
T: A D i a l e c t o f Lisp
or~ L A M B D A : T h e U l t i m a t e S o f t w a r e T o o l

Jonathan A. Rees
Norman I. Adams IV

Department of Computer Science
Yale University

New Haven, Connecticut

A b s t r a c t

The T project is an experiment in language design and im-
plementation. Its purpose is to test the thesis developed by
Steele and Sussman in their series of papers about the
Scheme language: tha t Scheme may be used as the basis for
a practical programming language of exceptional expressive
power; and, tha t implementations of Scheme could perform
better than other Lisp systems, and competitively with im-
plementations of programming languages, such as C and
Bliss, which are usually considered to be inherently more ef-
ficient than Lisp on conventional machine architectures. We
are developing a portable implementation of T, currently tar-
geted for the VAX under the Unix and VMS operating sys-
tems and for the Apollo, a MC68000-based workstation.

1. M o t i v a t i o n

During the spring of 1981 the Yale Computer Science Depart-
ment was faced with the problem of deciding how it would
compute during the next several years. Cheap and powerful
large address space machines existed, but language, im-
plementation, or availability problems made the candidate
Lisp systems unattractive. Instead of waiting for some other
university to fill this need, the department decided to take
advantage of the authors' eagerness to implement a produc-
tion quality Lisp. The resulting project is a relentless com-
promise (or more optimistically speaking, a successful
marriage} between the practical necessity of making a work-
ing system available soon for people to use, and the
implementors' idealism. The opportunity was before us to
determine just what kind of language we really wanted, and
to proceed to implement that .

Rather than transport any existing Lisp system to the
machines we were interested in, or even using an existing lan-
guage specification (such as NIL) as a foundation on which to
build, we decided to design a language and implementation
from the ground up. This section attempts to summarize the
considerations which led to this decision and which helped
shape our design.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

1 .1 . L i s p

It almost goes without saying that the basic Lisp paradigm
seemed a very good place to start. Lisps in general provide
the following desirable features:

• Program as data. A simple, standard internal
representation is used to represent source
programs.

• General-purpose syntax. Lisp provides a standard
external syntax for representing programs and
data which is unbiased with respect to applica-
tion.

• Incremental procedure redefinition. The fact tha t
edits to source code are reflected immediately in
the running environment greatly speeds debug-
ging.

• Powerful debugging tools. Lisp systems usually
supply integrated tools to aid interactive debug-
ging.

• Storage management. A garbage collector relieves
the programmer of the chore of storage manage-
ment, thus promoting conciseness and readability
and eliminating many sources of error.

• Typed data. Lisp is dynamically typed rather than
statically typed. This promotes generality and
abstractness and helps reduce the "noise level" in
programs by eliminating the need for declara-
tions.

• Not a police state. Lisp systems provide the user
with complete control over the system and
general access to low-level representations.

Lisp's use of symbolic lis'~ structure to represent programs in-
ternally really has no parallel in other languages. The provi-
sion of a standard internal representation for source code is
responsible for the ease with which evaluators, compilers,
translators, and other program synthesizers and analyzers can
be written. Lisp's macro facility provides a powerful means
by which the language can be extended and new notations
and abstractions developed. Their generality, far exceeding
that of macro facilities in languages like Bliss and PL/1,
owes to the fact tha t the macro expansion routines are writ-
ten in Lisp itself, and tha t source code is represented in a
standard way.

© 1982 ACM0-89791-082-6/82/008/0114 $00.75

1 1 4

Related to the use of standard internal representation is the
use of a standard external representation. Lisp's "Cambridge
Polish" notation is unbiased with respect to its interpreta-
tion. It sacrifices conciseness in certain special cases for
generality, uniformity, and simplicity. One need not worry
about low-level syntax issues when dealing with extensions
and imbedded languages. The computer science literature's
obsession with lexical and syntactic analysis becomes a mys-
tery to those familiar with Lisp.

Incremental redefinition effectively eliminates the compile
and load phases in the traditional edit /compile/load/test
debugging cycle; this is absolutely essential when dealing
with very large programs, where the time required to recom-
pile a module (and its clients), invoke a linker, start a
process, initialize, and get into a state where one can proceed
to locate the next bug in the program, would make any other
approach absurd.

Lisps have traditionally paid close attention to interactive
debugging, providing language-level single-stepping, call trac-
ing, breakpoints, control stack and environment inspection,
data structure inspectors and editors, and error recovery.
These tools have usually not been wired into the system but
rather have been built by user communities on top of general
underlying primitives.

