease progression

- ▶ Prediction and visualisation of future of disease progression
- ► Can assist doctors in assigning treatments

Fig. 4. Neurodegeneration simulation of a 69-year old ADNI participant.

Preliminary results of StyleGAN2 on three medical datasets

- ► StyleGAN2 out-of-the box
- ► Trained on MIMIC III, 360k images of 1024×1024 resolution
- ► Still some problems to fix:
 - some ribs look "broken"
 - ▶ bone contours are not always smooth/straight

- ► Still out-of-the-box model (StyleGAN2)
- ► Trained on 8,000 brain scans (ADNI/OASIS/AIBL/PPMI)
- ► Next:
 - check if neuroanatomical properties are preserved (e.g. brain/ventricle vols are same)
 - extend StyleGAN2 to 3D

- ► Out-of-the-box
- ► Trained on 11,000 microscopy slices with pancreatic cancer (MICCAI PANDAS 2020 challenge dataset)
- ► 512×512 image crops

- ► GANs have obtained state-of-the-art results on image generation
- ► Can generate sharp, realistic images
- ► Training now stable compared to 2-3 years ago, but can take up to 6-7 days (StyleGAN2) on 8 GPUs.
- ► Can help solve image reconstruction tasks

- ► Many potential applications in medical imaging
- ► Recommendations:

grant applications

- Don't build your own, start with a state-of-the-art model (StyleGAN2, BigGAN or Karras, 2020)
- Download models already pre-trained to explore their capabilities
- When training, initialise weights from another pre-trained model instead of random
 PIs: Include costs for buying GPUs/AWS-credits in your
- ► Keep an eye on other types of generative models (VAEs, auto-regressive, flow) that have other interesting properties (e.g. density estimation), which enable other tasks e.g. anomaly detection