
Lower Bounds in Distributed Computing

by

Rui Fan

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2008

c© Massachusetts Institute of Technology 2008. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

February 1, 2008

Certified by. .
Nancy A. Lynch

NEC Professor of Software Science and Engineering
Thesis Supervisor

Accepted by .
Terry P. Orlando

Chairman, Department Committee on Graduate Students

Chapter 4

Mutual Exclusion

4.1 Introduction

In the mutual exclusion (mutex) problem, a set of processes communicating via shared memory

access a shared resource, with the requirement that at most one process can access the resource at

any time. Mutual exclusion is a fundamental primitive in many distributed algorithms, and is also

a foundational problem in the theory of distributed computing. Numerous algorithms for solving

the problem in a variety of cost models and hardware architectures have been proposed over the

past four decades. In addition, a number of recent works have focused on proving lower bounds

for the cost of mutual exclusion. The cost of a mutex algorithm may be measured in terms of the

number of memory accesses the algorithm performs, the number of shared variables it accesses, or

other measures reflective of the performance of the algorithm in a multicomputing environment.

In this chapter, we introduce a new state change cost model, based on a simplification of the

standard cache coherent model [4], in which an algorithm is charged for performing operations that

change the system state. Let a canonical execution be any execution in which n different processes

each enter the critical section (i.e., accesses the shared resource) exactly once. We prove that any

deterministic mutex algorithm using registers must incur a state change cost of Ω(n log n) in some

canonical execution. This lower bound is tight, as the algorithm of Yang and Anderson [40] has

O(n log n) cost in all canonical executions with our cost measure. To prove the result, we introduce

a novel technique which is information theoretic in nature. We first argue that in each canonical

execution, processes need to cumulatively acquire a certain amount of information. We then relate

the amount of information processes can obtain by accessing shared memory to the cost of those

accesses, to obtain a lower bound on the cost of the mutex algorithm.

We conjecture that this informational proof technique can be adapted to prove Ω(n log n) cost

lower bounds for mutual exclusion in the cache coherent and distributed shared memory [4] cost

78

models1, and in shared memory systems in which processes have access to shared objects more

powerful than registers. Furthermore, the informational viewpoint may be useful in studying lower

bounds for other distributed computing problems.

We now give a brief description of our proof technique. Intuitively, in order for n processes to

all enter the critical section without colliding, the “visibility graph” of the processes, consisting of

directed edges going from each process to all the other processes that it “sees”, must contain a

directed chain on all n processes. Indeed, if there exist two processes, neither of which has an edge

to (sees) the other, then both processes could enter the critical section at the same time. To build

up this directed n-chain during an execution, the processes must all together acquire Ω(n log n) bits

of information, enough to specify the permutation on the n process indices corresponding to the

n-chain. We show that in some canonical executions, each time the processes perform some memory

accesses with cost C, they gain only O(C) bits of information. This implies that in some canonical

executions, the processes must incur Ω(n log n) cost. To formalize this intuition, we construct, for

any permutation π ∈ Sn, an equivalence class (i.e., a set) of executions Aπ, such that for any α ∈ Aπ,

a process ordered lower in π does not see any processes ordered higher in π23. In any α ∈ Aπ , we can

show that the processes must enter their critical sections in the order specified by π. This implies

that for permutations π1 6= π2, we have Aπ1 ∩Aπ2 = ∅. We can show that all executions in Aπ have

the same cost, say Cπ. We then show that we can encode Aπ using O(Cπ) bits. Since Aπ1 ∩Aπ2 = ∅
for π1 6= π2, and since it takes Ω(n log n) bits to identify some π ∈ Sn, then there must exist some

π for which Cπ = Ω(n log n).

The remainder of this chapter is organized as follows. In Section 4.2, we describe related work on

mutual exclusion and other lower bounds. In Section 4.3, we formally define the mutual exclusion

problem and the state change cost model. We give a detailed overview of our proof in Section 4.4. In

Section 4.5, we present an adversary that, for every π ∈ Sn, constructs a set of executions Aπ, such

that all executions in the set have cost Cπ . We prove correctness properties about this construction

algorithm in Section 4.6, and show some additional properties about the construction in Section

4.7. We then show in Section 4.8 how to encode Aπ as a string Eπ of length O(Cπ), and prove this

encoding is correct in Section 4.9. In Section 4.10, we show Eπ uniquely identifies some απ ∈ Aπ,

by presenting a decoding algorithm that recovers απ from Eπ. The decoding algorithm is proved

correct in Section 4.11. Our main lower bound result, which follows from this unique decoding, is

presented in Section 4.12.

1At a high level, the cache coherent and distributed shared memory cost models assign costs to executions of a
mutex algorithm based on the locality of the shared objects accessed: it is cheaper for a process to access a nearby
object than a faraway one. The state change cost model can be interpreted as assigning costs in a similar way. All
three cost models are discussed and compared in Section 4.3.3.

2A process is ordered lower in π if it appears earlier in π. For example, if π = (4213), so that 1 maps to 4, 2 maps
to 2, etc., then 4 is ordered lower in π than 1.

3The reason that we construct an equivalence class Aπ, instead of constructing one particular α ∈ Aπ, is explained
in Section 4.5.

79

The results described in this chapter appeared earlier in [15].

4.2 Related Work

Mutual exclusion is a seminal problem in distributed computing. Starting with Dijkstra’s work in

the 1960’s, research in mutual exclusion has progressed in response to, and has sometimes driven,

changes in computer hardware and the theory of distributed computing. For interesting accounts of

the history of this problem, we refer the reader to the excellent book by Raynal [34] and survey by

Anderson, Kim and Herman [4].

The performance of a mutual exclusion algorithm depends on a variety of factors. An especially

relevant factor for modern computer architectures is memory contention. In [1], Alur and Taubenfeld

prove that for any nontrivial mutual exclusion algorithm, some process must perform an unbounded

number of memory accesses to enter its critical section. This comes from the need for some processes

to busywait until the process currently in the critical section exits. Therefore, in order for a mutex

algorithm to scale, it must ensure that its busywaiting steps do not congest the shared memory.

Local-spin algorithms were proposed in [19] and [29], in which processes busywait only on local

or cached variables, thereby relieving the gridlock on main memory. Local-spin mutex algorithms

include [40], [23] and [3], among many others. In particular, the algorithm of Yang and Anderson

[40] performs O(n log n) remote memory accesses in a canonical execution in which n processes

each complete their critical section once. A remote memory access is the unit of cost in local spin

algorithms. The cost of the YA algorithm is computed by “discounting” busywaiting steps on local

variables. That is, several local busywaiting steps may be charged only once.

A number of lower bounds exist on the number of shared memory objects an algorithm needs to

solve mutual exclusion [8]. Recently, considerable research has focused on proving time complexity

(number of remote memory accesses) lower bounds for the problem. Cypher [9] first proved that

any mutual exclusion algorithm must perform Ω(n log log n
log log log n) total remote memory accesses in some

canonical execution. An improved lower bound by Anderson and Kim [2] showed that there exists

an execution in which some process must perform at least Ω(log n
log log n) remote memory accesses.

However, this result does not give a nontrivial lower bound for the total number of remote memory

accesses performed by all the processes in a canonical execution. The techniques in these papers

involve keeping the set of processes contending for the critical section “invisible” from each other, and

eliminating certain processes when they become visible. Our technique is fundamentally different,

because we do not require all processes to be invisible to each other. Instead, in the executions

we construct, there is a permutation of the n processes such that processes indexed higher in the

permutation can see processes indexed lower, but not vice versa. Instead of eliminating visible

processes, we keep track of the amount of information that the processes have acquired. Additionally,

80

in the adversarial execution constructed in [2], processes execute mostly in lock step, where as in our

construction, the execution of processes adapts adversarially to the mutex algorithm against which

we prove our lower bound, reminiscent of diagonalization arguments. Information-based arguments

of a different nature than ours have been used by Jayanti [21] and Attiya and Hendler [6], among

others, to prove lower bounds for other problems.

4.3 Model

In this section, we define the formal model for proving our lower bound. We first describe the general

computational model, then define the mutual exclusion problem, and the state change cost model

for computing the cost of an algorithm.

4.3.1 The Shared Memory Framework

In the remainder of this chapter, fix an integer n ≥ 1. For any positive natural number t, we use

[t] to denote the set {1, . . . , t}. A system consists of a set of processes p1, . . . , pn, and a collection L

of shared variables. Where it is unambiguous, we sometimes write i to denote process pi. A shared

variable consists of a type and an initial value. In this chapter, we restrict the types of all shared

variables to be multi-reader multi-writer registers. Let V be the set of values that the registers can

take, and assume that all registers start with some initial value v0 ∈ V . For each i ∈ [n], we define

a set Si representing the set of states that process pi can be in. We assume that pi is initially in a

state ŝi
0 ∈ Si. A system state is a tuple consisting of the states of all the processes and the values

of all the registers. Let S denote the set of all system states. A system starts out in the initial

system state ŝ0 ∈ S, defined by the initial states of all the processes and the initial values of all

the registers. Given a system state s, let st(s, i) denote the state of process pi in s, and let st(s, `)

denote the value of register ` in s.

Let i ∈ [n], and let Ei denote the set of actions that pi can perform to interact with the shared

memory and the external environment. We call each e ∈ Ei a step by pi. e can be one of two types,

either a shared memory access step, or a critical step. Critical steps are specific to the mutual

exclusion problem, and will be described in Section 4.3.2. Here, we describe the shared memory

access steps. Let ` ∈ L and v ∈ V . Then there exists a step readi(`) ∈ Ei, representing a read

by pi of register `. We write proc(readi(`)) = i, indicating that pi performs this step, and we

write reg(readi(`)) = `, indicating that the step accesses `. There also exists a step writei(`, v) ∈ Ei,

representing a write by pi of value v to register `. We write proc(writei(`, v)) = i, reg(writei(`, v)) = `,

and val(writei(`, v)) = v, to indicate that this step writes value v. Given a step e of the form readi(·),
and a step e′ of the form writei(·, ·), we say that e is a read step by pi, and e′ is a write step by pi.

Let E =
⋃

i∈[n] Ei, and S =
⋃

i∈[n] Si. A state transition function is a (deterministic, partial)

81

function ∆ : S ×E × [n]→ S, describing how any process changes its state after performing a step.

More precisely, let s ∈ S, i ∈ [n] and e ∈ Ei. Then if pi performs e in system state s, its resulting

state is ∆(s, e, i) ∈ Si. For example, if e is a read step by i on register `, then ∆(s, e, i) is pi’s

state after it reads value st(s, `) while in state st(s, i). A step transition function is a (deterministic,

partial) function δ : S × [n]→ E. Let i ∈ [n] and s ∈ Si. Then δ(s, i) ∈ Ei is the next step that pi

will take if it is currently in state s.

An execution of a system consists of a (possibly infinite) alternating sequence of system states

and process steps, beginning with the initial system state. That is, an execution is of the form

ŝ0e1s1e2s2 . . ., where each si is a system state, and each ei is a step by some process. The state

changes and steps taken are consistent with ∆ and δ. That is, for any i ≥ 1, if ei is a step by process

pj , then we have

ei = δ(st(si−1, j), j), st(si, j) = ∆(si−1, ei, j), ∀k 6= j : st(si, k) = st(si−1, k). (4.1)

Here, we define s0 = ŝ0. Also, if ei has the form write·(`, v), for some ` ∈ L and v ∈ V , then we have

st(si, `) = v, ∀`′ 6= ` : st(si, `
′) = st(si−1, `

′). (4.2)

If ei has the form read·(·), then we have

∀` ∈ L : st(si, `) = st(si−1, `). (4.3)

We say an execution β is an extension of α if β contains α as a prefix. If α is finite, we define the

length of α, written len(α), to be the number of steps in α, and we define st(α) to be the final system

state in α. For i ∈ [n], let st(α, i) be the state of process pi in st(α), and for ` ∈ L, let st(α, `) be

the value of register ` in st(α). For i ∈ [n] and a step e by pi, we write ∆(α, e, i) = ∆(st(α), e, i)

for the state of pi after taking step e in the final state of α. Also, we write δ(α, i) = δ(st(α, i), i) for

the step pi takes after the final state in α. Given any algorithm A, we write execs(A) for the set of

executions of A.

So far, we have described an execution as an alternating sequence of system states and process

steps. Since the state and step transition functions that we consider are deterministic, there is an

equivalent and sometimes more convenient representation of an execution as simply its sequence

of process steps. We call an execution represented in this form a run. More precisely, let α =

ŝ0e1s1e2s2 . . . ∈ execs(A). Then we define run(α) = e1e2 We define the set of all runs of

A as runs(A) = {run(α) |α ∈ execs(A)}. Given α′ = e′1e
′
2 . . . ∈ runs(A), we write exec(α′) =

ŝ0e
′
1s
′
1e
′
2s
′
2 . . . for the execution corresponding to α′. Here, the states s′i, i ≥ 1, are defined using

Equations 4.1, 4.2 and 4.3. For any of the terminology we defined earlier that refer to executions,

82

we can define the same terminology with respect to a run α, by first converting α to the execution

exec(α). For example, if α ∈ runs(A) and i ∈ [n], then we define δ(α, i) = δ(exec(α), i) for the step

pi takes after the final state in exec(α). Sometimes we write a run e1e2 . . . as e1 ◦ e2 ◦ . . ., for visual

clarity.

We define a step sequence α = e1e2 . . . to be an arbitrary sequence of steps. We write spseq(A)

for the set of all step sequences, where any step in any step sequence is a step by some process

pi, i ∈ [n]. A step sequence is not necessarily a run, since the steps in the sequence may not appear

in any execution of A. Therefore, a step sequence, unlike a run, is not meant to represent an

execution. For any ` ∈ L, we say that a step sequence α accesses ` if some step in α either reads

or writes to `. We write acc(α) for the set of registers accessed by α. We say that a process i ∈ [n]

takes steps in α if at least one of the steps of α is a step by i. We write procs(α) to be the set of

processes that take steps in α.

Let α = e1e2 . . . be a run, and let t ≥ 0 be a natural number. Then we write α(t) = e1 . . . et

for the length t prefix of α. If t > len(α), then we define α(t) = α. Let α′ = e1e2 . . . et and

β = e′1e
′
2 . . . be two step sequences, where α′ is finite. We write the concatenation of α′ and β as

α ◦ β = e1e2 . . . ete
′
1e
′
2 Note that α′ ◦ β may or may not be a run. Sometimes we write α′β

instead of α′ ◦ β, for conciseness.

In a shared memory system, each process is aware only of its own state, and the values each

register took in all the past times it had read the register. The process may not be aware of the

current states of the other processes or the current values of the registers. This sometimes allows

us to infer the existence of certain runs of a shared memory algorithm, given the existence of some

other runs. In particular, we have the following.

Theorem 4.3.1 (Extension Theorem) Let A be an algorithm in a shared memory system, and

let α1, α2 ∈ runs(A). Let β ∈ spseq(A) be a step sequence such that α1β ∈ runs(A). Suppose that

the following conditions hold:

1. st(α1, i) = st(α2, i), for all i ∈ procs(β).

2. st(α1, `) = st(α2, `), for all ` ∈ acc(β).

Then α2β ∈ runs(A).

The Extension Theorem says that if α1, α2 and α1β are all runs of A, and if the final states in (the

executions corresponding to) α1 and α2 are identical in the states of all the processes that take steps

in β, and in the values of all registers accessed in β, then α2β is also a run of A. Notice that the

states of some processes or the values of some registers may indeed differ after α1 and α2. However,

as long as those processes do not take steps in β and those registers are not accessed in β, then

processes taking steps in β cannot tell the difference between α1 and α2. Based on this idea, we

now prove the theorem.

83

Proof of Theorem 4.3.1. Let β = e1e2 For visual clarity, we write, for k ≥ 0, βk in place of

β(k), as the length k prefix of β. Note that β0 = ε, the empty string. For any k ≥ 0, we prove the

following:

α2βk ∈ runs(A) (4.4)

∀i ∈ procs(β) : st(α1βk, i) = st(α2βk, i), ∀` ∈ acc(β) : st(α1βk, `) = st(α2βk, `). (4.5)

Equations 4.4 and 4.5 hold for k = 0, by the assumption of the theorem. We show that if it holds

up to k, then it holds for k + 1.

Suppose ek+1 is a step by process pi∗ , accessing register `∗. Since α1β ∈ runs(A), we have

δ(α1βk, i∗) = ek+1. Then, since st(α1βk, i∗) = st(α2βk, i∗) by the inductive hypothesis, we have

δ(α2βk, i∗) = ek+1. That is, since pi∗ has the same state after runs α1βk and α2βk, then it performs

the same step after α1βk and α2βk. Thus, we have α2βkek+1 = α2βk+1 ∈ runs(A), and so Equation

4.4 holds for k + 1.

Since α2βk+1 ∈ runs(A), then st(α2βk+1, i) and st(α2βk+1, `) are defined, for any i ∈ [n] and

` ∈ L. Now, since we have st(α1βk, `∗) = st(α2βk, `∗) by induction, we get that

st(α1βk+1, i
∗) = st(α1βkek+1, i

∗) = st(α2βkek+1, i
∗) = st(α2βk+1, i

∗),

st(α1βk+1, `
∗) = st(α1βkek+1, `

∗) = st(α2βkek+1, `
∗) = st(α2βk+1, `

∗).

The state of any process in procs(β) other than pi∗ does not change, and the value of any register in

acc(β) other than `∗ does not change. Thus, we have ∀i ∈ procs(β) : st(α1βk+1, i) = st(α2βk+1, i)

and ∀` ∈ acc(β) : st(α1βk+1, `) = st(α2βk+1, `). So, Equation 4.5 holds for k + 1, and the lemma

holds by induction. 2

We define the following notation for a permutation π ∈ Sn. We will write a permutation π as

(π1, π2, . . . , πn), meaning that 1 maps to π1 under π, 2 maps to π2, etc. We write π−1(i) for the

element that maps to i under π, for i ∈ [n]. We write i ≤π j if π−1(i) ≤ π−1(j); that is, i equals j,

or i comes before j in π. If S ⊆ [n], we write minπ S for the minimum element in S, where elements

are ordered by ≤π.

Let M be a set, and let � be a partial order on the elements of M . We can think of � equivalently

as a relation or a set. That is, if i, j ∈ M , then i � j if and only if (i, j) ∈�. Depending on the

context, one notation may be more convenient than the other. If ≤ is a total order on the elements

of M , then we say that ≤ is consistent with � if, for any i, j ∈ M such that i � j, we have i ≤ j.

Let N ⊆ M . Then we say N is a prefix of (M,�) if whenever we have m1, m2 ∈ M , m2 ∈ N and

m1 � m2, we also have m1 ∈ N . We define min(M,�) = {µ | (µ ∈ M) ∧ (6 ∃µ′ ∈ M : µ′ ≺ µ)} and

max�M = {µ | (µ ∈ M) ∧ (6 ∃µ′ ∈ M : µ ≺ µ′)} to be the set of minimal and maximal elements in

M , with respect to �. Note that we define min(∅,�) = max� ∅ = ∅.

84

For any set M , we define �(M) to be M if |M | 6= 1, and we define it to be m, if M = {m}. That is,

the diamond extracts the unique element in M , if M is a singleton set, and otherwise does nothing.

We define min�M = �(min(M,�)). Thus, min�M is the set of minimal elements in M , if there

is more than one minimal element, or no elements in M . If M contains a minimum element, then

min�M is simply that element. Note that max�M and min�M are defined somewhat differently,

in that max�M always returns a set, while min�M can return a set or an element. We adopt this

convention because it leads to somewhat simpler notation later.

4.3.2 The Mutual Exclusion Problem

Given a shared memory algorithmA, we say that A is a mutual exclusion algorithm if each process pi

can perform, in addition to its read and write steps, the following critical steps : tryi, enteri, exiti, remi.

For any critical step e ∈ {tryi, enteri, exiti, remi}i∈[n], we define type(e) = C. We define reg(e) =⊥.

We will assume that the only steps that pi can perform are its read, write and critical steps. That

is, we assume that

Ei = {tryi, enteri, exiti, remi} ∪
⋃

`∈L,v∈V

{readi(`), writei(`, v)}.

Given a run α ∈ runs(A), we say a process pi is in its trying section after α if its last critical

step in α is tryi. We say it is in its critical section after α if the last critical step is enteri. We say

it is in its exit section after α if the last critical step is exiti. Finally, we say it is in its remainder

section after α if the last critical step is remi, or pi performs no critical steps in α. Intuitively, a tryi

step is an indication by pi that it wants to enter the critical section. An enteri step indicates that

pi has entered the critical section, and exiti indicates that pi has exited the critical section. Finally,

a remi step indicates that pi has finished performing all the cleanup actions needed to ensure that

another process can safely enter the critical section.

We now define a fairness condition on runs of a mutual exclusion algorithm. The condition

roughly says that a run is fair if for every process, either the process ends in a state where it does

not want to enter the critical section, or, if the process wants to enter the critical section infinitely

often in the run, then it is given infinitely many steps to do so. Formally, we have the following.

Definition 4.3.2 Let α = e1e2 . . . ∈ runs(A). Then we say α is fair if for every process i ∈ [n],

we have the following.

1. If α is finite, then pi is in its remainder section at the end of α.

2. If α is infinite, then one of the following holds.

(a) pi takes no steps in α.

85

(b) There exists a j ≥ 1 such that ej = remi, and for all k > j, we have proc(ek) 6= i.

(c) pi takes an infinite number of steps in α.

We define fair(A) to be the set of fair runs of A.

We now define the correctness property for a mutual exclusion algorithm.

Definition 4.3.3 We say that a mutual exclusion algorithm A solves the mutual exclusion problem

if any run α = e1e2 . . . ∈ runs(A) satisfies the following properties.

• Well Formedness: Let pi be any process, and consider the subsequence γ of α consisting

only of pi’s critical steps. Then γ forms a prefix of the sequence tryi ◦ enteri ◦ exiti ◦ remi ◦ tryi ◦
enteri ◦ exiti ◦ remi . . . 4.

• Mutual Exclusion: For any t ≥ 1, and for any two processes pi 6= pj, if the last occurrence

of a critical step by pi in α(t) is enteri, then the last critical step by pj in α(t) is not enterj.

• Progress: Suppose α ∈ fair(A), and suppose there exists j ≥ 1 such that (∀k ≥ j)(∀i ∈ [n]) :

ek 6= tryi. Then α is finite.

The well formedness condition says that every process behaves in a syntactically correct way.

That is, if a process wishes to enter the critical section, it first enters its trying section, then enters

the critical section, exits, and finally enters its remainder section after it has performed all its cleanup

actions. The mutual exclusion property says that no two processes can be in their critical sections

at the same time. The progress property says that in any fair run α, if there is a point in α beyond

which no processes try to enter the critical section, then α is finite. By Definition 4.3.2, this means

that all processes that want to enter the critical section in α do so, and finish in their remainder

sections.

Our definition of progress is slightly different from the typical livelock-freedom or starvation-

freedom progress properties for mutual exclusion. If a set of processes try to enter the critical

section, then livelock-freedom requires that after a sufficiently large number of steps, some process

finishes its critical and remainder sections; starvation-freedom requires that every process finishes

its critical and remainder sections. Note that livelock-freedom is a weaker property than starvation-

freedom. Since we only consider canonical executions in which each process tries to enter the critical

section once, then we can see that any mutual exclusion algorithm satisfying livelock-freedom will

also satisfy our progress property, in canonical executions. Thus, a lower bound for algorithms

4Note that strictly speaking, A cannot guarantee well formedness, but merely preserve it. This is because, typically,
the steps tryi and exiti (for i ∈ [n]) are regarded as inputs from the environment. Thus, A can only ensure well
formedness if the environment executes tryi and exiti in an alternating manner. For our lower bound, we have
adversarial control over the environment, and will guarantee that tryi and exiti occur in alternating order. Thus, we
can now require that A guarantees well formedness. For further discussion about environment-controlled steps, please
see the end of this section.

86

satisfying our progress property in canonical executions implies the same lower bound for lower

bound for algorithms satisfying livelock or starvation freedom. We work with our definition of

progress because it fits more conveniently with our proof.

We now define a set of runs C, which we call the canonical runs. Our lower bound shows that for

any algorithm A solving the mutual exclusion problem, there exists some α ∈ C ∩ fair(A) such that

α has Ω(n log n) cost in the state change model. C consists of runs in which each process p1, . . . , pn

completes the critical section exactly once. In addition, no process lingers in the critical section: a

process that enters the critical section exits in its next step.

Definition 4.3.4 (Canonical Runs) Let A be an algorithm solving the mutual exclusion problem,

and let α = e1e2 . . . ∈ fair(A). Then α is a canonical run if it satisfies the following properties.

1. For every i ∈ [n], tryi occurs exactly once in α, and it is the first step of process pi in α.

2. For any i ∈ [n], if ej = enteri for some j ≥ 1, then ek = exitj, where k is the minimum integer

κ larger than j such that proc(eκ) = i.

We define C to be the set of canonical runs of A.

The reason we study canonical runs is that they focus exclusively on the cost of the synchro-

nization needed between processes to achieve mutual exclusion. Indeed, since all the processes try

to enter the critical section in a canonical run, and since they try to enter in a “balanced” way

(i.e., all processes try to enter the same number of times), then it creates a situation requiring

maximal synchronization and maximal time for completion. Also, since a process immediately exits

the critical section after entering, all the costs in a canonical run can be attributed to the cost of

synchronization.

Finally, we discuss a subtle issue regarding the modeling of critical steps. Consider any process

pi. Then the steps enteri and remi are enabled by pi. That is, pi decides, using the function δ(·, i),
when it wants to enter the critical and remainder sections. On the other hand, the steps tryi and

exiti are typically modeled as inputs from the environment. That is, we imagine that there is an

external “user”, for example, a thread in a multithreaded computation, that “causes” pi to execute

tryi, so that the thread can obtain exclusive access to a resource. If pi manages to enter the critical

section on behalf of the thread (i.e., pi enables enteri), then the thread may later relinquish the

resource by causing pi to execute exiti. Since we are proving a lower bound for canonical runs, we

want to ensure that if enteri occurs, then exiti also occurs, as soon as possible (in pi’s next step).

In addition, for the purposes of our lower bound, it suffices to assume that pi itself can enable its

tryi and exiti steps. We model our requirements is as follows. First, we assume that δ(ŝi
0, i) = tryi.

That is, we assume that the first step that pi wants to execute in any run is tryi. Next, let si ∈ Si,

and suppose that δ(si, i) = enteri. Then we assume that for all s ∈ S such that st(s, i) = si, we

87

have ∆(s, enteri, i) = s′i, such that δ(s′i, i) = exiti. That is, if si is a state of pi in which it wants to

execute enteri, then in any state s′i of pi after pi executes enteri, pi wants to execute exiti.

4.3.3 The State Change Cost Model

In this section, we define the state change cost model for measuring the cost of a shared memory

algorithm. In [1], it was proven that the cost of any shared memory mutual exclusion algorithm

is unbounded if we count every shared memory access. To obtain a meaningful measure for cost,

researchers have focused on models in which some memory accesses are discounted (assigned zero or

unit cost). Two important models that have been studied are the distributed shared memory (DSM)

model and the cache coherent (CC) model [5, 29, 4]. The main feature of both of these models is

that, during the course of a run, a register is sometimes considered local to a process5. Any access

by a process to its local registers is free. This is intended to model a situation in hardware in which

a piece of memory and a processor are physically located close together, making accesses to that

memory very efficient. A generic algorithm in the DSM or CC model works by reading and writing

to registers, and also busywaiting on some registers. The latter operation means that a process

continuously reads some registers, evaluating some predicate on the values of those registers after

each read. The process is stuck in a loop while it is busywaiting, and only breaks out of the loop

when the busywaiting predicate is satisfied. As long as a process busywaits on local registers, all

the reads done during the busywait have a combined constant cost6.

In this chapter, we define a new cost model, called the state change (SC) cost model, which is

related to the DSM and CC models. The state change cost model charges an algorithm only for

steps that change the system state. In particular, we charge the algorithm a unit cost for each write

performed by a process7. If a process performs a read step and changes its state after the read, then

the algorithm is charged a unit cost. If the process does not change its state after the read, the

algorithm is not charged. This charging scheme in effect allows a process to busywait on one register

at unit cost. For example, suppose the value of a register ` is currently 0, and a process pi repeatedly

reads `, until its value becomes 1. As long as `’s value is not 1, pi does not change its state, and

thus, continues to read `. If ` eventually becomes 1, then the algorithm is charged one unit for all

reads up to when pi reads ` as 1. The difference between the state change and the CC or DSM

model is that a process in the CC or DSM model could potentially busywait on several registers

at unit cost. For example, in the CC model, a process can busywait on all its registers, until the

5The DSM and CC models differ in how they define locality. In DSM, each process has a fixed set of local variables.
In CC, a variable can be local to different processes at different times.

6The busywaiting reads do not have zero cost, because typically the registers being busywaited on have to be made
local to the busywaiting process, e.g. by moving some register values from main memory to a processor’s local cache.
The move operation is assigned unit cost.

7We can show that for any algorithm solving the mutual exclusion problem, a process must change its state after
performing a write step. Roughly speaking, this is because if a process does not change its state after a write, then
it may stay in the same writing state forever, violating the progress property of mutual exclusion. We show formally
in Lemma 4.7.8 that a writing process changes its state.

88

first one of them satisfies the process’s busywaiting predicate. It is not clear what additional power

the ability to busywait on multiple registers gives an algorithm. In fact, in almost all algorithms

designed for the DSM and CC models, processes busywait on one variable at a time. The mutual

exclusion algorithm of Yang and Anderson [40] is one such algorithm, and it incurs O(n log n) cost

in all canonical runs in the SC cost model. Formally, the system state change cost model is defined

as follows.

Definition 4.3.5 (System State Change Cost Model) Let A be an algorithm, and let α =

e1e2 . . . et ∈ runs(A) be a finite run.

1. Let j ∈ [t], and define sc(α, j) = 1 if st(α(j − 1)) 6= st(α(j)), and sc(α, j) = 0 otherwise.

2. We define the (system state change) cost of run α to be Cs(α) =
∑

j∈[t] sc(α, j).

While charging an algorithm for steps that change the system state is a natural cost measure,

it turns out to be more convenient in our proofs to charge the algorithm for steps that change the

state of some process. Thus, we define the following.

Definition 4.3.6 (Process State Change Cost Model) Let A be an algorithm, and let α =

e1e2 . . . et ∈ runs(A) be a finite run.

1. Let pi be a process, and let j ∈ [t]. We define sc(α, i, j) = 1 if st(α(j − 1), i) 6= st(α(j), i), and

sc(α, i, j) = 0 otherwise.

2. We define the (process state change) cost of run α to be Cp(α) =
∑

j∈[t]

∑

i∈[n] sc(α, i, j).

Since a system state contains the state of each process, then it is easy to see that Cp(α) ≤ Cs(α),

for all α ∈ runs(A). Thus, a cost lower bound for the process state change model implies the same

lower bound for the system state change model. In the remainder of this paper, we will only work

with the process state change cost model. We write C(α) ≡ Cp(α), for any run α ∈ runs(A).

In Table 4-1, we provide a summary of the notation we have introduced. The table also includes

all the notation introduced in later parts of the chapter.

4.4 Overview of the Lower Bound

In this section, we give a detailed overview of our lower bound proof. For the remainder of this paper,

fix A to be any algorithm solving the mutual exclusion problem. The proof consists of three steps,

which we call the construction step, the encoding step, and the decoding step. The construction step

builds an equivalence class of finite runs Aπ ⊆ runs(A) for each permutation π ∈ Sn, such that for

permutations π1 6= π2, we have Aπ1 ∩Aπ2 = ∅. All runs in Aπ have the same state change cost Cπ.