Dynamic typing aids in modularity and orthogonality;
routines can be trivially defined which work on any kind of
data, or do generic dispatches in a variety of ways. Type
declarations are optional. This enhances program conciseness
and readability. When included, type declarations provide a
compiler with information that can be used to improve code
quality. In an interpreter, they can be used for consistency
checking.

Programmers are free to manipulate the system in potentially
dangerous ways, if they need to be able to do so. Language
designers and implementors should not presume that a
programmer will never need to do something "dangerous" or
"unportable". Security and consistency checks should exist
as an aid to the programmer, not as a hindrance (as in Pas-
cal, for example). [Kernighan 81]

1.2. Modern Lisps

In addition to these standard Lisp features, a number of
other important issues have been addressed in various
production Lisp implementations. More and more is becom-
ing expected of modern production-quality Lisps and their
implementations. [Teitelman 78, Weiureb 81] Some of the
issues we consider important are ou.tlined below.

Maclisp's popularity owes much to the quality of its
compiler's object code and the years of effort devoted to sys-
tem tuning. [Moon 74, Steele 77a, Steele 77b] The belief that
Lisp is inherently inefficient is still prevalent, though recent
work has begun to clear up that misconception. Some recent
large-system Lisp efforts have argued that the amount of ef-
fort required to produce effective compilers for conventional-
architecture machines, and the potential for complexity and
error, are so great that the best approach is to develop
special-purpose processors better suited to the task of run-
ning Lisp programs. [Bawden 77] While there is much to be
said for that, the authors believe that the verdict is not yet
in on the need for hardware support.

As Lisp's popularity grows and its use in developing useful,
production programs increases, portability becomes impor-
tant . However, a perhaps stronger argument for portability
is the need to take advantage of new techno lo~ and ar-
chitectures as they become available. Franz Lisp, Portable
Standard Lisp, Interlisp, and Common Lisp have each ad-
dressed portability issues in different ways. [Steele
81, Foderaro 80, Griss 82, Moore 79]

Object-oriented languages have been implemented often in
Lisp, but the Lisp Machine was the first production Lisp of
which the authors are aware which made the message-passing
idiom an integral part of the system. [Weiureb 81] The Lisp
Machine "flavor" system has proved to work quite success-
fully as a tool to achieve modularity and is a standard and
popular part of the programmer's repertoire.

Many Lisps implement some form of functional closm'e,
though they are often neither completely general nor well in-
tegerated.

Modern Lisps provide general CATCH and THROW constructs for
performing non-local exits. Another related feature is some-
times called UNWIND-PROTECT: the ability to force some sort
of clean-up to happen even if during the computation of
some expression there is a THROW out of it. For example, a
routine which manipulates an open file would like to make
sure the file gets closed even if the routine is aborted or
otherwise exits abnormally. UNWIND-PROTECT can be thought
of as a generalization of shallow dynamic binding, where
variables which have been "temporarily" assigned values are
always reset to their previous values even if the form which
binds them exits abnormally. Coroutines and multitasking
are also desirable features, particularly where the machine's
operating system is Lisp itself.

As the size of a system grows the potential for naming con-
flicts increases. When one tries to run several large programs
in a single Lisp environment, as on the Lisp Machine where
the editor, compiler, "operating system," and different al>
plication programs all run in the same address space, using
the traditional flat, global namespace is out of the question;
multiple namespaces are necessary.

In order to develop correct and compi}able programs, it is im-
portant that the compiler and interpreter implement the
same language. Usually, Lisps have been dynamically scoped
at heart, but when code is compiled, bound variables not
declared to be "special" become lexically seoped. This use of
lexical scoping has been considered a concession to efficient
implementation, not a language feature. ~rhen a program
runs well enough that a user thinks about trying to compile
it, the user usually must make a pass over the program, ad-
ding declarations and even changing code and file organiza-
tion, in order to make it compilable. Some programs
(especially those making heavy use of FE×PR's) may never run
compiled, while others (especially those making heavy use of
functional arguments) will not run interpreted. In Lisp
Machine Lisp some important language features are imple-
mented only in compiled code, not in interpreted code.

One approach to this problem is to sacrifice efficiency by
forcing the compiler to implement the same dynamic binding
semantics as the interpreter. To the authors' knowledge,
MIT's New Implementation of Lisp (NIL) is the only produc-
tion Lisp system which endorses lexical scoping and employs
an interpreter which correctly handles lexical binding as well
as "special" declarations.

