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Abstract

Following the gaze of people inside videos is an im-
portant signal for understanding people and their actions.
In this paper, we present an approach for following gaze
across views by predicting where a particular person is
looking throughout a scene. We collect VideoGaze, a new
dataset which we use as a benchmark to both train and
evaluate models. Given one view with a person in it and
a second view of the scene, our model estimates a density
for gaze location in the second view. A key aspect of our
approach is an end-to-end model that solves the following
sub-problems: saliency, gaze pose, and geometric relation-
ships between views. Although our model is supervised only
with gaze, we show that the model learns to solve these sub-
problems automatically without supervision. Experiments
suggest that our approach follows gaze better than stan-
dard baselines and produces plausible results for everyday
situations.

1. Introduction
Following the gaze of people is crucial for understanding

their actions, activities and motivations. There are many
applications that would benefit by the capability to follow
gaze in unconstrained scenes e.g., whether the pedestrian
has seen the car in the crosswalk [14], if students are paying
attention, and understanding social interactions [28, 11, 3].
In this paper, we scale up gaze following [23] to work across
multiple views of the same scene. For example, the sce-
nario in Figure 1 seems clear: the character is looking at the
smoke. Although the person and the smoke are not in the
same view, we are able to easily follow their gaze across
views and understand that he is looking at the smoke. Solv-
ing this task requires a rich understanding of the situation.

To perform the gaze following task across views, we
need to solve three problems. First, we need to reason about
the geometric relationship of the camera pose between the
two views. In our example, we need to understand that the
two images have been taken with cameras pointing in oppo-
site directions. Second, we need to estimate the head pose

Figure 1: We introduce a method for following people’s
gaze across multiple views of the scene. Given one view
with a person in it (left) and a second view (right), we pre-
dict the location of gaze in the second view (right).

of the target person. We want to understand, within the first
frame, the direction where the person is looking. We pre-
dict the direction where that person is looking, indicated by
the red arrow. Finally, we need to find salient objects in the
second view. These will be potential gaze solutions of our
problem, since people are known to look at salient locations.
To complete our example, the smoke in the second view is
an example of a salient spot in the image. With these three
ingredients we are able to project the gaze direction from
the first view to the second view and find a salient object
that intersects the gaze direction.

We introduce an approach for multi-view gaze follow-
ing. Given two images taken from different views of a
given scene, our method follows the gaze of the people
in the scene, even across views. In particular, this sys-
tem can be applicable to videos, where different frames
can be multiple views of the same scenes. Our approach
to multi-view gaze following splits the problem into three
main modules, each solving a particular task. Although
we are dividing the problem into small sub-problems, we
are training our system end-to-end providing only gaze la-
bels. Although the sub-modules do not have specific super-
vision, they learn to automatically solve the sub problems.
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Figure 2: VideoGaze Dataset: We present a novel large-scale dataset for gaze-following across multiple views. The his-
togram at the top right shows the distribution of the time between when a person appears in the clip and the object he is
looking at occurs. The heat maps below it show the probability density for the head and gaze location respectively. We also
show some annotated examples from the dataset.

To both train and benchmark our system, we introduce a
new dataset, VideoGaze, for multi-view gaze following us-
ing videos [27]. We annotated 47, 456 people in videos with
head, eyes and gaze labels.

There are three main contributions of this paper. First,
we introduce the new problem of following gaze across
views. Second, we release a large-scale dataset for both
training and evaluation on this task. Third, we present a
novel network architecture that leverages the geometry of
the scene to tackle this problem. The remainder of this pa-
per details these contributions. In Section 2 we explore re-
lated work. In Section 3 we present our new dataset contain-
ing gaze annotation in movies. In Section 4, we describe the
model in detail. In the final section, we evaluate the model
and provide sample results.

2. Related Work

This paper builds upon a previous gaze-following model
for static images [23]. However, the previous work focuses
only on cases where a person, within the image, is look-
ing at another object in the same image. In this work, we
remove this restriction and extend gaze following to cases
where a person may be looking outside the current view.
The model proposed in this paper deals with the situation
where the person is looking at another view of the scene.