The encode step produces a string Eπ of length O(Cπ) for each Aπ ,. The decode step reproduces an

89

Notation Location of definition

n, p1, . . . , pn,A Page 48
V, L, v, ` Page 48
S, Si, ŝ0, ŝ

i
0, s, st(s, i), st(s, `) Page 48

E, Ei, read and write steps, readi(`),writei(`, v) Page 48
proc(e), reg(e), val(e), type(e) Page 48
δ(si, i), δ(α, i), ∆(s, ei, i), ∆(α, ei, i) Page 49
α, execution, execs(A), extension, len(α) Page 49
st(α, i), st(α, `), δ(α, i) Page 49
run, run(α), runs(A), step sequence, spseq(A), acc(α), procs(α), α ◦ β Pages 49-50
π, π−1, i ≤π j, minπ S Page 51
i � j, (i, j) ∈�, prefix, consistent total order Page 51
min(S,�),max� S, min� S, �(S) Pages 51-52
critical steps, tryi, enteri, exiti, remi Page 52
trying, critical, exit, remainder sections Page 52
fair run, fair(A), canonical runs, C Definitions 4.3.2, 4.3.4
mutual exclusion algorithm, well formedness, mutual exclusion, progress Definition 4.3.3
Cs(α), Cp(α), C(α) Definitions 4.3.5, 4.3.6, page 56
metastep, M, attributes of metasteps Definition 4.5.1
Construct algorithm, 〈r〉 Figure 4-4, page 63
iteration, ι, I, ι ⊕ 1, ι 	 1, ι+, ι−, ι ⊕ r, ι 	 r, ji, ι

n Page 67
Mι,�ι, m̌ι, eι, αι, Nι, Rι, R

∗
ι , Wι, W

s
ι Definition 4.6.1

version of metastep, mι, N ι Definition 4.6.2
critical/read/write create iteration, read/write modify iteration Page 69
execution γ and output α of Lin, γ order of N , γ order of m, Lin(N ι,�ι) Page 70
Φ(ι, N), Φ(ι, N, k), φ(ι, N), φ(ι, N, k) Definition 4.6.7
Ψ(ι, `),Ψw(ι, `), Υ(ι, `, m),Υ(ι, m), acc(N) Definitions 4.6.15, 4.6.16, page 79
G((Mι)

ι), G,L(ι, N), λ(ι, N, k), λ(ι, N) Definitions 4.7.1, 4.7.2, 4.7.3
next πk step/metastep after (ι, N), v-reads ` after (ι, N) Definition 4.7.4
readers(ι,N, `, v), wwriters(ι,N, `), preads(ι,N, `), unmatched preread Definition 4.7.4, 4.7.5
extended type, T , xtype(e,m) Definition 4.8.1
Encode algorithm Figure 4-5
Decode algorithm Figure 4-7
iteration of Decode, 〈r〉D, ϑ, state of ϑ, σ, σ.x, N-correct Page 126, Definition 4.11.1

Figure 4-1: Summary of the notation in this chapter and the location of their definitions.

απ ∈ Aπ using only input Eπ. Since different Aπ ’s are disjoint, each Eπ uniquely identifies one of n!

different permutations. Thus, there exists some π ∈ Sn such that Eπ has length Ω(n log n). Then,

the run απ corresponding to this Eπ must have cost Ω(n log n).

Fix a permutation π = (π1, . . . , πn) ∈ Sn. We say that a process pi has lower (resp., higher)

index (in π) than process pj if i comes before (resp., after) j in π, i.e. i <π j (resp., j <π i). For

ease of exposition, we will describe the construction step twice, first at a high level, and in a slightly

inaccurate way, to convey the general idea, then subsequently in an accurate and more detailed way.

In the high level description, we will pretend that each equivalence Aπ consists of only one run απ.

Then, in the construction step, we build in n stages n different finite runs, α1, . . . , αn ∈ runs(A),

where αn = απ. In each αi, only the first i processes in the permutation, pπ1 , . . . , pπi
, take steps.

Thus, α1 is a solo run by process pπ1 . Each process runs until it has completed its trying, critical

and exit sections once. We will show that the processes in αi complete their critical sections in the

90

order given by π, that is, pπ1 first, then pπ2 , etc., and finally, pπi
. Next, we construct run αi+1 in

which process pπi+1 also takes steps, until it completes its trying, critical, and exit sections. αi+1 is

constructed by starting with αi, and then inserting steps by pπi+1 , in such a way that pπi+1 is not

seen by any of the lower indexed processes pπ1 , . . . , pπi
. Roughly speaking, this is done by placing

some of pπi+1 ’s writes immediately before writes by lower indexed processes, so that the latter writes

overwrite any trace of pπi+1 ’s presence.

The preceding paragraph described some of the intuition for the construction step. It was

inaccurate because it constructed only one run απ, instead of a class of runs Aπ. We now give a

more detailed and accurate description of the construction step. Instead of directly generating a run

αi in stage i, we actually generate a set of metasteps Mi and a partial order �i on Mi in stage i.

Roughly speaking, a metastep consists of two sets of steps, the read steps and the write steps, and a

distinguished step among the write steps that we call the winning step8. All steps access the same

register, and each process performs at most one step in a metastep. We say a process appears in the

metastep if it takes a step in the metastep, and we say the winner of the metastep is the process

performing the winning step. The purpose of a metastep is to hide, from every process p1, . . . , pn,

the presence of all processes appearing in the metastep, except possibly the winner.

Given a set of metasteps Mi and a partial order �i on Mi, we can generate a run from (Mi,�i)

by first ordering Mi using any total order consistent with �i, to produce a sequence of metasteps.

Then, for each metastep in the sequence, we expand the metastep into a sequence of steps, consisting

of the non-winning write steps of the metastep, ordered arbitrarily, followed by the winning step,

followed by the read steps, ordered arbitrarily. Notice that this sequence hides the presence of all

processes except possibly the winner. That is, if a process pi did not see another process pj before the

metastep sequence, then pi does not see pj after the metastep sequence either, unless pj is the winner

of the metastep sequence. The overall sequence of steps resulting from totally ordering Mi, and then

expanding each metastep, is a run which we call a linearization of (Mi,�i). Of course, there may

be many total orders consistent with �i, and many ways to expand each metastep, leading to many

different linearizations. However, we will show that for the particular Mi and �i we construct, all

linearizations are essentially “the same”. For example, at the end of all linearizations, all processes

have the same state, and all registers have the same values. Also, in all linearizations, the processes

pπ1 , . . . , pπi
each complete their critical sections once, and they do so in that order. It is the set Mn

and partial order �n, generated at the end of stage n in the construction step, that we eventually

encode in the encoding step. The set Aπ is the set of all possible linearizations of (Mn,�n)9. We

show that all linearizations of (Mn,�n) have the same (state change) cost, and we call this cost Cπ.

The reason we construct a partial order of metasteps instead of constructing a run, i.e., a total

8A metastep actually has other properties which are described in detail in Section 4.5. However, the current
simplified description of a metastep will suffice for this proof overview.

9However, as stated, we do not directly encode Aπ, but rather, encode (Mn,�n).

91

ordering of steps, is that the partial order �n on the metasteps of Mn contains fewer orderings

between the steps contained in (all the metasteps of) Mn than a total ordering on the steps contained

in Mn. In fact, the orderings contained in �n can be seen as representing precisely the information

acquired by p1, . . . , pn in the course of a run produced by linearizing (Mn,�n). It is because of this

that we can encode (Mn,�n) using a string with length proportional to Cπ.

We now describe the encoding step. This step produces a string Eπ , from input (Mn,�n). For

any process pi, we show that all the metasteps containing pi in Mn are totally ordered in �n. Thus,

for any metastep containing pi, we can say the metastep is pi’s j’th metastep, for some j. The

encoding algorithm uses a table with n columns and an infinite number of rows. In the j’th row

and i’th column of the table, which we call cell T (i, j), the encoder records what process pi does

in its j’th metastep. However, to make the encoding short, we only record, roughly speaking, the

type, either read, write or critical, of the step that pi performs in its j’th metastep. That is, we

simply record a symbol R, W or C10. In addition, if pi is the winner of the metastep, we also record a

signature of the entire metastep. The signature basically contains a count of how many processes in

the metastep perform read steps, and how many perform write steps (including the winning step).

Note that the signature does not specify which processes read or write in the metastep, nor the

register or value associated with any step. Now, if there are k processes involved in a metastep, the

total number of bits we use to encode the metastep is O(k) + O(log k) = O(k). Indeed, for each

non-winner process in the metastep, we use O(1) bits to record its step type. For the winner process,

we record its step type, and use O(log k) bits to record how many readers and writers are in the

metastep. We can show that the state change cost to the algorithm for performing this metastep is

k. In particular, each read and write step in the metastep causes a state change. Informally, this

shows that the size of the encoding is proportional to the cost incurred by the algorithm. The final

encoding of (Mn,�n) is formed by iterating over all the metasteps in Mn, each time filling the table

as described above. Then, we concatenate together all the nonempty cells in the table into a string

Eπ.

Lastly, we describe how, using Eπ as input, the decoding step constructs a run απ that is

a linearization of (Mn,�n)11. Roughly speaking, at any time during the decoding process, the

decoder algorithm has produced a linearization of a prefix N of (Mn,�n). Recall that N is a prefix

of (Mn,�n) if N ⊆ Mn, and whenever m ∈ N and m′ �n m, then m′ ∈ N as well. We say all

metasteps in N have been executed. The linearization of N is a prefix α (in the normal sense) of run

απ. Using N and Eπ , the decoder tries to find a minimal (with respect to �n) unexecuted metastep

m, i.e., a minimal metastep not contained in N . The decoder executes m, by linearizing m and

appending the steps to α. After doing this, the decoder has executed prefix N ∪ {m}; the decoder

10We sometimes also use a fixed set of other symbols, such as PR or SR, to represent the type of a metastep. This is
described in detail in Section 4.8. For the purposes of this proof overview, our current simplified description suffices.

11Note that even though our discussion involves π, the decoder does not know π. The only input to the decoder is
the string Eπ.

92

then restarts the decoding loop.

To find a minimal unexecuted metastep, the decoder applies the step functions

{δ(α, i)}i∈[n] of A to the prefix α to compute each process pi’s next step after α. This is the

step that pi takes in the minimum unexecuted metastep containing pi. We call this metastep pi’s

next metastep, and denote it by mi. mi may be different for different i. Let λ = {mi}i∈[n] be the

set of next metasteps for all processes p1, . . . , pn. Note that not every metastep in λ is necessarily

a minimal unexecuted metastep (rather, it is only the minimum unexecuted metastep containing a

particular process). However, we show that there exists some m ∈ λ that is a minimal unexecuted

metastep. The decoder does not directly know λ or m. Rather, the decoder only knows the next

step of each process after α. In order to deduce m, the decoder reads Eπ. Suppose the decoder finds

a signature in column i of Eπ , and the signature indicates there are r reads and w writes in the

metastep corresponding to the signature. Suppose also that pi’s next step accesses register `. Then

the decoder will know the following.

• pi’s next metastep mi accesses `.

• pi is the winner of mi.

• There are r readers, and w − 1 other writers besides pi that appear in mi.

The decoder looks at the next step that each process will perform, and checks whether there are

indeed r processes whose next step is a read on `, and w− 1 processes besides pi whose next step is

a write to `12. Suppose this is the case. Then, these next steps on ` are precisely the steps contained

in a minimal unexecuted metastep. That is, mi ∈ λ is a minimal unexecuted metastep, and the

steps contained in mi are the next steps that access `. The decoder executes mi, by appending the

r next read steps and w next write steps on ` to the current run, placing all the writes before all

the reads, and placing the winning write by pi last among the writes. Having done this, the decoder

has completed one iteration of the decoding loop. The decoder proceeds to the next iteration, and

continues until it has read all of Eπ. We can summarize the decoding algorithm as follows.

1. The decoder computes the next step that each process will take, based on the current run the

decoder has generated.

2. The decoder reads Eπ to find signatures of unexecuted metasteps.

3. If the signature for a register ` is filled, i.e., the number of processes whose next step reads or

writes to ` matches the numbers indicated by the signature, then these steps are equal to the

steps in some minimal unexecuted metastep m.

12Actually, the decoder also checks whether the number of prereads matches the number indicated by the signature.
Prereads are discussed in Section 4.5. Section 4.10 describes the decoding algorithm in more detail. For this overview,
our simplified presentation suffices to convey the main ideas for the decoding.

93

4. The decoder linearizes m and appends the steps to the current run. Then the decoder begins

the next iteration of the decoding loop, or terminates, if it has read all of Eπ.

The run απ that the decoder produces after termination is a linearization of (Mn,�n). As stated

earlier, απ can be used to uniquely identify π. Hence, Eπ also identifies π. Thus, there must exist

some π ∈ Sn such that |Eπ| = Ω(n log n). Since |Eπ | = O(C(απ)), then the state change cost of απ

is Ω(n log n).

4.5 The Construction Step

4.5.1 Preliminary Definitions

In this section, we present the algorithm for the construction step. For the remainder of this chapter,

fix A to be any algorithm solving the mutual exclusion problem.

Recall from our discussion in Section 4.4 that a metastep is, roughly speaking, a set of steps, all

performed by different processes and accessing the same register, whose aim is to hide the presence

of all but at most one of the processes taking part in the metastep. More precisely, a metastep has

one of three types: read, critical, or write. A read (resp., critical) metastep contains only one step,

which is a read (resp., critical) step. Notice that since a read or critical step does not change the

value of any registers, it does not reveal the presence of any process (that is not already revealed).

A write metastep may contain read and write steps. It always contains a write step, which we call

the winning step. A write metastep can only reveal the presence of the process, called the winner,

performing the winning step. In addition to containing read and write steps, a write metastep m

may be associated with a set of read metasteps, which we call the preread set of m. The (read steps

in the) metasteps in the preread set of m are not actually contained in m. Rather, the association

of preads(m) to m is based on the fact that in the partial ordering on metasteps that we create, the

preread metasteps of m are always ordered before m. We now formalize the preceding description.

Definition 4.5.1 (Metastep) A metastep is identified by a label m ∈M, where M is an infinite

set of labels. For any metastep m, we define the following attributes.

1. We let type(m) ∈ {R, W, C}. If type(m) = R (resp., W, C), we say m is a read (resp., write,

critical) metastep.

2. If type(m) = C, then crit(m) is a singleton set containing a critical step of some process.

3. If type(m) = R, then reads(m) is a singleton set containing a read step of some process.

4. If type(m) = W, then we define the following attributes for m.

94

(a) reads(m) is a set of read steps, writes(m) and win(m) are sets of write steps, and

|win(m)| = 1. reads(m) is called the read steps contained in m, writes(m) is called the

(non-winning) write steps contained in m, and �(win(m))13 is called the winning step in

m.

(b) reads(m), writes(m) and win(m) are mutually disjoint.

(c) All steps in reads(m) ∪ writes(m) ∪ win(m) access the same register, and any process

performs at most one step in reads(m) ∪ writes(m) ∪win(m).

(d) readers(m) is the set of processes performing the steps in reads(m), and is called the

readers of m. writers(m) is the set of processes performing the steps in writes(m),

and is called the writers of m. winner(m) is the singleton set containing the process

performing the step in win(m). We call �(winner(m)) the winner of m.

(e) We say that any process i ∈ readers(m) ∪ writers(m) ∪ winner(m) appears in m. For

idiomatic reasons, we also sometimes say that such a process is contained in m.

(f) We say the value of m, written val(m), is the value written by the step in win(m).

5. If m is a read (resp., critical) metastep, then we let steps(m) be the singleton set containing

the read (resp., critical) step in m, and we let procs(m) be the singleton set containing the

process performing the step in m.

6. If m is a write metastep, then we let steps(m) = reads(m) ∪ writes(m) ∪ win(m) be the set

of all steps contained in m, and we let procs(m) = readers(m) ∪writers(m) ∪ winner(m) be

the set of all processes appearing in m.

7. If the steps in m access a register (that is, if type(m) ∈ {R, W}), we let reg(m) be the regis-

ter accessed by these steps, and we say m accesses reg(m). For idiomatic reasons, we also

sometimes say m is a metastep on reg(m).

8. For any i ∈ procs(m), we write step(m, i) for the step that process pi takes in m.

9. If type(m) = W, we let preads(m) be a set of read metasteps, and we call this the preread set

of m. If a (read) metastep m is contained in the preread set of some other metastep, then we

say m is a preread metastep (in addition to being a read metastep).

10. Regardless of the type of m, all the attributes listed above (e.g. reads(m), val(m), preads(m),

etc.) are defined for m. Each attribute is initialized to ∅, ⊥, or a string, depending on the

type of the attribute.

13Recall that �(M) = m, for any singleton set M = {m}.

95

Variable Type
π A permutation in Sn.
j A process in [n].
Mi, i ∈ [n], M, R, R∗, W, W s A set of metasteps.
�i, i ∈ [n] A partial order on a set of metasteps.
m, m̌, mw, mws A metastep, or ∅.
α A run of A.
e A step in E.
` A register in `.

Figure 4-2: The types and meanings of variables used in Construct and Generate.

Procedure Input type(s) Output type(s)
Construct(π) A permutation in Sn. A set of metasteps, a p.o. on the set.
Seq(m) A metastep. A step sequence.
Lin(M,�) A set of metasteps, a p.o. on the set. A step sequence.
Plin(M,�, m) A set of metasteps, a p.o. on the set, a metastep. A step sequence.
SC(α, m, i) A run, a metastep, a process. A boolean.

Figure 4-3: Input and output types of procedures in Figure 4-4. We write “p.o.” for partial order.

Given a metastep m, the attributes of m may change during the construction step. For example,

at the beginning of the construction step, m may not contain any read or write steps. As the

construction progresses, read and write steps may be added to m. However, whatever values its

attributes have, the label (i.e., name) of the metastep remains m.

Let M be a set of metasteps, and let � be a partial order on M . Then a linearization α of (M,�)

is any step sequence produced by the procedure Lin(M,�), shown in Figure 4-414. If m ∈M , then

we say m is linearized in α. Lin(M,�) works by first ordering the metasteps of M using any total

order consistent with �. Then it produces a sequence of steps from this sequence of metasteps, by

applying the procedure Seq(·) to each metastep. Given a metastep m, Seq(m) returns a sequence

of steps consisting of the write steps of m, then the winning step of m, then the read steps. It uses

the (nondeterministic) helper function concat, which totally orders a set of steps, in an arbitrary

order. The procedure Plin(M,�, m), where m ∈ M is a metastep, works similarly to Lin(M,�),

except that it only linearizes the metasteps in µ ∈M such that µ � m.

4.5.2 The Construct Algorithm

In this section, we show how to create a set of metasteps Mi and a partial order �i on Mi, for every

i ∈ [n], with the properties described earlier. For the remainder of this section, fix an arbitrary

permutation π ∈ Sn. This is the input to Construct. For every i ∈ [n], the only processes that

take steps in any metastep of Mi are processes pπ1 , . . . , pπi
. In any linearization of (Mi,�i), each

14Note that a priori, we do not know α is necessarily a run, i.e., that α corresponds to an execution of A. We prove
in Section 4.6.4 that α is in fact a run.

96

process pπ1 , . . . , pπi
completes its trying, critical, and exit section once. The construction algorithm

is shown in Figure 4-4. Also, Figures 4-2 and 4-3 show the types of the variables used in Figure 4-4,

and the input and return types of the procedures in Figure 4-4.

1: procedure Construct(π)
2: M0 ← ∅; �0← ∅
3: for i← 1, n do

4: (Mi,�i)← Generate(Mi−1,�i−1, πi)
5: end for

6: return Mn, and the reflexive, transitive closure of �n

7: procedure Generate(M,�, j)
8: m← new metastep; crit(m)← {tryj}; type(m)← C

9: M ←M ∪ {m}; m̌← m
10: repeat

11: α← Plin(M,�, m̌); e← δ(α, j); `← reg(e)
12: switch

13: case type(e) = W:
14: W ← {µ | (µ ∈ M) ∧ (reg(µ) = `) ∧ (type(µ) = W) ∧ (µ 6� m̌)}
15: mw ← min� W
16: if mw 6= ∅ then

17: writes(mw)← writes(mw) ∪ {e}
18: �←� ∪{(m̌, mw)}; m̌← mw

19: else

20: m← new metastep; win(m)← {e}
21: reg(m)← `; type(m) ← W
22: M ←M ∪ {m}
23: R← {µ | (µ ∈ M) ∧ (reg(µ) = `) ∧ (type(µ) = R) ∧ (µ 6� m̌)}
24: R∗ ← max� R; preads(m)← R∗

25: for all µ ∈ R∗ do

26: �←� ∪{(µ, m)} end for

27: �←� ∪{(m̌, m)}; m̌← m
28: case type(e) = R:
29: W s ← {µ | (µ ∈ M) ∧ (reg(µ) = `) ∧ (type(µ) = W) ∧ (µ 6� m̌) ∧ SC(α, µ, j)}
30: mws ← min� W s

31: if mws 6= ∅ then

32: reads(mws)← reads(mws) ∪ {e}
33: �←� ∪{(m̌, mws)}; m̌← mws

34: else

35: m← new metastep; reads(m)← {e}
36: reg(m)← `; type(m) ← R; M ←M ∪ {m}
37: �←� ∪{(m̌, m)}; m̌← m
38: end if

39: case type(e) = C:
40: m← new metastep; crit(m)← {e}; type(m) ← C
41: M ←M ∪ {m}; �←� ∪{(m̌, m)}; m̌← m
42: end switch

43: until e = remj

44: return M and �
45: end procedure

46: procedure Seq(m)
47: if type(m) ∈ {W, R} then

48: return concat(writes(m)) ◦ win(m) ◦ concat(reads(m))
49: else return crit(m)
50: end procedure

51: procedure Lin(M,�)

52: let ≤M be a total order on M consistent with �
53: order M using ≤M as m1, m2, . . . , mu

54: return Seq(m1) ◦ . . . ◦ Seq(mu)
55: end procedure

56: procedure Plin(M,�, m)
57: N ← {µ | (µ ∈ M) ∧ (µ � m)}
58: return Lin(N,� |N)
59: end procedure

60: procedure SC(α, m, i)
61: `← reg(m); v ← val(m)
62: choose s ∈ S s.t. (st(s, i) = st(α, i)) ∧ (st(s, `) = v)
63: return ∆(s, readi(`), i) 6= st(α, i)
64: end procedure

Figure 4-4: Stage i of the construction step.

97

The procedure Construct operates in n stages. In stage i, Construct builds Mi and �i by

calling the procedure Generate with inputs Mi−1 and �i−1 (constructed in stage i−1) and πi, the

image of i under π. We define M0 =�0= ∅. We now describe Generate(Mi,�i, πi). For simplicity,

we write M for Mi, � for �i, and j for πi in the remainder of this section. We will refer to line

numbers in Figure 4-4 in angle brackets. For example, 〈8〉 refers to line 8, and 〈9−12〉 refers to lines

9 through 12. We sometimes write line numbers within a sentence, to indicate the line in Figure 4-4

that the sentence refers to.

The main body of Generate proceeds in a loop. The loop ends when process pj performs its

remj action, that is, enters its remainder section. Before entering the main loop within 〈10 − 43〉,
Generate first creates a new critical metastep m containing tryj , indicating that pj starts in its

trying section 〈8〉. We add m to M , and set m̌ to m 〈9〉. m̌ keeps track of the metastep created or

modified during the previous or current iteration of the main loop, depending on where we are in

the loop15. We call 〈8− 9〉 the zeroth iteration of Generate.

Next, we begin the main loop between 〈10〉 and 〈43〉. We will call each pass through 〈10 − 43〉
an iteration of Generate16. The k’th pass through 〈10− 43〉 is the k’th iteration. Each iteration

updates M and �, by adding or modifying metasteps in M , and adding (but never modifying)

relations to �. Let ι ≥ 1 denote an iteration of Generate, and let ι− denote the iteration of

Generate preceding ι (if ι = 1, then ι− is the zeroth iteration).

In order for the operations performed in iteration ι to be well defined, we require that certain

properties hold about the values of M , � and m̌ at the end of ι−. In particular, we make the

following assumptions.

Assumption 2 (Correctness of Iteration ι− of Generate) Let Mι− ,�ι− and m̌ι− denote the

values of M,� and m̌ at the end of iteration ι−.

1. Any output of Plin(Mι− ,�ι− , m̌ι−) is a run of A.

2. For any ` ∈ L, the set of write metasteps in Mι− accessing ` are totally ordered by �ι−.

Technically, we should first prove that these properties hold after ι−, before describing iteration ι.

That is, we should present the proof of correctness for earlier iterations of Generate, before describ-

ing the current iteration of Generate. However, such a presentation would be both complicated

and confusing. Therefore, in the interest of expositional clarity, we defer the proofs of properties 1

and 2 of Assumption 2 to parts 1 and 6 of Lemma 4.6.17, respectively, in Section 4.6.4. Both proofs

proceed by induction on the iterations of Generate. That is, to show that Assumption 2 holds

for iteration ι−, parts 1 and 6 of 4.6.17 assume that Generate is well defined for ι−. This in turn

15In the first iteration of the main loop, m̌ is simply the metastep created in 〈8〉.
16We will give a slightly expanded definition of an iteration, taking into account the multiple calls to Generate

made by Construct, in Section 4.6.1. For our present discussion, it suffices to consider only the passes through
〈10 − 43〉 in the current call to Generate by Construct.

98

requires showing that Assumption 2 holds for iteration ι− 2, for which we need Generate be well

defined for iteration ι− 2, etc. Eventually, in the base case, we prove parts 1 and 6 of Lemma 4.6.17

hold for the zeroth iteration (i.e., after 〈9〉), which does not require any assumptions. Thus, while

the validity of Generate and the validity of Assumption 2 are mutually dependent, the dependence

is inductive, not circular. We will now proceed to describe what happens in the current iteration of

Generate, supposing Assumption 2 for the previous iteration.

In 〈11〉, we first set α to be a linearization of all metasteps in µ ∈ M such that µ � m̌. This is

computed by the function Plin(M,�, m̌). We have α ∈ runs(A), by part 1 of Assumption 2. Using

α, we can compute pj ’s next step e as δ(α, j)17. Let ` be the register that e accesses, if e is a read

or write step18.

We split into three cases, depending on e’s type. If e is a write step 〈13〉, then we set mw to be

the minimum write metastep in M that accesses `, and that 6� m̌ 〈15〉. By part 2 of Assumption

2, the set of write metasteps on ` is totally ordered, and so either mw is a metastep, or mw = ∅19.
When mw 6= ∅, we insert e into mw, by adding e to writes(mw) 〈17〉. The idea is that this hides pi’s

presence, because e will be overwritten by the winning step in mw before it is read by any process,

when we linearize any set of metasteps including mw. Next, we add the relation (m̌, mw) to �,

indicating that m̌ � mw. Finally, we set m̌ to be mw.

In the case where mw = ∅ 〈19〉, we create a new write metastep m containing only e, with e as

the winning step. Then, we compute the set R∗ of the maximal read metasteps in M accessing `

that 6� m̌. The read metasteps on ` are not necessarily totally ordered, so R∗ may contain several

metasteps. We order m after every metastep in R∗ 〈26〉. If we did not do this, the processes

performing the read metasteps may be able to see pj in some linearizations. We record having

ordered m after all the metasteps in R∗, by setting preads(m) to R∗ 〈24〉. Lastly, in 〈27〉, we order

m after m̌, then set m̌ to m.

The case when e is a read step is similar. Here, we begin by computing mws, the minimum write

metastep in M accessing ` that 6� m̌, and that would cause pj to change its state if pj read the

value of the metastep 〈30〉. Since we assumed the set of write metasteps on ` is totally ordered,

then either mws is a metastep, or mws = ∅. We use the helper function SC(α, m, j), which returns

a Boolean value indicating whether process pj would change its state if it read the value of metastep

m when it is in state st(α, j). If mws 6= ∅, then we add e to reads(mws). Otherwise, we create a

new read metastep m containing only e, and set reads(m) = {e}.
Lastly, if e is a critical step 〈39〉, then we simply make a new metastep for e and order it after

m̌.

After n stages of the Construct procedure, we output Mn and �n.

17Recall that δ(α, j) computes the next step of pj , using the final state of pj in α.
18Recall that by definition, reg(e) =⊥ for a critical step e.
19Recall that by definition, min� S can either returns the set of minimal elements in S, if there is more than one

or no minimal element, or it can return the unique minimum element in S.

99

4.6 Correctness Properties of the Construction

In this section, we prove a series of properties about Construct. The main goal of this section is

to prove Theorem 4.6.20, which states that in any linearization of an output of Construct(π), all

the processes p1, . . . , pn enter the critical section, in the order given by π. We first introduce the

notation we will use in our proof, and in the remainder of this chapter, and also give an outline of

the structure of the proof.

4.6.1 Notation

In the remainder of this section, fix an arbitrary execution θ of Construct. Many of the proofs

in this section use induction on θ. We first define terminology to refer to the portions of θ that

we induct over. Notice that the Construct algorithm has a two level iterative structure. That

is, 〈3 − 5〉 of Construct consists of a loop, calling the function Generate n times. Each call

to Generate itself loops through 〈10 − 43〉. We will show in Lemma 4.6.19 that every call to

Generate in θ terminates. Assuming this, we define ji, for any i ∈ [n], to be the number of times

Generate loops through 〈10− 43〉, during the i’th call to Generate from Construct in θ.

Let i ≥ 1, j ∈ [ji], and consider the i’th time that Construct calls Generate in θ. Then we

call 〈8− 9〉 of Generate iteration (i, 0), and we call the j’th execution of 〈10− 43〉 of Generate

iteration (i, j). We often use the symbol ι (or ι′, ι1, etc.) to denote an iteration when the actual

values of i and j do not matter. Let ι = (i, j) be an iteration, for some i ∈ [n]. If j < ji, then

we say the next iteration after ι is (i, j + 1). If j = ji, then we say the next iteration after ι is

(i + 1, 0) (unless i = n, in which case there is no next iteration after (n, jn)). For any i ∈ [n], we

define ιi = (i, ji) for the last iteration in the i’th call to Generate by Construct. We denote the

set of all iterations in θ by I =
⋃

i∈[n],0≤j≤ji
{(i, j)}. In the remainder of this chapter, when we say

that ι is an iteration, we mean that ι ∈ I.
Using the definition of “next” iteration above, we can order I in increasing order as

(1, 0), (1, 1), . . . , (1, j1), (2, 0), (2, 1), . . . , (n− 1, jn−1), (n, 0), . . . , (n, jn).

When we say that we induct over the execution θ of Construct, we mean that we induct over

the iterations in I, ordered as above. Notice that this ordering is lexicographic. That is, given two

iterations ι1 = (i1, j1) and ι2 = (i2, j2), we have ι1 < ι2 in the above ordering if either i1 < i2, or

i1 = i2 and j1 < j2.

Given an iteration ι, if ι 6= ιn, we define ι ⊕ 1 as the next iteration in the above ordering. If

ι = ιn, then we define ιn ⊕ 1 = ιn. If ι 6= (1, 0), then we define ι	 1 to be the iteration before ι. If

ι = (1, 0), then we define ι 	 1 = ι. We sometimes write ι+ for ι ⊕ 1, and ι− for ι 	 1. Let ι1 and

ι2 be two iterations, such that ι1 < ι2. Then we defined ι2 − ι1 = ς to be the number of iterations

100

between ι1 and ι2 (in θ). That is, ς is such that ι2 = ι1⊕1 . . .⊕ 1
︸ ︷︷ ︸

ς times

. Also, if ι is an iteration, and

ς ∈ N, then we define ι	 ς = ι	1 . . .	 1
︸ ︷︷ ︸

ς times

, and ι⊕ ς = ι⊕1 . . .⊕ 1
︸ ︷︷ ︸

ς times

.

