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Tagging Continuous Sequences

Setting:

I We are given pairs < [x1, x2 . . . xT ], [y1, y2 . . . yT ] > of
aligned sequences.

I Φ(xi) ∈ Rk , a real feature representation of xi .
I and yi ∈ Σ, where Σ is some discrete set of Tags.

Goal :
I We want to learn a model of P(x , y).
I We will use it to make predictions: argmaxyP(x , y).
I Contribution: A Spectral Algorithm for this task.



Examples of Tagging Problems:

I Discret tagging problems:

I Gesture Recognition:

I Robot navegation:



Examples of Tagging Problems:

I Discret tagging problems:

I Gesture Recognition:

I Robot navegation:



Examples of Tagging Problems:

I Discret tagging problems:

I Gesture Recognition:

I Robot navegation:



Outline

I Spectral Learning of Sequence Models background.
I A Model for Tagging Continuous Sequences.
I Spectral Learning Algorithm for Continuous Tagging.



Outline

I Spectral Learning of Sequence Models background.
I A Model for Tagging Continuous Sequences.
I Spectral Learning Algorithm for Continuous Tagging.



A Simple Spectral Method [HKZ09]

Discrete Homogeneous
Hidden Markov Model

Y1 Y2 Y3 Y4

X1 X2 X3 X4

⋯

I m states – St ∈ {1, . . . ,m}.
I k symbols – xt ∈ {σ1, . . . , σk}.
I Forward-backward equations

with Aσ ∈ Rm×m:
P(x) = α>1 Ax1 · · ·Axt

~1

I Probabilities arranged into matrices
H,Hσ1 , . . . ,Hσk ∈ Rk×k .

H(i , j) = P(xt−1 = σi , xt = σj)

Hσ(i , j) = P(xt−1 = σi , xt = σ, xt+1 = σj)

I Spectral learning algorithm:
1. Compute SVD H = UDV> and take top m right singular

vectors Vm.
2. Aσ = (HVm)+HσVm.



Sequence Tagging

Discrete FST:
I Input alphabet: ∆.
I Output Alphabet: Σ.
I Operators: Aσ

δ ∈ Rm×m, depend on input and output.
I P(x , y) = α>1 Ay1

x1
· · ·AyT

xT
α∞

I Balle et al, [ECML 2011] developed a Spectral Algorithm.

We can try to solve our problem by...

I P(x1:T , y1:T ) = αT
1 Ay1

φ(x1)
. . .AyT

φ(xT )
α∞ ⇒ Infinite operators!

I A discretisation of the X space and use [Balle et al, 2011].
I Generalizing the FST to continuous inputs.
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Continuous Sequence Taggers (CFST)

A CFST over (Φ(X )× Σ)∗ with m states is a tuple:
A = 〈Φ, α1, α∞,Oσ

l 〉 where:

I Φ is a set of k feature functions.
φl (x) : X → R, the real feature representation of X .

I α1, α∞ ∈ Rm are starting and ending parameters.

I Oσ
l ∈ Rm×m are the k × |Σ| operators.

There is one operator for each output symbol and input feature.

I A(Φ(xt ), yt ) =
∑k

l=1 φl (xt )O
yt
l

The operator function is a combination of the feature operators.



Continuous Sequence Taggers

CFST
The function fA realised by the CFST is defined by:

fA(x , y) = α>1 A(Φ(x1), y1) · · ·A(Φ(xT ), yT ) α∞

= α>1

(
k∑

l=1

φl(x1)Oy1
l

)
· · ·

(
k∑

l=1

φl(xT )OyT
l

)
α∞

Main Idea:
The operators Aσ

δ have become Aσ
x =

∑k
l=1 φl(x)Oσ

l .



Examples

Discrete FST A as CFST A′

I For each input δ we define φδ(x) = Iδ(x) .
I Φ(x = σ) = [0 . . . 1 . . . 0].

A real vector ∈ Rk of zeros with a 1 at position σ.
I Set Oσ

l = Aσ
l , α′1 = α1 and α′∞ = α∞ .

I Finally: A(Φ(δ), σ) = Aσ
δ .

Transitions as Mixture Models:
I P(x , y) =

∑
h P(h0)

∏T−1
t=1 P(ht+1, xt , yt | ht ).

I P(ht+1, xt , yt | ht ) =
∑k

l=1 Pl(ht+1, yt | ht )P(z = l , xt ).
I φ(x) = [P(z = 1, x) . . .P(z = k , x)].
I Oy

l = Pl(ht+1, y | ht ).
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Spectral Learning Algorithm

Observable Statistics:
I H1 ∈ Rk , where H1(i) = EP[φi(xt )].

Input unigram feature expectations.
I H2 ∈ Rk×k , where H2(i , j) = EP[φi(xt )φj(xt+1)].

Input bigram feature expectations.
I Hσ

l ∈ Rk×k , where
Hσ

l (i , j) = EPyt=σ(φi(xt−1)φl(xt )φj(xt+1)).
Input trigram feature expectations conditioned on yt .

I C ∈ Rk×k , where C(i , j) = EP[φi(xt )φj(xt )].



Duality between CFST and factorizations of H2

Theorem: Minimal CFST A ⇐⇒ Rank factorization of H2.
Remarks⇒:

I Hypothesis: minimal CFST.
I H2 can be written as H2 = FB where F ∈ Rk×m and

B ∈ Rm×k ,
I Hσ

l = F
∑k

i=1 Oσ
i C(l , i)B and H1 = Fα∞ = α>1 B

Remarks⇐:
I Hypothesis: H2 = FB, a rank factorization.
I A = 〈Φ, α1, α∞,Oσ

l 〉 can be defined as:
I α∞ = F+H1 α>1 = H1B+ Qσ

l = F+Hσ
l B+.

I [Oσ
1 (i , j), . . . ,Oσ

k (i , j)]> = C−1[Qσ
1 (i , j), . . . ,Qσ

k (i , j)].
I Then, A computes f .



Spectral algorithm

LearnCFST(X ,Φ,Σ,S,m)

1. For every pair of sequences (x , y) in S and every
index 1 < t < |x |compute φ(xt ) = [φ1(xt ), . . . , φk (xt )]

2. Use S to estimate matrix statistics Ĥ1 ∈ Rk , Ĥ2 ∈ Rk×k ,
Ĥσ

l ∈ Rk×k and Ĉ ∈ Rk×k .

3. Compute the m rank compact SVD of Ĥ2 = (UΛ)V>.

4. Compute the inverse of Ĉ and Qσ
l = (Ĥ2V )+Ĥσ

l V .
5. Compute the start and ending parameters of the CWFST

as: α>1 = Ĥ1V α∞ = (Ĥ2V )+Ĥ1

6. Compute the transition matrices Oσ
l :Oσ

1 (i , j)
...

Oσ
k (i , j)

 = Ĉ−1

Qσ
1 (i , j)

...
Qσ

k (i , j)





The Experiment
I Task Robot Navegation

I Input: Sequence of Sensor Readings.
I Output: Sequence of optimal Actions.

I Features
I Select {z1 . . . zk} points in Rk (e.g. via kmeans).
I Define φl (x) = e−

D(zl ,x)
τ .
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