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This Supplemental Material provides additional experimental details, analy-
ses, and examples to complement the main paper. The main headings are named
to correspond directly to sections in the main paper.

Evaluating progress

Top performers on the MIT Benchmark

In Fig. 1 we include the performances of the top four neural network models
evaluated on the MIT300 dataset (as of March 2016), along with the top three
non neural network models, and three traditional bottom-up approaches that
are commonly used for saliency comparisons. The metrics reported are ones
evaluated on the MIT Saliency Benchmark [1]3, supplemented with information
gain (as recommended in [2]), and discussed in detail in Bylinskii et al. [3]. From
this plot we can see that the top neural network model scores are significantly
better than prior model scores. We use the top-performing models for our main
analyses to quantify the remaining gap to human performance. At the same time,
we see that the AUC metrics have begun to saturate and are not as informative
at continuing to track model performances.

In Table 1 the top neural network model (DeepFix) is compared to the top
non neural network model (BMS) on the CAT2000 dataset, the second bench-
mark dataset on the MIT Saliency Benchmark. While the average performance
across all benchmark images provides an overall ranking over models, here we
consider a finer-grained measure of performance, first at the level of image cate-
gories, and then at the level of individual images. Analyzing the score breakdown
of DeepFix and BMS across the 20 distinct image categories of CAT2000, we
find that DeepFix consistently outperforms BMS. Figs. 2 and 12 include DeepFix
and BMS performances according to Area under ROC Curve (AUC), Normalized
Scanpath Saliency (NSS), and Information Gain (IG) metrics.

An even finer-grained analysis can be achieved by considering performance
on a per-image basis. In Fig. 3 we plot the number of images in the MIT300

3 Code for evaluation was used from https://github.com/cvzoya/saliency
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dataset for which different models are the top performers (offer the best saliency
predictions on an individual image level). The DeepFix and SALICON models
provide the best predictions across most images, and these models are used in
the rest of the paper.

Of the top neural networks evaluated on the MIT300 dataset, DeepFix is the
only model that has been submitted to, and evaluated on, the CAT2000 dataset
(as of March 2016), and receives greater representation in the main paper. In
this supplement, we provide additional results on other models.

Fig. 1. In blue are three traditional bottom-up approaches (AIM [4], IttiKoch [5],
GBVS [6]) commonly used for saliency comparisons, followed by in orange the top
three non neural network approaches from the MIT300 benchmark (Outlier Saliency [7],
BMS [8], Mixture of Saliency Models [9]), and in green the top four neural networks
(DeepGaze [10], SalNet [11], SALICON [12], DeepFix [13]). The latter two models,
SALICON and DeepFix, are the top-performing models across most metrics and are
used for the main analyses in the paper. For all metrics except Earth Mover’s Distance
(EMD) and Kullback-Leibler divergence (KL), a higher score is better. The original,
unscaled metric scores are included in each case and plotted on the same axes. The
human upper bound is measured as performance in the limit of infinite observers [3].
The human limit is 0 for the dissimilarity metrics EMD and KL.
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Saliency model AUC ↑ sAUC ↑ NSS ↑ CC ↑ KL ↓ EMD ↓ SIM↑ IG ↑
DeepFix [13] 0.87 0.57 2.29 0.88 0.41 1.11 0.75 0.20

BMS [8] 0.85 0.59 1.67 0.67 0.83 1.95 0.61 -0.43
Table 1. Top-performing neural network and non neural network models on CAT2000
Benchmark. Top scores are bolded. Lower scores for KL and EMD are better.

Fig. 2. The top neural network model (DeepFix) performs better across all 20 cate-
gories of CAT2000 than the top non neural network model (BMS). The performance
gain is especially noticeable with the Normalized Scanpath Saliency (NSS) metric,
that takes into account false alarms as well as true positives. NSS offers a finer-grained
comparison between models than AUC.
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(a) (b)

Fig. 3. A finer-grained analysis across all 300 benchmark images reveals that a single
model does not always outperform all others. Here we see for how many of the 300
images each model achieves the highest scores for (a) Area under ROC Curve (AUC),
(b) Normalized Scanpath Saliency (NSS). We use both DeepFix and SALICON for the
rest of our analyses.