We now define notation for the values of the variables of Construct during an iteration ι.

Definition 4.6.1 Let ι = (i, j) be any iteration. Then we define the following.

1. If ι = (i, 0), then we let Mι, �ι and m̌ι be the values of M , � and m̌, respectively, at the end

of 〈9〉 in ι. Also, we let αι = ε (the empty run), and eι = tryπi
.

2. If ι 6= (i, 0), then we let Mι, �ι, m̌ι, eι and αι be the values of M , �, m̌, e and α, respectively,

at the end of 〈42〉 in ι.

3. We define Nι = {µ | (µ ∈Mι−) ∧ (µ �ι− m̌ι−)}.

4. (a) If j > 0, then we define

Rι = {µ | (µ ∈Mι−) ∧ (reg(µ) = `) ∧ (type(µ) = R) ∧ (µ 6�ι− m̌ι−)}

to be value of R in 〈23〉 of ι, and we define R∗ι to be the value of R∗ in 〈24〉 of ι.

(b) If j = 0, then we define Rι = R∗ι = ∅.

5. (a) If j > 0, then we define

Wι = {µ | (µ ∈Mι−) ∧ (reg(µ) = `) ∧ (type(µ) = W) ∧ (µ 6�ι− m̌ι−)}

to be value of W in 〈14〉 of iteration ι. We also define

W s
ι = {µ | (µ ∈Mι−) ∧ (reg(µ) = `) ∧ (type(µ) = W) ∧ (µ 6�ι− m̌ι−) ∧ SC(αι− , µ, πi)}

to be the value of W s 〈29〉 of iteration ι.

(b) If j = 0, then we define Wι = W s
ι = ∅.

Notice that in Definition 4.6.1, Mι,�ι and m̌ι always represent the values of M,� and m̌ at the

end of some iteration, be it an iteration of the form (i, 0) for i ∈ [n], or (i, j) for i, j ≥ 1. Also, m̌ι

is the metastep that was either created or modified in 〈8〉, 〈15〉, 〈20〉, 〈30〉, 〈35〉 or 〈40〉 of iteration

ι, depending on the behavior of Generate in ι. Lastly, for any i ∈ [n], we define Mi = Mιi and

�i=�ιi. Mi contains all the metasteps created in iteration ιi or earlier. Also, it contains all the

metasteps that contain process πi.

Let ι1 and ι2 be two different iterations, and let m be a metastep, such that m ∈ Mι1 and

m ∈ Mι2. Then this means that there is a metastep with label m in both Mι1 and Mι2 . However,

101

the values of the attributes of m may be different in iterations ι1 and ι2. For example, the set of

processes appearing in m, procs(m), may be different in ι1 and ι2. We now define notation to refer

to the values of the attributes of m in an iteration ι.

Definition 4.6.2 Let ι be any iteration. Then we define the following.

1. If ι = (i, 0), for some i ∈ [n], then we define the version of m, written vers(m, ι), as a record

consisting of the values of all the attributes of m, at the end of 〈9〉.

2. If ι 6= (i, 0), for some i ∈ [n], then we define the version of m, written vers(m, ι), as a record

consisting of the values of all the attributes of m, at the end of 〈42〉.

3. Given the name of any attribute of m, such as procs, we write vers(m, ι).procs to refer to the

value of procs(m) in ι (either at the end of 〈9〉 or 〈42〉, depending on whether ι equals (i, 0)).

Since we talk about the versions of metasteps extensively in the remainder of the chapter, we

will write vers(m, ι) more concisely as mι. Given the name of any attribute of m, such as procs,

we write procs(mι) to mean vers(m, ι).procs. As another example, if ι1 and ι2 are two iterations,

then reads((m̌ι2)
ι1) = vers(m̌ι2 , ι1).reads is the set of read steps contained in m̌ι2 , after iteration

ι1 (i.e., at the end of 〈9〉 or 〈42〉). Recall that m̌ι2 is the value of the variable m̌ after iteration ι2.

The value of m̌ is, in turn, the label of the metastep that was created or modified in iteration ι2.

Thus, m̌ι2 is itself the label of a metastep.

If all the attributes of a metastep m are the same in two iterations ι1 and ι2, then we write

mι1 = mι2 . Certain attributes of a metastep, such as the value val of a write metastep, once set

to a non-initial value in some iteration, do not change in any subsequent iteration. In this case,

we may omit the version of metastep when referring to this attribute. For example, if m is a write

metastep, then we simply write val(m), for the value of m in any iteration. If m 6∈ Mι, then we

define mι =⊥, so that all attributes of m have the value ⊥. Finally, if N is a set of metasteps, then

we write N ι = {µι |µ ∈ N} for the iteration ι versions of all metasteps in N .

By inspection of the Construct algorithm, we see that each iteration ι belongs to one of several

types. If ι = (i, 0), for some i ∈ [n], then a critical metastep is created in ι. Thus, we say that ι is a

critical create iteration. If ι 6= (i, 0), for any i ∈ [n], then we define the type of ι as follows. In 〈11〉
of ι, Construct computes eι. Then, if the tests on 〈13〉 and 〈16〉 are true (so that type(eι) = W,

and mw 6= ∅), we say that ι is a write modify iteration. If the tests on 〈28〉 and 〈31〉 are true (so

that type(eι) = R, and mws 6= ∅), then we say ι is a read modify iteration. If the tests on 〈13〉 and

〈19〉 are true (so that type(eι) = W, and mw = ∅), then we say ι is write create iteration. If the tests

on 〈28〉 and 〈34〉 are true (so that type(eι) = R, and mws = ∅), we say ι is a read create iteration.

Finally, if the test on 〈39〉 is true (so that type(eι) = C), then we say ι is a critical create iteration.

If ι is either a read or write modify iteration, we also say ι is a modify iteration. Otherwise, we also

say ι is a create iteration.

102

Finally, we define notation associated with an execution of the helper function Lin. Let M be

a set of metasteps, let � be a partial order on M , and let γ represent an execution of Lin(M,�).

Recall that γ works by first ordering M using any total order on M consistent with �. We call

this total order the γ order of M . Having ordered M , γ next calls Seq(m), for every m ∈ M .

Notice that Seq works with a particular version of m. That is, if γ occurs at the end of iteration

ι, then Seq(mι) works by ordering the steps in steps(mι), so that all steps in writes(mι) precede

�(win(mι)), which precedes all steps in reads(mι). We call this ordering on steps(mι) the γ order

of mι. Let α be the step sequence that is produced by execution γ of Lin. Then we call α the output

of γ. We also say that α is an output of Lin(M,�), since Lin is nondeterministic, and may return

different outputs on the same input. In the remainder of this chapter, we will write Lin(M ι,�)

(instead of simply Lin(M,�)) to denote the execution of Lin, working with the iteration ι versions

of the metasteps in M . Lastly, given an m ∈ M , we write Plin(M ι,�, m) = Lin(N ι,�), where

N = {µ | (µ ∈M) ∧ (µ � m)}.

4.6.2 Outline of Properties

In this section, we give an outline of the lemmas and theorems appearing in Sections 4.6.3 to

4.6.5. The lemmas are primarily used to prove Theorems 4.6.20 and 4.6.21, though some lemmas,

particularly Lemma 4.6.17, are also used in later sections. We will use M and � to denote the

values of Mι and �ι, in some generic iteration ι. The descriptions in this section are meant to

convey intuition and to highlight the general logical relationship between the lemmas. They may

not correspond exactly with the formal statements of the lemmas. More precise descriptions of the

lemmas will be presented when the lemmas are formally stated.

The main goal of the next three subsections is to prove Theorem 4.6.20, which states that in

any linearization of ((Mn)ιn

,�n), all the processes p1, . . . , pn enter the critical section, and they do

so in the order π. To prove this theorem, we first show some basic properties about Construct

in Section 4.6.3. For example, we show that � is a partial order on M (Lemma 4.6.6), and that

the set of metasteps containing any process is totally ordered by � (Lemma 4.6.8). Section 4.6.4

shows more advanced properties of Construct. Most of the properties in this section are listed in

Lemma 4.6.17. Lemma 4.6.17 is proved inductively; that is, it shows the properties hold in some

iteration ι, assuming they hold in iteration ι 	 1. The reason we list most of the properties in

Section 4.6.4 in one lemma, instead of dividing them into multiple lemmas, is that the properties are

interdependent. For example, proving Part 9 of Lemma 4.6.17 for iteration ι requires first proving

Part 5 of the lemma for ι, which requires proving Part 1 for ι, which in turn requires proving Part

9 of the lemma for iteration ι	 1. We now describe the main parts of Lemma 4.6.17.

Let α be a linearization of ((Mn)ιn

,�n), and let pπi
and pπj

be two processes, such that 1 ≤
i < j ≤ n. Recall that Theorem 4.6.20 asserts that pπi

enters the critical section before pπj
in

103

α. Intuitively, the reason for this is that pπi
does not see pπj

, and so pπi
will not wait for pπj

before pπi
enters the critical section. Formalizing this idea involves the following two strands of

argument. Firstly, we need to show that pπi
and pπj

actually enter the critical section in α. This

is done by appealing to the progress property of mutual exclusion, in Definition 4.3.3. However, in

order to invoke the progress property, we first need to show that α is a run of A. Indeed, since

α is a linearization of ((Mn)ιn

,�n), we only know a priori that α is step sequence. Showing that

α ∈ runs(A) is the content of Part 1 of Lemma 4.6.17.

In addition to showing that pπi
and pπj

enter the critical section, we need to formalize the idea

that pπi
does not see pπj

. This is done in Part 9 of Lemma 4.6.17, which essentially shows that we

can pause processes pπi+1 , . . . , pπj
, . . . , pπn

at any point in a run, while continuing to run processes

pπ1 , . . . , pπi
, and guarantee that pπ1 , . . . , pπi

all still enter the critical section. Thus, processes

pπ1 , . . . , pπi
are oblivious to the presence of processes pπi+1 , . . . , pπn

, and will take steps whether or

not the latter set of processes take steps. Part 9 of Lemma 4.6.17 relies on Part 5 of the lemma,

which shows that the states of pπ1 , . . . , pπi
and the values of the registers accessed by pπ1 , . . . , pπi

depend only on what steps pπ1 , . . . , pπi
took, and not on what steps pπi+1 , . . . , pπn

took. That is,

given two runs, in which processes pπ1 , . . . , pπi
take the same set of steps, but pπi+1 , . . . , pπn

take

different steps, the states of pπ1 , . . . , pπi
and the values of the registers they access are the same

at the end of both runs. Part 5 uses Part 4 of Lemma 4.6.17, which gives a convenient way to

compute the state of a process after a run. There are several other parts of Lemma 4.6.17 that we

will describe when we formally present the lemma in Section 4.6.4.

4.6.3 Basic Properties of Construct

This section presents some basic properties of the Construct algorithm. Recall that θ is a fixed

execution of Construct(π), for some π ∈ Sn, and that an iteration always refers to an iteration of

θ.

The first lemma shows how Mι and �ι change during an iteration ι. That is, it shows what

happens when we move up one iteration in Construct. It says that, except in some boundary

cases (when i = (i, 0)), we have the following: αι is computed by linearizing all the metasteps

m ∈Mι− such that m �ι− m̌ι− ; eι is a step of πi computed from αι; eι is a step in m̌ι; �ι contains

all the relations in �ι− , plus the relation (m̌ι− , m̌ι) (plus possibly some relations of the form (µ, m̌ι),

for µ ∈ Mι− , if ι is a write create iteration); for any m ∈ Mι other than m̌ι, the ι and ι− versions

of m are the same.

Lemma 4.6.3 (Up Lemma) Let ι = (i, j) be any iteration. Then we have the following.

1. If ι 6= (i, 0), then αι is an output of Plin((Mι−)ι− ,�ι− , m̌ι−) ≡ Lin((Nι)
ι− ,�ι−)20. If ι =

20Recall from Definition 4.6.1 that Nι = {µ | (µ ∈ Mι−) ∧ (µ �ι− m̌ι−)}.

104

(i, 0), then αι = ε.

2. eι = δ(αι, πi), eι ∈ steps((m̌ι)
ι), and proc(eι) = πi.

3. Mι = Mι− ∪ {m̌ι}.

4. If ι = (i, 0), then we have the following.

(a) ι is a critical create iteration.

(b) m̌ι 6∈Mι− , eι = tryπi
, and procs((m̌ι)

ι) = {πi}.

(c) For all m ∈Mι− , mι = mι− .

(d) �ι−=�ι .

5. If ι 6= (i, 0) and ι is a create iteration, then we have the following.

(a) m̌ι 6∈Mι− , and procs((m̌ι)
ι) = {πi}.

(b) For all m ∈Mι− , mι = mι− .

(c) If type(m̌ι) ∈ {R, C}, then �ι=�ι− ∪{(m̌ι− , m̌ι)}.

(d) If type(m̌ι) = W, then �ι=�ι− ∪{(m̌ι− , m̌ι)} ∪
⋃

µ∈R∗
ι
{(µ, m̌ι)}.

6. If ι 6= (i, 0) and ι is a modify iteration, then we have the following.

(a) Mι− = Mι, and m̌ι ∈Mι−.

(b) m̌ι 6�ι− m̌ι− .

(c) For all m ∈Mι such that m 6= m̌ι, we have mι = mι−.

(d) procs((m̌ι)
ι) = procs((m̌ι)

ι−) ∪ {πi}.

(e) �ι=�ι− ∪{(m̌ι− , m̌ι)}.

Proof. This lemma essentially lists the different cases that can arise in iteration ι. By inspection

of Figure 4-4, it is easy to check that all the statements are correct. 2

The following lemma states that M and � are “stable”. In particular, the lemma says that once

a metastep is added to M in some iteration, it is never removed in any later iteration. Also, once

two metasteps have been ordered in in some iteration, then their ordering never changes during later

iterations.

Lemma 4.6.4 (Stability Lemma A) Let ι1 and ι2 be two iterations, such that ι1 < ι2. Let

m1, m2 ∈Mι1, and suppose that m1 �ι1 m2, and m2 6�ι1 m1 . Then we have the following.

1. m1, m2 ∈Mι2 .

2. m1 �ι2 m2, and m2 6�ι2 m1.

105

Proof. We first prove that the lemma holds when ι1 and ι2 differ by one iteration.

Claim 4.6.5 Let ι be any iteration, let m1, m2 ∈ Mι, and suppose that m1 �ι m2 and m2 6�ι m1.

Then we have the following.

1. m1, m2 ∈Mι+.

2. m1 �ι+ m2, and m2 6�ι+ m1.

Then, to get Lemma 4.6.4, we simply apply Claim 4.6.5 ι2	 ι1 times, starting from iteration ι1. We

now prove Claim 4.6.5.

Proof of Claim 4.6.5. We prove each part of the claim separately.

• Part 1.

By Lemma 4.6.3, we see that Mι ⊆Mι+ , and so m1, m2 ∈Mι+ .

• Part 2, and ι+ is a create iteration.

By part 5 of Lemma 4.6.3, we have �ι+=�ι ∪
⋃

µ∈N{(µ, m̌ι+)}, for some N ⊆ Mι, and

m̌ι+ 6∈ Mι. By assumption, we have m1 �ι m2, and m2 6�ι m1. Then we have m1 �ι+ m2,

because �ι⊆�ι+ . Also, we have m2 6�ι+ m1. Indeed, if m2 �ι+ m1, then we must have

m2 �ι+ µ, for some µ ∈ N , and m̌ι+ �ι+ m1. But we see that m̌ι+ 6�ι+ m, for any m ∈ Mι+ .

Thus, we have m2 6�ι+ m1.

• Part 2, and ι+ is a modify iteration.

By part 6 of Lemma 4.6.3, we have �ι+=�ι ∪{(m̌ι, m̌ι+)}, where m̌ι+ ∈Mι, and m̌ι+ 6�ι m̌ι.

We have m1 �ι+ m2, because �ι⊆�ι+ . Also, we have m2 6�ι+ m1. Indeed, if m2 �ι+ m1,

then we must have m2 �ι m̌ι and m̌ι+ �ι m1. Then, since m1 �ι m2, we have m̌ι+ �ι m1 �ι

m2 �ι m̌ι, a contradiction. Thus, we have m2 6�ι+ m1.

2

Lemma 4.6.6 (Partial Order Lemma) Let ι be any iteration. Then �ι is a partial order on Mι.

Proof. We use induction on ι. The lemma is true for ι = (1, 0). We show that if the lemma is

true up to ι, then it is true for ι⊕ 1. Construct creates �ι+ based on �ι and the type of iteration

ι+. Thus, we consider the following cases.

If ι+ is a modify iteration, then for any m1, m2 ∈ Mι+ , we have m1, m2 ∈ Mι. Since �ι is a

partial order by the inductive hypothesis, then at most one of m1 �ι m2 and m2 �ι m1 holds. Then,

by applying Lemma 4.6.4, we see that at most one of m1 �ι+ m2 and m2 �ι+ m1 holds as well.

Thus, �ι+ is a partial order on Mι+ .

If ι is a create iteration, then by Lemma 4.6.3, we have �ι+=�ι ∪{(m̌ι, m̌ι+)}, where m̌ι+ 6∈Mι.

So, since �ι is a partial order on Mι, then �ι+ is a partial order on Mι+ . 2

106

We want to show that for any process, the set of metasteps containing that process is totally

ordered. We define the following.

Definition 4.6.7 (Function Φ) Let ι = (i, j) be any iteration, k ∈ [i], and N ⊆ Mι. Define the

following.

1. Φ(ι, k) = {µ | (µ ∈Mι) ∧ (πk ∈ procs(µι))}, and φ(ι, k) = |Φ(ι, k)|.

2. Φ(ι, N, k) = {µ | (µ ∈ N) ∧ (πk ∈ procs(µι))}, and φ(ι, N, k) = |Φ(ι, N, k)|.

Thus, Φ(ι, k) and φ(ι, k) are the set and number of metasteps containing process πk after iteration

ι. Φ(ι, N, k) and φ(ι, N, k) are the set and number of metasteps in N containing πk after ι.

The following lemma essentially states that the set of metasteps containing any process is totally

ordered. More precisely, if ι = (i, j) is an iteration, then there are j+1 metasteps containing πi in Mι.

Also, for any k ∈ [i], the set of metasteps containing πk consists of m̌(k,h), for h = 0, . . . , φ(ι, k)− 1.

Furthermore, these metasteps are ordered in increasing order of h. That is, we have m̌(k,h−1) �ι

m̌(k,h), for any h ∈ [φ(ι, k) − 1].

Lemma 4.6.8 (Order Lemma A) Let ι = (i, j) be any iteration, and let k ∈ [i]. Then we have

the following.

1. φ(ι, i) = j + 1.

2. Φ(ι, k) = {m̌(k,h) | 0 ≤ h < φ(ι, k)}.

3. For any 0 ≤ h1, h2 < φ(ι, k) such that h1 < h2, we have m̌(k,h1) ≺ι m̌(k,h2).

Proof. We use induction on ι. If ι = (1, 0), the lemma is obvious. We show that if the lemma is

true for ι, then it is true for ι⊕ 1. Consider the following cases.

• ι+ = (i + 1, 0).

Consider two cases, either k = i + 1, or k ∈ [i].

In the first case, Lemma 4.6.3 shows that Φ(ι+, i + 1) = {m̌ι+}. Thus, there is only one

metastep containing process πi+1, and the lemma follows immediately.

Next, let k ∈ [i]. Since k < i + 1, we only need to prove parts 2 and 3 of the lemma. Lemma

4.6.3 shows that Φ(ι+, k) = Φ(ι, k). Given m1, m2 ∈ Φ(ι, k), m1 and m2 are ordered in �ι by

the inductive hypothesis. By Lemma 4.6.4, m1 and m2 are ordered the same way in �ι+ as in

�ι. Thus, parts 2 and 3 of the lemma follow.

• ι+ = (i, j + 1).

Consider two cases, either k ∈ [i− 1], or k = i.

107

First, let k ∈ [i− 1]. Then it suffices to prove parts 2 and 3 of the lemma. By Lemma 4.6.3,

we have Φ(ι+, k) = Φ(ι, k). Also, for any m1, m2 ∈ Φ(ι, k), m1 and m2 are ordered in �ι by

induction, and by Lemma 4.6.4, they are ordered the same way in �ι+ . Thus, the lemma holds

for all k ∈ [i− 1].

Next, let k = i. By Lemma 4.6.3, we have Φ(ι+, i) = Φ(ι, i)∪{m̌ι+}. Also, πi ∈ procs((m̌ι+)ι+),

and πi 6∈ procs((m̌ι+)ι). So, there is one more metastep containing πi in Mι+ than in Mι, and

we have φ(ι+, i) = φ(ι, i) + 1 = j + 2, where the second equation follows from the inductive

hypothesis. Thus, part 1 of the lemma holds.

By parts 1 and 2 of the inductive hypothesis, we have Φ(ι, i) = {m̌(i,h) | 0 ≤ h ≤ j}. Thus,

Φ(ι+, i) = {m̌(i,h) | 0 ≤ h ≤ j + 1}, and part 2 of the lemma holds.

By part 3 of the inductive hypothesis, for any 0 ≤ h1, h2 ≤ j such that h1 < h2, we have

m̌(i,h1) ≺ι m̌(i,h2). Then by Lemma 4.6.4, we have m̌(i,h1) ≺ι+ m̌(i,h2). By Lemma 4.6.3, we

have m̌ι ≺ι+ m̌ι+ . Thus, for any 0 ≤ h < j + 1, we have m̌(i,h) ≺ι+ m̌ι+ = m̌(i,j+1). Thus,

part 3 of the lemma holds.

2

Let ι = (i, j) be any iteration. The next lemma compares a prefix N of (Mι,�ι), with Ň =

N ∩Mι− . First, it states that Ň is a prefix of (Mι− ,�ι−). Next, it states that for any k ∈ [i− 1],

N and Ň contain the same set of metasteps containing process πk. Finally, it states that if m̌ι 6∈ N ,

then N and Ň contain the same set of metasteps containing πi. Otherwise, if m̌ι ∈ N , then N

contains one more metastep containing πi than Ň , namely, m̌ι. Thus, the lemma compares a prefix

with the “version” of the prefix moved down one iteration.

Lemma 4.6.9 (Down Lemma A) Let ι = (i, j) be any iteration, let N be a prefix of (Mι,�ι),

and let Ň = N ∩Mι− . Then we have the following.

1. Ň is a prefix of (Mι− ,�ι−).

2. If m̌ι 6∈ N , then for all k ∈ [i], we have Φ(ι, N, k) = Φ(ι−, Ň , k).

3. If m̌ι ∈ N , then for all k ∈ [i−1], we have Φ(ι, N, k) = Φ(ι−, Ň , k). Also, we have Φ(ι, N, i) =

Φ(ι−, Ň , i) ∪ {m̌ι}.

Proof. We use induction on ι. The lemma holds for ι = (1, 0). We show that if the lemma holds

up to iteration ι	 1, then it also holds for ι. Let N be a prefix of (Mι,�ι), and Ň = N ∩Mι− . We

prove each part of the lemma separately.

• Part 1

108

Let m1 ∈ Ň , m2 ∈ Mι− , and suppose that m2 �ι− m1. To show that Ň is a prefix of

(Mι− ,�ι−), we need to show m2 ∈ Ň . Since m1, m2 ∈Mι− and m2 �ι− m1, then by Lemma

4.6.4, we have m1, m2 ∈ Mι, and m2 �ι m1. Since m1 ∈ Ň , then m1 ∈ N . Since N is a

prefix and m2 �ι m1, we have m2 ∈ N . Thus, m2 ∈ N ∩Mι− = Ň , and so Ň is a prefix of

(Mι− ,�ι−).

• Part 2

From Lemma 4.6.3, we have that if m ∈Mι and m 6= m̌ι, then m ∈Mι− . Thus, since m̌ι 6∈ N ,

we have N = Ň . Also from Lemma 4.6.3, we get that if m ∈Mι and m 6= m̌ι, then mι− = mι.

Thus, for any k ∈ [i], we have Φ(ι, N, k) = Φ(ι−, Ň , k).

• Part 3, ι is a create iteration.

From parts 4 and 5 of Lemma 4.6.3, we get the following. First, we have Mι = Mι− ∪ {m̌ι},
and m̌ι 6∈ Mι− . Second, we have procs((m̌ι)

ι) = {πi}. Lastly, if m ∈ Mι and m 6= m̌ι, then

mι− = mι. Thus, for all k ∈ [i − 1], we have Φ(ι, N, k) = Φ(ι−, N, k), and we also have

Φ(ι, N, i) = Φ(ι−, Ň , i) ∪ {m̌ι}.

• Part 3, ι is a modify iteration.

From part 6 of Lemma 4.6.3, we have Mι = Mι− . Also, procs((m̌ι)
ι) = procs((m̌ι)

ι−) ∪ {πi},
and mι = mι− for all m 6= m̌ι. Thus again, we have Φ(ι, N, k) = Φ(ι−, Ň , k), and Φ(ι, N, i) =

Φ(ι−, Ň , i) ∪ {m̌ι}.

2

Let ι, N and Ň be defined as in Lemma 4.6.9. Recall that eι is the value of e at the end of 〈42〉
in iteration ι. Thus, eι is computed in 〈11〉 of iteration ι. Let α be a linearization of (N ι,�ι)

21 , and

let α̌ be the same as α, but with step eι removed22. The next lemma states that α̌ is a linearization

of (Ň ι− ,�ι−).

Lemma 4.6.10 (Down Lemma B) Let ι = (i, j) be any iteration, let N be a prefix of (Mι,�ι),

and let α be an output of Lin(N ι,�ι). Let Ň = N ∩Mι−, and let α̌ be α with step eι removed.

Then α̌ is an output of of Lin(Ň ι− ,�ι−)

Proof. Let γ be the execution of Lin(N ι,�ι) that produced α. Let <N be the γ order of N , and for

each m ∈ N , let <m be the γ order of mι. Since Ň ⊆ N , then <N is a total order on Ň . We claim <N

is consistent with �ι− . Indeed, suppose m1, m2 ∈ N , and m1 <N m2. Then, since <N is consistent

with �ι, we have m2 6�ι m1. Then by the contrapositive of Lemma 4.6.4, we have m2 6�ι− m1, and

21Recall from the end of Section 4.6.1 that Lin(N ι,�ι) is formed by first ordering N with a total order consistent
with �ι, and then totally ordering steps(mι), the steps contained in m at the end of iteration ι, for all m ∈ N .

22If eι does not occur in α, then α = α̌.

109

so the claim holds. Now, define an execution γ̌ of Lin(Ň ι− ,�ι−) where we order Ň using <N , and

for each m ∈ Ň , order mι− using <m. γ̌ is a valid execution of Lin(Ň ι− ,�ι−), because <N is a

total order on Ň consistent with �ι− , and because for all m ∈ Ň , we have steps(mι−) ⊆ steps(mι),

so that <m is a total order on steps(mι−). We claim that the output of γ̌ is α̌. Consider two cases,

either m̌ι 6∈ N , or m̌ι ∈ N .

Suppose first that m̌ι 6∈ N . Then, since eι is contained in steps((m̌ι)
ι), eι does not occur in α.

Thus, α = α̌. By Lemma 4.6.3, we have N = Ň , and for all m ∈ Ň , we have mι = mι− . Thus, the

output of γ̌ is α̌ = α.

Next, suppose that m̌ι ∈ N . Then α and α̌ differ only in eι. Consider the following cases.

• ι is a create iteration.

By Lemma 4.6.3, we have N = Ň ∪ {m̌ι}, and steps((m̌ι)
ι) = {eι}. Also, if m ∈ N and

m 6= m̌ι, then mι = mι− . Thus, the output of γ̌ equals α with step eι removed, which is α̌.

• ι is a modify iteration.

By Lemma 4.6.3, we have N = Ň , steps((m̌ι)
ι) = steps((m̌ι)

ι−) ∪ {eι}, and for m ∈ N and

m 6= m̌ι, we have mι = mι− . Thus, again the output of γ̌ equals α with step eι removed,

which is α̌.

2

The next lemma essentially states that πi does not affect the views of process pπk
, for k < i.

Recall that for a step sequence α, acc(α) is the set of registers accessed by the steps in α.

Lemma 4.6.11 (Down Lemma C) Let ι = (i, j) be any iteration, let N be a prefix of (Mι,�ι),

and suppose m̌ι ∈ N . Let α be an output of Lin(N ι,�ι), and suppose α ∈ runs(A). Let (m̌ι)
ι be

linearized as β in α23, and write α = α− ◦ β ◦α+. Let β̌ be β with step eι removed, let α1 = α− ◦ β,

and α2 = α− ◦ β̌24. Then we have the following.

1. For any k ∈ [i− 1], st(α1, πk) = st(α2, πk).

2. For any ` ∈ acc(α+), we have st(α1, `) = st(α2, `).

Proof. Consider two cases, either type(eι) = R, or type(eι) = W.

• type(eι) = R.

Since eι is a read step, it does not change the state of any registers. Thus, since β contains at

most one step by any process, both parts of the lemma follow immediately.

23Recall that this means that in the execution of Lin(N ι,�ι) that produced α, the output of Seq((m̌ι)ι) is β.
24Notice that since we assume α ∈ runs(A), and since α− ◦ β = α1 is a prefix of α, then we have α1 ∈ runs(A).

Also, since β is the linearization of m, it contains at most one step by any process. Thus, since β̌ and β differ in at
most one step, and α− ◦ β ∈ runs(A), then we have α− ◦ β̌ = α2 ∈ runs(A).

110

• type(eι) = W.

Consider two cases, either �(winner(m̌ι)) 6= πi, or �(winner(m̌ι)) = πi.

If �(winner(m̌ι)) 6= πi, let e∗ = �(win(m̌ι)) be the winning step in m̌ι. By the definition of

Seq((m̌ι)
ι), the value written by eι is overwritten by the value written by e∗ before it is read

by any process πk, k ∈ [i− 1]. Thus, both parts of the lemma follow.

If �(winner(m̌ι)) = πi, then let ` = reg(m̌ι). By Lemma 4.6.3, ι must be a write create

iteration. Then, we have procs((m̌ι)
ι) = {πi}, and β = eι. So, we have α1 = α− ◦ eι and

α2 = α−, and part 1 of the lemma follows. To show part 2 of the lemma, we prove the

following.

Claim 4.6.12 Let e be any step in α+. Then e does not access `.

Proof. Suppose for contradiction that there is a step e in α+ that accesses `. Then either e

is a write or a read step on `.

Suppose first that e writes to `. Then e is contained in some write metastep m ∈ Mι− . In

addition, since e occurs in α+, then m 6�ι m̌ι. Indeed, if m �ι m̌ι, then since (m̌ι)
ι is linearized

as β in α, the linearization of m, and step e, must occur in α−. Since m 6�ι m̌ι, then we also

have m 6�ι− m̌ι− . But then, at 〈15〉 in iteration ι, we would have mw 6= ∅, because m is a write

metastep on register `, and m 6�ι− m̌ι− . Thus, the test at 〈19〉 in ι must have failed, and so ι

could not have been a write create iteration, a contradiction. Thus, there are no write steps

to ` in α+.

Next, suppose that e reads `. Then e cannot be contained in a write metastep, by the same

argument as above. Suppose e is contained in a read metastep m. Then we have m ∈ Rι
25.

