

Spectral Learning of Sequence Taggers over Continuos Sequences

Adrià Recasens and Ariadna Quattoni Universitat Politècnica de Catalunya

— Tagging Continuous Sequences —

- Examples: Gesture Recognition, Robot Navigation.
- ▶ Setting: We are given aligned sequences $\langle [x_1...x_T], [y_1...y_T] \rangle$.
- $\mathbf{x}_i \in \mathbb{R}^k$ and $\mathbf{y}_i \in \Sigma$, for some discrete set of Tags.
- ► Goal: Learn a model of $\mathbb{P}(x,y)$ and use it to make predictions, i.e. compute $argmax_y\mathbb{P}(x,y)$
- ► Contribution: A Spectral Algorithm for this task.

— Spectral Background —

HMMs [HKZ09]

- ▶ m states $-S_t \in \{1, \ldots, m\}$
- ▶ k symbols $-x_t \in \{\sigma_1, \ldots, \sigma_k\}$
- ▶ Forward-backward equations with $A_{\sigma} \in \mathbb{R}^{m \times m}$:

$$\mathbb{P}(\mathbf{x}) = \alpha_1^{\top} A_{\mathbf{x}_1} \cdots A_{\mathbf{x}_t} \vec{\mathbf{1}}$$

► Observable statistics:

$$\begin{aligned} &H(i,j) = \mathbb{P}(x_{t-1} = \sigma_i, \ x_t = \sigma_j) \\ &H_{\sigma}(i,j) = \mathbb{P}(x_{t-1} = \sigma_i, \ x_t = \sigma, \ x_{t+1} = \sigma_i) \end{aligned}$$

▶ Algorithm: Compute SVD $H = UDV^{\top}$ and take top m right singular vectors $V_m A_{\sigma} = (HV_m)^+ H_{\sigma} V_m$

Finite State Taggers (FST)

- ▶ Input alphabet Δ and output alphabet Σ
- Operators: $A_{\delta}^{\sigma} \in \mathbb{R}^{m \times m}$, depend on input and output.
- Algorithm: Balle et al, [ECML 2011].

— Continuous Sequence Taggers (CFST) —

- A *CFST* over $(\Phi(\mathcal{X}) \times \Sigma)^*$ with m states is a tuple: $A = \langle \Phi, \alpha_1, \alpha_\infty, O_1^{\sigma} \rangle$
- ▶ Φ is a set of k feature functions: $\varphi_l(x): \mathcal{X} \to \mathbb{R}$
- $O_l^{\sigma} \in \mathbb{R}^{m \times m}$ are the $k \times |\Sigma|$ operators and $A(\Phi(x_t), y_t) = \sum_{l=1}^k \phi_l(x_t) O_l^{y_t}$
- ▶ The function f_A realised by the CFST is defined by:

$$f_A(x,y) = \alpha_1^\top A(\Phi(x_1),y_1) \cdots A(\Phi(x_T),y_T) \alpha_\infty$$

— Example: Transitions as Mixture Models —

- $\mathbb{P}(x,y) = \sum_{h} \mathbb{P}(h_0) \prod_{t=1}^{T-1} \mathbb{P}(h_{t+1}, x_t, y_t \mid h_t)$
- ▶ $\mathbb{P}(h_{t+1}, x_t, y_t \mid h_t) = \sum_{l=1}^{k} \mathbb{P}_l(h_{t+1}, y_t \mid h_t) \mathbb{P}(z = l, x_t)$
- $O_l^y = \mathbb{P}_l(h_{t+1}, y \mid h_t)$

1. We address the problem of sequence tagging where the input is a continuous sequence and the output is discrete.

Abstract

- 2. We generlizate the class of FSTs over discrete input-output sequences to a class where transitions are linear combinations of elementary transitions.
- 1. Intuitively, the atomic transition functions operate on a soft partition of the input space.
- 2. We derive a spectral learning algorithm for this model that is both simple and fast.