Correlation-based greedy image selection

We greedily select one image at a time from the MIT300 dataset to best approx-
imate the model score ranking on the MIT Saliency Benchmark, while keeping
model performances on the images selected as uncorrelated as possible (to in-
crease diversity of the subset of images selected). We employ correlation-based
feature selection (CSF) [14], selecting a subset of k images by optimizing:

CSF =
krst√

k + (k − 1)rss

where rst =
1

k

k∑
i=1

corr(si, t)

rss =
k(k − 1)

2

k∑
i=1

∑
j 6=i

corr(si, sj)

where si is a vector of the scores for all models on image i, and t is a vector of
the scores for all models averaged over all 300 images of the MIT benchmark.
The subset of k images chosen is such that model scores on the subset of images
approximates the model scores on the whole benchmark. At the same time, the
images are chosen to be diverse in scoring models. The 10 representative images
selected in the main paper were chosen by optimizing Pearson correlation on the
NSS metric.
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Quantifying where people and models look in images

Defining regions of interest

Given discrete human fixation data (locations of all observer fixations) on an
image, continuous fixation maps were obtained by convolving each fixation with
a Gaussian with sigma equal to one degree of visual angle, to approximate the
size of the human fovea and account for measurement errors.

We thresholded fixation heatmaps at the 95th percentile and collected all the
connected components: a total of 999 regions from 300 images. Each connected
component represents a region in an image with a density value in the top 5% of
the heatmap. We then further filtered these regions by the number of fixations
falling within them. We kept only the regions that had more than 5% of the total
fixations on an image, leaving a total of 651 regions. On average, this worked
out to be 9-12 fixations per region. Note that a single observer made about 5-6
fixations per image. Thus, even if all of a single observer’s fixations landed on
a region, that would not be enough to select it. In such a way we filtered out
outliers, regions fixated by only one observer, and artifacts introduced during the
connected component analysis. Artifacts can be caused by high-density regions
occurring at the intersection of multiple highly-fixated spots due to constructive
interference (when binary maps of fixations are smoothed via Gaussian blurring
into continuous fixation maps).

Annotation tasks

Given regions of interest, the next step was to label them. To avoid experimenter
subjectivity, labels for all the regions were crowdsourced, and a majority vote
policy used. In this section we give additional details of the Amazon Mechanical
Turk (MTurk) tasks described in the main paper, as well as the post-processing
used to prepare the data labels for analysis. For the first MTurk annotation
task, we showed participants images with specific regions of interest highlighted
(one per image) and asked them to select all the labels that apply in describing
each region. A single MTurk HIT consisted of 30 images. The following labels
were provided: Face, Part of face, Head, Person, Part of a person, Crowd of
people, Legible text, Ilegible text, Non-english text, Symbol, Animal face, Part of
an animal, Object, Background, Other. We gathered annotations from 20 distinct
participants to obtain robust labeling of regions. Majority vote was used to assign
labels to regions, and multiple labels were used in the case of ties. In Table 2 we
include the raw counts of all the resulting region types by label.

Fig. 4 is a multidimensional scaling visualization of the 651 regions that were
labeled. Each region was represented with a histogram of the labels it received
from the MTurk tasks before being projected onto the two dimensions visualized.
Each point represents a labeled region. Nearby points correspond to regions that
received a similar (set of) label(s). We can see that regions corresponding to parts
of people cluster together, regions corresponding to text cluster separately, and
the rest of the labels (Object, Background, and Other) form a third cluster. For
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further analyses, related labels were aggregated to have sufficient instances per
label type. We used the following rules to aggregate labels:

– Face counted as Part of face
– Person, Head, and Crowd counted as Part of person
– Legible text, Illegible text, Non-english text, and Symbol counted as Text
– Animal face counted as Part of animal
– Object, Background, and Other counted as Other

Region type Number of instances

Object 264

Part of a person 97

Legible text 84

Part of a face 67

Part of an animal 42

Crowd of people 33

Face 27

Other 19

Person 14

Background 13

Animal face 6

Illegible text 5

Head 5

Non-english text 3

Symbol 2
Table 2. What do people look at in images? Regions in images receiving a high density
of eye fixations were labeled by MTurk participants. We summarize the 681 labels
assigned to the 651 regions by MTurk participants.