In 〈26〉 in ι, we set m ≺ι m̌ι. But then, e cannot occur in α+, since α+ only contains

(linearizations of) metasteps that 6�ι m̌ι. Again, this is a contradiction. Together with the

previous paragraph, this shows that any e in α+ does not access `. 2

Claim 4.6.12 is equivalent to saying that for all `′ ∈ acc(α+), `′ 6= `. Thus, part 2 of the lemma

follows.

�

Recall that Mk is the output of Generate after iteration ιk. The next lemma is similar to

Lemma 4.6.9, but lets us move N “down” multiple iterations.

Lemma 4.6.13 (Down Lemma D) Let ι = (i, j) be any iteration, and let N be a prefix of

(Mι,�ι). Let k ∈ [i− 1], and let Ň = N ∩Mk. Then we have the following

25Recall from Definition 4.6.1 that Rι = {µ | (µ ∈ Mι−) ∧ (reg(µ) = `) ∧ (type(µ) = R) ∧ (µ 6�ι− m̌ι−)}.

111

1. Ň is a prefix of (Mk,�k).

2. For all h ∈ [k], we have Φ(ι, N, h) = Φ(ιk, Ň , h).

Proof. Let ς = ι− ιk be the number of iterations between ι and ιk. Let N0 = N , and for r ∈ [ς],

inductively define Nr = Nr−1 ∩Mι	r. We prove the each part of the lemma separately.

• Part 1.

We first prove the following.

Claim 4.6.14 For all r ∈ [ς], Nr is a prefix of (Mι	r,�ι	r).

Proof. This follows from induction on r. Indeed, by Lemma 4.6.9, it holds for r = 1. Also,

if it holds for r, then by Lemma 4.6.9, it holds for r + 1. 2

By Lemma 4.6.4, we have Mι	r ⊆ Mι	(r−1), for all r ∈ [ς]. Thus, since Nr = Nr−1 ∩Mι	r,

we have Nr = N ∩Mι	r. Thus, using Claim 4.6.14, where we let r = ς, we get that Nς = Ň

is a prefix of (Mι	ς ,�ι	ς) = (Mk,�k).

• Part 2.

Let r ∈ [ς]. Then since h ∈ [k] and k < i, by Lemma 4.6.9, we have that Φ(ι 	 r, Nr, h) =

Φ(ι	 (r − 1), Nr−1, h). From this, we get

Φ(ι, N, h) = Φ(ι, N0, h) = Φ(ι	 1, N1, h) = . . . = Φ(ι	 ς, Nς , h) = Φ(ιk, Ň , h).

�

4.6.4 Main Properties of Construct

In this section, we formally state and prove the main properties that Construct satisfies. We first

define the following.

For any iteration ι and any register `, define Ψ(ι, `) to be the set of metasteps in Mι that access `,

and define Ψw(ι, `) to be the set of write metasteps in Mι that access `. If m ∈Mι, define Υ(ι, `, m)

to be the set of metasteps in Mι that access `, and that also �ι m. Also, define Υ(ι, m) to be the

set of all metasteps µ such that µ �ι m. Formally, we have the following.

Definition 4.6.15 (Function Ψ) Let ι be any iteration, let N ⊆ Mι, and let ` ∈ L. Define the

following.

1. Ψ(ι, `) = {µ | (µ ∈Mι) ∧ (reg(µ) = `)}.

2. Ψw(ι, `) = {µ | (µ ∈Mι) ∧ (reg(µ) = `) ∧ (type(µ) = W)}.

112

Definition 4.6.16 (Function Υ) Let ι be any iteration, let ` ∈ L, and let m ∈ Mι. Define the

following.

1. Υ(ι, `, m) = {µ | (µ ∈ Ψ(ι, `) ∧ (µ �ι m)}.

2. Υ(ι, m) = {µ | (µ ∈Mι) ∧ (µ �ι m)}.

Given a set of metasteps N , we write acc(N) = {reg(µ) |µ ∈ N} for the set of all registers

accessed by the metasteps in N . We now state the main properties that Construct satisfies in

iteration ι.

Lemma 4.6.17 (Properties of Iteration ι of Construct)

Let ι = (i, j) be any iteration, let k ∈ [i], and let N be a prefix of (Mι,�ι). Let α be an output of

Lin(N ι,�ι). Then we have the following.

1. (Run A) α ∈ runs(A).

2. (Run B) Suppose k ∈ [i− 1]. Let h ∈ [k], and let αk be an output of Lin((Mk)ιk

,�k). Then

the steps tryπh
, enterπh

, exitπh
and remπh

occur in αk.

3. (Read Step) Suppose that type(eι) = R and Wι 6= ∅26 . Then we have type(m̌ι) = W, and ι

is a write modify iteration.

4. (Down E) Let α̌ be α with step eι removed. Then we have the following.

(a) α̌ ∈ runs(A).

(b) If k ∈ [i− 1], then st(α, πk) = st(α̌, πk).

(c) If m̌ι 6∈ N , then st(α, πi) = st(α̌, πi).

(d) If m̌ι ∈ N , type(m̌ι) = W, and type(eι) = W, then we have st(α, πi) = ∆(α̌, eι, πi).

(e) If m̌ι ∈ N , type(m̌ι) = W, and type(eι) = R, then let ` = reg(m̌ι), and let v = val(m̌ι).

Choose any s ∈ S such that st(s, πi) = st(α̌, πi) and st(s, `) = v. Then we have st(α, πi) =

∆(s, eι, πi).

(f) If m̌ι ∈ N and type(m̌ι) = R, then we have st(α, πi) = ∆(α̌, eι, πi).

5. (Consistency A) Let ι1 = (i1, j1) ≤ ι be an iteration, let N1 be a prefix of (Mι1 ,�ι1), and

let α1 be an output of Lin((N1)
ι1 ,�ι1). Suppose k ∈ [i1]. Then if Φ(ι, N, k) = Φ(ι1, N1, k), we

have st(α, πk) = st(α1, πk).

6. (Order B) Let ` ∈ L, m1 ∈ Ψ(ι, `), and let m2 ∈ Ψw(ι, `). Then either m1 �ι m2 or

m2 �ι m1.

26Recall from Definition 4.6.1 that Wι = {{µ | (µ ∈ Mι−) ∧ (reg(µ) = `) ∧ (type(µ) = W) ∧ (µ 6�ι− m̌ι−)}.

113

7. (Order C) Let ι1 ≤ ι be any iteration. Let ` ∈ L, and let m ∈ Ψw(ι1, `). Then Υ(ι1, `, m) =

Υ(ι, `, m).

8. (Consistency B) Suppose k ∈ [i − 1]. Let N1 = N ∩ Mk, and let α1 be an output of

Lin((N1)
ιk

,�k). Then we have the following.

(a) For all h ∈ [k], we have st(α, πh) = st(α1, πh).

(b) For all ` ∈ acc(Mk\N1), we have st(α, `) = st(α1, `).

9. (Extension) Suppose k ∈ [i− 1]. Then there exist step sequences α̌ and β, and an output αk

of Lin((Mk)ιk

,�k), such that αk = α̌ ◦ β and α ◦ β ∈ runs(A). Furthermore, if m ∈ Mk\N ,

then the linearization of mιk

occurs in β.

We first describe Lemma 4.6.17. Let ι = (i, j) be any iteration, and let k ∈ [i]. Let N be a prefix

of (Mι,�ι), and let α be an output of Lin(N ι,�ι). Part 1 of the lemma says that α, in addition to

being a step sequence, is actually a run of A.

Part 2 of the lemma says that if k ∈ [i − 1] and h ∈ [k], then any linearization ((Mk)ιk

,�k)

contains the critical steps of process πh, namely tryπh
, enterπh

, exitπh
and remπh

.

Part 3 says that if the step computed for πi in iteration ι, eι, is a read step on some register

`, and if there exist any write metasteps on ` that 6�ι− m̌ι− , then eι must be added to some such

metastep. Thus, in particular, ι is a write modify iteration. Note that this does not immediately

follow from the assumptions of part 3, because Wι 6= ∅ does not immediately imply that W s
ι 6= ∅,

or mws 6= ∅ in 〈31〉 of ι.

Part 4 says that if α̌ is equal to α with step eι removed, then α̌ is a run of A. The states of all

processes other than πi are the same after α and α̌. Also, if m̌ι 6∈ N , then the state of πi is the

same after α and α̌, and if m̌ι ∈ N , then the state of πi after α can be computed from its state

after α̌, eι, and (possibly) the value of m̌ι. Note that eι does not necessarily occur at the end of α.

Nevertheless, part 4 essentially allows us to move eι to the end of α, when we want to compute the

state of πi after α.

Part 5 essentially says that the state of a process after a linearization of a prefix from any iteration

depends only on the set of metasteps in the prefix that contain the process. More precisely, if ι1 ≤ ι

is any iteration, N1 is any prefix of (Mι1 ,�ι1), and α1 is any linearization of ((N1)
ι1 ,�ι1), then as

long as πk is contained in the same set of metasteps in N and N1, the state of πk is the same after

α and α1.

Part 6 says that for any register `, a write metastep on ` is ordered by �ι with respect to any

other (read or write) metastep on `.

Part 7 say that for a write metastep on register `, the set of metasteps on ` that precede m in

any two iterations is the same, as long as m ∈M during the smaller of the two iterations..

114

Part 8 says that if k ∈ [i − 1], h ∈ [k] and N1 = N ∩Mk, then the state of process πh is the

same after α as after a linearization α1 of ((N1)
ιk

,�k). Also, the value of any register accessed by

a metastep in Mk\N is the same after α and α1.

Part 9 of the lemma says that if we start with the run α, in which processes pπ1 , . . . , pπi
take

steps, then for any k ∈ [i− 1], we can extend α to a run α ◦ β, such that only processes pπ1 , . . . , pπk

take steps in β. Furthermore, pπ1 , . . . , pπk
all perform their rem steps in α ◦ β.

Proof. We use induction on ι. All parts of the lemma are easy to verify for ι = (1, 0). Indeed,

when ι = (1, 0), then Mι contains one metastep, containing the critical step tryπ1
, and �ι= ∅. Thus,

we have α = ε or α = tryπ1
. Then, parts 1, 4 and 5 of the lemma clearly hold, while the other parts

are vacuously satisfied. Next, suppose for induction that the lemma holds up to iteration ι	1; then

we show that it also holds for ι. We will call each part of the lemma a sublemma. Let γ be the

execution of Lin(N ι,�ι) that produced α.

1. Part 1, Run A.

Let Ň = N ∩Mι− , and let α̌ be α with step eι removed. Then by Lemma 4.6.9, Ň is a prefix

of (Mι− ,�ι−), and by Lemma 4.6.10, α̌ is an output of Lin(N ι− ,�ι−). Then by the inductive

hypothesis, we have α̌ ∈ runs(A). If m̌ι 6∈ N , then since eι ∈ steps((m̌ι)
ι), we have α = α̌,

and so α ∈ runs(A). Thus, assume that m̌ι ∈ N .

If ι = (i, 0), then eι = tryπi
. eι does not affect the state of any other process or register.

Conversely, the states of the other processes and registers do not affect the fact that eι is the

first step by process πi. Thus, since α̌ ∈ runs(A) by induction, we also have α ∈ runs(A).

Next, assume that ι 6= (i, 0). Then, by Lemma 4.6.3, we have m̌ι− �ι m̌ι. Thus, since m̌ι ∈ N

and N is a prefix, we have m̌ι− ∈ N .

Now, to show that α ∈ runs(A), the main idea is the following. Let α− and α+ denote the parts

of α before and after eι, respectively. Thus, we have α = α− ◦ eι ◦ α+. We first want to show

that πi indeed performs the step eι after α−. That is, we want to show that δ(α−, πi) = eι. To

do this, let N1 ⊆ Mι denote the set of all metasteps that are linearized before m̌ι in α. From

Lemma 4.6.8, we can see that N1 and Nι
27 contain the same set of metasteps that contain

process πi. Then, using Part 5 of the inductive hypothesis, it follows that πi is in the same

state following α− and αι. Thus, since eι is by definition the step that πi performs after αι,

eι is also the step that πi performs after α−, and so we have α− ◦ eι ∈ runs(A). Now, to

complete the proof that α ∈ runs(A), we use Lemma 4.6.11, which shows that inserting eι

after α− does not change the states of processes π1, . . . , πi−1, nor the values of any registers

accessed in α+. Thus, since α− ◦α+ = α̌ ∈ runs(A) by the inductive hypothesis, we also have

α− ◦ eι ◦ α+ ∈ runs(A), by Theorem 4.3.1.

27Recall from Section 4.6.1 that Nι = {µ | (µ ∈ Mι−) ∧ (µ �ι− m̌ι−)}.

115

We now present the formal proof of the lemma. Recall that m̌ι ∈ N , and ι 6= (i, 0). Let m̌ι−

and m̌ι be linearized as β1 and β2 in α, respectively, and let β̌2 be β2 with step eι removed.

Write α = α−1 ◦ β1 ◦ α−2 ◦ β2 ◦ α+, and α̌ = α−1 ◦ β1 ◦ α−2 ◦ β̌2 ◦ α+. There are no steps by πi

in β̌2, by definition. Also, there are no steps by πi in α−2 , since m̌ι and m̌ι− are the last two

metasteps (with respect to �ι) containing πi.

Let <γ be the γ order of N , and let

N1 = {µ | (µ ∈Mι) ∧ (µ ≤γ m̌ι−)}.

N1 is a prefix of (Mι,�ι). Indeed, if m1 ∈ N1 and m2 �ι m1, then we have m2 ≤γ m1, since

<γ is consistent with �ι. So, we have m2 ∈ N1.

By Lemma 4.6.3, we have that αι is an output of Lin((Nι)
ι− ,�ι−), and eι = δ(αι, πi). Since

ι = (i, j), then using part 3 of Lemma 4.6.8, we have

Φ(ι−, N1, i) = {m̌(i,h) | 0 ≤ h ≤ j − 1} = Φ(ι−, Nι, i).

Let γ1 be an execution of Lin((N1)
ι− ,�ι−) that orders N1 using <γ , and orders every m ∈ N1

using the γ order of m. Since α = α−1 ◦β1◦α−2 ◦β2◦α+ is the output of γ, and m̌ι− is linearized

as β1 in α, and mι = mι− for all m ∈Mι\{m̌ι}, then α−1 ◦ β1 is the output of γ1. Thus, since

Φ(ι−, N1, i) = Φ(ι−, Nι, i), we have by part 5 of the inductive hypothesis that

st(α−1 ◦ β1, πi) = st(αι, πi).

Let α′ = α−1 ◦ β1 ◦ α−2 ◦ β2, and α̌′ = α−1 ◦ β1 ◦ α−2 ◦ β̌2. Since α̌ = α̌′ ◦α+ ∈ runs(A), we have

α̌′ ∈ runs(A). Also, we have

st(αι, πi) = st(α−1 ◦ β1, πi) = st(α̌′, πi).

Here, the second equality follows because there are no steps by πi in α−2 or in β̌2. From this,

we get that

δ(α̌′, πi) = δ(αι, πi) = eι.

Thus, since α̌′ ∈ runs(A), and α̌′ equals α′ with step eι removed, we get that

α′ ∈ runs(A). (4.6)

By Lemma 4.6.11, we have ∀k ∈ [i− 1] : st(α′, πk) = st(α̌′, πk), and ∀` ∈ acc(α+) : st(α′, `) =

st(α̌′, `). Also, there are no steps by process πi in α+. Thus, using the fact that α̌ = α̌′ ◦α+ ∈

116

runs(A) and Theorem 4.3.1, and using Equation 4.6, we have α′ ◦ α+ = α ∈ runs(A).

2. Part 2, Run B.

Since ι = (i, j) is an iteration of θ and k < i, then by inspection of Construct, the h’th

call to Generate by Construct terminated. So, Mk contains a critical metastep containing

remπh
, and so remπh

occurs in αk. By Part 1 of the inductive hypothesis, αk ∈ runs(A), and

so αk satisfies the well formedness property of Definition 4.3.3. Thus, αk also contains the

steps tryπh
, enterπh

and exitπh
.

3. Part 3, Read Step.

The main idea is the following. Suppose for contradiction that type(m̌ι) = R, so that ι is a

read create iteration. Then this means that for every m ∈ Wι, process πi does not change

its state after reading, in step eι, the value written by m. Let the maximum metastep in Wι,

with respect to �ι− , be m∗, and let v∗ = val(m∗). By part 6 of the inductive hypothesis, Wι

is totally ordered by �ι− , and so m∗ is well defined. Using Part 9 of the inductive hypothesis,

we can construct a run α′ in which eι occurs after all metasteps in Mi−1 have occurred. In

particular, eι occurs after all the writes in Wι. The value of ` in any extension of α′, in which

only pπi
take steps, is v∗. But since πi does not change its state after reading value v∗, and

since pπi
, . . . , pπi−1 are all in their remainder sections in any extension of α′, then πi will stay

in the same state forever, contradicting the progress property in Definition 4.3.3.

We now present the formal proof. By Part 6 of the inductive hypothesis, Wι is totally ordered

by �ι− . Let m∗ = max�
ι−

Wι, v∗ = val(m∗), and let πk = �(winner(m∗)). Then k < i.

Indeed, we have m∗ 6�ι− m̌ι− by the definition of Wι. But for any metastep m containing πi,

that is, for any m ∈ Φ(ι−, i), we have m �ι− m̌ι− , by Lemma 4.6.8. Hence, k < i.

By Lemma 4.6.3, we have that αι is an output of Lin((Nι)
ι− ,�ι−). By Part 9 of the inductive

hypothesis, there exists an execution of Lin((Mi−1)
ιi−1

,�i−1) with output αi−1 = α̌ ◦ β, such

that α′ = αι ◦ β ∈ runs(A). We have m∗ ∈ Mi−1, since πk = �(winner(m∗)) and k < i, so

that Mi−1 contains all metasteps that contain pπk
. Also, we have m∗ 6∈ Nι, since m∗ 6�ι− m̌ι− .

Thus, we have m∗ ∈Mi−1\Nι, and the second conclusion of Part 9 of the inductive hypothesis

states that the linearization of m∗ occurs in β. Then, since m∗ is the maximum write metastep

to ` in Mi−1, with respect to �ι− , we have m �ι− m∗, for every m ∈ Mι− that is a write

metastep on `. Thus, we have st(α′, `) = v∗.

Let si = st(αι, πi) be πi’s state at the end of αι. By Lemma 4.6.3, we have eι = δ(si, πi). For

any v ∈ V , let

Sv = {s | (s ∈ S) ∧ (st(s, πi) = si) ∧ (st(s, `) = v)}.

That is, Sv is the set of system states in which πi is in state si, and ` has value v. Now,

117

suppose for contradiction that type(m̌ι) = R. Then the test on 〈31〉 of iteration ι must have

failed. Thus, by inspection of 〈29〉 and 〈31〉, we have

(∀µ ∈Wι)(∀s ∈ Sval(µ)) : ∆(s, eι, πi) = st(αι, πi) = si.

That is, none of the write metasteps in Wι write a value that causes πi to change its state

after αι. In particular, we have

∀s ∈ Sv∗ : ∆(s, eι, πi) = si. (4.7)

Notice that β does not contain any steps by πi, since β comes from a linearization of

((Mi−1)
ιi−1 ,�i−1). Then, since δ(αι, πi) = eι, and α′ = αι ◦ β ∈ runs(A), we have α′ ◦ eι ∈

runs(A). Since st(α′, `) = v∗ and eι is a read step, we have st(α′ ◦ eι, `) = v∗. Then by

Equation 4.7, we have st(α′ ◦ eι, πi) = st(αι ◦ eι, πi) = si. Thus, we have st(α′ ◦ eι) ∈ Sv∗ .

For any r ∈ N, let (eι)
r = eι ◦ . . . ◦ eι

︸ ︷︷ ︸

r times

. Since δ(si, πi) = eι and st(α′ ◦ eι, πi) = si, we have

δ(α′ ◦ eι, πi) = eι. Then, we have α′ ◦ (eι)
2 ∈ runs(A). We also have st(α′ ◦ (eι)

2, `) = v∗, and

st(α′ ◦ (eι)
2, πi) = si, by Equation 4.7. Thus, δ(α′ ◦ (eι)

2, πi) = eι, and so α′ ◦ (eι)
3 ∈ runs(A).

Following this pattern, we see that for any r ∈ N, we have α′ ◦ (eι)
r ∈ runs(A).

By part 2 of the inductive hypothesis, we have that for all h ∈ [i− 1], remπh
appears in α′.

Also, since πh performs tryπh
only once, πh is in its remainder section at the end of α′ ◦ (eι)

r,

for every r ∈ N. Thus, by the progress property in Definition 4.3.3, there exists a sufficiently

large r∗ ∈ N such that remπi
occurs in α′ ◦ (eι)

r∗

. But since eι is a read step by πi, this is a

contradiction. Thus, we conclude that type(m̌ι) = W, and ι is a write modify iteration.

4. Part 4, Down E.

We first describe the main idea of the proof. Parts a through c follow easily from earlier

lemmas or from induction. Part d of the sublemma follows because eι is a write step, and so

πi always transitions to the same state after eι, as long as eι is placed somewhere after eι− in

α̌. Similarly, part e follows because πi always transitions to the same state after eι, as long as

eι is placed after eι′ in α̌, and eι reads value v in `. Lastly, to see part f , note that since m̌ι

is a read metastep, then by part 3 of the lemma, there are no write steps to ` after eι− in α̌.

Thus, eι reads the same value in `, no matter where we place eι after eι− in α̌, and so, part f

follows.

We now present the formal proof of the sublemma. Part a of the sublemma follows from

Lemma 4.6.10, and part 1 of the inductive hypothesis. For the other parts, consider two cases,

either m̌ι 6∈ N , or m̌ι ∈ N .

118

If m̌ι 6∈ N , then since eι is contained in steps((m̌ι)
ι), we have α = α̌. Thus, for any k ∈ [i],

we have st(α, πk) = st(α̌, πk), and so Part 4 of the lemma holds.

If m̌ι ∈ N , then consider two cases, either ι = (i, 0), or ι 6= (i, 0). If ι = (i, 0), then eι = tryπi
.

Since eι does not change the state of any registers, part b of the sublemma holds. Also, parts

c through f of the lemma do not apply. Thus, the sublemma holds.

Next, suppose ι 6= (i, 0). Since ι 6= (i, 0), then eι− contains a step by πi. Suppose m̌ι is

linearized as β in α, and let β̌ be β with step eι removed. Write α = α− ◦ β ◦ α+, and

α̌ = α− ◦ β̌ ◦ α+. Also, write α− = α−1 ◦ eι− ◦ α−2 . Since eι− is the step taken by πi before

eι, there are no steps by πi in α−2 , β̌ or α+. We prove each part of the sublemma separately.

Note that part c has already been proven earlier.

• Part b.

By Lemma 4.6.11, for any k ∈ [i − 1], we have st(α− ◦ β, πk) = st(α− ◦ β̌, πk), and

∀` ∈ acc(α+) : st(α− ◦ β, `) = st(α− ◦ β̌, `). Then, since α+ does not contain any steps

by πi, we have

st(α, πk) = st(α− ◦ β ◦ α+, πk) = st(α− ◦ β̌ ◦ α+, πk) = st(α̌, πk).

• Part d.

We have

st(α, πi) = st(α−1 ◦ eι− ◦ α−2 ◦ β ◦ α+, πi)

= st(α−1 ◦ eι− ◦ α−2 ◦ β̌ ◦ α+ ◦ eι, πi)

= st(α̌ ◦ eι, πi).

The second equality follows because there are no steps by πi in α+, and because eι is a

write step. The third equality follows by the definition of α̌.

• Part e.

Since there are no steps by πi in α−2 , β̌ or α+, we have

st(α̌, πi) = st(α−1 ◦ eι− ◦ α−2 ◦ β̌ ◦ α+, πi)

= st(α−1 ◦ eι− ◦ α−2 ◦ β̌, πi)

= st(α−1 ◦ eι− ◦ α−2 , πi)

= st(α−1 ◦ eι− , πi).

119

Thus, we get

δ(α̌, πi) = δ(α−1 ◦ eι− , πi) = eι.

Here the second equality follows because eι is the next step by πi in α after eι− . Since

type(m̌ι) = W, then eι reads v = val(m̌ι) in α. Thus, if s ∈ S is any system state such

that st(s, πi) = st(α̌, πi) and st(s, `) = v, then we have st(α, πi) = ∆(s, eι, πi).

• Part f .

Since type(m̌ι) = R, then by part 3 of the lemma, we have Wι = ∅. Thus, there are no

write steps to ` in α−2 or in α+, since eι− is contained in steps((m̌ι−)ι), and eι− comes

before α−2 and α+ in α. Also, since type(m̌ι) = R, we have steps((m̌ι)
ι) = {eι}, and so

β = eι, and β̌ = ε. Thus, we have

st(α, πi) = st(α−1 ◦ eι− ◦ α−2 ◦ eι ◦ α+, πi)

= st(α−1 ◦ eι− ◦ α−2 ◦ α+ ◦ eι, πi)

= st(α−1 ◦ eι− ◦ α−2 ◦ β̌ ◦ α+ ◦ eι, πi)

= st(α̌ ◦ eι, πi).

The second equality follows because eι is a read on `, and there are no writes to ` in α+.

The third equality follows because β̌ = ε.

5. Part 5, Consistency A.

We first describe the main idea of the proof. Consider two cases, either ι = ι1, or ι >

ι1. In the first case, let Ň = N ∩ Mι− and Ň1 = N1 ∩ Mι− , and let α̌ and α̌1 be the

(version ι−) linearizations of Ň and Ň1. Since Φ(ι, N, k) = Φ(ι, N1, k), then we also have

Φ(ι−, Ň , k) = Φ(ι−, Ň1, k), and so st(α̌, πk) = st(α̌1, πk) by induction. Then, to conclude that

st(α, πk) = st(α1, πk), we apply part 4 of the lemma. In the case that ι > ι1, we first show

that Φ(ι, N, k) = Φ(ι1, N1, k) implies that Φ(ι1, N, k) = Φ(ι1, N1, k), and then apply part 5 of

the inductive hypothesis for iteration ι1.

We now present the formal proof. Consider two cases, either ι = ι1, or ι > ι1.

• Case ι = ι1.

Let Ň = N ∩Mι− and Ň1 = N1 ∩Mι− . Also, let α̌ be α with step eι removed, and

let α̌1 be α1 with step eι removed. By Lemma 4.6.9, both Ň and Ň1 are prefixes of

(Mι− ,�ι−). By Lemma 4.6.10, α̌ and α̌1 are outputs of Lin((Ň)ι− ,�ι−) and

Lin((Ň1)
ι− ,�ι−), respectively.

We first show that if k ∈ [i − 1] and Φ(ι, N, k) = Φ(ι, N1, k), then we have st(α, πk) =

st(α1, πk). By Lemma 4.6.9, we have Φ(ι, N, k) = Φ(ι−, Ň , k), and Φ(ι, N1, k) = Φ(ι−, Ň1, k).

120

Thus, since Φ(ι, N, k) = Φ(ι, N1, k), we have Φ(ι−, Ň , k) = Φ(ι−, Ň1, k). Then by part 5

of the inductive hypothesis, we have

st(α̌, πk) = st(α̌1, πk).

By part 4.b of the lemma, we have

st(α, πk) = st(α̌, πk), st(α1, πk) = st(α̌1, πk).

Thus, we conclude that st(α, πk) = st(α1, πk), for all k ∈ [i− 1].

Next, suppose k = i, and Φ(ι, N, i) = Φ(ι, N1, i). Consider two cases, either m̌ι 6∈ N , or

m̌ι ∈ N .

– m̌ι 6∈ N .

Since m̌ι 6∈ N and Φ(ι, N, i) = Φ(ι, N1, i), we have m̌ι 6∈ N1. Then, by Lemma 4.6.9,

we have Φ(ι, N, i) = Φ(ι−, Ň , i) and Φ(ι, N1, i) = Φ(ι−, Ň1, i), and so Φ(ι−, Ň , i) =

Φ(ι−, Ň1, i). Then, by part 5 of the inductive hypothesis, we have st(α̌, πi) =

st(α̌1, πi). Since m̌ι 6∈ N , then by part 4.c of the lemma, we have st(α, πi) = st(α̌, πi),

and st(α1, πi) = st(α̌1, πi). Thus, we have st(α, πi) = st(α1, πi).

– m̌ι ∈ N .

Since m̌ι ∈ N and Φ(ι, N, i) = Φ(ι, N1, i), we have m̌ι ∈ N1. Then, by Lemma 4.6.9,

we have Φ(ι, N, i) = Φ(ι−, Ň , i) ∪ {m̌ι} and Φ(ι, N1, i) = Φ(ι−, Ň1, i) ∪ {m̌ι}, and

so Φ(ι−, Ň , i) = Φ(ι−, Ň1, i). Then, by part 5 of the inductive hypothesis, we have

st(α̌, πi) = st(α̌1, πi). To complete the proof, consider the following cases.

Suppose first that type(m̌ι) = W and type(eι) = R. Let ` = reg(m̌ι), v = val(m̌ι). Let

s ∈ S be any system state such that st(s, πi) = st(α̌, πi) = st(α̌1, πi), and st(s, `) = v.

Then by part 4.e of the lemma, we have

st(α, πi) = ∆(s, eι, πi) st(α1, πi) = ∆(s, eι, πi).

Thus, we have st(α, πi) = st(α1, πi).

Next, suppose that either type(m̌ι) = W and type(eι) = W, or type(m̌ι) = R. Then

by parts 4.d and 4.f of the lemma, we have st(α, πi) = ∆(α̌, eι, πi), and st(α1, πi) =

∆(α̌1, eι, πi). Thus, again we have st(α, πi) = st(α1, πi).

• Case ι > ι1

Let ς = ι− ι1 be the number of iterations between ι and ι1. Define N0 = N and α0 = α.

For r ∈ [1, ς], inductively let N r = N r−1 ∩Mι	r, and let αr be αr−1 with step eι	(r−1)

removed. The following lemma states properties about the “versions” of N and α in

121

iteration ι	 r, for any r ∈ [ς].

Claim 4.6.18 For any r ∈ [ς], we have the following.

(a) N r is a prefix of (Mι	r,�ι	r).

(b) Φ(ι 	 r, N r, k) = Φ(ι	 (r − 1), N r−1, k).

(c) αr is an output of Lin((N r)ι	r,�ι	r).

(d) st(αr , πk) = st(αr−1, πk).

Proof. We use induction, and prove the claim for r = 1. The proof for other values of

r uses the inductive hypothesis for r − 1, and is otherwise the same.

– Part a.

Since N0 = N is a prefix of (Mι,�ι), then by Lemma 4.6.9, N1 is a prefix of

(Mι	1,�ι	1).

– Part b.

We claim that if k = i, then m̌ι 6∈ N0. Indeed, if k = i and m̌ι ∈ N0, then

since we have πk ∈ procs((m̌ι)
ι), πk 6∈ procs((m̌ι)

ι	1), and ι1 ≤ ι 	 1, we get that

Φ(ι, N0, k) 6= Φ(ι1, N1, k), a contradiction. Thus, we either have k ∈ [i− 1], or k = i

and m̌ι 6∈ N0. In both cases, by Lemma 4.6.9, we have Φ(ι, N0, k) = Φ(ι	 1, N1, k).

– Part c.

We have N1 = N0∩Mι	1, and α1 equals α0 with step eι removed. Thus, since α is an

output of Lin(N ι,�ι), then by Lemma 4.6.10, α1 is an output of Lin((N1)ι	1,�ι	1).