1 1 5

1.3. S c h e m e

Scheme is a lexically scoped variant of Lisp which has had
broad influence in Lisp circles, in spite of the fact tha t no
production implementations are generally available. [Steele
78a] Scheme is appealing for a number of reasons.

Scheme is a small language. It is easy to learn and straitfor-
ward to implement. In Scheme, a few powerful concepts
combine well to provide a rich and expressive environment.

Lexical scoping is not merely a compromise to make the lan-
guage compilable, as some dynamic binding partisans will at-
test. It aids the programmer as well as the compiler. The
ease for lexical binding is presented eloquently throughout
Steele and Sussman's work, especially in [Steele 78b]. Essen-
tially their point is tha t dynamic binding violates referential
transparency, the requirement tha t "the meanings of parts of
a program be apparent and not change, so tha t such mean-
ings can be reliably depended upon." Because of its global ef-
fect on the meaning of names, dynamic binding can be an
obstacle to the development of modular programs. Note tha t
the choice between lexical and dynamic binding does not
need to be either/or; in Scheme, lexical binding is the
default, but one obtains dynamic binding where its is ex-
plicitly requested. Each discipline has its own justifications
in different cases, and both are necessary to writing modular
programs.

In Scheme, procedures are ~first-class citizens"; they may be
stored in data structures and returned as the value of other
procedures. Procedures are created by evaluating
LAMBDh-expressions, which are closed in the current lexical en-
vironment; tha t is, free variables obtain their values from the
environment in effect at the time the LhMBDh-expression is
evaluated. This simple and obvious feature not only has
remarkably broad applicability, but can be implemented ef-
ficiently. Lexical closures can be used to implement lazy
evaluation, procedurally defined data, and complex control
structures. They facilitate the use of combinators and func-
tional programming style. [Steele 76a, Steele 76b, Steele 77c]

The gcneral consensus in the Lisp community appears to be
tha t [=E×PR's and NLAMBDA's are harmful and unnecessary, and
should be removed from the language. Their use precludes
structural analysis of programs by compilers, people, and
other program understanders. [Pitman 80, Steele 82] Macros
serve the notational and modularity needs tha t FEXPR's at-
tempt to address, often more elegantly and correctly. This
idea was probably first articulated by Steele and Sussman,
and has since found its way into NIL and Common Lisp.
[Steele 81, White 79]

2. L a n g u a g e

This section outlines the way in which the T language
presents itself to users.

T is based on Scheme, and as such its most prominent
characteristics are lexical scoping and full closures. (But see
the discussion of dynamic binding, below.) Unlike closures in
dynamically scoped Lisps, lexical closures may be efficiently
implemented, and their existence incurs no overhead where
they are not used.

T centers around a small core language, free of complicated
features, thus easy to learn. We have sought to replace fea-
tures which introduce what we considered to be undue
semantic or implementation difficulties with acceptable alter-
natives. Where this was not possible, we have refrained from
supporting features that we didn' t feel completely right
about. T's omissions are important: we have avoided the
complicated argument list syntax of Common Lisp, keyword
options, and multiple functionality overloaded on single func-
tions. It's far easier to generalize on something later than to
implement, something now that one might later regret. All
features have been carefully considered for stylistic purity
and generality.

In designing T, we decided not to constrain ourselves by ad-
hering to Lisp tradition. Instead, we have sought to
regularize the language even if incompatibilities are intro-
duced. One way in which we have done this is in our choice
of names for primitive procedures and special forms. Ex-
amples of naming conventions are: predicates end in
question-mark (ATOM?, NULL?, SYM801_?); destructive variants
of non-destructive procedures end in exclamation mark
(APPEND! instead of NCONC); the consistent use of hyphens to
separate words (READ-LINE instead of READLINE); and use of
asterisks around global variable names (*PRINT-LFVEI.* in-
stead of PRINLEVEL). We have avoided all but the most ob-
vious abbreviations. These conventions have made the lan-
guage much easier to learn and remember.

Another way we have sought regularity is in argument pass-
ing conventions. Accessors take aggregate arguments first,
and selector arguments following (like array referencing, and
unlike Maclisp's NTH). Assignment routines take the value to
be stowed as their last argument. Optional arguments go
last.

T attempts to provides components which compose well. For
example, NIL and Common Lisp provide a procedure FILL
which destructively stores a given object as consecutive ele-
ments of a sequence (list, vector, or string). To obtain full
generality, /=ILL accepts optional arguments which specify the
range of a sequence to be filled. The problem with this is
that. all other routines which manipulate sequences must also
accept and process such optional arguments to obtain similar
generality; this introduces undue complexity in specification
and implementation, especially where two or more sequences
are involved. T's equivalent routine /=ILL! accepts only the
object and the sequence, and if a subsequence is to be
selected, tha t is done with a call to SLICE which returns a
shared subsequence. We rely on the compiler to make sure
this strategy incurs no efficiency penalty.