Gaze-Following in video: Although our model is de-
fined for general scenes, one of its main applications is
gaze-following in video. The previous work done for gaze-
following in video deals with very restricted settings. Most
notably [19, 18] tackles the problem of detecting people
looking at each other in video, by using their head pose and

location inside the frame. Although our model can be used
with this goal, it is applicable to a wide variety of settings:
it can predict gaze when it is located elsewhere in the im-
age (not only on humans) or future/past frame of the video.
Mukherjee and Robertson [20] use RGB-D images to pre-
dict gaze in images and videos. They estimate the head-
pose of the person using the multi-modal RGB-D data, and
finally they regress the gaze location with a second system.
Although the output of their system is gaze location, our
model does not need multi-modal data and it is able to deal
with gaze location in a different view. Extensive work has
been done on human interaction and social prediction on
both images on video involving gaze [28, 11, 3]. Some of
this work is focused on ego-centric camera data, such as in
[7, 6]. Furthermore, [21, 26] predicts social saliency, that is,
the region that attracts attentions of a group of people in the
image. Finally, [3] estimates the 3D location and pose of
the people, which is used to predict social interaction. Al-
though their goal is completely different, we also model the
scene with explicit 3D and use it to predict gaze.

Deep Learning with Geometry: Unlike [23], we use
parametrized geometry transformations that help the model
to deal with the underlying geometry of the world. Neural
networks have already been used to model transformations,
such as in [9, 10]. Our work is also related to Spatial Trans-
formers Networks [12], where a localization module gen-
erates the parameters of an affine transformation and warps
the representation with bilinear interpolation. In this work,
our model generates parameters of a 3D affine transforma-
tion, but the transformation is applied analytically without
warping, which may be more stable. [25, 4] used 2D images
to learn the underlying 3D structure. Similarly, we expect
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Figure 3: Network Architecture: Our model has three pathways. The saliency pathway (top left) finds salient spots on the
target view. The gaze pathway (bottom left) computes the parameters of the cone coming out from the person’s face. The
transformation pathway (right) estimates the geometric relationship between views. The output is the gaze location density.

our model to learn the underlying 3D structure of the frame
composition only using 2D images. Finally, [8] provide ef-
ficient implementations for adding geometric transforma-
tions to convolutional neural networks.

Saliency: Although related, gaze-following and free-
viewing saliency refer to different problems. In gaze-
following, we predict the location of the gaze of an ob-
server in the scene, while in saliency we predict the fixa-
tions of an external observer free-viewing the image. Some
authors have used gaze to improve saliency prediction, such
as in [22]. Furthermore, [1] showed how gaze prediction
can improve state-of-the-art saliency models. Although our
approach is not intended to solve video saliency neither is
using video as input, we believe it is worth mentioning some
works learning saliency for videos such as [16, 29, 17].

3. VideoGaze Dataset

We introduce VideoGaze, a large scale dataset con-
taining the location where film characters are looking in
movies. VideoGaze contains 47, 456 annotations from 140
movies. To build the dataset we used videos from the
MovieQA dataset [27], which we consider a representative
selection of movies. Each sample of the dataset consists of
a pair of frames (or views). The first frame of the pair con-
tains the character whose gaze is annotated. Eye location
and a head bounding box for the character are provided. The
second frame contains the location that character is looking
at the time, which can occur temporally after or before the
first frame.

To annotate the dataset, we used Amazon’s Mechanical
Turk (AMT). We developed an online tool to annotate gaze
in videos where the worker is able to first locate the head
of the character and then scan through the video to find the
location of the object the character is looking at. We also
provided options to indicate that the gazed object never ap-
pears in the clip or that the head of the character is not vis-
ible in the scene. The initial person bounding boxes have

been obtained using person detectors from [24]. For qual-
ity control, we included samples with known ground truth.
We discarded workers that provided poor quality on their
annotations.

We split our data into training set and test set. We use
all the annotations from 20 movies as the testing set and the
rest of the annotations as training set. Note that we made the
train/test split by source movie, not by clip, which prevents
overfitting to particular movies.

Our dataset captures various scenarios present in movies.
For instance, 72% of characters in the movies are looking at
something that appears at some point in the movie. 27% of
characters are looking at something which never appears in
the scene. We can further unpack this statistic by analysing
the difference in time between the moment when a character
appears and the moment when the object he is looking at
appears. In Fig. 2 (top right) we show the histogram of this
time distribution. To summarize, 16.89% of the times when
the object is in the movie, it is present in the same frame
as the person who is looking at it (the peak at 0 seconds).
One example of annotation in the same frame is shown in
Figure 2, the first example of the second row. Furthermore,
we can observe that the time when an object of gaze appears
in the movie relative to the character is biased towards the
future. We also show the spatial distribution of head and
gaze spatial distribution in Fig. 2.