A second MTurk task was designed to gain a better understanding of the re-
gions that could not be easily described by the labels provided in the first MTurk
task (regions that were annotated as Object, Background, and Other, making up
almost half of all regions). Participants were presented with yes/no questions
about image regions. A given MTurk participant would answer a specific ques-
tion for a set of 30 images.

1. [Object of gaze:] Are any of the people in the image looking at something
inside the highlighted region?

2a. [Object of action:] Are any people in the image interacting with something
inside the highlighted region?

2b. [Object of action:] Is there an object inside the highlighted region that
people are using in some way?

3. [Unusual element:] Is there something unusual about what is inside the
highlighted region?
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Fig. 4. Multidimensional scaling of the 651 labeled image regions (each region repre-
sented as a point), using the histogram of labels assigned to each region to project the
region onto two axes. We color the points to mark regions that received a majority vote
of each label type. We can see that regions corresponding to parts of people cluster
together near the left corner, regions corresponding to text cluster separately near the
bottom, and the rest of the labels (object, background, and other) form a third cluster
in the right corner.

4a. [Part of main subject:] Is the highlighted region part of the main subject
of this photograph?

4b. [Part of main subject:] Is the highlighted region part of the photographer’s
main focus?

5a. [Possible location for a person:] If this was a video, could a person
appear in the highlighted region of the image in the next instant?

5b. [Possible location for a person:] Would you expect to find a person in
the highlighted region of an image (even if there’s no one there now)?

6. [Possible location of action/motion:] If this was a video, could some-
thing move into the highlighted region of the image in the next instant?

7a. [Location of action/motion:] If this was a video, would there be an action
or a motion happening inside the highlighted image?

7b. [Location of action/motion:] Is there an action happening inside the
highlighted region?

A pilot task was run by asking every question about every image region, and
collecting 3 MTurk responses per question. We kept the questions that generated
participant agreement on at least 60% of the total regions. After this filtering
round, the following questions were selected for final analysis: 1, 2b, 3, 4b, 5b,
7b. For these selected questions, we collected additional responses from MTurk
participants to have a total of 20 responses per question per region. Majority vote
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was used to add additional labels to image regions. For instance, if a majority
of participants replied affirmatively to question 1 when asked about a specific
image region, then that image region would receive the label Object of gaze.

To combine the annotations from the first and second MTurk tasks, for any
region that was labeled as Object in task 1, but also as Object of action or gaze
in task 2, the original Object label was dropped, since the goal was to label each
region as concretely as possible. Furthermore, Other labels were dropped in cases
where a region received another, more concrete label. For any region labeled as
Part of a person or face, the Possible location for a person label was dropped
since the actual presence of a person made this latter labeling obsolete.

What do models miss?

Recall that regions of interest were selected from images because they were
highly fixated by human observers: these regions occurred in the 95th percentile
of human ground truth fixation maps. To determine if saliency models made
correct predictions in these regions, we calculated whether the saliency in these
regions was within the 95-th percentile of the saliency map for the whole image.
Specifically, per model per region of interest, we computed the mean saliency
value assigned by a model to each region. If the mean saliency value in the region
of interest fell below the 95-th percentile of the saliency map, we counted this
region as under-predicted by the model relative to the human ground truth. We
then tallied up the types of regions that were most commonly under-predicted
by models. In Fig. 5 we include a histogram of the failure modes of 10 different
saliency models. From the MIT Saliency Benchmark, we selected 4 of the top
neural network models, 3 of the top non neural network models, and 3 bottom-up
models that are commonly used in saliency evaluations. The absolute number of
failures of each types is significantly smaller among the SALICON and DeepFix
models in comparison to all the rest, while the traditional bottom up models
(AIM and IttiKoch) make the poorest predictions.