As in Common Lisp, T provides a rich set of data types, in-
eluding characters, strings, bit vectors, arrays, record struc-
tures, and queues.

In T~ as in object-oriented languages like Smalltalk,
[Goldberg 76] the type of an object is defined by its be-

havior. Unlike more conventional Lisp systems, T has no no-
tion of "the" type of an object. Types per se are only
represented by type predicates, and objects may answer true
to several predicates; for example, 35 answers true to both
INIEGER? and NUMBER?.

1 1 6

In T one might write the above example as follows:

(DEFINE (KONS THE-KAR THE-KDR)
(OBJECT NIL

((KAR SELF) THE-KAR)
((KDR SELF) THE-KDR)
((PARE? SELF) T)))

(DEFINE-OPERATION (KAR OBJECT) (ERROR))
(DEFINE-OPERATION (KDR OBJECT) (ERROR))
(DEFINE-OPERATION (PARE? OBJECT) NIL)

The clauses in the OBJECT form consist of pattern/behavior
pairs. Calls on generic operations where the first argument is
the result of a call to g0ss are matched against the patterns
in the OBJECT-expression. This is accomplished not by calling
the object directly, as in the Scheme version of the example,
but by calling its handler.

DEFINE-0PERATION closely resembles DEFINE. The body of
the definition provides the operation's default method. In
the case of the PARE? operation defined above, this works out
nicely because PARE? behaves as a predicate which returns
true for objects which specifically handle the PARE? operation
by returning true, and returns false (NIL) otherwise. Presum-
ably objects like 3 and APPEND will not handle the PARE?
operation, so (PARE? APPEND) will return false as expected.

T provides a simple, standardized mechanism for defining
generic operations and for creating objects which handle such
operations in idiosyncratic ways. Generic operations are
procedures which may elicit distinguishing behavior from an
object. Such operations may also have default methods for
dealing with objects which do not otherwise handle the
operation. This system for creating objects and defining
generic operations allows users to define types abstractly, and
forms the basis or T's type system.

The standard protocol by which objects handle operations is
isomorphic to the Scheme technique of implementing data
structures procedurally. The difference in T is that all ob-
jects participate in this type system, not just those
procedures which are prepared to handle the protocol. In ef-
fect, all objects have two ways in which they may be called:
normally as a procedure (this is not always permissible; for
example 35 is not callable), or alternately to handle generic
operations (this alternate entry point, or handler, is always
present).

For example, in Scheme one might write

(DEFINE (KONS THE-KAR THE-KDR)
(LAMBDA (REQUEST)

(CDND ((EQ? REQUEST 'WAR) (LAMBDA 0 THE-KAR))
((E(~? REQUEST 'KDR) (LAMBDA 0 THE-KDR))
((EQ? REQUEST 'PARE?) (LAMBDA 0 T)))))

(DEFINE (KAR OBJECT) ((OBJECT 'KAR)))
(DEFINE (KDR OBJECT) ((OBJECT 'KDR)))
(DEFINE (PARE? OBJECT) ((OBJECT 'PARE?)))

One problem with the above example is that given an ar-
bitrary object, there is no way to determine whether or not it
is a PARE. For example, to determine whether the procedure
APPEND is a PARE, it is not sufficient to say (PARE? APPEND)
because this would wind up doing ((APPEND 'PARE?)), which
is inappropriate and would cause an error.

This generic operation protocol is used by the T system for
several purposes, most notably for input and ouput, general-
ized assignment, and debugging. Because generic operations
are used these aspects of the system are inherently user-
extensible. The following example illustrates the use of
OBJECT in defining a new I /O stream.
MAKE-PREFIXED-STREAM is defined to be a routine which
returns an ! /O stream which behaves like a given 1/O
stream, except that each output line is prefixed with a given
string:

(DEFINE (MAKE-PREFIXED-STREAM STREAM PREFIX)
(OBJECT NIL

((WRITEC SELF CHARACTER)
(WRITEC STREAM CHARACTER))

((NEWLINE SELF)
(NEWLINE STREAM)
(WRITES STREAM PREFIX))))

WRITEC, WRITES and NEWLINE are generic operations which are
intended to write a character, write a string, and start a
newline, respectively.