4. Method

Suppose we have a scene and a person inside the scene.
Our goal is to predict where the person is looking, which
may possibly be in another view of the scene. Let xs be
the view where the person is located (source view), xh be
an image crop containing only the person’s head, and ue be
the coordinates of the eyes of the person within the view xs.
Let xt be the view where we want to predict the gaze loca-
tion (target view). Given these, we seek to predict the co-
ordinates of the person’s gaze ŷ in the target view xt. Note
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Figure 4: Transformation and intersection: The cone pathway computes the cone parameters v and α, and the transforma-
tion pathway estimates the geometric relation among the original view and the target view. The cone origin is ue and xh is
indicated with the blue bounding box.

xt may either be the same or different as xs.
We design a convolutional neural network

F (xs, xh, ue, xt) to predict ŷ. While we could sim-
ply concatenate these inputs and train a network, the
internal representation would be entangled and may require
large amounts of training data to discover consistent
patterns, which is inefficient. Instead, we seek to take
advantage of the geometry of the scene to better predict
people’s gaze.

4.1. Multi-View Gaze Network

To follow gaze across views, the network must be able to
solve three sub-problems: (1) estimate the head pose of the
person, (2) find the geometric relationship between the view
where the person is and the view where the gaze location
might be, and (3) find the potential locations in the target
view where the person might be looking (salient spots). We
design a single model that internally solves each of these
sub-problems even though we supervise the network only
with the gaze annotations.

We design the network F with this structure in mind:

F (xs, xh, ue, xt) = S(xt)�G(ue, xs, xt) (1)

where S(·) and G(·) are decompositions of the original
problem. Both S(·) and G(·) produce a positive matrix
in Rk×k with k being the size of the spatial maps and �
is the element-wise product. Although we only supervise
F (·), our intention is that S(·) will learn to detect salient
objects and G(·) will learn to estimate a mask of all the lo-
cations where the person could be looking in xt. We use
the element-wise product as an “and operation” so that the
network predicts people are looking at salient objects that
are within their eyesight.

S is parametrized as a neural network. The structure of
G is motivated to leverage the geometry of the scene. We
write G as the intersection of the person’s gaze cone with
a plane representing the target view xt transformed into the
same coordinate frame as xs:

G(ue, xs, xt) = C(ue, xh) ∩ τ(T (xs, xt)) (2)

where C(ue, xs) ∈ R7 estimates the parameters of a cone
representing the person’s gaze in the original image xs,
T (xs, xt) ∈ R3×4 estimates the parameters of an affine
transformation of the target view, and τ applies the trans-
formation. τ is expected to compute the coordinates of xt
in the system of coordinates defined by xs. We illustrate
this process in Figure 4.

4.2. Transformation τ

We use an affine transformation to geometrically relate
the two scenes xs and xt. Let Z be the set of coordinates
inside the square with corners (±1,±1, 0). Suppose the im-
age xs is located in Z (xs is resized to have its corners in
(±1,±1, 0)) . Then:

τ(T ) = Tz ∀z ∈ Z (3)

The affine transformation T is computing the geometric re-
lation between both views. To compute the parameters T
we used a convolutional neural network. We use T to trans-
form the coordinates of xt into the coordinate system de-
fined by xs.

4.3. Cone-Plane Intersection

Given a cone parametrization of the gaze directionC and
a transformed view plane τ(T ), we wish to find the intersec-
tion C ∩ τ(T ). The intersection is obtained by solving the



following equation for β:

βT Σβ = 0 where β = (β1, β2, 1) (4)

where (β1, β2) are coordinates in the system of coordinates
defined by xt, and Σ ∈ R3×3 is a matrix defining the
cone-plane intersection as in [2]. Solving Equation 4 for
all β gives us the cone-plane intersection, however it is not
discrete, which would not provide a gradient for learning.
Therefore, we use an approximation to make the intersec-
tion soft:

C(ue, xh) ∩ τ(T (xs, xt)) = σ(βT Σβ) (5)

where σ is a sigmoid activation function. To compute the
intersection, we calculate Equation 5 for β1, β2 ∈ [−1, 1].

Deriving Σ: We summarize the derivation of Σ here, but
we refer readers to the supplemental materials for complete
details. A cone in the space with origin ue, matrix M and
vector v can be parametrized as all the points p such that:

(p− ue)TM(p− ue) = 0 (6)

where M can be computed as M = vtv−αI where I is the
identity matrix. Since we assume xs is in Z, the square with
corners (±1,±1, 0), we can parametrize τ(T ) as a plane
with unit vectors v1 = Re1 and v2 = Re2 where ei is
the orthonormal basis and R is the linear part of the affine
transformation. All the points of the plane can be written as
p = t + β1v1 + β2v2. We derive Σ by substituting p into
Equation 6.