Instead of counts, in Table 3 we compute the percent of the under-predicted
regions that are due to each failure type. The percent is calculated in reference
to the total number of regions, but since a region can have multiple labels, these
values do not add up to 100%. We include values for the top neural network
models and top non neural network models. Although the absolute counts of
errors are higher for the non neural network models, the makeup of failure modes
is similar. Non neural network models miss many more faces in images than
neural network models, with the exception of Mixture of Saliency Models which
has an explicit face detector. Neural network models are also better at detecting
text. In Table 4 we vary the percentile threshold from 75% to 95% to demonstrate
that the distribution of failure modes remains relatively stable across thresholds.
Using a percentile threshold instead of a fixed threshold accounts for model false
alarms, so that a model is not at an advantage by spreading density across many
regions in an image to hedge predictions.
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Fig. 5. Counts of model failures: image regions whose saliency is under-predicted rel-
ative to human ground truth fixation maps, aggregated by region type. The types of
failures are similar across models, although the absolute quantity is significantly lower
across neural network models (particularly the two models analyzed in this paper:
SALICON and DeepFix).

Model DeepFix SALICON DeepGaze SalNet BMS Mixture Outlier
[13] [12] [10] [11] [8] [9] [7]

Part of main sub-
ject

31% 36% 48% 43% 46% 40% 46%

Unusual element 18% 16% 25% 20% 25% 22% 24%

Location of ac-
tion/motion

16% 16% 23% 21% 25% 22% 24%

Text 16% 13% 11% 18% 16% 18% 17%

Part of a person 15% 14% 19% 18% 20% 20% 19%

Possible location
for a person

15% 7% 9% 9% 7% 9% 8%

Object of action 14% 15% 22% 19% 23% 20% 22%

Object of gaze 11% 11% 16% 13% 15% 14% 16%

Part of a face 6% 8% 12% 11% 17% 8% 16%

Part of an animal 5% 5% 6% 7% 7% 8% 7%

Other 40% 40% 30% 28% 27% 29% 26%

Number of re-
gions

237 256 462 412 445 413 454

Table 3. Labels for under-predicted regions on MIT300 dataset. Regions are considered
under-predicted if the mean saliency within the region falls below the 95-th percentile
of the whole saliency map. Percentages are computed over 681 labels assigned to 651
regions. The distribution of failure modes is similar across models, though the absolute
counts are much lower for neural network models.
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Model DeepFix SALICON

Percentile threshold 75 85 95 75 85 95

Part of main subject 17% 32% 31% 33% 37% 36%

Unusual element 17% 16% 18% 19% 17% 16%

Location of action/motion 17% 18% 16% 23% 19% 16%

Text 13% 13% 16% 27% 24% 13%

Part of a person 17% 18% 15% 16% 16% 14%

Possible location for person 4% 7% 11% 11% 10% 7%

Object of action 8% 10% 14% 17% 18% 15%

Object of gaze 8% 12% 11% 11% 12% 11%

Part of a face 4% 3% 6% 9% 10% 8%

Part of an animal 8% 7% 5% 3% 5% 5%

Other 46% 41% 40% 28% 27% 40%
Table 4. Labels for under-predicted regions on MIT300 dataset by the top-performing
models. Regions are considered under-predicted if their predicted saliency falls below
the given percentile threshold. Here we show results on 3 different thresholds per model.
The proportions of different types of mistakes models make remains relatively stable
across different thresholds.

Because the label Main accounts for such a large percentage of the regions
annotated across datasets, in Table 5 we provide a breakdown across the other
label categories, for all regions labeled Main. Recall that many regions have
multiple labels assigned to them.

What can models gain?