– Part d.

As in the proof for part 2, we have that if k = i, then m̌ι 6∈ N0. Thus, by parts 4.b

and 4.c of the lemma, we have that st(α1, πk) = st(α0, πk).

2

We now complete the proof of part 5 of the lemma. From part 1 of Claim 4.6.18, we have

that N ς is a prefix of (Mι	ς ,�ι	ς) = (Mι1 ,�ι1). By inductively applying Claim 4.6.18,

starting from r = 1 up to r = ς, we get from part 2 of Claim 4.6.18 that

Φ(ι1, N
ς , k) = Φ(ι, N, k).

By inductively applying part 3 of Claim 4.6.18, we get that there exists an execution of

Lin((N ς)ι1 ,�ι) with output ας .

Since Φ(ι, N, k) = Φ(ι1, N1, k) by assumption, then by part 2 of Claim 4.6.18, we have

Φ(ι1, N
ς , k) = Φ(ι1, N1, k). Thus, by part 5 of the inductive hypothesis, we have

st(ας , πk) = st(α1, πk).

122

Finally, by inductively applying part 4 of Claim 4.6.18, we get that

st(α, πk) = st(ας , πk).

Thus, we have st(α, πk) = st(α1, πk). �

6. Part 6, Order B.

The main idea is the following. If ι is a modify iteration, then Mι = Mι− , and also, all

metasteps are ordered the same way in �ι and �ι− . Thus, the sublemma follows by induction.

If ι is a create iteration, then we can show that Wι = ∅, either using part 3 of the lemma

(if ι is a read create iteration), or by direct inspection of Construct (if ι is a write create

iteration). Thus, for any write metastep m2 ∈ Mι− on `, we have m2 �ι− m̌ι− ≺ι m̌ι. From

this, the lemma follows.

We now present the formal proof. Choose an ` ∈ L, m1 ∈ Ψ(ι, `) and m2 ∈ Ψw(ι, `), and

consider the following cases.

• ι is a critical create iteration.

By Lemma 4.6.3, we either have �ι=�ι− , or �ι=�ι− ∪{(m̌ι− , m̌ι)}. Also, m̌ι 6∈ Mι− ,

and m̌ι contains a critical step that does not access any registers. Thus, since m1 and m2

are ordered in �ι− by part 6 of the inductive hypothesis, they are ordered in the same

way in �ι, by Lemma 4.6.4.

• ι is a read create iteration.

By Lemma 4.6.3, we have �ι=�ι− ∪{(m̌ι− , m̌ι)}. If reg(eι) 6= `, then the sublemma

clearly holds in ι.

If reg(eι) = reg(m̌ι) = `, then since ι is a read create iteration, by part 3 of the lemma,

we have Wι = ∅. Since m1 and m2 are ordered in �ι− by induction, they are ordered

the same way in �ι. Also, since Wι = ∅ and m2 ∈ Ψw(ι, `), then we have m2 �ι− m̌ι− .

Finally, we have m̌ι− ≺ι m̌ι, by 〈37〉 of ι. Thus, the sublemma holds for ι.

• ι is a write create iteration.

If reg(eι) 6= `, then the sublemma holds in ι. If reg(eι) = `, then since ι is a write

create iteration, then the test on 〈19〉 in iteration ι succeeded, and so Wι = ∅. Thus,

m2 �ι− m̌ι− , and so by 〈27〉 of iteration ι, we have m2 ≺ι m̌ι. Also, if m1 ∈ Rι, then it

follows from 〈26〉 of ι that m1 ≺ι m̌ι. Lastly, m1 and m2 are ordered the same way in ι−

and ι. Thus, the sublemma holds for ι.

• ι is a modify iteration.

By Lemma 4.6.3, we have Mι− = Mι. Thus, for any m1, m2 ∈Mι, we have m1, m2 ∈Mι− ,

and so by Lemma 4.6.4, m1 and m2 are ordered the same way in ι as in ι−.

123

7. Part 7, Order C.

We prove the sublemma in the case when ι and ι1 differ by one iteration. The proof for a

general ι1 is simply an inductive version of the following argument. Let ` ∈ L and m ∈ Ψw(ι, `).

Then we show that Υ(ι, `, m) = Υ(ι−, `, m). Let m1 ∈ Ψ(ι, `). Then by part 6 of the inductive

hypothesis, either m �ι− m1 or m1 �ι− m. So by Lemma 4.6.4, either m �ι m1 or m1 �ι m,

and so we have Υ(ι−, `, m) ⊆ Υ(ι, `, m). So, to show Υ(ι, `, m) = Υ(ι−, `, m), it suffices to

show the following:

If reg(m̌ι) = ` and m̌ι 6�ι− m, then m̌ι 6�ι m. (∗)

To show (∗), suppose first that ι is a modify iteration. Then m̌ι ∈ Mι. It suffices to consider

the case when m̌ι accesses `. Then, since m̌ι 6�ι− m by assumption, we have by part 6 of the

inductive hypothesis that m �ι− m̌ι. Thus, by Lemma 4.6.4, we have m �ι m̌ι, and (∗) holds.

Next, suppose ι is a read or write create iteration. Then we claim that Wι = ∅. Indeed, if ι

is a write create iteration, then Wι = ∅, or else the test on 〈19〉 of ι would fail, and ι would

not be a write create iteration. If ι is a read create iteration, then part 3 of the lemma implies

that Wι = ∅. Now, since m is a write metastep on `, then m 6∈ Wι, and so m �ι− m̌ι− ≺ι m̌ι.

So, the assumption of (∗) does not hold. Thus, again we have Υ(ι, `, m) = Υ(ι−, `, m).

8. Part 8, Consistency B.

The main idea is the following. To show part a of the sublemma, we use the fact that h ≤ k < i

and Lemma 4.6.13 to show that Φ(ι, N, h) = Φ(ιk, N1, h), and then apply part 8 of the lemma

to conclude that st(α, πh) = st(α1, πh). For part b, suppose that m̌ι ∈ N ; otherwise, part b

follows easily by induction. If eι is a read step, then part b follows easily. If eι is a write step,

and πi is not the winner of m̌ι, then the value that πi writes is overwritten by the value written

by the winner of m̌ι, and part b again follows. If eι is a write step and πi is also the winner

of m̌ι, then ι is a write create iteration. Let `1 = reg(m̌ι). We claim that `1 is not accessed

by any metastep in Mk\N1. Indeed, if there is a write metastep m ∈ Mk\N1 on `1, then

m ∈Wι 6= ∅, and so ι is a write modify iteration, a contradiction. Otherwise, if there is a read

metastep m ∈Mk\N1 on `, then m ∈ Rι 6= ∅, and we have m ≺ι m̌ι. Then, since m̌ι ∈ N , we

have m ∈ N , and m 6∈ Mk\N1, which is again a contradiction. Thus, `1 6∈ acc(Mk\N1), and

part b of the sublemma follows.

We now present the formal proof. Since k ∈ [i] and h ∈ [k], then by Lemma 4.6.13, Ň is

a prefix of (Mk,�k), and Φ(ι, N, h) = Φ(ιk, N1, h). Thus, by part 8 of the lemma, we have

st(α, πh) = st(α1, πh), and part 1 of the sublemma holds.

For part 2 of the sublemma, we consider two cases, either m̌ι 6∈ N , or m̌ι ∈ N .

124

If m̌ι 6∈ N , then N = N∩Mι− , and so by Lemmas 4.6.9 and 4.6.10, N is a prefix of (Mι− ,�ι−),

and α is the output of an execution of Lin((N)ι− ,�ι−). Then by part 8 of the inductive

hypothesis, we have st(α, `) = st(α1, `), for all ` ∈ acc(Mk\N1).

If m̌ι ∈ N , then suppose m̌ι is linearized as β in α, and let β̌ be β with step eι removed. Write

α = α− ◦ β ◦ α+, and let α̌ = α− ◦ β̌ ◦ α+, and Ň = N ∩Mι− . By Lemmas 4.6.9 and 4.6.10,

Ň is a prefix of (Mι− ,�ι−), and α̌ is the output of some execution of Lin((Ň)ι− ,�ι−). Then

by the inductive hypothesis, we have

∀` ∈ acc(Mk\N1) : st(α̌, `) = st(α1, `). (4.8)

Let ` ∈ acc(Mk\N1). To show that st(α, `) = st(α1, `), consider the following cases.

• type(eι) = R.

eι does not change the state of any register, and so st(α− ◦ β, `) = st(α− ◦ β̌, `). Also, eι

is the last step by process πi in α, and so there are no steps by πi in α+. Thus, we have

st(α, `) = st(α− ◦ β ◦ α+, `)

= st(α− ◦ β̌ ◦ α+, `)

= st(α̌, `)

= st(α1, `).

Here, the third equation follows by the definition of α̌, and the last equation follows by

Equation 4.8.

• type(eι) = W, and �(winner(m̌ι)) 6= πi.

The value written by step eι is overwritten by the value written by step �(win(m̌ι)) before

it is read by any process. Thus, st(α− ◦ β, `) = st(α− ◦ β̌, `). Since there are no steps by

πi in α+, we have st(α, `) = st(α1, `).

• type(eι) = W, and �(winner(m̌ι)) = πi.

Since �(winner(m̌ι)) = πi, then the test on 〈19〉 in iteration ι must have succeeded.

Thus, ι is a write create iteration, and we have β = eι, and β̌ = ε. Also, we have

ι 6= (i, 0). Let `1 = reg(m̌ι). We claim that for any m ∈ Mk\N1, reg(m) 6= `1. Suppose

for contradiction there exists m ∈Mk\N1 such that reg(m) = `1. Since m ∈Mk\N1 and

N1 = N ∩Mk, then m 6∈ N . Thus, since N is a prefix and m̌ι ∈ N , we have m 6�ι m̌ι.

Then, since ι 6= (i, 0), we also have m 6�ι− m̌ι− . Suppose first that type(m) = R. Since

Mk ⊆ Mι, m is a write metastep on `1, and m 6�ι− m̌ι− , then in 〈23〉 of iteration ι, we

have m ∈ Rι. But then in 〈26〉 of iteration ι, we set m ≺ι m̌ι, a contradiction. Next,

125

suppose that type(m) = W. Then in 〈14〉 in iteration ι, we have Wι 6= ∅, m is a write

metastep on `1, and m 6�ι− m̌ι− . So, the test on 〈19〉 of iteration ι fails, which is again a

contradiction.

For any m ∈ Mk\N1, we have shown that reg(m) 6= `1 = reg(eι). Thus, since ` ∈
acc(Mk\N1), we have st(α− ◦ β, `) = st(α− ◦ β̌, `), and so st(α, `) = st(α1, `).

9. Part 9, Extension.

The main idea is to set α̌ to be a linearization of N ∩Mk, then apply part 8 of the lemma.

Formally, let Ň = N ∩Mk, let γ̌ be an execution of Lin(Ň ιk

,�k), and let α̌ be the output of

γ̌. Let <γ̌ be the γ̌ order of Ň , and for m ∈ Ň , let <m be the γ̌ order of mιk

.

By Lemma 4.6.9, Ň is a prefix of (Mk,�k). Thus, there is a total order <k on Mk, that extends

the total order <γ̌ on Ň . That is, <k is a total order on Mk, such that for any m1, m2 ∈ Ň ,

we have m1 <k m2 if and only if m1 <γ̌ m2. Choose any such <k, and create the following

execution γk of Lin((Mk)ιk

,�k). γk orders Mk using <k. For any m ∈ Ň , γk linearizes m

using <m. For m ∈ Mk\Ň , γk linearizes m using any output of Seq(mιk

). Let αk be the

output of γk.

By the definition of γk, α̌ is a prefix of αk. Write αk = α̌◦β. Now, by part 8 of the lemma, for all

h ∈ [k], we have st(α̌, πh) = st(α, πh), and for all ` ∈ acc(Mk\Ň), we have st(α̌, `) = st(α, `).

Also, by part 1 of the inductive hypothesis, we have α, α̌, αk ∈ runs(A). Thus, by Theorem

4.3.1, we have α ◦ β ∈ runs(A).

To show the last part of the lemma, let m ∈Mk\N . Then, since α̌◦β contains the linearization

of every metastep in Mk, the linearization of m appears somewhere in α̌ ◦ β. Since α̌ contains

only linearizations of metasteps in Ň ⊆ N , then the linearization of m must appear in β. �

In the remainder of this chapter, we will refer to different parts of Lemma 4.6.17 using the “dot”

notation. For example, we write Lemma 4.6.17.1 for part 1 of Lemma 4.6.17.

Lemma 4.6.17 shows that each iteration of Construct satisfies certain safety properties. For

example, it shows that a linearization of a prefix from any iteration is a run of A. However, it

does not show that Construct eventually terminates. In particular, it does not show, for any

i ∈ [n], that there exists an iteration ι such that eι = remπi
, so that the i’th call to Generate from

Construct returns. The following lemma shows that each call to Generate does return, from

which it follows immediately that Construct terminates.

Lemma 4.6.19 (Termination Lemma) Let i ∈ [n]. Then there exists ji ≥ 0 such that e(i,ji) =

remπi
.

Proof. We use induction on i. Consider i = 1, and suppose for contradiction that e(1,j) 6= remπ1 ,

126

for every j ≥ 0. Then, since the only process that takes steps in α(1,j) is πi, A violates the progress

property in Definition 4.3.3, a contradiction. Thus, there exist some j1 such that e(1,j1) = remπ1 .

Next, assume that the lemma holds up to i − 1; then we show it also holds for i. Suppose

for contradiction that e(i,j) 6= remπ1 , for every j ≥ 0. For every j ≥ 0, let αj be an output of

Lin((M(i,j))
(i,j),�(i,j)). Since M(i,j) is a prefix of (M(i,j),�(i,j)), then by Lemma 4.6.17.1 , we have

αj ∈ runs(A), for all j ≥ 0. Since Mi−1 ⊆ M(i,j) for all j ≥ 0, then by Lemma 4.6.17.2, we have

that tryπk
, enterπk

, exitπk
and remπk

occur in α, for all k ∈ [i − 1]. Thus, for every j ≥ 0, every

process πk, k ∈ [i− 1], is in its remainder region after αj , except πi. But this violates the progress

property in Definition 4.3.3, a contradiction. Thus, there exist some ji such that e(i,ji) = remπi
. 2

4.6.5 Main Theorems for Construct

Finally, we show the key property of Construct, namely, that in any linearization of (M,�)

produced by Construct(π), all processes p1, p2, . . . , pn enter the critical section, and they enter in

the order pπ1 , pπ2 , . . . , pπn
.

Theorem 4.6.20 (Construction Theorem A) Let α be an output of Lin(Mn,�n). Then for

any i, j ∈ [n] such that i < j, steps enterπi
and enterπj

occur in α, and enterπi
occurs before enterπj

.

Proof. Suppose for contradiction that there exists i < j such that enterπj
occurs before enterπi

in α. Then the basic idea of the proof is to consider the prefix α1 of α up to and including the

occurrence of enterπj
. Since i < j, we can use Lemma 4.6.17.9 to show there exists an extension

α1 ◦ β of α1, such that only processes pπ1 , . . . , pπi
take steps in β. Furthermore, enterπi

occurs in β.

But this means there is a prefix of α1◦β in which enterπi
and enterπj

have both occurred, but neither

exitπi
nor exitπj

has occurred, contradicting the mutual exclusion property in Definition 4.3.3.

We now present the formal proof. First, note that enterπi
and enterπj

both occur in α, by Lemma

4.6.17.2. To show that enterπi
occurs before enterπj

, assume for contradiction otherwise. Let γ be

the execution of Lin(Mn,�n) that produced α, let <γ be the γ order of M , and for each m ∈M , let

<m be the γ order of m. Let α1 be the prefix of α up to and including event enterπj
. Let mj ∈M

be the critical metastep containing enterπj
, and let N = {µ | (µ ∈M)∧ (µ ≤γ mj)}. N is a prefix of

(M,�), since ≤γ is consistent with �n. Let γ1 be an execution of Lin(N ιn

,�) defined as follows.

γ1 orders N using <γ , and for each m ∈ N , γ1 orders m using <m. Then, by construction, α1 is the

output of γ1.

Let Ň = N ∩Mi, and let α̌ be an output of Lin(Ň ιi

,�i). Then by Lemma 4.6.17.9, there exists

a run αi that is an output of Lin((Mi)
ιi

,�i), such that αi = α̌ ◦ β and α1 ◦ β ∈ runs(A). Since

enterπj
occurs before enterπi

in α, and since N consists of all the metasteps that are ≤γ mj , then

for all m ∈ N , m does not contain enterπi
. Thus, since enterπi

occurs in αi by Lemma 4.6.17.2, we

have by Lemma 4.6.17.9 that enterπi
occurs in β.

127

Let α2 be the prefix of α1 ◦ β up to and including enterπi
. Then exitπj

does not occur in α2,

since α1 only contains the events of πj up through enterπj
, and β does not contain any events by

πj . Also, exitπi
does not occur in α2, since α1 ◦ β is well formed, and so exitπi

can only occur after

enterπi
in α1 ◦β. Thus, α2 contains enterπi

and enterπj
, but does not contain exitπi

or exitπj
. Hence,

α2 violates the mutual exclusion property of A, a contradiction. Thus, we must have that enterπi

occurs before enterπj
in α, for all i < j. 2

Finally, since our lower bound deals with the cost of canonical runs, we show that every lin-

earization of (Mn,�n) is canonical.

Theorem 4.6.21 (Construction Theorem B) Let α be the output of an execution of

Lin((Mn)ιn

,�n). Then α ∈ C.

Proof. Let i ∈ [n] be arbitrary. Then by Lemma 4.6.17.2, tryi,enteri, exiti and remi each occur

once in α. Also, from the discussion at the end of Section 4.3.2, δ(·, i) is defined so that after

pi performs enteri, it performs exiti in its next step. Since i was arbitrary, then α is a canonical

execution. 2

4.7 Additional Properties of Construct

In this section, we prove some additional properties of the Construct algorithm. These properties

are used in subsequent sections to prove the correctness of the Encode and Decode algorithms.

We begin by introducing some notation.

4.7.1 Notation

Definition 4.7.1 (Function G) Let ι be any iteration. Define G((Mι)
ι) =

∑

m∈Mι
|steps(mι)|

to be the total number of steps contained in all the metasteps in Mι after iteration ι. Also, let

G = G((Mn)ιn

) be the total number of steps contained in all the metasteps in Mn after iteration ιn.

Let ι be any iteration, and let N be a prefix of (Mι,�ι). Recall that the function Lin(N ι,�ι) is

nondeterministic, and may return any run that is a linearization of (N ι,�ι). The following function

L(ι, N) is the set of all such linearizations.

Definition 4.7.2 (Function L) Let ι be any iteration, and let N be a prefix of (Mι,�ι). Define

L(ι, N) = {α | α is an output of Lin(N ι,�ι)}.

Let ι = (i, j) be any iteration, let k ∈ [i], and let N be a prefix of (Mι,�ι). We define λ(ι, N, k)

to be the minimum metastep in Mι (with respect to �ι) not contained in N , that contains process

pπk
. We define λ(ι, N) to be the set of minimal metasteps in Mι that are not contained in N .

128

Definition 4.7.3 (Function λ) Let ι = (i, j) be any iteration, let k ∈ [i], and let N be a prefix of

(Mι,�ι). Define the following.

1. λ(ι, N, k) = min�ι
{µ | (µ ∈ Mι\N) ∧ (πk ∈ procs(µι))}. We say λ(ι, N, k) is the next pπk

metastep after (ι, N).

2. λ(ι, N) = min�ι
(Mι\N). We say λ(ι, N) is the set of minimal metasteps after (ι, N).

Recall that the set of metasteps containing any process is totally ordered by �ι, by Lemma 4.6.8,

and so λ(ι, N, k) is either a metastep, or ∅.
We define the following. An explanation of the definition follows its formal statement.

Definition 4.7.4 (Next Steps) Let ι = (i, j) be any iteration, let N be a prefix of (Mι,�ι), and let

α ∈ L(ι, N). Let ` ∈ L and v ∈ V be arbitrary. For any k ∈ [i], let mk = λ(ι, N, k), sk = st(α, πk),

and ek = δ(α, πk)28. Also, let Sk,`,v = {s | (s ∈ S) ∧ (st(s, πk) = st(sk, πk)) ∧ (st(s, `) = v). We

define the following.

1. We say ek is the next πk step after (ι, N).

2. If type(ek) = R, then we say πk reads ` after (ι, N). If type(ek) = W, then we say πk writes to

` after (ι, N).

3. Suppose that type(ek) = R, type(mk) = W, and ` = reg(ek). Also, suppose that ∃s ∈ Sk,`,v :

∆(s, ek, πk) 6= s. Then we say that πk v-reads ` after (ι, N).

4. Define readers(ι, N, `, v) to be the set of processes that v-read ` after (ι, N).

5. Let wwriters(ι, N, `) to be the set of processes that write to ` after (ι, N).

In the above definition, ` ∈ L, v ∈ V and k ∈ [i] are arbitrary. ek is the step that πk performs

after α, where α is a linearization of (N ι,�ι). Depending on whether ek is a read or write step, we

say πk reads or writes to ` after (ι, N). Now, if ek is a read step, and if mk, the next πk metastep

after (ι, N), is a write metastep, and if πk changes its state after reading value v in `, then we say that

πk v-reads ` after (ι, N). Note that we do not require that v = val(mk)29. We let readers(ι, N, `, v)

be the set of processes that v-read ` after (ι, N), and we let wwriters(ι, N, `) be the set of processes

that write to ` after (ι, N). Note that the two w’s in the name is intentional30.

Let ι be any iteration, and let N be a prefix of (Mι,�ι). In the following definition, preads(ι, N, `)

is the set of read metasteps m on ` that are contained in N , and such that m is contained in the

28Note that sk and ek are well defined, because by Lemma 4.6.17.5, we have st(α1, πk) = st(α2, πk), for any
α1, α2 ∈ L(ι, N).

29However, we show in Lemma 4.7.13 that πk does val(mk)-read ` after (ι, N). πk could also v-read ` after (ι, N),
for some v 6= val(mk).

30We use two w’s because wwriters(ι,N, `) may contain both the winning and non-winning write steps in some
write metastep on ` not in N .

129

preread set of some (write) metastep that is not contained in N . We say any such m is unmatched31.

Formally, we have the following.

Definition 4.7.5 (Unmatched Prereads) Let ι be an any iteration, ` ∈ L, and let N be a prefix

of (Mι,�ι). We define

preads(ι, N, `) = {µ1 | (µ1 ∈ N)∧(type(µ1) = R)∧(reg(µ1) = `)∧(∃µ2 : (µ2 6∈ N)∧(µ1 ∈ preads((µ2)
ι)))}.

For any m ∈ preads(ι, N, `), we say that m is an unmatched preread metastep on ` after (ι, N).

4.7.2 Properties for the Encoding

In this section, we prove some properties of Construct that are used in Section 4.9 to show the

efficiency of the encoding algorithm. The key lemma in this section is Lemma 4.7.9, which essentially

shows that every step in a linearization of ((Mι)
ι,�ι) causes some process to change its state.

The following lemma states that any (read) metastep is in the preread set of at most one (write)

metastep. This is used later to show that Encode does not expend too many bits encoding preread

metasteps.

Lemma 4.7.6 (Preread Lemma A) Let ι be any iteration, and let m1, m2 ∈ Mι be such that

m1 ∈ preads((m2)
ι). Then for all µ ∈Mι such that µ 6= m2, we have m1 6∈ preads(µι).

Proof. We use induction on ι. The lemma holds for ι = (1, 0). We show that if the lemma holds

up to ι 	 1, then it also holds for ι. Fix m1, m2 ∈ Mι, and assume that m1 ∈ preads((m2)
ι). We

show that for all µ ∈ M\{m2} : m1 6∈ preads(µι). Consider two cases, either @µ ∈ Mι− : m1 ∈
preads(µι−), or ∃µ ∈Mι− : m1 ∈ preads(µι−).

1. Case @µ ∈Mι− : m1 ∈ preads(µι−).

By Lemma 4.6.3, or by direct inspection of Construct, we can see that only metastep whose

pread attribute can change during iteration ι is m̌ι. Thus, since @µ ∈Mι− : m1 ∈ preads(µι−),

we have @µ ∈Mι\{m̌ι} : m1 ∈ preads(µι). Then, since m1 ∈ preads((m2)
ι), we have m2 = m̌ι.

Thus, the lemma holds.

2. Case ∃µ ∈Mι− : m1 ∈ preads(µι−).

Let m3 ∈Mι− be such that m1 ∈ preads((m3)
ι−). By the inductive hypothesis, we have that

∀µ ∈ Mι−\{m3} : m1 6∈ preads(µι−). We now show that ∀µ ∈ Mι\{m3} : m1 6∈ preads(µι).

Let m ∈Mι\{m3}. If m ∈Mι− , then we see by inspection that the pread attribute of m does

not change during iteration ι, and so m1 6∈ preads(mι).

31The reason that we focus on unmatched read metasteps is that one of the necessary conditions for a write metastep
m to be a minimal metastep after (ι, N) is that m 6∈ N , and for every read metastep µ ∈ preads(mι), we have µ ∈ N .
Thus, a necessary condition for m to be minimal is that all its prereads are unmatched. Please see Lemma 4.7.31.

130

Next, if m 6∈ Mι− , then by Lemma 4.6.3, we have m = m̌ι, and ι is a create iteration. If

m̌ι is not a write metastep on `, where ` = reg(m1), then we see from Lemma 4.6.3 that

m1 6∈ preads((m̌ι)
ι). So, suppose that m̌ι is a write metastep on `, so that ι is a write create

iteration.

We claim that m3 �ι− m̌ι− . Indeed, suppose that m3 6�ι− m̌ι− . Since m1 ∈ preads((m3)
ι−),

then we have reg(m3) = `, and type(m3) = W. Thus, in 〈15〉 of iteration ι, we have mw 6= ∅,
and so ι is a modify iteration, which is a contradiction. Thus, we have m3 �ι− m̌ι− . Now,

since m1 ∈ preads((m3)
ι−), we have m1 ≺ι− m3, and so m1 ≺ι− m̌ι− . Thus, from 〈23〉 of

ι, we see that m1 6∈ Rι, since for all µ ∈ Rι, we have µ 6�ι− m̌ι− . So, by 〈24〉 of ι, we have

m1 6∈ preads((m̌ι)
ι). Thus, we have shown that ∀µ ∈ Mι\{m3} : m1 6∈ preads(µι). Finally,

since m1 ∈ preads((m3)
ι−), then m1 ∈ preads((m3)

ι). Since we also have m1 ∈ preads((m2)
ι),

then m3 = m2, and so the lemma holds.

2

Lemma 4.7.7 (Cost Lemma A) Let ι be any iteration, and let α be an output of Lin((Mι)
ι,�ι).

Then we have |α| = G((Mι)
ι).

Proof. This follows by inspection of Lin((Mι)
ι,�ι). Indeed, α consists of exactly the set of steps

contained in the metasteps contained in Mι after ι, and so |α| = G((Mι)
ι).

2

The next lemma says that in any linearization of ((Mι)
ι,�ι), process πi changes its state after

performing its last step eι. This lemma is used in Lemma 4.7.9 to show that every step in a run α

produced by linearizing ((Mn)ιn

,�n) incurs unit cost, in the state change model. This fact in turn

is used in Section 4.9 to show that the number of bits used to encode ((Mn)ιn

,�n) is proportional

to the cost of α.

Lemma 4.7.8 (State Change Lemma) Let ι = (i, j) be any iteration, let α be an output of

Lin((Mι)
ι,�ι), and write α = α− ◦ eι ◦ α+, for some step sequences α− and α+. Then we have

st(α− ◦ eι, πi) 6= st(α−, πi).

Proof. The basic idea is the following. Since processes π1, . . . , πi−1 do not “see” process πi, then

we have α− ◦α+ ∈ runs(A). At the end of α− ◦α+, all processes π1, . . . , πi−1 are in their remainder

sections, and πi is about to perform step eι. Then, if πi does not change its state after performing

eι, it will stay in the same state, even after performing an arbitrarily large number of steps, violating

the progress property in Definition 4.3.3.

We now present the formal proof. The lemma holds for ι = (1, 0). Indeed, let e = tryπ1
.

Then e = e(1,0) = α. We must have st(ε, π1) 6= st(α, π1), because otherwise, we would have

131

e(1,1) = δ(α, π1) = δ(ε, π1) = tryπ1
, which violates the well formedness property in Definition 4.3.3.

Suppose for induction that the lemma holds up to iteration ι	 1. Then we show it also holds for ι.

Consider the following cases, based on the type of eι.

1. type(eι) = C.

If st(α− ◦ eι, πi) = st(α−, πi), then by the same argument as for iteration (1, 0), we have

δ(α− ◦ eι, πi) = eι, which is a contradiction.

2. type(eι) = W.

Suppose for contradiction that st(α− ◦ eι, πi) = st(α−, πi). By Lemma 4.6.10 and 4.6.17.1, we

have α− ◦α+ ∈ runs(A). Also, since Mi−1 ⊆Mι, then it follows from 4.6.17.2 that that remπk

occurs in α− ◦ α+, for all k ∈ [i− 1].

Since there are no steps by πi in α+, then we have st(α−, πi) = st(α− ◦ α+, πi), and so

δ(α− ◦ α+, πi) = eι. Then, we have α− ◦ α+ ◦ eι ∈ runs(A). Since st(α− ◦ eι, πi) = st(α−, πi)

and eι is a write step, then we have st(α− ◦ α+ ◦ eι, πi) = st(α− ◦ eι, πi) = st(α−, πi), and so

δ(α− ◦ α+ ◦ eι, πi) = eι. Thus, we have α− ◦ α+ ◦ (eι)
2 ∈ runs(A)32, st(α− ◦ α+ ◦ (eι)

2, πi) =

st(α−, eι), and δ(α− ◦ α+ ◦ (eι)
2, πi) = eι, etc. From this, we see that πi stays in the same

state in all extensions of α− ◦ α+. All these extensions are fair, since π1, . . . , πi−1 are in their

remainder regions following α− ◦ α+. Thus, this violates the progress property in Definition

4.3.3, a contradiction. So, we must have st(α− ◦ eι, πi) 6= st(α−, πi).

3. type(eι) = R.

Consider two cases, either type(m̌ι) = W, or type(m̌ι) = R. Let ` = reg(eι).

If type(m̌ι) = W, then let v = val(m̌ι). In α, eι reads the value v in `. Let s ∈ S be any system

state such that st(s, πi) = st(αι, πi), and st(s, `) = v. From 〈29〉 of Construct, we have that

∆(s, eι, πi) 6= st(s, πi). Let N ⊆Mι be the set of metasteps that are linearized before m̌ι in α.

We can see that Φ(ι−, N, i) = Φ(ι−, Nι, i). So, since αι ∈ L(ι−, Nι), then by Lemma 4.6.17.5,

we have st(α−, πi) = st(s, πi). Thus, we have st(α− ◦ eι, πi) 6= st(α−, πi).

Next, consider the case when type(m̌ι) = R, and suppose for contradiction that st(α−◦eι, πi) =

st(α−, πi). We have α− ◦α+ ∈ runs(A), and remπk
occurs in α− ◦α+, for all k ∈ [i−1]. Since

there are no steps by πi in α+, we have st(α−, πi) = st(α− ◦α+, πi), and so δ(α− ◦α+, πi) = eι,

and α− ◦ α+ ◦ eι ∈ runs(A).