4.4. Pathways

We estimate the parameters of the saliency map S, the
cone C, and the transformation T using convolutional neu-
ral networks.

Saliency Pathway: The saliency pathway uses the target
view xt to generate a spatial map S(xt). We used a 6-layer
convolutional neural network to generate the spatial map
from the input image. The five initial convolutional layers
follow the structure of AlexNet introduced by [15]. The last
convolutional layer uses a 1 × 1 kernel to merge the 256
channels in a simple 1× k × k map.

Cone Pathway: The cone pathway generates a cone
parametrization from a close-up image of the head xh and
the eyes ue. We set the origin of the cone at the head of
the person ue and let a convolutional neural network gen-
erate v ∈ R3, the direction of the cone and α ∈ R, its
aperture. Figure 4 shows an schematic example of the cone
generation. Additionally to the cone direction vector and
the aperture value, we also estimate a radius r ∈ R which is
used to put a virtual ball around the person’s head to avoid
degenerated solutions where people look at themselves.

Transformation Pathway: The transformation pathway
has two stages. We define T1, a 5-layer convolutional neu-
ral network following the structure defined in [15]. T1 is

applied separately to both the source view xs and the tar-
get view xt. We define T2 which is composed by one con-
volutional layer and three fully connected layers reducing
the dimensionality of the representation to a low dimension
representation. The output of the pathway is computed as:
T (xs, xt) = T2(T1(xs), T1(xt)). We used [8] to compute
the transformation matrix from output parameters.

Discussion: We constrain each pathway to learn differ-
ent aspects of the problem by providing each pathway only
a subset of the inputs. The saliency pathway only has ac-
cess to the target view xt, which is insufficient to solve the
full problem. Instead, we expect it to find salient objects in
the target view xt. Likewise, the transformation pathway
has access to both xs and xt, and the transformation will be
later used to project the gaze cone. We expect it to compute
a transformation that geometrically relates xs and xf . We
expect each of the pathways to learn to solve its particular
subproblem to then get geometrically combined to generate
the final output. Since every step is differentiable, it can be
trained end-to-end without intermediate supervision.

4.5. Learning

Gaze-following is a multimodal problem [23]. For this
reason, we choose to estimate a probability heat map for
prediction instead of regressing a single gaze location. We
use a shifted grids spatial loss from [23], which helped with
localization. We created 5 different classification grids with
side length of 5, and finally combine the predictions. Each
of the grids is spatially shifted towards one direction of
the image, creating 5 overlapping but different classifica-
tion problems. Using this learning procedure, the model
can learn to generate higher precision results by solving
multiple low-precision problems simultaneously. We found
that using the shifted grids output slightly improves perfor-
mance over the element-wise product output.

4.6. Inference

The predictor will produce a matrix in R15×15 (the
shifted grids procedure produces an output map 3 times
larger than the side length chose). This map A can be in-
terpreted as a density where the person is looking. To infer
the gaze location ŷ in the target frame xt, we simply find
the mode of this density ŷ = arg maxi,j Aij .

4.7. Looking Outside The Frame

Our method aims to solve the problem of multi-view
gaze following. However, in applications such as gaze fol-
lowing in video, we might need to estimate whether two
frames are taken from the same scene or from different
scenes. So far, our transformation pathway is able to esti-
mate the geometric relation among views of the same scene:
for views belonging to the same scene we are able to cor-
rectly follow gaze and predict where the person is looking



Model AUC Dist AUC ≥ 1s Dist ≥ 1s
Static Gaze [23] 0.770 0.296 0.763 0.304
Judd [13] 0.810 0.343 0.825 0.335
Fixed bias 0.656 0.346 0.646 0.352
Center 0.514 0.249 0.510 0.253
Random 0.600 0.470 0.598 0.471
Our (vertical axis rot) 0.844 0.209 0.866 0.187

(a) Baselines

Model AUC Dist AUC ≥ 1s Dist ≥ 1s
No image 0.810 0.216 0.849 0.184
No cone layer 0.779 0.239 0.809 0.212
No head 0.841 0.233 0.874 0.192
Identity 0.825 0.223 0.856 0.189
Translation only 0.829 0.213 0.861 0.183
Rotation only 0.803 0.228 0.841 0.192
3-axis rotation 0.828 0.216 0.862 0.182
Vertical axis rotation 0.844 0.209 0.866 0.187