Observable Statistics:

- ▶ $H_1(i) = \mathbb{E}_{\mathbb{P}}[\phi_i(x_t)]$ Input unigram expectations.
- ▶ $H_2(i,j) = \mathbb{E}_{\mathbb{P}}[\phi_i(x_t)\phi_j(x_{t+1})]$ Input bigram expectations.
- ► $H_l^{\sigma}(i,j) = \mathbb{E}_{\mathbb{P}y_t = \sigma}(\phi_i(x_{t-1})\phi_l(x_t)\phi_j(x_{t+1}))$ Input trigram expectations conditioned on y_t .
- $ightharpoonup C(i,j) = \mathbb{E}_{\mathbb{P}}[\phi_i(x_t)\phi_j(x_t)]$ Covariance.

— Duality: CFST and factorizations of H_2 —

Theorem: Minimal CFST $A \iff$ Rank factorization of H_2 . Remarks \Rightarrow :

- ► Hypothesis: minimal CFST.
- $ightharpoonup H_2$ can be wrote as $H_2 = FB$.
- \vdash $H_1^{\sigma} = F \sum_{i=1}^{\kappa} O_i^{\sigma} C(l, i) B$ and $H_1 = F \alpha_{\infty} = \alpha_1^{\top} B$

Remarks \Leftarrow :

- ▶ Hypothesis: $H_2 = FB$, a rank factorization.
- \rightarrow $A = \langle \Phi, \alpha_1, \alpha_{\infty}, O_1^{\sigma} \rangle$ can be defined as:

$$\alpha_{\infty} = F^{+}H_{1} \quad \alpha_{1}^{\top} = H_{1}B^{+} \quad Q_{1}^{\sigma} = F^{+}H_{1}^{\sigma}B^{+}$$

$$[O_{1}^{\sigma}(i,j), \dots, O_{k}^{\sigma}(i,j)]^{\top} = C^{-1}[Q_{1}^{\sigma}(i,j), \dots, Q_{k}^{\sigma}(i,j)]$$

— The Algorithm —

Algorithm LearnCWFST (X, Φ, Σ, S, m)

- 1. For every pair of sequences (x,y) in S and every index 1 < t < |x| compute $\phi(x_t) = [\phi_1(x_t), \dots, \phi_k(x_t)]$
- 2. Use S to estimate matrix statistics $\widehat{H}_1 \in \mathbb{R}^k$, $\widehat{H}_2 \in \mathbb{R}^{k \times k}$, $\widehat{H}_1^{\sigma} \in \mathbb{R}^{k \times k}$ and covariance matrix $\widehat{C} \in \mathbb{R}^{k \times k}$.
- 3. Compute the m rank compact SVD of $\widehat{H}_2 = (U\Lambda)V^{\top}$.
- **4.** Compute the inverse of \widehat{C} and $Q_1^{\sigma} = (\widehat{H}_2 V)^+ \widehat{H}_1^{\sigma} V$.
- 5. Compute the start and ending parameters of the CWFST as: $\alpha_1^\top = \widehat{H}_1 V \ \alpha_\infty = (\widehat{H}_2 V)^+ \widehat{H}_1$
- 6. Compute the transition matrices O_l^{σ} :

$$\begin{bmatrix} O_1^{\sigma}(i,j) \\ \vdots \\ O_k^{\sigma}(i,j) \end{bmatrix} = \widehat{C}^{-1} \begin{bmatrix} Q_1^{\sigma}(i,j) \\ \vdots \\ Q_k^{\sigma}(i,j) \end{bmatrix}$$

— Experimental Results —

Task Robot Navegation:

- ▶ Input: Sequence of Sensor Readings.
- ▶ Output: Sequence of Optimal Actions.

Features:

- Select $\{z_1 \dots z_k\}$ points in \mathbb{R}^k (e.g. via kmeans)
- ▶ Define $\phi_l(x) = \exp^{\frac{-D(z_l, x)}{\tau}}$ for some distance function D.

Inference:

Max marginals.

Compare:

- ▶ FST spectral learning (discretized inputs).
- ▶ Different Feature Functions.