Since type(m̌ι) = R, then by Lemma 4.6.17.3, we have Wι = ∅. Thus, there are no write steps

on ` in α+. Thus, since st(α−◦eι, πi) = st(α−, πi), we have st(α−◦α+◦eι, πi) = st(α−◦eι, πi) =

st(α−, πi), and so δ(α− ◦ α+ ◦ eι, πi) = eι. Then, we have α− ◦ α+ ◦ (eι)
2 ∈ runs(A),

32For any r ∈ N, we let (eι)r denote eι ◦ . . . ◦ eι, where there are r occurrences of eι.

132

st(α− ◦ α+ ◦ (eι)
2, πi) = st(α−, eι), and δ(α− ◦ α+ ◦ (eι)

2, πi) = eι, etc. Thus, πi stays in the

same state in all extensions of α− ◦ α+. All extensions of α− ◦ α+ are fair, since π1, . . . , πi−1

are in their remainder regions following α− ◦ α+. But this contradicts the progress property

in Definition 4.3.3. So, we must have st(α− ◦ eι, πi) 6= st(α−, πi).

2

The next lemma says that the state change cost of any execution α is equal to the length of α.

It uses Lemma 4.7.8, which showed that every step in α causes some process to change its state.

Lemma 4.7.9 (Cost Lemma B) Let ι = (i, j) be any iteration, and let α be an output of

Lin((Mι)
ι,�ι). Then we have C(α) = |α|.

Proof. We use induction on ι. The lemma holds for ι = (1, 0), by Lemma 4.7.8. Suppose for

induction that the lemma holds up to iteration ι 	 1. Then we show that it also holds for ι. Write

α = α− ◦ eι ◦ α+, and let α̌ = α− ◦ α+. By Lemma 4.6.10, α̌ is an output of Lin((Mι−)ι− ,�ι−),and

so by the inductive hypothesis, we have C(α̌) = |α̌|. Also, we have |α| = |α̌|+ 1. By Lemma 4.7.8,

we have st(α− ◦ eι, πi) 6= st(α−, πi). Thus, from Definition 4.3.6, we have C(α− ◦ eι) = C(α−) + 1.

By Lemma 4.6.11, we have ∀k ∈ [i− 1] : st(α−, πk) = st(α− ◦ eι, πk) and ∀` ∈ acc(α+) : st(α−, `) =

st(α− ◦ eι, `). Also, there are no steps by πi in α+. Thus, we have

C(α) = C(α− ◦ eι ◦ α+)

= C(α− ◦ α+) + 1

= C(α̌) + 1

= |α̌|+ 1

= |α|.

2

Lemma 4.7.10 (Cost Lemma C) Let α be an output of Lin((Mn)ιn

,�n). Then we have C(α) =

G.

Proof. We have G = |α| = C(α), where the first equality follows by Lemma 4.7.7, and the second

equality follows by Lemma 4.7.9. 2

4.7.3 Properties for the Decoding

In this section, we prove some properties of Construct that are used in Section 4.11 to show

the correctness of the Decode algorithm. At the end of this section, we recap the properties, and

describe how they suggest the decoding strategy used by Decode in Section 4.10.

133

In the exposition in the remainder of this section, let ι = (i, j) be an arbitrary iteration, let

k ∈ [i], and let N be a prefix of (Mι,�ι). Also, let α ∈ L(ι, N), and let Ň = N ∩Mι− .

The following lemma says that unless k = i and m̌ι− ∈ N , then the next πk metastep after (ι, N)

and after (ι−, Ň) are the same.

Lemma 4.7.11 (λ Lemma A) Let ι = (i, j) be any iteration, let k ∈ [i], let N be a prefix of

(Mι,�ι), and let Ň = N ∩Mι−. Suppose that k 6= i, or m̌ι− 6∈ N . Then we have λ(ι, N, k) =

λ(ι−, Ň , k).

Proof. By assumption, we either have k ∈ [i − 1], or m̌ι− 6∈ N . Since N is a prefix of (Mι,�ι)

and m̌ι− �ι m̌ι, we get that either k ∈ [i − 1], or m̌ι 6∈ N . Then, by Lemma 4.6.9, we have

Φ(ι, N, k) = Φ(ι−, Ň , k). From this, and from Lemma 4.6.8, we get that λ(ι, N, k) = λ(ι−, Ň , k). 2

The next lemma states a type of consistency condition. It says that the next πk step after (ι, N)

equals the step that πk takes in the next πk metastep after (ι, N).

Lemma 4.7.12 (Step Lemma A) Let ι = (i, j) be any iteration, let N be a prefix of (Mι,�ι),

and let α ∈ L(ι, N). Let k ∈ [i], and let e = δ(α, πk). Let m = λ(ι, N, k), and let ε = step(mι, πk).

Then e = ε.

Proof. We use induction on ι. The lemma is true for ι = (1, 0). We show that if it true up to

iteration ι 	 1, then it is true for ι. Let Ň = N ∩Mι− , let α̌ ∈ L(ι−, Ň), and consider three cases,

either k 6= i or m̌ι− 6∈ N , or k = i and m̌ι− ∈ N and m̌ι 6∈ N , or k = i and m̌ι ∈ N .

1. Case k 6= i or m̌ι− 6∈ N .

Let m0 = λ(ι−, Ň , k), e′ = δ(α̌, πk), and ε′ = step((m0)
ι− , πk). By Lemma 4.6.9, we have

Φ(ι, N, k) = Φ(ι−, Ň , k), and so by Lemma 4.6.17.5, we have st(α, πk) = st(α̌, πk). Thus, we

have e = e′. Since k 6= i or m̌ι− 6∈ N , then by Lemma 4.7.11, we have m = m0. Then, since

mι = (m0)
ι = (m0)

ι− by Lemma 4.6.3, we have ε = ε′. By the inductive hypothesis, we have

e′ = ε′. Thus, we have e = ε.

2. Case k = i and m̌ι− ∈ N and m̌ι 6∈ N .

By Lemma 4.6.3, we have eι = δ(αι, πi). By definition, eι is the step of πi contained in (m̌ι)
ι,

and so eι = ε.

Since m̌ι− ∈ N and m̌ι 6∈ N , then we have Φ(ι, N, i) = Φ(ι−, Nι, i). So, by Lemma 4.6.17.5,

we have st(α, πi) = st(αι, πi). Thus, we have

e = δ(α, πi) = δ(αι, πi) = eι = ε.

134

3. Case k = i and m̌ι ∈ N .

Since m̌ι is the maximum metastep containing πi, with respect to �ι, by Lemma 4.6.8, then

we have m = λ(ι, N, i) = ∅. Thus, there is nothing to prove.

2

The following lemma states another consistency condition. It says that if the next πk metastep

after (ι, N) is a write metastep writing value v to a register `, and if the next πk step after (ι, N) is

a read, then πk v-reads ` after (ι, N).

Lemma 4.7.13 (Step Lemma B) Let ι = (i, j) be any iteration, let N be a prefix of (Mι,�ι),

and let α ∈ L(ι, N). Let e = δ(α, πk), and let m = λ(ι, N, k). Suppose type(e) = R and type(m) = W.

Let ` = reg(m), v = val(m), and let s ∈ S be such that st(s, πk) = st(α, πk) and st(s, `) = v. Then

we have ∆(s, e, πk) 6= st(α, πk).

Proof. We use induction on ι. The lemma is true for ι = (1, 0). We show that if it true up to

iteration ι 	 1, then it is true for ι. Let Ň = N ∩Mι− , let α̌ ∈ L(ι−, Ň), and consider three cases,

either k 6= i or m̌ι− 6∈ N , or k = i and m̌ι− ∈ N and m̌ι 6∈ N , or k = i and m̌ι ∈ N .

1. Case k 6= i or m̌ι− 6∈ N .

Let m0 = λ(ι−, Ň , k), `′ = val(m0), v′ = val(m0), and e′ = δ(α̌, πk). By Lemma 4.7.11, we

have m = m0, and so ` = `′, and v = v′. Let s′ ∈ S be such that st(s′, πk) = st(α̌, πk) and

st(`, πk) = v. Then by the inductive hypothesis, we have ∆(s′, e′, πk) 6= st(α̌, πk). We have

Φ(ι, N, i) = Φ(ι, Ň , i), and so by Lemma 4.6.17.5, we have st(α, πi) = st(α̌, πi). Thus, we have

∆(s, e, πk) 6= st(α, πk).

2. Case k = i and m̌ι− ∈ N and m̌ι 6∈ N .

By Lemma 4.6.3, we have eι = δ(αι, πi), and eι = step((m̌ι)
ι, πk). Since m̌ι− ∈ N and m̌ι 6∈ N ,

we have m = λ(ι, N, i) = m̌ι, and so by Lemma 4.7.12, we have e = eι. Since type(m) = W

and type(e) = R, we have that ι is a read modify iteration, and so m̌ι ∈ Mι− . Then, we have

` = reg((m̌ι)
ι) = reg((m̌ι)

ι−), and v = val((m̌ι)
ι) = val((m̌ι)

ι−). From 〈30〉 of iteration ι, we

see that m̌ι was chosen so that

∃s : (s ∈ S) ∧ (st(s, πk) = st(αι, πk)) ∧ (st(s, `) = v) ∧ (∆(s, eι, πk) 6= st(s, πk)).

We have Φ(ι, N, i) = Φ(ι−, Nι, i), and so st(α, πi) = st(αι, πi), by Lemma 4.6.17.5. Thus, since

e = eι, we have ∆(s, e, πk) 6= st(α, πk).

3. Case k = i and m̌ι ∈ N .

We have m = λ(ι, N, i) = ∅, and so there is nothing to prove.

135

2

The next lemma says that, roughly speaking, if the next steps after a prefix for two processes

access the same register, then the next metasteps for the processes after the prefix is the same.

More precisely, let h ∈ [i]. Let mk and mh be the next πk and πh metastep after (ι, N), respectively

(assume that both mk and mh exist). Suppose that both mh and mk are write metasteps, and that

mk writes a value v to a register `. Also, suppose that next πk step after (ι, N) is a write step.

Then, the lemma says that if πh either writes to `, or v-reads ` after (ι, N), then we have mh = mk.

Also, in both cases, we have πh ∈ procs((mk)ι).

Lemma 4.7.14 (λ Lemma B) Let ι = (i, j) be any iteration, let N be a prefix of (Mι,�ι), and

let α ∈ L(ι, N). Let k ∈ [i], mk = λ(ι, N, k), ` = reg(mk), v = val(mk), and ek = δ(α, πk). Let

h ∈ [i], mh = λ(ι, N, h), and eh = δ(α, πh). Suppose that the following hold.

1. mk, mh 6= ∅.

2. type(ek) = type(mk) = W.

3. reg(mh) = `.

Then we have the following.

1. If type(eh) = W, then mh = mk, and πh ∈ writers((mk)ι) ∪ winner((mk)ι).

2. If type(eh) = R and type(mh) = W, then let s ∈ S be such that st(s, πh) = st(α, πh) and

st(s, `) = v. If ∆(s, eh, πh) 6= st(α, πh), then mh = mk, and πh ∈ readers((mk)ι).

Proof. The proof is by induction on ι. The main idea is the following. Let Ň = N ∩Mι− , and let

m′h = λ(ι−, Ň , h) and m′k = λ(ι−, Ň , k) be the next πh and πk metasteps after (ι−, Ň), respectively.

We can show using Lemma 4.7.11 that either m′h = mh, or h = i and m̌ι− ∈ N and m̌ι 6∈ N .

Similarly, we can show that either m′k = mk, or k = i and m̌ι− ∈ N and m̌ι 6∈ N .

If we have m′h = mh and m′k = mk, then we can prove the lemma using the inductive hypothesis.

This is case 1a in the formal proof below. Case 1b considers when m′h = mh and m′k 6= mk. Here,

as stated earlier, we have k = i, and so mk = m̌ι. If eh is a write step, then we will switch the

names of k and h, to get m′k = mk, h = i and m′h 6= mh. We describe how to deal with this case

in the following paragraph. If instead, eh is a read step, then we show that there exists a g 6= k = i

such that πg is the winner of m̌ι. We will create a prefix N2 of (Mι,�ι) such that m̌ι is the next πg

metastep after (ι, N2). In addition, mh is the next πh metastep after (ι, N2). Now, since g, h < i,

we can apply case 1a of the lemma to conclude that mk = mh.

Finally, we describe the case when m′k = mk, h = i and m′h 6= mh. This is case 2 in the formal

proof. We show in Claim 4.7.20 that mk is the minumum write metastep on ` not in N . Since h = i

136

and m′h 6= mh, we have mh = m̌ι. Now, if eh is a write step, we show in Claim 4.7.21 that eh is

added to the write steps of mk in iteration ι. Basically, the reason for this is that, since mk is the

minimum write metastep on ` not in N , and since m̌ι− ∈ N and m̌ι 6∈ N , then mk is in fact the

minimum write metastep on ` not in Nι. Then, it follows from 〈15〉 of Construct that eh is added

to the writes of mk. Thus, we have mh = m̌ι = mk, and πh ∈ writers((mk)ι) ∪ winner((mk)ι). If

eh is a read step, and πh changes its state after reading the value of mk, then using similar reasoning

as above, we show in Claim 4.7.22 that eh is added to the read steps of mk. So again, we have

mh = m̌ι = mk, and πh ∈ readers((mk)ι).

We now present the formal proof. We use induction on ι. The lemma is true for ι = (1, 0). We

show that if the lemma true up to iteration ι	 1, then it is also true for ι. Let Ň = N ∩Mι− , and

let α̌ ∈ L(ι−, Ň). It suffices to assume that k 6= h. Also, we claim that it suffices to consider two

cases, either (h 6= i)∨ (m̌ι− 6∈ N), or (h = i)∧ (m̌ι− ∈ N)∧ (m̌ι 6∈ N). In particular, we do not need

to consider the case (h = i) ∧ (m̌ι− ∈ N) ∧ (m̌ι ∈ N), because here, we have mh = λ(ι, N, h) = ∅,
since by Lemma 4.6.8, m̌ι is the maximum (with respect to �) metastep containing πh = πi.

1. Case h 6= i or m̌ι− 6∈ N .

Let m′k = λ(ι−, Ň , k), and m′h = λ(ι−, Ň , h). Since (h 6= i)∨(m̌ι− 6∈ N), we have mh = m′h, by

Lemma 4.7.11. By Lemma 4.6.9, we have Φ(ι, N, h) = Φ(ι−, Ň , h), and so by Lemma 4.6.17.5,

we have st(α̌, πh) = st(α, πh), and e′h = δ(α̌, πh) = δ(α, πh) = eh. Consider the two following

cases.

(a) Case k 6= i or m̌ι− 6∈ N .

In this case, we have mk = m′k, by Lemma 4.7.11. Consider the following cases.

Suppose first that type(eh) = W. Then type(e′h) = W, and so by the inductive hypothesis,

we have m′h = m′k, and πh ∈ writers((m′k)ι−) ∪ winner((m′k)ι−). Thus, we have mh =

m′h = m′k = mk, and πh ∈ writers((mk)ι) ∪ winner((mk)ι).

Suppose next that type(eh) = R, type(mh) = W, and ∆(s, eh, πh) 6= st(α, πh). Let s′ ∈ S

be such that st(s′, πh) = st(α̌, πh), and st(s′, `) = v. Then we have type(e′h) = R,

type(m′h) = W, and ∆(s′, e′h, πh) 6= st(α̌, πh), and so by the inductive hypothesis we have

m′h = m′k, and πh ∈ readers((m′k)ι−). Thus, we have mh = m′h = m′k = mk, and

πh ∈ readers((mk)ι).

(b) Case k = i, m̌ι− ∈ N and m̌ι 6∈ N .

In this case, we have mk = m̌ι. Also, since m̌ι is a write metastep, then ι 6= (i, 0).

Consider the following.

Suppose first that type(eh) = W. Then we have k = i and h < i. We will switch the

names of k and h, so that h = i and k < i. This then becomes case 2 of the proof, which

is presented later.

137

Next, suppose that type(eh) = R. We have already shown that the lemma holds in case

1a, after iteration ι. Our goal is to apply this fact to show that the lemma also holds

after iteration ι in case 1b, and when type(eh) = R. We have the following.

Claim 4.7.15 mh 6�ι− m̌ι− .

Proof. Suppose instead that mh �ι− m̌ι− . Then mh �ι m̌ι− , by Lemma 4.6.4. Since

λ(ι, N, k) = m̌ι and ι 6= (i, 0), we have m̌ι− ∈ N . Thus, since N is a prefix of (Mι,�ι),

we have mh ∈ N , which is a contradiction. 2

Claim 4.7.16 ι is a write modify iteration.

Proof. Since mh is a write metastep on `, and mh 6�ι− m̌ι− by Claim 4.7.15, we have

mh ∈ Wι, and so Wι 6= ∅. Then, from 〈15〉 of iteration ι, we see that mw 6= ∅. So, the

test on 〈16〉 of ι succeeds, and ι is a write modify iteration. 2

Claim 4.7.17 mh 6�ι m̌ι.

Proof. From 〈15〉 of iteration ι, we have m̌ι = min�
ι−

Wι. Then, it follows from Lemma

4.6.3 that m̌ι = min�ι
Wι. By Claim 4.7.15, we have mh 6�ι− m̌ι− , and so since mh is a

write metastep on `, we have mh ∈ Wι. Thus, since m̌ι = min�ι
Wι, we have mh 6�ι m̌ι.

2

Finally, we show that m̌ι = mh, and mh ∈ readers((m̌ι)
ι). Let πg = �(winner(m̌ι)).

Then g < k = i, since ι is a write modify iteration by Claim 4.7.16. Now, let

N1 = {µ | (µ ∈Mι) ∧ (µ ≺ι m̌ι)}, N2 = N1 ∪N.

N1 is a prefix of (Mι,�ι), and N2 is also a prefix of (Mι,�ι), since the union of two

prefixes is a prefix. We have m̌ι 6∈ N and m̌ι 6∈ N1, and so m̌ι 6∈ N2. Thus, since the set

of πg metasteps is totally ordered by �ι, by Lemma 4.6.8, and since N1 contains all the

metasteps in µ ∈ Mι that µ ≺ι m̌ι, we have m̌ι = λ(ι, N2, g). Let α2 ∈ L(ι, N2), and let

eg = δ(α2, πg). Then since πg = �(winner(m̌ι)), we have type(eg) = W.

Next, we have mh 6∈ N , and mh 6�ι m̌ι by Claim 4.7.17, and so mh 6∈ N2. Thus, since

mh = λ(ι, N, h) and N ⊆ N2, we have mh = λ(ι, N2, h). Then, we have Φ(ι, N, h) =

Φ(ι, N2, h), and so by Lemma 4.6.17.5, we have st(α2, πh) = st(α, πh). Let e′′h = δ(α2, πh).

Then, we have e′′h = eh. Let s2 ∈ S be such that st(s2, πh) = st(α2, πh) and st(s2, `) = v.

Together with the earlier statements and assumptions, we get the following.

g, h < i, m̌ι = λ(ι, N2, g), mh = λ(ι, N2, h), ` = reg(m̌ι), v = val(m̌ι),

138

type(m̌ι) = type(eg) = W, type(mh) = W, type(e′′h) = R,

∆(s2, e
′′
h, πh) 6= st(α2, πh).

Now, since we have already proved case 1a of the lemma for iteration ι, then we see that

by setting “k” in the assumptions of the lemma to “g”, we get that mh = m̌ι = mk, and

πh ∈ readers((m̌ι)
ι). Thus, the lemma is proved.

2. Case h = i, m̌ι− ∈ N and m̌ι 6∈ N .

In this case, we have k < i, and

mh = λ(ι, N, i) = m̌ι. (4.9)

Since m̌ι is a write metastep, then ι 6= (i, 0). Let

W = {µ | (µ ∈Mι−\N) ∧ (type(µ) = W) ∧ (reg(µ) = `)}.

We have mk ∈W , and so W 6= ∅. By Lemma 4.6.17.6, all metasteps in W are totally ordered.

Let m1 = min�ι
W.

We denote the two cases in the conclusions of the lemma as follows. Let (C1) denote the event

that type(eh) = W, and let (C2) denote the event that type(eh) = R and type(mh) = W and

∆(s, eh, πh) 6= st(α, πh). We have the following.

Claim 4.7.18 mk 6�ι− m̌ι− .

Proof. Suppose instead that mk �ι− m̌ι− . Since mk = λ(ι, N, k), we have mk 6∈ N . But

since m̌ι− ∈ N and N is a prefix, we also have mk ∈ N , a contradiction. Thus, mk 6�ι− m̌ι− .

2

Claim 4.7.19 Suppose (C1) or (C2) hold. Then ι is a modify iteration.

Proof. Suppose first that (C1) holds. Then since mk 6�ι− m̌ι− by Claim 4.7.18, and mk is

a write metastep on `, we have Wι 6= ∅. Then, from 〈15〉 of iteration ι, we have mw 6= ∅, and

so ι is a write modify iteration. If (C2) holds, then since mk 6�ι− m̌ι− , mk is a write metastep

on `, and ∆(s, eh, πh) 6= st(α, πh), we have W s
ι 6= ∅. Then in 〈30〉 of ι, we have mws 6= ∅, and

ι is a read modify iteration. 2

Claim 4.7.20 Suppose (C1) or (C2) hold. Then mk = m1.

139

Proof. Let πg = �(winner((m1)
ι)). Since m1 is a write metastep, then πg exists.

N1 = {µ | (µ ∈Mι) ∧ (µ ≺ι m1)}, N2 = N1 ∪N.

Then N1 and N2 are both prefixes of (Mι,�ι). We have m1 = λ(ι, N2, g). Let α2 ∈ L(ι, N2), let

eg = δ(α2, πg), and let εg = step((m1)
ι, πg). Since πg = �(winner((m1)

ι)), then type(εg) = W.

Also, we have εg = eg, by Lemma 4.7.12. Thus, we have type(eg) = W.

To show mk = m1, we first claim that g 6= i. Indeed, if g = i, then πi = �(winner((m1)
ι)),

and so from 〈20〉 of ι, we have that ι is a write create iteration, contradicting Claim 4.7.19.

Next, we claim that mk = λ(ι, N2, k). This follows because mk is a write metastep not in N ,

and so mk 6≺ι m1 = min�ι
W . Let e′′k = δ(α2, πk). We have Φ(ι, N, k) = Φ(ι, N2, k), and so

e′′k = ek using 4.6.17.5.

Now, we have g, k 6= i, eg = δ(α2, πg), e′′k = δ(α2, πk), type(eg) = type(e′′k) = W, and m1 =

λ(ι, N2, g) and mk = λ(ι, N2, k). Then, from the case 1a in the proof of the lemma, we have

m1 = mk. 2

Claim 4.7.21 Suppose (C1) holds. Then mh = mk, and πh ∈ writers((mk)ι)∪winner((mk)ι).

Proof. Since (C1) holds, then from 〈15〉 of iteration ι, we get that

m̌ι = min
�

ι−

Wι = min
�ι

Wι.

The second equality follows because ι is a modify iteration, by Claim 4.7.19. We have mk ∈ Wι,

since mk is a write metastep on `, and mk 6�ι− m̌ι− by Claim 4.7.18. Thus, we have m̌ι �ι mk.

Also, since m̌ι 6∈ N , and since m̌ι is a write metastep on `, we have m̌ι ∈ W . So, min�ι
W =

m1 �ι m̌ι. Then, since m1 = mk by Claim 4.7.20, and since mh = m̌ι, we have mh = m̌ι = mk.

Finally, we have πh ∈ writers((m̌ι)
ι) ∪ winner((m̌ι)

ι) = writers((mk)ι) ∪ winner((mk)ι),

where the inclusion follows from 〈17〉 of iteration ι. 2

Claim 4.7.22 Suppose (C2) holds. Then mh = mk, and πh ∈ readers((mk)ι).

Proof. Since m̌ι− ∈ N and m̌ι 6∈ N , then we have Φ(ι−, Nι, h) = Φ(ι, N, h). Thus, it follows

from Lemma 4.6.17.5 that

∀µ ∈Mι− : SC(αι, µ, πh)⇔ SC(α, µ, πh) (4.10)

Here, the function SC (state change) is defined as in 〈60〉 of Construct. Since (C2) holds,

140

then from 〈30〉 of iteration ι and from Equation 4.10, we get that

m̌ι = min
�

ι−

W s
ι = min

�ι

W s
ι .

The second equality follows because by Claim 4.7.19, ι is a modify iteration. Since mk 6�ι− m̌ι−

by Claim 4.7.18, and since ∆(s, eh, πh) 6= st(α, πh) by (C2), then mk ∈ W s
ι . Thus, we

have m̌ι �ι mk. Also, since m̌ι 6∈ N , then m̌ι ∈ W . So, since mk = m1 = min�ι
W

by Claim 4.7.20, we have mk �ι m̌ι. Thus, we have mk = m̌ι = mh. Finally, we have

πh ∈ readers((m̌ι)
ι) = readers((mk)ι), where the inclusion follows from 〈32〉 of iteration ι.

2

Combining Claims 4.7.21 and 4.7.22, the lemma is proved.

�

Let ek and mk be the next πk step and metastep after (ι, N), and suppose that ek and mk are

both writes to a register `. Let h ∈ [i], and suppose mh is a read metastep containing πh. The next

lemma says that if mh is an unmatched preread metastep on ` after (ι, N), that is, if mh ∈ N and

mh is contained in the preread set of some m 6∈ N , then mh is contained in the preread set of (mk)ι.

Thus, the lemma basically says that we can find the write metastep to which an unmatched preread

metastep is associated, by matching the registers of the write and preread metasteps.

Lemma 4.7.23 (Preread Lemma B) Let ι = (i, j) be any iteration, let N be a prefix of (Mι,�ι),

and let α ∈ L(ι, N). Let k, h ∈ [i], mk = λ(ι, N, k), ` = reg(mk), and ek = δ(α, πk). Suppose the

following hold.

1. mk 6= ∅.

2. type(ek) = type(mk) = W.

3. mh ∈ N , πh ∈ procs((mh)ι), type(mh) = R, and reg(mh) = `.

4. There exists m 6∈ N such that mh ∈ preads(mι).

Then we have m = mk.

Proof. The main idea is the following. If mk 6= m̌ι (case 1 of the formal proof), then we can

show using Lemma 4.7.12 that mk = λ(ι−, Ň , k). We then prove a series of claims to show that the

assumptions of the inductive hypothesis for iteration ι− are satisfied, for a particular instantiation

of the parameters of the lemma, and then prove the lemma using the inductive hypothesis.

If mk = m̌ι, then consider two cases. If ι is a write create iteration (case 2a of the formal proof),

then mk is the only write metastep on ` not in N , and so it follows that m = mk. Otherwise, if ι is

141

a modify iteration (case 2b of the formal proof), then if k 6= i, we can again prove the lemma using

the inductive hypothesis. If k = i, then since ι is a modify iteration, there exist a g < k such that

πg is the winner of m̌ι. We show that there exist a prefix N2 ⊇ N of (Mι,�ι), such that mh ∈ N2,

m 6∈ N2
33, and m̌ι, a write metastep on `, is the next πg metastep after (ι, N2). Finally, we apply

the inductive hypothesis, to conclude that m = m̌ι = mk.

We now present the formal proof. We use induction on ι. The lemma is true for ι = (1, 0). We

show that if it is true up to ι 	 1, then it is true for ι. Let Ň = N ∩Mι− , and let α̌ ∈ L(ι−, Ň).

First, note that by Lemma 4.7.6, there is exactly one m 6∈ N such that mh ∈ preads(mι).

Claim 4.7.24 mh ∈ Ň .

Proof. Suppose mh 6∈ Ň . Then we must have mh = m̌ι. But from Lemma 4.6.3, we see that for

any µ ∈ Mι, we have m̌ι 6∈ preads(µι), contradicting assumption 5 of the lemma. Thus, we have

mh ∈ Ň . 2

Now, consider two cases, either mk 6= m̌ι, or mk = m̌ι.

1. Case mk 6= m̌ι.

In this case, we prove the lemma by applying the inductive hypothesis for iteration ι−. We

prove a series of claims, in order to show that the assumptions of the lemma for iteration ι−

are satisfied.

Claim 4.7.25 mk = λ(ι−, Ň , k).

Proof. Since mk 6= m̌ι, then either k 6= i, or m̌ι− 6∈ N . Thus, the claim follows by Lemma

4.7.11, 2

Claim 4.7.26 Let e′k = δ(α̌, πk). Then e′k = ek.

Proof. Since mk 6= m̌ι by assumption, then by Lemma 4.6.9, we have Φ(ι, N, k) = Φ(ι−, Ň , k).

Then, we have st(α̌, πk) = st(α, πk) by Lemma 4.6.17.5, and so the lemma follows. 2

Claim 4.7.27 ι is not a write create iteration.

Proof. Notice first that mk 6�ι− m̌ι− . Indeed, if mk �ι− m̌ι− , then since m̌ι− ∈ N and N

is a prefix, we have mk ∈ N , a contradiction. Also, by assumption 2 of the lemma, mk is a

write metastep on `. Thus, we have Wι 6= ∅, and so ι is not a write create iteration. 2

Claim 4.7.28 mh ∈ preads(mι−).

33Note that by Lemma 4.7.6, there is a unique m 6∈ N such that mh ∈ preads(mι).

142

Proof. We will show that m ∈ Mι− . Indeed, if m 6∈ Mι− , and from Lemma 4.6.3, we must

have m = m̌ι, and ι is a write create iteration, contradicting Claim 4.7.27. Since m ∈Mι− , then

from Lemma 4.6.3, we see that preads(mι−) = preads(mι). Thus, since mh ∈ preads(mι), we

have mh ∈ preads(mι−). 2

Since m 6∈ N , then m 6∈ Ň ⊆ N . Now, from Claim 4.7.24, we have mh ∈ Ň . From Claim

4.7.28, we have mh ∈ preads(mι−), where m 6∈ Ň . By Claim 4.7.25, we have mk = λ(ι−, Ň , k),

and mk is a write metastep on `. Lastly, by Claim 4.7.25, we have that e′k = ek is a write

step on `. Thus, all the assumptions of the lemma hold, if we instantiate “ι” and “N” in the

assumptions by ι− and Ň , respectively. Then, by the inductive hypothesis, we conclude that

m = mk, and so the lemma holds for ι.

2. Case mk = m̌ι.

Since m̌ι is a write metastep, then ι 6= (i, 0). We consider two subcases, either ι is a create

iteration, or ι is a modify iteration. Notice that since type(ek) = W, then ι is either a write

create or write modify iteration.

(a) ι is a write create iteration.

Since ι is a write create iteration, then from 〈14〉 of ι, we see that Wι = ∅. From this, it

follows that

{µ | (µ ∈Mι−\N) ∧ (type(µ) = W) ∧ (reg(µ) = `)} = ∅.

Thus, since mh ∈ preads(mι), and m 6∈ N is a write metastep on `, we must have

m = m̌ι = mk, and so the lemma holds for ι.

(b) ι is a write modify iteration.

We have two cases, either k 6= i, or k = i. If k 6= i, then by Lemma 4.7.11, we have

mk = λ(ι−, Ň , k). Since ι is a write modify iteration, we can argue as in the proof of

4.7.28 that mh ∈ preads(mι−). Also, we can show e′k = ek, where e′k is defined as in

Claim 4.7.26. Thus, we can apply the inductive hypothesis to conclude that m = mk,

and so the lemma holds for ι.

If k = i, then we have the following.

Claim 4.7.29 m̌ι �ι m.

Proof. From 〈15〉 of iteration ι, we have m̌ι = min�
ι−

Wι. Since ι 6= (i, 0) and m̌ι =

λ(ι, N, k), then m̌ι− ∈ N . Thus, since m 6∈ N , then we have m 6�ι− m̌ι− , and so m ∈ Wι.