(b) Model Analysis
Table 1: Evaluation: In table (a) we compare our performance with the baselines. In table (b) we analyse the performance
of the different ablations and variations of our model. AUC stands for Area Under the Curve and it is computed as the to the
area under the ROC curve. Higher is better. Dist. is computed as the L2 distance to the ground truth location. Lower is better.
We also compute both metrics for frames where the annotation is one second or more away from the original frame.

in this view. In this section, we extend our model to predict
whether two views are coming or not from the same scene.

In the extended model, our transformation pathway ad-
ditionally computes a confidence value γ ∈ [0, 1] indicating
whether two views are part of the same scene or not. The
cone generator will scale the cone projection with γ. If the
views are part the same scene, γ ≈ 1 and the cone pro-
jection remains intact. However, if the views are part of
different scenes then γ ≈ 0 and the cone projection will
be ignored. γ is directly supervised with a Cross-Entropy
Loss. The final loss of the training is a linear combination
between the gaze prediction and the same-scene classifica-
tion task. An extra class is added to the final prediction to
account for samples without gaze label. Our findings indi-
cate that there is a trade-off in performance between both
criterion. In this experimental section we will quantify the
performance of the extended model.

4.8. Implementation Details

We implemented our model using Torch. In our experi-
ments we use k = 13; the output of both the saliency path-
way and the cone generator is a 13 × 13 spatial map. We
initialize the convolutional networks in three pathways with
Imagenet-CNN [15]. The cone pathway has three fully con-
nected layers of sizes 500, 200 and 5 to generate the cone
parametrization. The common part of the transformation
pathway, T2, has one convolutional layer with a 1×1 kernel
and 100 output channels, followed by one 2 × 2 max pool-
ing layer and three fully connected layers of 200, 100 and
the parameter size of the transformation. For training, we
augment data by flipping xt and xs and their annotations.

5. Experiments

5.1. Evaluation Procedure

To evaluate our model we conducted quantitative and
qualitative analyses using our held out dataset. Similar to
[5], we provide bounding boxes for the heads of the persons.
The bounding boxes are part of the dataset and have been

collected using Amazon’s Mechanical Turk. This makes
the evaluation focused on the gaze following task. In the
supplemental materials we provide some examples of our
system working with head bounding boxes computed with
an automatic head detector.

We use AUC and L2 distances as our evaluation met-
rics. AUC refers to Area Under the Curve, a measure typ-
ically used to compare predicted distributions to samples.
The predicted heat map is used as a confidence to build
a ROC curve. We used [13] to compute the AUC metric.
Furthermore, we used L2 metric, which is computed as the
euclidean error between the predicted point and the ground
truth annotation. For comparison purposes, we assume the
images are normalized to having sides of length 1 unit.

Although the main evaluation is done through the full
test set, a second evaluation is performed over the samples
where the source frame is more than 1 second away from
the target view. This evaluation is intended to show the per-
formance of our model is scenarios where the rotation and
translation are larger.

Previous work in gaze following in video cannot be ap-
plicable to our experiment because of its particular contains
(only predicting social interaction or using multi-model
data). We compare our method to several baselines de-
scribed below. For methods producing a single location as
output, the output heatmap is a Gaussian distribution cen-
tered in the output location.

Random: The prediction is a random location in the im-
age. Center: The prediction is always the center of the
image. Fixed bias: The head location is quantized in a
13 × 13 grid and the training set is used to compute the
average output location per each head location. Saliency:
The output heatmap is the saliency prediction for xt. [13]
is used to compute the saliency map. The output point is
computed as the mode of the saliency output distribution.
Static Gaze: [23] is used to compute the gaze prediction.
Since it is a method for static images, the head image and
the head location provided are from the source view but the
image provided is the target view.
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Figure 5: Internal visualizations: We show examples of the output for the different pathways of our network. The cone
projection shows the final output of the cone-plane intersection module. The saliency map shows the output of the saliency
pathway. The final output show the predicted gaze location distribution.

Additionally, we performed an analysis on the compo-
nents of our model. With this analysis, we aim to under-
stand the contribution of each of the parts to performance
as well as suggest that all of them are needed.