As described in the main text, we modify saliency predictions by combining
saliency maps with ground truth fixation maps in specific regions. Fig. 6 depicts
this process. In Tables 6-7 we provide the results for the DeepFix and SALICON
models on the MIT300 benchmark when specific image regions from the model
predictions are replaced with ground truth. We provide the final metric scores
obtained when the modified models are evaluated on the benchmark. Because
different metrics have different ranges, we measure the percent gain in perfor-
mance of each modified model relative to the human limit. In other words, we
measure how much of the remaining gap to human ground truth each modifica-
tion captures. These tables are meant to provide a general sense of the possible
performance boost if different prediction errors are ameliorated.

Because of the significance of faces and text attracting significant observer
fixations [15], we separately annotated bounding boxes around all faces and text
in the MIT300 dataset. This provides a more complete set of instances than the
MTurk-labeled pre-filtered image regions for faces and text (which often capture
parts of objects). In the last two rows of Tables 6-7 we provide the results for
modified DeepFix and SALICON models, respectively, where we use annotated
bounding boxes of faces to insert the ground-truth fixation maps for face regions
into the saliency maps. We do the same with bounding boxes of text. This gives
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Dataset MIT300 CAT2000

Model DeepFix SALICON DeepFix

Image category All Social Action Indoor Outdoor

Unusual element 46% 39% 41% 75% 0% 33%

Location of action/motion 39% 33% 79% 86% 33% 11%

Text 9% 9% 3% 7% 0% 11%

Part of a person 26% 25% 18% 36% 17% 0%

Possible location for a person 16% 13% 9% 32% 17% 22%

Object of action 35% 31% 35% 64% 0% 11%

Object of gaze 27% 24% 71% 57% 0% 0%

Part of a face 15% 15% 56% 4% 0% 0%

Part of an animal 11% 8% 3% 7% 0% 0%

Other 14% 24% 0% 7% 67% 44%
Table 5. Understanding the breakdown of image regions labeled Main. The last row
is the set of regions that were only assigned the Main label and can not be explained
by anything else.

us an approximation of how well a model might be able to do on the saliency
benchmark if it correctly predicted these special types of regions in images.

Note that for some metrics, performances do not always improve. Replacing
certain regions of a saliency map with regions from the ground truth map can
skew the overall distribution of saliency values and affect distribution-based met-
rics. For instance, the Earth Mover’s Distance (EMD) metric highly penalizes
extra density, and prefers sparser saliency maps even if the prediction does not
exactly overlap with the ground truth [3]. Some form of histogram matching may
be required during the composition procedure. This is a separate modeling con-
sideration that is beyond the scope of this paper. The present analyses provide
a rough approximation of the possible gains in performance if certain regions
were correctly predicted. At the same time, the AUC metrics appear to have
saturated and do not significantly change with model modifications. As can be
seen from Fig. 1, it is even difficult to distinguish between different saliency mod-
els using AUC. This score is not providing a fine-grained comparison between
saliency models, and a metric such as Normalized Scanpath Saliency (NSS) or
Information Gain (IG) may be more appropriate for benchmarking models [3].

The importance of people

Some additional examples where the saliency of faces is either underestimated
or overestimated are provided in Fig. 7.

Not all people in an image are equally important

Fig. 8 contains additional examples of cases where predicting the correct relative
importance of people in an image is important for scene understanding. This



12 Bylinskii, Recasens, Borji, Oliva, Torralba, Durand

Fig. 6. Modified saliency maps were created by replacing the predicted saliency values
within regions of interest with ground-truth fixation map values at those locations.
Separate analyses were conducted for different types of image regions. Visualized here
(top to bottom) are regions containing a face, text, and object of gaze and action.
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Saliency model AUC sAUC NSS CC KL EMD SIM IG
↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑

DeepFix (orig) 0.87 0.71 2.26 0.78 0.63 2.04 0.67 0.67

+ main subject 0.88 0.73 2.49 0.82 0.58 1.88 0.69 0.78
+20.0% +20.0% +22.3% +18.2% +7.9% +7.8% +6.1% +9.7%

