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— Tagging Continuous Sequences —

>
>
>
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Examples: Gesture Recognition, Robot Navigation.
Setting: We are given aligned sequences < [x;...
x;i € R* and y; € X, for some discrete set of Tags.

Goal: Learn a model of P(x,y) and use it to make predictions, i.e.

compute argmaxyP(x,y)
Contribution: A Spectral Algorithm for this task.

— Spectral Background —
HMMs [HKZ09]
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m states — Sy €{1,...,m}
k symbols — x; € {07,..., O}}
Forward-backward equations with A, € R™* ™.
P( ) — &4 AX] Axtf

Observable statistics:

H(1i,))
Ho(1,))
Algorithm: Compute SV
singular vectors V,;, Ay = (]

= P(x¢—1 = 03, Xt = 0j)
= P(x(—1 = 04y Xt = 0, X1 = Gj)
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Finite State Taggers (FST)
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Input alphabet A and output alphabet 2

Operators: A§ € R™*™, depend on input and output.
P(x,y) = oy qu] AR Koo

Algorithm: Balle et al, [ECML 2011].

— Continuous Sequence Taggers (CFST) —

>

A CFST over (O(X) x )" with m states is a tuple:
A = <(D, X1y Koy O{T>

D is a set of k feature functions: ¢i(x): X — R
O7 € R™*™ are the k x |X| operators and

A(D(xt),Yt) Zt 1C|)l Xt) Oyt
The function f5 realised by the CFST 1s defined by:

fA(X>y) — (X]T A(@(X]),}h) " 'A((D(XT)>UT) X

0.0

— Example: Transitions as Mixture Models —
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P(x,y) = 5 . P 1 P(hesn, X ye | hy)
P(hiy1, X, Yt | ht Z]f:1 Pi(his1, ye | i) Pz = 1, x¢)
b P(z=1,x)...P(z =k, x)]

(x) =
%] = Pi(hit1,y | hye)

xtly Y7 -

-UT] >,

D H=UDV' and take top m right

Abstract

1. We address the problem of sequence
tagging where the input 1s a continuous
sequence and the output i1s discrete.

2.

We generlizate the class of F'STs over
discrete input-output sequences to a
class where transitions are linear
combinations of elementary transitions.

1. Intuitively, the atomic transition
functions operate on a soft partition of
the input space.

. We derive a spectral learning algorithm
for this model that 1s both simple and
fast.

Observable Statistics:

» Hi(1) = Epldi(xt)] —
» H ( )))
> er(i,j) = Epy,—

> C(1>))

Remarks =:

» Hypothesis: minimal CEFST.
» H, can be wrote as Hy = FB.
» H =FY ¥ . 0°C(1,1)B and H; = Fa,, = /B

Remarks «:

» Hypothesis: H; = FB, a rank factorization.

Epldi(x¢) d?) (Xeg1)] —
o(Pilxe—1)Pr(xt) bj(xt41))

Input trigram expectations conditioned on yy.
= Epldi(xt)P;j(x¢)] — Covariance.

— Duality: CFST and factorizations of H, —
Theorem: Minimal CFST A <— Rank factorization of H,.

Input unigram expectations.
Input bigram expectations.

— The Algorithm —

Algorithm LearnCWFST(X, @, X, S, m)

S Ok DN =

. For every pair of sequences (x,y) in S and every
. Use S to estimate matrix statistics H1 c RX, Hz c Rk

. Compute the m rank compact SVD of H, = (UA)V'.
. Compute the inverse of C and Q7

. Compute the start and ending parameters of the CWFST

index 1 < t < |x|compute p(x¢) =

[CI)1 (Xt) ) d)k(xt)]

HG c R** and covariance matrix C € R¥xk

(H,V)THEV

as: (X] H]V Koo — (HzV)+H1

» A = (D, n, oo, O7) can be defined as: . Compute the transition matrices Oy:
oo = FTH; of = H1B+ Q1 _ F*HfB* OG( ) . Q7 (1,))
05(1,),., OF(i,1))7 (1,5), -+, QUL ) AUN B A
] ) k ) Q] ) Qk )) _Og(l,))_ _Qg(l)))_
— Experimental Results —
75//—\_/,'\\ ——~— ~ —

Task Robot Navegation:
» Input: Sequence of Sensor Readings.

» Output: Sequence of Optimal Actions.

Features:

>

>

Select {z7 ..

Define ¢(x) = exp
function D.

Inference:

>

Max marginals.

Compare:
» F'ST spectral learning (discretized inputs).
Different Feature Functions.

>

.z} points in R* (e.g. via kmeans)

—D (Zl,X)

— <  for some distance

65

60

80

601

—FS

CWFST Tau 0.1
—CWFS

CWFS
—CWFST Tau 100

CWFST Tau 1000

15 19
# States

15 19
# States