Translation only: The affine transformation is a transla-
tion. Rotation only: The affine transformation is a rotation
in the x-axis. Identity: The affine transformation is the
identity. No head: The saliency pathway is used to gen-
erate the output. No image: The gaze pathway combined
with the transformation pathway are used to generate the
output. The saliency pathway is ignored. No cone layer:
The cone layer is substituted with 3 fully connected layers
going from all the parameters to the 13× 13 spatial map. 3
axis rotation / translation: The affine transformation is a 3
axis rotation combined with a translation. Vertical axis ro-
tation: The affine transformation is a rotation in the vertical
axis combined with a translation.

5.2. Results

Table 1 shows the performance of all the models and
variations in both metrics. Our model has a performance
of 0.844 in AUC and 0.209 in L2 in the full testing set and
0.866 / 0.187 in the reduced test set of only images tempo-
rally far (1 second or more) from the source. Our model’s
performance is significantly better than all the baselines. In-
terestingly, the performance of most of the models increase
when both views are significantly different. This is due to

Figure 6: Cone visualizations: We show examples of the
output of the cone-plane intersection, plotting the images in
the relative location estimated by T . Best viewed on screen.

the fact that, if the views are different, the second view is
likely to be more focused on the object of gaze of the per-
son. Note that the static model is the only one that worsen
in the reduced test set. This is due to its design to handle
situations where the object is in the same view.

Our analysis show that our model outperforms all possi-
ble combinations of models and affine transformations. It
is a natural outcome that the best model is restricted only
to rotations over the vertical axis and translation, given that
these are typical movements for cameras. Interestingly, the
performance of the ablations is closer in the reduced testing
set. As previously mentioned, in this scenario the saliency
pathway is more important than the gaze pathway.

Figure 7 shows the output of our model for some test
samples. We present four cases where our prediction is cor-
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Figure 7: Output examples: We show the output of our
method in the test set, including two common failures:
within-image 3D reasoning and missing context. Green dot
indicates head location and blue dot gaze prediction.

rect and two with failures. In the first failure case (left),
the model predicts that the two aviators are looking at each
other. This is not a possible situation given that they are in
different planes, but the model is not given enough infor-
mation to understand the context. In the second failure case
(right), the person is predicted to be looking at the house
behind her. It is clear that this situation is impossible, but
our model does not have 3D reasoning within the images, it
only estimates the 3D relationship between images.

In Figure 5 we show the output of the internal pathways
of our model. Further, in Figure 6 we show two examples
of the estimated geometric relationship among views. Both
figures suggest that our network has internally learned to
solve the sub-problems we intended it to solve, in addition
to solving the overall gaze following problem. The net-
work is able to estimate the geometrical relationship among
frames (see Figure 6) along with estimating the gaze direc-
tion from the source view and predicting the salient regions
in the target view.

5.3. Looking outside the scene

Here, we evaluate the extension of our model designed to
detect large scene changes. We augmented our dataset with
frames from the same videos but different scenes, to include
examples of views from different scenes. Using this extra
annotation, we trained the model and evaluated its ability to
detect scene changes. We used average precision (AP) to
evaluate the task. AP is commonly used to evaluate detec-
tion tasks, and is computed as the area below the precision-
recall curve. In our test set, chance is 0.5. Our extended
model has a mean average precision of 0.877 in detecting
scene changes, demonstrating that our performance is sig-
nificantly above chance. Examples of the extended model
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Figure 8: Time-performance representation: We plot per-
formance versus the time distance between the target frame
and the source frame, which correlates with the size of the
transformation. Our model is able to perform well even in
situations where the two frames are very different. [23] per-
forms worse in examples where the images are different.

output are shown in the supplemental material.

5.4. Time analysis

To evaluate the performance of our model on different
scenarios, in Fig. 8 we plot the performance of our model
when varying the amount of time passage between source
and target frame. We also plot the performance of [23].
Our model performs better with frames farther in time from
the target. However, we can observe how the static gaze
model decreases its performance when the views are more
different, by its construction of dealing with static images.
This shows our model works well in cases when the views
are very different.

6. Conclusions
We present a novel method for gaze following across

views . Given two views, we are able to follow the gaze
of a person in a source view to the target view even when
the views are quite different. We split our model in differ-
ent pathways which automatically learn to solve the three
main sub problems involved in the task. We take advantage
of the geometry of the scene to better predict people’s gaze.
We also introduce a new dataset where we benchmark our
model and show that our method over performs the base-
lines and produces meaningful outputs. We hope that our
dataset will attract the community attention to the problem.
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