+ unusual 0.87 0.72 2.39 0.80 0.60 1.95 0.68 0.73
+0.0% +10.0% +12.6% +9.1% +4.8% +4.4% +3.0% +5.3%

+ action/motion 0.87 0.72 2.37 0.80 0.60 1.96 0.68 0.72
+0.0% +10.0% +10.7% +9.1% +4.8% +3.9% +3.0% +4.4%

+ text 0.87 0.72 2.32 0.79 0.60 1.98 0.67 0.71
+0.0% +10.0% +5.8% +4.5% +4.8% +2.9% +0.0% +3.5%

+ person part 0.87 0.72 2.35 0.80 0.61 1.98 0.68 0.70
+0.0% +10.0% +8.7% +9.1% +3.2% +2.9% +3.0% +2.7%

+ location of person 0.87 0.72 2.30 0.79 0.62 2.00 0.67 0.69
+0.0% +10.0% +3.9% +4.5% +1.6% +2.0% +0.0% +1.8%

+ objects of action 0.87 0.72 2.38 0.80 0.61 1.96 0.68 0.72
+0.0% +10.0% +11.7% +9.1% +3.2% +3.9% +3.0% +4.4%

+ objects of gaze 0.87 0.72 2.34 0.79 0.61 1.98 0.67 0.70
+0.0% +10.0% +7.8% +4.5% +3.2% +-46.1% +0.0% +2.7%

+ face part 0.87 0.71 2.31 0.79 0.62 2.02 0.67 0.69
+0.0% +0.0% +4.9% +4.5% +1.6% +1.0% +0.0% +1.8%

+ animal part 0.87 0.71 2.30 0.79 0.62 2.01 0.67 0.68
+0.0% +0.0% +3.9% +4.5% +1.6% +1.5% +0.0% +0.9%

+ face boxes 0.87 0.72 2.34 0.79 0.61 2.08 0.67 0.69

+0.0% +10.0% +7.8% +4.5% +3.2% -2.0% +0.0% +1.8%

+ text boxes 0.87 0.72 2.34 0.80 0.60 1.98 0.67 0.72

+0.0% +10.0% +7.8% +9.1% +4.8% +2.9% +0.0% +4.4%

Human limit 0.92 0.81 3.29 1 0 0 1 1.80
Table 6. Improvements of DeepFix model on MIT300 if specific regions were accurately
predicted. Performance numbers are over all 300 benchmark images, where regions
from the ground truth fixation map are substituted into the DeepFix saliency maps
(as in Fig. 6) to examine the change in performance. The first set of 10 region labels
are obtained from the MTurk tasks. The next two rows (face and text boxes) were
manually annotated to obtain a comprehensive set of each region. The percentage gain
in performance is highlighted in gray, where the gain is computed as a fraction of the
score difference between the original model score and the human limit. For KL and
EMD, lower absolute scores are better.
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Fig. 7. Images from the MIT300 dataset containing a single visible face and the largest
discrepancy between ground truth and model predictions. (a) Cases where the saliency
model (DeepFix) underestimates the face saliency. These face images tend to be small,
non-frontal, not centered in the image and otherwise harder to detect. (b) Cases where
the saliency of the face in the image is over-estimated. In these images, people tend to
fixate more the actions being performed than the individuals pictured. (c) Models are
consistently failing to detect depictions of faces, in posters and photographs appearing
within the input images. These faces often lack the context of a body, and appear at
an unusual location in the image.
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Saliency model AUC sAUC NSS CC KL EMD SIM IG
↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑

SALICON (orig) 0.87 0.74 2.12 0.74 0.54 2.62 0.60 0.71

+ main subject 0.87 0.75 2.27 0.77 0.53 2.61 0.59 0.75
+0.0% +14.3% +12.8% +11.5% +1.9% +0.4% -2.5% +3.7%

+ unusual 0.87 0.75 2.20 0.75 0.53 2.63 0.59 0.73
+0.0% +14.3% +6.8% +3.8% +1.9% -0.4% -2.5% +1.8%