Since mk and m are both write metasteps on `, then they are ordered by �ι, by Lemma

4.6.17.6. Thus, we have m̌ι �ι m. 2

143

Claim 4.7.30 m �ι m̌ι.

Proof. Suppose for contradiction that m̌ι ≺ι m. Let πg = �(winner(m̌ι)), and let

N1 = {µ | (µ ∈Mι−) ∧ (µ ≺ι− m̌ι)}, N2 = N1 ∪N.

N1 is a prefix, and N2 is a prefix because the union of two prefixes is a prefix. Let

α2 ∈ L(ι−, N2), and let mg = λ(ι−, N2, g). Then we have the following.

• Since m̌ι 6∈ N , and since N1 contains all metasteps in µ ∈Mι− such that µ ∈≺ι− m̌ι,

then we have mg = m̌ι, and so type(mg) = W.

• Let eg = δ(α2, πg). Then since πg = �(winner(m̌ι)), we have type(eg) = W.

• We have mh ∈ N2, since mh ∈ N .

• We have m 6∈ N2, since m 6∈ N by assumption, and since m̌ι ≺ι m and m̌ι 6∈ N1.

Combining the above, we see that all the assumptions of the lemma hold, if we instantiate

“ι”, “N” and “m” in the assumptions by ι−, N2 and mg = m̌ι, respectively. Then, by

the inductive hypothesis, we have that mh ∈ preads((m̌ι)
ι−). But this is a contradiction,

because m̌ι ≺ι m, and mh ∈ preads(mι). Thus, we conclude that m �ι m̌ι. 2

From Claims 4.7.29 and 4.7.30, we get that mk = m̌ι = m, and so the lemma holds for ι.

The next lemma gives a characterization of the minimal metasteps after (ι, N). Namely, a

metastep m is minimal exactly when the preread set of m is contained in N , and for every process

πk contained in m, the next πk metastep after (ι, N) is m. This is not the most convenient charac-

terization for decoding purposes, since the decoder does not have direct knowledge of the preread

set of m, nor the processes contained in m. In subsequent lemmas (Lemmas 4.7.35 and 4.7.36), we

provide other characterizations of the minimal metasteps after a prefix, that are more convenient

for the decoder.

Lemma 4.7.31 (λ Lemma C) Let ι = (i, j) be any iteration, and let N be a prefix of (Mι,�ι).

Let m ∈Mι\N , and suppose type(m) = W. Then m ∈ λ(ι, N) if and only if we have the following.

1. preads(mι) ⊆ N .

2. For all πk ∈ procs(mι), we have λ(ι, N, k) = m.

Proof. The main idea is the following. Consider three cases, m̌ι 6�ι m, m = m̌ι, or m̌ι ≺ι

m. In the first case, we have m ∈ λ(ι, N) precisely when m ∈ λ(ι−, Ň); thus, the lemma can

be shown by applying the inductive hypothesis. If m = m̌ι, then m ∈ λ(ι, N) precisely when

m ∈ λ(ι−, Ň), and λ(ι, N, i) = m; then we again apply the inductive hypothesis, noting that

procs(mι) = procs(mι−)∪ {πi}. Finally, if m̌ι ≺ι m, then ι is a modify iteration, and so m̌ι ≺ι− m.

144

From this, it once more follows that m ∈ λ(ι, N) precisely when m ∈ λ(ι−, Ň), and the lemma

follows from the inductive hypothesis.

We now present the formal proof. We use induction on ι. The lemma is true for ι = (1, 0). We

show that if the lemma is true for ι	 1, then it is also true for ι. Let Ň = N ∩Mι− . Consider three

cases, either m̌ι 6�ι m, m = m̌ι, or m̌ι ≺ι m. Recall from Definition 4.6.16 that Υ(ι, m) is the set of

metasteps in Mι that �ι m.

1. Case m̌ι 6�ι m.

Claim 4.7.32 (m ∈ λ(ι, N))⇔ (m ∈ λ(ι−, Ň)).

Proof. Since m̌ι 6�ι m, then it follows from Lemma 4.6.3 that Υ(ι, m) = Υ(ι−, m). We can

see that m ∈ λ(ι, N)⇔ (Υ(ι, m) ⊆ N) ∧ (m 6∈ N). We claim that

(Υ(ι, m) ⊆ N) ∧ (m 6∈ N)⇔ (Υ(ι−, m) ⊆ Ň) ∧ (m 6∈ Ň).

First, note that (m 6∈ N) ⇔ (m 6∈ Ň), because m 6= m̌ι, and N and Ň are either equal, or

differ by m̌ι.

Next, we show that (Υ(ι, m) ⊆ N) ⇔ (Υ(ι−, m) ⊆ Ň). Indeed, since Υ(ι, m) = Υ(ι−, m),

and Ň ⊆ N , then (Υ(ι−, m) ⊆ Ň) ⇒ (Υ(ι, m) ⊆ N). For the other direction, notice that

m̌ι 6∈ Υ(ι, m), since if m̌ι ∈ Υ(ι, m), then we must have m̌ι �ι m, a contradiction. Thus, since

N and Ň differ at most by m̌ι, we have (Υ(ι, m) ⊆ N)⇒ (Υ(ι−, m) ⊆ Ň).

From the above, we have

(m ∈ λ(ι, N)) ⇔ (Υ(ι, m) ⊆ N) ∧ (m 6∈ N)

⇔ (Υ(ι−, m) ⊆ Ň) ∧ (m 6∈ Ň)

⇔ (m ∈ λ(ι−, Ň)).

2

Claim 4.7.33

(preads(mι−) ⊆ Ň) ∧ (∀πk ∈ procs(mι−) : λ(ι, Ň , k) = m) ⇔

(preads(mι) ⊆ N) ∧ (∀πk ∈ procs(mι) : λ(ι, N, k) = m).

Proof. Since m 6�ι m̌ι, then by Lemma 4.6.3, we have mι = mι− . Now, since m̌ι 6∈
preads(mι−), we have (preads(mι−) ⊆ Ň)⇔ (preads(mι) ⊆ N).

145

Next, we show that

(∀πk ∈ procs(mι−) : λ(ι, Ň , k) = m)⇔ (∀πk ∈ procs(mι) : λ(ι, N, k) = m).

We first claim that either we have m̌ι− 6∈ Ň , or ∀πk ∈ procs(mι−) : k 6= i. Indeed, suppose

that we have m̌ι− ∈ Ň , and there exists k ∈ procs(mι−) such that k = i. Then this means

λ(ι−, Ň , i) = m̌ι = m, which contradicts the assumption that m̌ι 6�ι m. Now, since we have

m̌ι− 6∈ Ň or ∀πk ∈ procs(mι−) : k 6= i, then by Lemma 4.7.12, we have ∀πk ∈ procs(mι−) :

λ(ι−, Ň , k) = λ(ι, N, k). Finally, since procs(mι) = procs(mι−), we have

(∀πk ∈ procs(mι−) : λ(ι, Ň , k) = m)⇔ (∀πk ∈ procs(mι) : λ(ι, N, k) = m).

2

Combining the above, we get the following.

m ∈ λ(ι, N) ⇔ (m ∈ λ(ι−, Ň))

⇔ (preads(mι−) ⊆ Ň) ∧ (∀πk ∈ procs(mι−) : λ(ι, Ň , k) = m)

⇔ (preads(mι) ⊆ N) ∧ (∀πk ∈ procs(mι) : λ(ι, N, k) = m).

Here, the first equivalence follows by Claim 4.7.32. The second equivalence follows by the

inductive hypothesis. The final equivalence follows by Claim 4.7.33.

2. Case m = m̌ι.

Let N1 = {µ | (µ ∈Mι) ∧ (µ �ι m̌ι−)}. By Lemma 4.6.3, we can see that

Υ(ι, m) = Υ(ι−, m) ∪N1.

Thus, we have the following.

m ∈ λ(ι, N) ⇔ (Υ(ι, m) ⊆ N) ∧ (m 6∈ N)

⇔ (Υ(ι−, m) ⊆ Ň) ∧ (m̌ι− ∈ N) ∧ (m̌ι 6∈ N)

⇔ (m ∈ λ(ι−, Ň)) ∧ (λ(ι, N, i) = m̌ι)

⇔ (preads(mι−) ⊆ Ň) ∧ (∀πk ∈ procs(mι−) : λ(ι, Ň , k) = m) ∧ ((λ(ι, N, i) = m̌ι)

⇔ (preads(mι) ⊆ N) ∧ (∀πk ∈ procs(mι) : λ(ι, N, k) = m).

146

The next to last equivalence follows by the inductive hypothesis, and the last equivalence

follows from the fact that procs((m̌ι)
ι) = procs((m̌ι)

ι−)∪{πi}, and by using similar arguments

as in the proof of Claim 4.7.33.

3. Case m̌ι ≺ι m.

Let N2 = {µ | (µ ∈Mι)∧(µ �ι m̌ι)}. Using Lemma 4.6.3, we get that Υ(ι, m) = Υ(ι−, m)∪N2.

Since m̌ι ≺ι m, then we can see from Lemma 4.6.3 that ι is a modify iteration. Thus, since

m̌ι ≺ι m, we also have m̌ι ≺ι− m, and so (m ∈ λ(ι, N)) ⇔ (m ∈ λ(ι−, Ň)). Also, we have

Mι = Mι− , N = Ň , and mι = mι− . Thus, using the inductive hypothesis, we have the

following.

m ∈ λ(ι, N) ⇔ m ∈ λ(ι−, Ň)

⇔ (preads(mι−) ⊆ Ň) ∧ (∀πk ∈ procs(mι−) : λ(ι, Ň , k) = m)

⇔ (preads(mι) ⊆ N) ∧ (∀πk ∈ procs(mι) : λ(ι, N, k) = m).

�

Let e and m be the next πk step and metastep after (ι, N), respectively. Suppose that e is a write

step, and m is a write metastep writing a value v to a register `. Then the next lemma states that

the unmatched preread metasteps on ` after (ι, N) are a subset of preads(mι). Also, the processes

that v-read ` after (ι, N) are a subset of readers(mι), and the processes that write to ` after (ι, N)

are a subset of writers(mι) ∪ winner(mι). In addition, for each process in readers(ι, N, `, v) ∪
wwriters(ι, N, `), the next metastep for the process after (ι, N) is m. This lemma is used in the

proof of Lemma 4.7.35.

Lemma 4.7.34 (λ Lemma D) Let ι = (i, j) be any iteration, let N be a prefix of (Mι,�ι), and

let α ∈ L(ι, N). Let k ∈ [i], m = λ(ι, N, k), and e = δ(α, πk). Suppose that type(e) = type(m) = W,

and let ` = reg(m) and v = val(m). Then we have the following.

1. preads(ι, N, `) ⊆ preads(mι).

2. readers(ι, N, `, v) ⊆ readers(mι), and ∀πh ∈ readers(ι, N, `, v) : λ(ι, N, h) = m.

3. wwriters(ι, N, `) ⊆ writers(mι) ∪ winner(mι), and ∀πh ∈ wwriters(ι, N, `) : λ(ι, N, h) = m.

Proof. The proof mainly involves unraveling definitions, then applying Lemmas 4.7.14 and 4.7.23.

We show each part of the lemma separately. For the first part, let m1 ∈ preads(ι, N, `). Then by

the definition of preads(ι, N, `), m1 is a read metastep on `, m1 ∈ N , and ∃m2 6∈ N : m1 ∈

147

preads((m2)
ι). Then by Lemma 4.7.23, we have m2 = m. Since m1 was arbitrary, we have

preads(ι, N, `) ⊆ preads(mι).

In the rest of the lemma, for any h ∈ [i], let mh = λ(ι, N, h), sh = st(α, πh), eh = δ(α, πh), and

Sh,`,v = {s | (s ∈ S) ∧ (st(s, πh) = st(sk, πh)) ∧ (st(s, `) = v)}.
For the second part of the lemma, let πh ∈ readers(ι, N, `, v). Then by the definition of

readers(ι, N, `, v), mh is a write metastep on `, eh is a read step on `, and ∃s ∈ Sh,`,v : ∆(s, eh, πh) 6=
sh. Then by Lemma 4.7.14, we have mh = m, and πh ∈ readers(mι). Since h was arbitrary, we

have ∀πh ∈ readers(ι, N, `, v) : λ(ι, N, h) = m, and readers(ι, N, `, v) ⊆ readers(mι).

By the definition of wwriters(ι, N, `), mh is a write metastep on `, and eh is a write step on

`. Then, by Lemma 4.7.14, we have mh = m, and πh ∈ writers(mι) ∪ winner(mι). Since h was

arbitrary, we have ∀πh ∈ wwriters(ι, N, `) : λ(ι, N, h) = m, and wwriters(ι, N, `) ⊆ writers(mι) ∪
winner(mι). 2

The next lemma gives a characterization of the minimal metasteps after (ι, N) that is convenient

for the decoder. Let e and m be the next pπk
step and metastep after (ι, N), respectively. Suppose

that e is a write step, and m is a write metastep writing value v to `. Then the lemma states that m is

a minimal metastep after (ι, N) if and only if |preads(ι, N, `)| = |preads(mι)|, |readers(ι, N, `, v)| =
|readers(mι)|, |wwriters(ι, N, `)| = |writers(mι) ∪ winner(mι)|. To make use of this character-

ization, the decoder only needs to be able to compute the sets preads(ι, N, `), readers(ι, N, `, v),

and wwriters(ι, N, `), and to know the cardinalities of the sets preads(mι), readers(mι), and

writers(mι). The cardinalities are stored by the encoder, and can be retrieved from the encod-

ing by the decoder at the appropriate time. The sets readers(ι, N, `, v) and wwriters(ι, N, `) can

be computed by the decoder simply by knowing N . preads(ι, N, `) can be computed by knowing N ,

and additionally, for each read metastep in N , a flag indicating whether the metastep is a preread.

These flags are also stored in the encoding.

Lemma 4.7.35 (λ Lemma E) Let ι = (i, j) be any iteration, let N be a prefix of (Mι,�ι), and

let α ∈ L(ι, N). Let k ∈ [i], m = λ(ι, N, k), and e = δ(α, πk). Let ` = reg(m) and v = val(m).

Suppose that type(e) = type(m) = W. Then m ∈ λ(ι, N) if and only if we have the following.

1. |preads(ι, N, `)| = |preads(mι)|.

2. |readers(ι, N, `, v)| = |readers(mι)|.

3. |wwriters(ι, N, `)| = |writers(mι) ∪ winner(mι)|.

Proof.

1. (⇒) direction.

148

Since m ∈ λ(ι, N), then by Lemma 4.7.31, we have preads(mι) ⊆ N , and ∀πk ∈ procs(mι) :

λ(ι, N, k) = m. We show each part of the lemma separately.

To show |preads(ι, N, `)| = |preads(mι)|, let m1 ∈ preads(mι). Then we have the following:

m1 ∈ N , m1 is a read metastep on `, m 6∈ N , and m1 ∈ preads(mι). Thus, we have

m1 ∈ preads(ι, N, `), by the definition of preads(ι, N, `). Since m1 was arbitrary, we have

preads(mι) ⊆ preads(ι, N, `). Since we also have preads(ι, N, `) ⊆ preads(mι) by Lemma

4.7.34, then |preads(ι, N, `)| = |preads(mι)|.

In the rest of the lemma, for any h ∈ [i], let mh = λ(ι, N, h), sh = st(α, πh), eh = δ(α, πh),

and Sh,`,v = {s | (s ∈ S) ∧ (st(s, πh) = st(sk, πh)) ∧ (st(s, `) = v)}.

To show that |readers(ι, N, `, v)| = |readers(mι)|, let πh ∈ readers(mι). Since m ∈ λ(ι, N),

then by Lemma 4.7.31, we have mh = m. Let εh denote the step that πh takes in m. Since

πh ∈ readers(mι), then εh is a read step on `. By Lemma 4.7.12, we have eh = εh, so eh is also

a read step on `. Then, by Lemma 4.7.13, there exists s ∈ Sh,`,v such that ∆(s, eh, πh) 6= sh.

Thus, by the definition of readers(ι, N, `, v), we have πh ∈ readers(ι, N, `, v). Since πh was

arbitrary, we have readers(mι) ⊆ readers(ι, N, `, v). Since we also have readers(ι, N, `, v) ⊆
readers(mι) by Lemma 4.7.34, then |readers(ι, N, `, v)| = |readers(mι)|.

To show that |wwriters(ι, N, `)| = |writers(mι) ∪ winner(mι)|, let πh ∈ writers(mι) ∪
winner(mι). Since m ∈ λ(ι, N), then by Lemma 4.7.31, we have mh = m. Let εh de-

note the step that πh takes in m. Since πh ∈ writers(mι), then εh is a write step on `.

By Lemma 4.7.12, we have eh = εh, so eh is also a write step on `. Thus, by the defini-

tion of wwriters(ι, N, `), we have πh ∈ wwriters(ι, N, `), and so writers(mι)∪winner(mι) ⊆
wwriters(ι, N, `). Since we also have wwriters(ι, N, `) ⊆ writers(mι)∪winner(mι) by Lemma

4.7.34, then |wwriters(ι, N, `)| = |writers(mι) ∪ winner(mι)|.

2. (⇐) direction.

By Lemma 4.7.34, we have preads(ι, N, `) ⊆ preads(mι), readers(ι, N, `, v) ⊆ readers(mι),

and wwriters(ι, N, `) ⊆ writers(mι)∪winner(mι). Thus, since |preads(ι, N, `)| = |preads(mι)|,
|readers(ι, N, `, v)| = |readers(mι)|, and |wwriters(ι, N, `)| = |writers(mι)∪winner(mι)|, we

have preads(ι, N, `) = preads(mι), readers(ι, N, `, v) = readers(mι), and wwriters(ι, N, `) =

writers(mι) ∪winner(mι).

Let m1 ∈ preads(ι, N, `). Then by definition, we have m1 ∈ N . Thus, since preads(ι, N, `) =

preads(mι), we have

preads(mι) ⊆ N. (4.11)

Next, let πh ∈ readers(ι, N, `, v). Then by Lemma 4.7.34, we have λ(ι, N, h) = m. Since

149

readers(ι, N, `, v) = readers(mι), we have

∀πh ∈ readers(mι) : λ(ι, N, h) = m. (4.12)

Next, let πg ∈ wwriters(ι, N, `). Then by Lemma 4.7.34, we have λ(ι, N, g) = m. Since

wwriters(ι, N, `) = writers(mι) ∪ winner(mι), then

∀πg ∈ writers(mι) ∪winner(mι) : λ(ι, N, g) = m. (4.13)

Finally, by combining Equations 4.11, 4.12 and 4.13, and applying Lemma 4.7.31, we have

that m ∈ λ(ι, N).

2

Lemma 4.7.35 gave a convenient characterization of the minimal write metasteps after (ι, N).

The next lemma characterizes the minimal read and critical metasteps after (ι, N). The minimality

condition is simple: a read or critical metastep is minimal after (ι, N) exactly when it is the next

metastep after (ι, N) for some process.

Lemma 4.7.36 (λ Lemma F) Let ι = (i, j) be any iteration, let m ∈Mι, and let N be a prefix of

(Mι,�ι). Suppose that type(m) ∈ {R, C}. Then m ∈ λ(ι, N) if and only if there exists k ∈ [i] such

that m = λ(ι, N, k).

Proof. We use induction on ι. The lemma is true for ι = (1, 0). We show that if the lemma is

true for ι	 1, then it is also true for ι. Let Ň = N ∩Mι− .

1. (⇒) direction.

Consider two cases, either m 6= m̌ι, or m = m̌ι.

(a) Case m 6= m̌ι.

We claim that (m ∈ λ(ι, N)) ⇒ (m ∈ λ(ι−, Ň)). Indeed, suppose that m ∈ λ(ι, N), and

let m1 ∈Mι− be such that m1 �ι− m. We want to show that m1 ∈ Ň . We have m1 �ι m

by Lemma 4.6.4, and so m1 ∈ N , since m ∈ λ(ι, N). Then, since m1 6= m̌ι, we also have

m1 ∈ N ∩Mι− = Ň , and so the claim holds. Now, since m ∈ λ(ι−, Ň), then by the

inductive hypothesis, there exists k ∈ [i] such that m = λ(ι−, Ň , k). Since m 6= m̌ι, then

we have k 6= i or m̌ι− 6∈ N . Thus, by Lemma 4.7.11, we have m = λ(ι−, Ň , k) = λ(ι, N, k),

and so the lemma holds.

(b) Case m = m̌ι.

Since m = m̌ι, then we see from Lemma 4.6.3 that m = λ(ι, N, i).

150

2. (⇐) direction.

Consider two cases, either m 6= m̌ι, or m = m̌ι.

(a) Case m 6= m̌ι.

Since m 6= m̌ι, then we have k 6= i or m̌ι− 6∈ N , and so m = λ(ι, N, k) = λ(ι−, Ň , k),

by Lemma 4.7.11. Then by the inductive hypothesis, we have m ∈ λ(ι−, Ň), and so

Υ(ι−, m) ⊆ Ň . Consider two cases, either m̌ι 6�ι m, or m̌ι ≺ι m.

If m̌ι 6�ι m, then we have Υ(ι, m) = Υ(ι−, m). Thus, we have Υ(ι, m) ⊆ N , and so

m ∈ λ(ι, N).

If m̌ι ≺ι m, then let N1 = {µ | (µ ∈Mι)∧ (µ �ι m̌ι)}. We have Υ(ι, m) = Υ(ι−, m)∪N1,

and ι is a modify iteration. Since m is a read or critical metastep and m = λ(ι, N, k), we

have m̌ι ∈ N , and so N1 ⊆ N = Ň . Thus, since Υ(ι−, m) ⊆ Ň , we have Υ(ι, m) ⊆ N ,

and so m ∈ λ(ι, N).

(b) Case m = m̌ι.

Since m̌ι = λ(ι, N, k) is a read or critical metastep, then we have k = i, m̌ι− ∈ N , and

m̌ι 6∈ N . Thus, we see that m̌ι ∈ λ(ι, N).

2

Summary of Properties for Decoding

In the remainder of this section, we describe how the lemmas in Section 4.7.3 motivate the Decode

algorithm presented in Section 4.10. For any metastep m, we always refer to the iteration ιn version

of m. Thus, we omit the ιn superscript from our notation. For example, we write steps(m) to mean

steps(mιn

).

Our goal for decoding is to output a linearization of (Mn,�n)34. To do this, Decode maintains

an invariant that at any point in its execution, it has output a linearization α of (N,�n), where N

is some prefix of (Mn,�n). To satisfy the invariant, Decode ensures that whenever it appends a

set of steps to α, those steps are precisely the steps in some minimal metastep not contained in N .

That is, if Decode appends a set of steps β to α, then β = steps(m), for some m ∈ λ(N)35. Thus,

the main task of the decoder is to identify the minimal metasteps after N .

If m is a read or critical metastep, then it is easy for Decode to know when m ∈ λ(N). Indeed,

Lemma 4.7.36 shows that m ∈ N precisely when m is the next metastep after N for some process.

Next, suppose that m is a write metastep, and let ` = reg(m) and v = val(m). To determine

when m ∈ λ(N), Decode uses the property from Lemma 4.7.35, namely, that m ∈ λ(N) if and

34Following the notational convention in this section, we write (Mn,�n) to mean ((Mn)ιn
,�n).

35Decode also ensures that it appends all the non-winning write steps in β to α first, then appends the winning
write, then appends the read steps in β. This condition is easy to satisfy, and will not be discussed further.

151

only if |preads(N, `)| = |preads(m)|, |readers(N, `, v)| = |readers(m)|, and |wwriters(N, `)| =

|writers(m) ∪ winner(m)|. To perform these checks, Decode first needs to know the values of

|preads(m)|, |readers(m)| and |writers(m) ∪ winner(m)|. These values are the components of the

signature for m, and are stored in the string Eπ output by Encode operating on input (Mn,�n).

Thus, Decode gets these values by reading Eπ . Next, Decode must be able to compute the sets

preads(N, `), readers(N, `, v) and wwriters(N, `), based on the current linearization α of (N,�n)

that is has produced. To compute preads(N, `), Decode uses Lemma 4.7.23, which shows that if a

read metastep on ` in N is contained in the preread set of any write metastep not in N , then it is

contained in the preread set of m. To compute readers(N, `, v) and wwriters(N, `), Decode keeps

track of the processes whose next step after N v-reads `, or writes to `. The algorithm presented in

Section 4.10 is an implementation of these ideas.

4.8 The Encoding Step

In this section, we present an algorithm that encodes ((Mn)ιn

,�n) as a string of length O(C(α)),

where α is any linearization of ((Mn)ιn

,�n)36. In the remainder of this chapter, we will consider

only the iteration ιn version of any metastep. Thus, we write m to mean mιn

, for any m ∈Mn. We

first define the following.

Definition 4.8.1 (Extended Type) Define

T = {C, R, W, PR, SR, $} ∪
⋃

pr,r,w∈[n]

{PRprRrWw}.

We say that T is the set of extended types. Let m ∈Mn be a metastep, let e ∈ steps(m) be a step

in m, and let i = proc(e) be the process taking step e. Then we define the following.

1. If type(m) = W, then we define the following.

(a) If type(e) = R, then xtype(e, m) = R.

(b) If type(e) = W and i 6= winner(m), then xtype(e, m) = W.

(c) If type(e) = W and i = winner(m), then xtype(e, m) = PRprRrWw, where pr = |preads(m)|, r =

|reads(m)| and w = |writes(m)|+ 1.

2. If type(m) = R, then e is a read step. We define the following.

(a) If ∃µ ∈M such that m ∈ preads(µ), then xtype(e, m) = PR.

(b) Otherwise, xtype(e, m) = SR.

36By Lemma 4.6.17.1, we have α ∈ runs(A). Also, we show in Lemma 4.7.10 that all linearizations of ((Mn)ιn
,�n)

have the same cost in the state change cost model.

152

3. If type(m) = C, then e is a critical step. We define xtype(e, m) = C.

We say xtype(e, m) is the extended type of e in m.

Please see Figure 4-5 for the pseudocode of the encoding algorithm. All text in the pseudocode

in typewriter font represent string literals. For example, W is the string “W”.

The input to Encode is a pair (M,�), where M is a set of metasteps, and � is a partial order

on M . The encoding uses a two dimensional grid of cells, with n columns and an infinite number of

rows. The encoder fills some of the cells with strings. The contents of the cell in column i and row

j is denoted by T (i, j).

The encoder iterates over all the metasteps in M , in an arbitrary order. For each m ∈ M , it

iterates over all the steps in steps(m), again in an arbitrary order. Let e ∈ steps(m), and suppose

e is performed by process p. Then Encode calls PC(p, m, M,�), which returns a number q such

that m is p’s q’th largest metastep in M37. Note that q is well defined, since the set of metasteps

containing p in M is totally ordered by �, by Lemma 4.6.8. The encoder fills cell T (p, q) with (a

string representation of) xtype(e, m), the extended type of e in m. Note that xtype(e, m) contains

information about the types of both e and m. For example, if e is a read step, then xtype(e, m)

can be R, SR or PR; xtype(e, m) = R indicates that e is a read step in a write metastep, while

xtype(e, m) ∈ {SR, PR} indicates that e is a read step in a read metastep; also, xtype(e, m) = PR

indicates that the read metastep containing e is a preread metastep. As another example, if e is the

winning step in a metastep, then xtype(e, m) contains the signature for that metastep, i.e., a count

of the number of reads, writes and prereads in the metastep.

The complete encoding Eπ is produced by concatenating all nonempty cells T (1, ·) (in order),

then appending all nonempty cells T (2, ·), etc., and finally appending all nonempty cells T (n, ·). The

encoder uses the helper function nrows(T, i), which returns how many nonempty cells there are in

column i of T .

4.9 Correctness Properties of the Encoding

In this section, we show that the length of the string Eπ output by Encode is proportional to the

cost of a linearization of (Mn,�n). Recall from Definition 4.7.1 that G is the total number of steps

contained in all the metasteps in Mn after iteration ιn.

Theorem 4.9.1 (Encoding Theorem A) Let α be the output of Lin(Mn,�n). Then we have

|Eπ| = O(C(α)).

Proof. The main idea for the proof is the following. Given a metastep m ∈ Mn, there are two

parts to the cost of encoding m. The first part is the cost to encode the steps of m, and possibly the

37“PC” stands for program counter.

153

1: procedure Encode(M,�)
2: for all m ∈M do

3: for all e ∈ steps(m)
4: p← proc(e); q ← Pc(p, m, M,�)
5: T (p, q) ← xtype(e, m)
6: end for end for

7: for i← 1, n do

8: for j ← 1, nrows(T, i) do

9: Eπ ← Eπ ◦ # ◦ T (i, j)
10: end for

11: Eπ ← Eπ ◦ $
12: end for

13: return Eπ

14: end procedure

15: procedure Pc(p, m, M,�)
16: N ← {µ | (µ ∈ M) ∧ (p ∈ procs(µ))}
17: sort N in increasing order of � as n1, . . . , n|N|

18: return q ∈ 1, . . . , |N | such that nq = m
19: end procedure

Figure 4-5: Encoding M and � as a string Eπ.

signature of m, if m is a write metastep. The other cost to encoding m is for encoding the preread

set of m, if m is a write metastep. If m has t steps, then we show that the cost of the first part of

encoding m is O(t). For the second part, we do not compute the cost directly, but rather, charge

the cost to the encoding costs of all the read metasteps in pread(m). From this, it follows that,

summed over all m ∈Mn, the encoding cost of both parts is bounded by O(G), which is O(|α|) by

Lemma 4.7.10.

We now present the formal proof. Let c ≥ 1 be the smallest constant such that any symbol in

Eπ, such as SR or #, can be encoded using at most c bits, and any natural number d in Eπ can

be encoded using at most c log d bits. Clearly, c is finite. Recall that Encode(Mn,�n) works by

iterating over the metasteps in Mn, and encoding information about each metastep m in several

cells of T . Each cell is associated either with a step contained in m, or a read metastep contained

in pread(m). For any m ∈Mn, define the following.

1. Let s(m) be the number of bits used in Eπ to encode m. More precisely, s(m) is the sum of

the number of bits used in all the cells of T associated with m.

2. Let t(m) = |steps(m)| be number of steps in m.

3. Let r(m) = |reads(m)| be number of read steps in m.

4. Let w(m) = |writes(m) ∪ win(m)| be number of write and winning steps in m.

5. Let p(m) = |preads(m)| be number of preread metasteps of m.

We have

|Eπ| ≤
∑

m∈Mn

s(m) + c
∑

m∈Mn

t(m) + O(n). (4.14)

Here, the c
∑

m∈Mn
t(m) and O(n) terms account for the delimiters, such as #, used in Eπ when

concatenating the cells of T . We have c
∑

m∈Mn
t(m) = cG. Also, we have n ≤ G, since each process

154

pi takes at least one step, say tryi, in Mn. So, we have that |Eπ | ≤
∑

m∈Mn
s(m) + (c + 1)G. Then,

to bound |Eπ |, it suffices to bound
∑

m∈Mn
s(m).

Claim 4.9.2
∑

m∈Mn
s(m) ≤ 6cG.

Proof. We first claim that

s(m) ≤ c(t(m) + log r(m) + log w(m) + log p(m) + 3).

Indeed, if m is a read or critical metastep, then t(m) = 1, and Encode writes at most one symbol

R, C, PR or SR in the cell associated with m, using c bits. If m is a write metastep, then for each

of the t(m)− 1 nonwinning steps, Encode writes either R or W in the cell associated with the step,

using c bits. For the winning step, Encode writes the 3 symbols PR, R and W, and also the numbers

r(m), w(m) and p(m). Hence, it uses at most c(log r(m) + log w(m) + log p(m) + 3) bits.