+ action/motion 0.87 0.75 2.19 0.75 0.54 2.63 0.59 0.72
+0.0% +14.3% +6.0% +3.8% +0.0% -0.4% -2.5% +0.9%

+ text 0.87 0.74 2.15 0.75 0.53 2.61 0.59 0.71
+0.0% +0.0% +2.6% +3.8% +1.9% +0.4% -2.5% +0.0%

+ person part 0.87 0.74 2.17 0.75 0.53 2.63 0.59 0.72
+0.0% +0.0% +4.3% +3.8% +1.9% -0.4% -2.5% +0.9%

+ location of person 0.87 0.74 2.13 0.75 0.54 2.62 0.59 0.71
+0.0% +0.0% +0.9% +3.8% +0.0% +0.0% -2.5% +0.0%

+ objects of action 0.87 0.75 2.19 0.75 0.54 2.63 0.59 0.72
+0.0% +14.3% +6.0% +3.8% +0.0% -0.4% -2.5% +0.9%

+ objects of gaze 0.87 0.74 2.17 0.75 0.53 2.62 0.59 0.72
+0.0% +0.0% +4.3% +3.8% +1.9% +0.0% -2.5% +0.9%

+ face part 0.87 0.74 2.16 0.75 0.53 2.62 0.59 0.72
+0.0% +0.0% +3.4% +3.8% +1.9% +0.0% -2.5% +0.9%

+ animal part 0.87 0.74 2.14 0.75 0.53 2.62 0.59 0.71
+0.0% +0.0% +1.7% +3.8% +1.9% +0.0% -2.5% +0.0%

+ face boxes 0.87 0.74 2.19 0.75 0.55 2.72 0.59 0.70
+0.0% +0.0% +6.0% +3.8% -1.9% -3.8% -2.5% -0.9 %

+ text boxes 0.87 0.75 2.17 0.75 0.55 2.69 0.59 0.69
+0.0% +14.3% +4.3% +3.8% -1.9% -2.7% -2.5% -1.8 %

Human limit 0.92 0.81 3.29 1 0 0 1 1.80
Table 7. Improvements of SALICON model on MIT300 if specific regions were ac-
curately predicted. Performance numbers are over all 300 benchmark images, where
regions from the ground truth fixation map are substituted into the SALICON saliency
maps to examine the change in performance. The first set of 10 region labels are ob-
tained from the MTurk tasks. The next two rows (face and text boxes) were manually
annotated to obtain a comprehensive set of each region. The percentage gain in per-
formance is highlighted in gray, where the gain is computed as a fraction of the score
difference between the original model score and the human limit. For KL and EMD,
lower absolute scores are better.

figure demonstrates how model predictions deviate from human ground truth.
The density of human fixations on a face is used as an approximation of the
relative importance of that person in the image.

Objects of gaze and action

In the main text, we included some examples of objects of gaze that the best
saliency models failed to predict. We demonstrated that a gaze-following model
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Fig. 8. Although recent saliency models have begun to detect faces in images with high
precision, the challenge of assigning the correct relative importance to different faces
in an image remains. This requires an understanding of the interactions in an image:
e.g., who is a likely participant in an action (top row) and who likely has the highest
authority out of a group (second row). Facial expressions, accessories/embellishments,
facial orientation, and position in a photo also contribute to the importance of indi-
vidual faces (third row). In particular, image panels such as the last one can serve as
good test cases for models.



SUPPLEMENTAL MATERIAL: Where should saliency models look next? 17

(explicitly trained to predict gaze [16]) can localize these regions in images. In
Fig. 9, we include some additional examples of objects of gaze from the MIT300
dataset, but where at least one of the saliency models is able to localize them (i.e.,
model successes). We also provide the outputs from the gaze-following model on
these images, to show its generalizability past the few examples provided in the
main text.