Now, we have

∑

m∈Mn

s(m) ≤ c
∑

m∈Mn

(t(m) + log r(m) + log w(m) + log p(m) + 3)

≤ c
∑

m∈Mn

(t(m) + r(m) + w(m) + 3) + c
∑

m∈Mn

p(m)

≤ c
∑

m∈Mn

(2t(m) + 3) + c
∑

m∈Mn

p(m)

≤ 5c
∑

m∈Mn

t(m) + c
∑

m∈Mn

p(m)

≤ 5cG + c
∑

m∈Mn

p(m)

Here, the third inequality holds because steps(m) = reads(m) ∪ writes(m) ∪ win(m), so that

t(m) = r(m) + w(m). The fourth inequality holds because t(m) ≥ 1, since m contains at least one

step. The final inequality holds because
∑

m∈Mn
t(m) is the total number of steps contained in all

the metasteps in Mn, which is G. We have the following.

Claim 4.9.3
∑

m∈Mn
p(m) ≤ G.

Proof. Let R = {µ | (µ ∈Mn) ∧ (type(µ) = R)} be the set of all read metasteps contained in Mn.

Let m1, m2 ∈Mn be any two different write metasteps. Then preads(m1) ⊆ R, and preads(m2) ⊆ R.

Also, by Lemma 4.7.6, we have that for any m ∈ R, if m ∈ preads(m1), then m 6∈ preads(m2). So,

preads(m1) ∩ preads(m2) = ∅. Thus, we have

∑

m∈Mn

|preads(m)| =
∑

m∈Mn

p(m) ≤ |R| ≤ G.

2

155

Variable Domain of type Meaning

Eπ An output of Encode The input to Decode.
α runs(A) A linearization of a prefix of (Mn,�n).

done 2[n] Processes that have completed their exit sections.
pci, i ∈ [n] N Number of steps taken by pi in α, plus 1.
ei, i ∈ [n] Ei ∪ {⊥} The next step of pi after α.

waiti, i ∈ [n] 2[n] Processes pi such that ei 6=⊥.
`i, i ∈ [n] L ∪ {⊥} The register accessed by ei.
typei, i ∈ [n] T The extended type of ei in the next pi metastep after α.
sig`, ` ∈ L Record with fields r, w, pr,win ∈ 0..n Signature of min. write metastep on ` not lin. in α.

R`, ` ∈ L 2[n] Processes pi such that ei reads `.
Also, pi changes state after reading val(e(sig`.win)) in `.

W`, ` ∈ L 2[n] Processes pi such that ei writes to `.

PR`, ` ∈ L 2[n] Processes pi that have done final read to `.

Figure 4-6: The types and meanings of variables used in Decode.

Combining Claim 4.9.3 with the expression for
∑

m∈Mn
s(m), we get

∑

m∈Mn
s(m) ≤ 6cG. �

Since C(α) = G by Lemma 4.7.10, then by combining Equation 4.14 and Claim 4.9.2, we have

|Eπ| ≤ 6cG + (c + 1)G = (7c + 1)G = O(C(α)).

�

4.10 The Decoding Step

In this section, we describe the decoding step. The input to Decode is a string Eπ produced by

Encode(Mn,�n) (where (Mn,�n) is the output of Construct(π)). Decode outputs a run that

is a linearization of (Mn,�n). For ease of notation, we denote the input to Decode by E.

At a high level, the decoding algorithm proceeds in a loop, where at any point in the loop, it has

output a run α that is a linearization of some prefix N of (Mn,�n). We say the metasteps in N

have been executed, and we say the metasteps in Mn\N are unexecuted. By reading E, the decoder

finds a minimal unexecuted metastep m, with respect to �n. The decoder executes m, by linearizing

m and appending the result to α. It then begins the next iteration of the decoding loop.

Please see Figure 4-7 for the pseudocode for Decode. We refer to line numbers in Decode using

angle brackets, with a subscript D. For example, 〈6〉D refers to line 6 in Figure 4-7. We first describe

the variables in Decode. Please also see Table 4-6. α is the run that the decoder builds. done ⊆ [n]

is the set of processes that have completed their trying, critical and exit sections. For i ∈ [n], pci is

the number of metasteps the decoder has executed that contain pi, plus one. ei is the step pi takes

after α, `i is the register accessed by ei, and typei is the extended type of ei in the next pi metastep

after α38. We call ei process pi’s next step. At certain points in the decoding, the decoder may not

38Recall that α is supposed to be the linearization of some prefix N of (Mn,�n). Thus, by the next pi metastep

156

1: procedure Decode(E)
2: ∀i ∈ [n] : pci ← 2, typei ← ε, ei ←⊥, `i ←⊥
3: ∀` ∈ L : sig` ←⊥, R`, PR`, W` ← ∅
4: α← try1 ◦ try2 ◦ . . . ◦ tryn; done← ∅; wait← ∅
5: repeat

6: for all (i 6∈ done ∪ wait) do

7: ei ← δ(α, i); `i ← reg(ei); wait← wait ∪ {i}
8: typei ← GetStep(E, i, pci)
9: switch

10: case typei = W:
11: if typei contains a signature sig then

12: sig`i
← MakeSig(sig, i)

13: end if

14: W`i
← W`i

∪ {i}
15: case typei = R:
16: choose s ∈ S s.t. (st(s, i) = st(α, i)) ∧ (st(s, `i) = val(e(sig`i

.win)))

17: if (sig`i
6= ε) ∧ (∆(s, ei, i) 6= st(α, i)) then

18: R`i
← R`i

∪ {i}
19: else

20: wait← wait\{i}
21: end if

22: case typei = PR:
23: PR`i

← PR`i
∪ {i}

24: α← α ◦ ei

25: pci ← pci + 1; typei ← ε; ei ←⊥; wait← wait\{i}
26: case (typei = SR) ∨ (typei = C):
27: α← α ◦ ei

28: pci ← pci + 1; typei ← ε; ei ←⊥; wait← wait\{i}
29: case typei = $:
30: done← done ∪ {i}
31: end switch

32: end for

33: for all ` ∈ L such that sig` 6=⊥ do

34: if (|R`| = sig`.r) ∧ (|PR`| = sig`.pr) ∧ (|W`| = sig`.w)
35: β ← concat(

⋃

i∈W`\{sig`.win} ei)

36: γ ← concat(
⋃

i∈R`
ei)

37: α← α ◦ β ◦ e(sig`.win) ◦ γ
38: for all i ∈ R` ∪W` do

39: pci ← pci + 1; typei ← ε; ei ←⊥
40: end for

41: wait← wait\(R` ∪W`)
42: sig` ←⊥; R`, PR`, W` ← ∅
43: end if

44: end for

45: until done = {1, . . . , n}
46: return α
47: end procedure

48: procedure GetStep(E,i,pc)
49: read E until we have read i− 1 $ symbols
50: read E until we have read pc # symbols
51: return the string up to before the next # symbol
52: end procedure

53: procedure MakeSig(s,i)
54: suppose s = PRprRrWw
55: sig.pr ← pr; sig.r ← r; sig.w ← w
56: sig.win ← i
57: return sig
58: end procedure

Figure 4-7: Decoding E = Eπ to produce a linearization of (M,�).

yet know the next steps of some processes. If the decoder knows the next step of process pi, then it

places i in wait; the idea is that the decoder is waiting to group ei with some other next steps, which

together make up the steps of a minimal unexecuted metastep. For every ` ∈ L, if sig` 6= ε, then

sig` contains the signature of an unexecuted write metastep m on `. sig` is a record with four fields,

r, w, pr and win. r, w and pr represent the sizes of reads(m), writes(m) ∪ win(m), and preads(m),

after α, we mean the next pi metastep after N

157

respectively. sig`.win is the name of the winner of m. We say e(sig`.win) is the winning step on `.

R` is a set of processes such that the next step of each process is a read on `, and the process would

change its state if it read the value of the winning step on `. W` is a set of processes whose next

step is a write to `. PR` is a set of processes that have done their last read step on ` in Mn, and

such that the read step is contained in a preread metastep, that itself is contained in the preread

set of an unexecuted write metastep on `.

Having described the variables of Decode, we now describe the general aim of these variables.

Recall that in Section 4.7.3, we proved several characterizations of the minimal metasteps after a

prefix. Suppose that at some point in the execution of Decode, α is a linearization of some prefix

N of (Mn,�n). Then for any ` ∈ L, the sets PR`, R` and W` in Decode represent preads(N, `),

readers(N, `, v) and wwriters(N, `), respectively3940. Also, if sig` 6=⊥, then sig`.pr, sig`.r and

sig`.w equal |preads(m)|, |reads(m)| and |writes(m)|, respectively, for some write metastep m on

`, such that m is the next πk metastep after N for some k ∈ [n]. In addition, sig`.win equals

�(winner(m)). The general strategy of Decode is to use Lemmas 4.7.35 and 4.7.36, which are

based on comparing the quantities |preads(N, `)|, |readers(N, `, v)| and |wwriters(N, `)| against

|preads(m)|, |reads(m)| and |writes(m)|, to decide when m ∈ λ(N).

We now describe the operation of Decode. Each iteration of the main repeat loop of Decode

consists of two sections, from 〈6− 32〉D, and from 〈33− 44〉D. The purpose of the first section is to

find the next step of each process, and also to execute some minimal unexecuted read and critical

metasteps. The purpose of the second section is to divide the next steps computed in the first

section into groups, such that each group of steps is exactly the steps contained in some minimal

unexecuted write metastep. Then, 〈33− 44〉D also executes these metasteps.

Consider any i 6∈ done∪wait. That is, pi is has not finished its exit section, and the decoder does

not know its next step. In 〈7〉D, the decoder computes ei, using the run α it has already generated

and pi’s transition function δ(·, i). In 〈8〉D, the decoder calls the helper function GetStep(E, i, pci),

which returns the extended type of ei in pi’s next metastep. The decoder then switches based on

the value of typei.

First consider the case typei = W 〈10〉D, and let `i be the register ei writes to 〈7〉D. Then the

decoder adds i to W`i
. In addition, if typei contains a signature sig, the decoder sets sig`i

to

MakeSig(sig, i) 〈12〉D. If sig = PRprRrWw, where pr, r and w are numbers, then MakeSig(sig, i)

sets sig`.win← i (indicating that pi is the winner of the metastep corresponding to this signature),

sig`.r ← r, sig`.w← w, and sig`.pr ← pr.

Next, consider the case typei = R, and let `i be the register ei reads. The decoder first checks

39preads(N, `), readers(N, `, v) and wwriters(N, `) are defined in Definition 4.7.4.
40We say that PR`, R` and W` in Decode represent preads(N, `), readers(N, `, v) and wwriters(N, `), because

they may not equal preads(N, `), readers(N, `, v) and wwriters(N, `) at all points in the execution of Decode. For
example, there may be a point in the execution of Decode when wwriters(N, `) 6= ∅, but W` = ∅, because the
decoder has not yet computed the elements of W` yet.

158

whether sig`i
6=⊥. If sig`i

6=⊥, the decoder then checks whether the (value of the) winning write step

in the metastep corresponding to this signature, namely, step e(sig`.win), would cause pi to change

its state 〈18〉D. If so, the decoder adds i to R`i
. If either of the checks fails, the decoder removes i

from wait, so that on the next iteration of the decoding loop, the decoder will check whether there

exists a possibly different winning step on `i that will cause pi to change its state.

Next, consider the case typei = PR, and let `i be the register ei reads. ei is the lone read step in

a read metastep m, and so the decoder executes m by appending ei to α 〈24〉D. The decoder then

increments pci, and removes i from wait 〈25〉D, indicating that it needs to compute a new next step

for pi in the next iteration of the decoding loop . In addition, because typei = PR, then m is the last

read metastep containing pi on `i in Mn, and so the decoder adds i to PR`i
〈23〉D.

Next, consider the cases typei = SR or typei = C 〈26〉D. Then ei is the lone step in a read or

critical metastep m, and so the decoder executes m by appending ei to α. In addition, it removes i

from wait, and increments pci.

Finally, suppose typei = $. This indicates that pi has finished all its steps in Mn. Thus, the

decoder adds pi to done 〈30〉D.

Now, we describe the second section of the decoding loop, between 〈33 − 44〉D. Recall that the

goal of this section is to divide the next steps into groups, with each group corresponding to the

steps in some minimal unexecuted write metastep. The grouping is based on the register accessed

by the next steps. In particular, the decoder iterates over all the registers ` for which it knows

the signature 〈33〉D. For each `, it checks whether the sizes of R`, W` and PR` match the sizes in

sig` 〈34〉D. If so, it sets β to be the concatenation, in an arbitrary order, of all the write steps ei,

for i ∈ W`\{sig`.win}. It sets γ to be the concatenation of all read steps ei, for i ∈ R`. Then, it

appends β ◦ esig`.win ◦ γ to α. We will show in Lemma 4.11.2 that the steps in β ◦ esig`.win ◦ γ are

precisely the steps of some minimal unexecuted write metastep. The decoder removes R` ∪W` from

wait 〈41〉D, to indicate that it needs to compute next steps for these processes in the next iteration

of the decoding loop. It also increments pci, for all the processes i ∈ R` ∪W`. Finally, it resets

sig`, R`, PR` and W`.

The decoder performs the decoding loop between 〈5 − 45〉D until done = [n], indicating that

all processes have entered their remainder sections. Then it returns the step sequence α it has

constructed. We show in Theorem 4.11.4 that α is a linearization of (Mn,�n).

4.11 Correctness Properties of the Decoding

In this section, we use several lemmas proven in Section 4.7.3 to show Theorem 4.11.4, which states

that Decode(Eπ) outputs a run α that is a linearization (Mn,�n). This section uses some notation

defined in Section 4.7.1.

159

In the remainder of this section, let ϑ denote an arbitrary execution of Decode(Eπ). Consider

any point in ϑ. Then we call a tuple consisting of the values of all the variables of Decode(Eπ)

(such as pci, for all i ∈ [n], and R`, for all ` ∈ L) at that point, a state of ϑ. If σ is a state of ϑ

and x is a variable of Decode, then we use σ.x to denote the value of x in σ. In the following,

when we say that we prove a statement using induction on ϑ, we mean that we prove the statement

by assuming that it holds in a certain state in ϑ, then showing that it also holds in a state that

occurs later in ϑ. Recall that we refer to line x in Decode by the notation 〈x〉D. We say that an

iteration of ϑ is one execution of the loop between 〈5 − 45〉D in Decode. We do not necessarily

induct over the iterations of ϑ. Rather, we often induct on ϑ at a finer granularity, by considering

multiple points within an iteration.

One of the components of a state σ is the step sequence σ.α that Decode(Eπ) has built up. The

following definition says that σ is N -correct if σ.α is a linearization of a prefix N of (Mn,�n).

Definition 4.11.1 Consider any state σ in ϑ, and let N be a prefix of (Mn,�n). Then we say σ

is N -correct if σ.α ∈ L(N).

The following lemma says that given any state σ of ϑ, σ is N -correct, for some prefix N of

(Mn,�n). Thus, Decode(Eπ) always satisfies a safety condition: it never outputs a step sequence

that is not a linearization of a prefix of (Mn,�n).

Lemma 4.11.2 (Safety Lemma) Let σ be any state in ϑ. Then there exists a prefix N of

(Mn,�n) such that σ is N -correct.

Proof. The main idea of the proof is to use Lemmas 4.7.35 and 4.7.36, to show that each time

the decoder appends a set of steps ω to σ.α, where σ.α is a linearization of a prefix N of (Mn,�n),

then ω is exactly the steps in steps(m), for some m ∈ λ(N).

Formally, we use induction on ϑ. Let σ0 be the state in ϑ at the end of 〈4〉D. Then σ0 is N0

correct, for N0 = {try1, . . . , tryn}. For the inductive step, suppose that σ is N -correct, for some prefix

N of (Mn,�n), and suppose that after σ, Decode appends a sequence of steps ω to σ.α. Then

we prove that the set of steps in ω equals the set of steps contained in some minimal unexecuted

metastep m ∈ λ(N). From this, it follows that σ′ is (N ∪ {m})-correct, where σ′ is the state of ϑ

after appending ω. In the remainder of this proof, we often suppress the “σ dot” notation when

referring to the value of a variable at a point in ϑ. Rather, we will simply indicate the location at

which we consider the value of a variable.

There are three places where Decode appends steps to α: in 〈24〉D, 〈27〉D, 〈37〉D. First, suppose

that Decode appends a step ei to α in 〈24〉D or 〈27〉D. Then we have typei ∈ {C, PR, SR}. Let m =

λ(N, π−1(i)) be the next pi metastep after N . Since typei ∈ {C, PR, SR}, we have type(m) ∈ {C, R},
and so by Lemma 4.7.36, we have m ∈ λ(N). Let ε be the step that pi takes in m. Then we have

ei = ε, and so α ◦ ei is N ′-correct, for N ′ = N ∪ {m}.

160

Next, suppose Decode appends a sequence of steps ω to α in 〈37〉D. Then from 〈34〉D, there

exists some ` ∈ L, such that |W`| = sig`.w, |R`| = sig`.r and |PR`| = sig`.pr. For any process

i ∈ [n], let ei = δ(α, i). Also, let k = sig`.win, and let m = λ(N, π−1(k)). Since sig` contains the

signature for m, we see by inspection of the Encode algorithm that the following hold:

1. pk is the winner of m.

2. ek is a write step.

3. sig`.r = |readers(m)|, sig`.pr = |preads(m)| and sig`.w = |writers(m) ∪ winner(m)|.

From 〈10 − 14〉D, we see that W` is the set of processes pi such that ei is a write step to `,

and ei belongs to a metastep not contained in N . Thus, we have W` = writers(N, `). Then, since

|W`| = sig`.w = |writers(m) ∪ winner(m)|, we get that

|wwriters(N, `)| = |writers(m) ∪ winner(m)|.

Next, from 〈15 − 21〉D, we see that R` is the set of processes pi such that ei is a read step on `,

ei belongs to a metastep not contained in N , and reading value val(m) in ` causes pi to change

from its current state st(α, i)41. Thus, we have R` = readers(N, `, val(m)). Since |R`| = sig`.r =

|readers(m)|, then we get that

|readers(N, `, val(m))| = |readers(m)|.

Finally, we see from 〈23 − 25〉D that PR` is the set of processes pi that have performed a read

metastep contained in N , such that the read metastep is contained in the preread set of some write

metastep not contained in N . Thus, PR` = preads(N, `). Since |PR`| = sig`.pr = |preads(m)|, we

get that

|preads(N, `)| = |preads(m)|.

Combining this with the earlier facts that |readers(N, `, val(m))| = |readers(m)| and |wwriters(N, `)| =
|writers(m) ∪ winner(m)|, and applying Lemma 4.7.35, we get that m ∈ λ(N). Thus, letting ω be

β ◦ esig`.win ◦ γ, where β and γ are defined as in 〈35 − 36〉D, we get that α ◦ ω is N ′-correct, for

N ′ = N ∪ {m}.
From the above, we have that if α is N -correct, then after Decode appends a sequence of steps

to α, the resulting run is N ′-correct, for some prefix N ′ ⊃ N of (Mn,�n). Thus, the lemma holds

by induction. 2

Lemma 4.11.2 showed that if Decode(Eπ) ever appends a sequence of steps to α, then those

41Note that val(m) is the value written by step esig`
.win.

161

steps correspond to the steps in some minimal unexecuted metastep. The next lemma shows a

liveness property, that in every iteration of ϑ, Decode(Eπ) does append some steps to α.

Lemma 4.11.3 (Liveness Lemma) Let σ be the state at 〈6〉D in some iteration of ϑ, and let σ be

the state at 〈44〉D in the same iteration. Then either σ′.done = [n], or σ.α is a strict prefix of σ′.α.

Proof. By Lemma 4.11.2, σ is N -correct, for some prefix N of (Mn,�n). Suppose σ′.done 6= [n].

Then there exists i ∈ [n] such that λ(N, i) 6= ∅, and so λ(N) 6= ∅. Let m ∈ λ(N), and suppose

first that type(m) ∈ {C, R}. Let i ∈ procs(m). Then we see that at 〈9〉D after σ, we have typei ∈
{C, PR, SR}, and so in 〈24〉D or 〈27〉D, we have α← α ◦ ei. Thus, the lemma holds.

Next, suppose that type(m) = W, and let ` = reg(m) and v = val(m). Then, following the

arguments in the proof of Lemma 4.11.2, we have at 〈34〉D after σ that R` = readers(N, `, v), W` =

wwriters(N, `), and PR` = preads(N, `). Also, we have at 〈34〉D that sig`.r = |readers(m)|,
sig`.w = |writers(m) ∪ winner(m)| and sig`.pr = |preads(m)|. Since m ∈ λ(N), then by Lemma

4.7.35, we have |readers(N, `, v)| = |readers(m)|, |wwriters(N, `)| = |writers(m)∪winner(m)| and

|preads(N, `)| = |preads(m)|. Thus, we have |W`| = sig`.w, |R`| = sig`.r and |PR`| = sig`.pr at

〈34〉D, and so in 〈37〉D, Decode appends β ◦ esig`
.win ◦ γ to α. Thus, the lemma holds. 2

Theorem 4.11.4 (Decoding Theorem A) Let α be the output of Decode. Then α is a lin-

earization of (Mn,�n).

Proof. By Lemma 4.11.2, σ.α is a linearization of some prefix N of (Mn,�n), for any state σ in

ϑ. By Lemma 4.11.3, Decode continues to append steps to α until done = [n]. We can see that

done = [n] precisely when all the metasteps in Mn have been linearized in α. Thus, the final output

α of Decode is a linearization of (Mn,�n). 2

4.12 A Lower Bound on the Cost of Canonical Runs

In this section, we use the main theorems shown in Sections 4.6.5, 4.9 and 4.11 to prove that there

exists a canonical run α with Ω(n log n) cost in the state change cost model. We begin with the

following definition.

Definition 4.12.1 Let π ∈ Sn be an arbitrary permutation. Then we define the following.

1. Let (Mπ,�π) be any output of Construct(π).

2. Let Eπ be any output of Encode(Mπ,�π).

3. Let απ be any output of Decode(Eπ).

Lemma 4.12.2 (Uniqueness Lemma) Let π1, π2 ∈ Sn, such that π1 6= π2. Then απ1 6= απ2 .

162

Proof. By Theorem 4.11.4, απ1 is a linearization of (Mπ1 ,�π1), and απ2 is a linearization of

(Mπ2 ,�π2). Thus, by Theorem 4.6.20, processes p1, . . . , pn all enter the critical section in απ1 , and

they enter in the order π1. p1, . . . , pn also all enter the critical section in απ2 , and they enter in the

order π2. Thus, since π1 6= π2, then we have απ1 6= απ2 . 2

Finally, we prove our main lower bound. It states that for any mutual exclusion algorithm A,

there is a canonical run α of A, in which each process p1, . . . , pn enters and exits the critical section

once, such that the cost of α in the state change cost model is Ω(n log n). Recall that C is the set of

canonical runs.

Theorem 4.12.3 (Main Lower Bound) Let A be any algorithm solving the mutual exclusion

problem. Then there exists a π ∈ Sn such that απ ∈ C, and C(απ) = Ω(n log n).

Proof. By Theorem 4.6.21, we have απ ∈ C, for all π ∈ Sn. Assume for contradiction that the

theorem is false. Then for all π ∈ Sn, we have C(απ) = o(n log n). Since |Eπ | = O(C(απ)) by

Theorem 4.9.1, then we have |Eπ | = o(n log n), for all π ∈ Sn. Since 2o(n log n) = o(n!) and |Sn| = n!,

we have |{Eπ}π∈Sn
| < |Sn|. Then by the pigeonhole principle, there exists π1, π2 ∈ Sn with π1 6= π2

such that Eπ1 = Eπ2 . Thus, we have

απ1 = Decode(Eπ1) = Decode(Eπ2) = απ2 .

But by Lemma 4.12.2, we have απ1 6= απ2 , which is a contradiction. Thus, there must exist a π ∈ Sn

such that C(απ) = Ω(n log n). 2

163

Bibliography

[1] R. Alur and G. Taubenfeld. Results about fast mutual exclusion. In Proceedings of the 13th

IEEE Real-time Systems Symposium, pages 12–21. IEEE, 1992.

[2] James H. Anderson and Yong-Jik Kim. An improved lower bound for the time complexity

of mutual exclusion. In PODC ’01: Proceedings of the twentieth annual ACM symposium on

Principles of distributed computing, pages 90–99, New York, NY, USA, 2001. ACM Press.

[3] James H. Anderson and Yong-Jik Kim. Nonatomic mutual exclusion with local spinning. In

PODC ’02: Proceedings of the twenty-first annual symposium on Principles of distributed com-

puting, pages 3–12, New York, NY, USA, 2002. ACM Press.

[4] James H. Anderson, Yong-Jik Kim, and Ted Herman. Shared-memory mutual exclusion: major

research trends since 1986. Distributed Computing, 2003.

[5] T. E. Anderson. The performance of spin lock alternatives for shared-money multiprocessors.

IEEE Trans. Parallel Distrib. Syst., 1(1):6–16, 1990.

[6] Hagit Attiya and Danny Hendler. Time and space lower bounds for implementations using -cas.

In DISC, pages 169–183, 2005.

[7] Saâd Biaz and Jennifer L. Welch. Closed form bounds for clock synchronization under simple

uncertainty assumptions. Information Processing Letters, 80(3):151–157, 2001.

[8] James E. Burns and Nancy A. Lynch. Bounds on shared memory for mutual exclusion. Infor-

mation and Compututation, 107(2):171–184, 1993.

[9] Robert Cypher. The communication requirements of mutual exclusion. In SPAA ’95: Pro-

ceedings of the seventh annual ACM symposium on Parallel algorithms and architectures, pages

147–156, New York, NY, USA, 1995. ACM Press.

[10] Danny Dolev, Joe Halpern, and H. Raymond Strong. On the possibility and impossibility

of achieving clock synchronization. In STOC ’84: Proceedings of the sixteenth annual ACM

symposium on Theory of computing, pages 504–511, New York, NY, USA, 1984. ACM Press.

167

[11] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained network time synchronization

using reference broadcasts. SIGOPS Operating Systems Review, 36(SI):147–163, 2002.

[12] Rui Fan, Indraneel Chakraborty, and Nancy Lynch. Clock synchronization for wireless networks.

In OPODIS 2004: 8th conference on principles of distributed systems, pages 400–414. Springer,

2004.

[13] Rui Fan and Nancy Lynch. Gradient clock synchronization. In PODC ’04: Proceedings of the

twenty-third annual ACM symposium on Principles of distributed computing, pages 320–327,

New York, NY, USA, 2004. ACM Press.

[14] Rui Fan and Nancy Lynch. Gradient clock synchronization. Distributed Computing, 18(4):255–

266, 2006.

[15] Rui Fan and Nancy Lynch. An Ω(n log n) lower bound on the cost of mutual exclusion. In

PODC ’06: Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed

computing, pages 275–284, New York, NY, USA, 2006. ACM.

[16] C. Fetzer and F. Cristian. Integrating external and internal clock synchronization. Journal of

Real-Time Systems, 12(2):123–172, 1997.

[17] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed

consensus with one faulty process. Journal of the ACM, 32(2):374–382, 1985.

[18] Seth Gilbert. Virtual Infrastructure for Wireless Ad Hoc Networks. PhD thesis, MIT, 2007.

[19] G. Graunke and S. Thakkar. Synchronization algorithms for shared-memory multiprocessors.

IEEE Computer, 1990.

[20] Joseph Y. Halpern, Nimrod Megiddo, and Ashfaq A. Munshi. Optimal precision in the presence

of uncertaint. Journal of Complexity, 1(2):170–196, 1985.

[21] Prasad Jayanti. A time complexity lower bound for randomized implementations of some shared

objects. In PODC ’98: Proceedings of the seventeenth annual ACM symposium on Principles

of distributed computing, pages 201–210, New York, NY, USA, 1998. ACM Press.

[22] Dilsun K. Kaynar, Nancy A. Lynch, Roberto Segala, and Frits W. Vaandrager. The Theory of

Timed I/O Automata. Morgan and Claypool, 2005.

[23] Patrick Keane and Mark Moir. A simple local-spin group mutual exclusion algorithm. In

PODC ’99: Proceedings of the eighteenth annual ACM symposium on Principles of distributed

computing, pages 23–32, New York, NY, USA, 1999. ACM Press.

168

[24] Leslie Lamport and P. Michael Melliar-Smith. Synchronizing clocks in the presence of faults.

Journal of the ACM, 32(1):52–78, 1985.

[25] Errol Lloyd. Broadcast scheduling for tdma in wireless multihop networks. Handbook of wireless

networks and mobile computing, pages 347–370, 2002.

[26] Thomas Locher and Roger Wattenhofer. Oblivous gradient clock synchronization. In DISC ’06:

20th International Symposium on Distributed Computing, pages 520–533, 2006.

[27] Jennifer Lundelius and Nancy Lynch. An upper and lower bound for clock synchronization.

Information and Control, 62:190–204, 1984.

[28] Lennart Meier and Lothar Thiele. Gradient clock synchronization in sensor networks. Technical

report, Computer Engineering and Networks Laboratory, Swiss Federal Institute of Technology

Zurich, 2005.

[29] J. Mellor-Crummey and M. Scott. Algorithms for scalable sychronization on shared-memory

multicomputers. ACM Transations on Computer Systems, 1991.

[30] D. L. Mills. Internet time synchronization: The network time protocol. IEEE Transactions on

Computers, 39(10):1482–1493, 1991.

[31] Rafail Ostrovsky and Boaz Patt-Shamir. Optimal and efficient clock synchronization under

drifting clocks. In Proceedings of the eighteenth annual ACM symposium on Principles of

distributed computing, pages 3–12. ACM Press, 1999.

[32] Boaz Patt-Shamir and Sergio Rajsbaum. A theory of clock synchronization. In Proceedings of

the twenty-sixth annual ACM symposium on Theory of computing, pages 810–819. ACM Press,

1994.

[33] Hairong Qi, Xiaoling Wang, S. Sitharama Iyengar, and Krishnendu Chakrabarty. Multisensor

data fusion in distributed sensor networks using mobile agents. In Proceedings of the Interna-

tional Conference on Information Fusion, pages 11–16, 2001.

[34] Michael Raynal. Algorithms for Mutual Exclusion. The MIT Press, Cambridge, Massachusetts,

1986.

[35] T. K. Srikanth and Sam Toueg. Optimal clock synchronization. Journal of the ACM, 34(3):626–

645, 1987.

[36] An swol Hu and Sergio D. Servetto. Algorithmic aspects of the time synchronization problem

in large-scale sensor networks. Mob. Netw. Appl., 10(4):491–503, 2005.

169

[37] P. Verissimo, L. Rodrigues, and A. Casimiro. Cesiumspray: a precise and accurate global time

service for large-scale systems. Technical Report NAV-TR-97-0001, Universidade de Lisboa,

1997.

[38] Brett Warneke, Matt Last, Brian Liebowitz, and Kristofer S.J. Pister. Smart dust: Communi-

cating with a cubic-millimeter computer. Computer, 34(1):44–51, 2001.

[39] Jennifer Lundelius Welch and Nancy Lynch. A new fault-tolerant algorithm for clock synchro-

nization. Information and Computation, 77(1):1–36, 1988.

[40] Y.-H. Yang and J. Anderson. A fast, scalable mutual exclusion algorithm. Distributed Com-

puting, 1995.

170