The gaze saliency maps in the last column of Fig. 9 (and in Fig. 10 in the
main paper) were computed using the model and code provided by Recasens
et al. [16]. This gaze-following model provides a prediction for the gaze of each
of the subjects in the image. Its output consist of a heat map representing a
combination among the different gaze predictions; that is, a map highlighting
the objects people are looking at in the image. The procedure used to build the
final gaze maps is described below.

1. Using face bounding boxes we compute the output of the model for each of
the people in the image.

2. Using the importance score for each of the people in the image, we can weight
each of the gaze maps by its relative importance in the image.

3. Adding up all the weighted maps we compute the final output map. These
output maps provide a distribution over where each of the people is looking.

Note that the final weighted map captures the objects where people are
looking and their relative importance to the full image.

In Fig. 10 we provide examples of objects of action for which gaze information
can not be used to localize these regions in images, but body orientation and
other body parts (specifically the hands) can help. This is a fruitful direction for
further research.

Finer-grained datasets

Datasets broken up by image type, like CAT2000 [17] on the MIT Saliency
Benchmark, can help highlight images on which computational models might
be able to achieve the greatest improvements. In Fig. 12 we include the perfor-
mances the DeepFix model achieves on 20 image categories, measured as Infor-
mation Gain [2] over the center baseline and over the best non neural network
model (BMS). From this plot we can also see that DeepFix has made significant
improvements over BMS across all image categories, with the biggest improve-
ments across the non-natural images: sketches, patterns, and cartoons. However,
deep models are not better predictors of human fixations than a simple center
baseline on outdoor natural, pattern, and satellite images.

Another possible finer-grained test case for models is panel images: images
constructed out of other images or image elements (Fig. 11). This can provide
a direct measure for how models assign relative importance scores to different
sub-images. It is a hard test case containing multiple salient objects, where the
challenge is no longer to just detect the salient objects, but to determine which
of the objects should have higher relative saliency. Models can be evaluated in
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Fig. 9. Images in the MIT300 dataset labeled to contain objects of gaze but where at
least one deep learning saliency model (DeepFix or SALICON) accurately predicts the
human ground truth fixation map. The yellow outlines highlight high-density regions
in the ground truth fixation map that were labeled by MTurk participants as regions
on which the gaze of someone in the image falls. A model that explicitly predicts the
gaze of individuals in an image can localize these objects of interest [16].
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Fig. 10. Images in the MIT300 dataset labeled to contain objects of action - i.e. ob-
jects being acted on, or interacted with, by people in the scene. Included are images
where both deep learning saliency models, DeepFix and SALICON, underestimate the
saliency of these regions. Notice that the significance of these objects can not be in-
ferred from gaze information (unlike in Fig. 9), since in all of these cases no one in the
image is looking at the objects of interest. The yellow outlines highlight high-density
regions in the ground truth fixation map that were labeled by MTurk participants as
regions containing objects being acted on.
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this setting by comparing their saliency ranking of the image panels to a ground
truth ranking (e.g. obtained by using maximum activations in fixation maps).
Now that state-of-the-art saliency models have become very good detectors of
objects in images, the next step is to test them on their ability to predict relative
importance of the objects, such as people in a crowd, a collection of text regions,
or a set of panel images, which can call for new images, tasks, and evaluation
procedures.

Fig. 11. A finer-grained test for saliency models: determining the relative importance
of different sub-images in a panel (this panel image is part of the MIT300 dataset). The
top row contains the saliency map outputs given the input image panel. AUC and NSS
scores are computed for these saliency maps. In the second row, the maximum response
of each saliency model on each subimage is visualized (as an importance matrix). The
importance ranking is a measure of the correlation of values in the ground truth and
predicted importance matrices.
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Fig. 12. Average Information Gain of DeepFix model over the center baseline and over
the top-performing non neural network model (BMS), computed as in [2]. DeepFix con-
sistently outperforms BMS across all image categories, with especially large gains on
non-natural image categories like patterns, cartoons, and sketches. However, Deep-
Fix still does not provide prediction gains over the baseline for the first 3 categories,
indicating its predictions might be missing key elements in those images.
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