Ordinary procedures may have handlers distinct from the
code invoked when the procedure is called. This permits
operations on procedures other than invocation, a feature not
present in Scheme. For example, SETTER is a generic opera-
tion used for general assignment, a feature similar to SETF in
Lisp Machine Lisp.

(SETTER access-procedure)

should return an assignment procedure which "inverts"
access-procedure; (SETTER CAR) returns the procedure used to
alter a pair's CAR (SET-CAR, that is, RPLACA). Similarly, a
debugging system may obtain a procedure's name, expected
number of arguments, documentation, or the name of the file
in which it is defined, by invoking generic operations.

The decision between Icxical and dynamic binding is not an
either/or question; as in Scheme, T provides both, with lex-
ical binding the default. In T, however, no distinct syntactic
form (FLUID) is required to access dynamic variables, since
dynamic binding consists merely of a temporary assignment
to a lexieal variable (which is usually global). 1

Reliably optimized tail-recursion permits direct implemen-
tation of iteration constructs using recursion, simplifying the
language's implementation and semantics. This also en-
hances extensibility and expressiveness by permitting easy
specification of new or unusual control structures.

CATCH implements a non-local exit facility similar to that in
Lisp. Within the body of

(CATCH variable body)

the variable is bound to an ¢s~..zpe procedure. The body is
evaluated and its value is the value of the CATCH-expression.
If the escape procedure is called the CATCH-expression returns
immediately and its value is the argument passed to the es-
cape procedure. This differs from CATCH in Lisp in that the
escape procedure is itself an independent object unrelated to
the variable whose value it is. In Lisp the user does not have
access to the escape procedure and its name is dynamically
(globally) bound. Scheme's lexical CATCH may be used to
implement constructs like Lisp's RETURN and C's break, al-
though it is more similar to Bliss's more general leave be-
cause it is named. Because the identifier is lexically bound,
and all references to it may be detected statically by the
compiler, calls to the escape procedure can often compile as
simple jumps.

117

As a concession to efficient implementation on standard ar-
chitectures, escape procedures are not valid outside the
dynamic extent of the CATCH-expression which creates them;
this ensures that the control stack behaves in a stack-like
way, unlike in Scheme, where the control stack must be
heap-allocated.

Some aspects of the language, particularly lexical scoping and
optimized tail-recursion, present special problems for debug-
ging tools. A program's execution history is lost early, and
variable environments of interest are not always easily acces-
sible. We have designs for mitigating these inconveniences.

T is a portable language, one whose implementation neither
requires nor precludes any particular "conventional" or
special-purpose hardware. This is a kind of insurance against
the future. By minimizing one's reliance on particular
hardware, one obtains good vendor support for hardware and
software, the ability to take advantage quickly of new tech-
nologies as soon they become available, and low cost.

On the other hand, users have access to special machine and
environment features where desired. On the Apollo one may
call arbitrary operating system code, providing easy low-level
access to the Apollo's display, window system, graphics,
process and file system control, and inter-process communica-
tion.

T supports full compatibility between interpreted and com-
piled code. The interface between compiled and interpreted
code is transparent to the user. Code which runs compiled
will run interpreted, and vice versa. Problems that users eno
counter of the form "my code runs interpreted but not
compiled" are either an interpreter or compiler bug. As dis-
cussed in the previous section, most Lisps have suffered from
a schizophrenia where interpreted and compiled code imple-
ment different default binding rules: dynamic binding in the
interpreter, lexical in the compiler.

T provides support for building large systems. Lisps have
usually only a single flat global namespace. Lisp Machine
Lisp provides a hierarchy of namespaces to aid modularity
and avoid name conflicts; this system operates using multiple
hash arrays in which symbols are "interned"; thus names are
resolved when programs are translated to S-expression by
READ. The method has problems with forward references,
shadowing, and import/export. Our solution was inspired
by, and is being worked out with the help of, Gerry Sussman
and colleagues at MIT. We eliminate the distinction between
global and local variables, and consider all names as bound in
some lexica[contour. Some of these lexical contours have the
property that they are editable; tha t is, new variable bindings
may be added or old ones removed. Language-level primi-
tives are provided for manipulating these contours in various
ways and for accessing names not in lexical environments
other than the current one. Such editable contours behave
something like file directories, and subsume the role of the
global environment.

Open-coding and block compilation are techniques whereby
users may sacrifice security and incremental redefinition to
obtain faster execution and more compact code. When a
user permits the compiler to open-code *, CAR, or structure
field accessors, for example, he is asserting that he is willing
to put up with the loss of argument type checking (probably
because he believes his code to be correct) and a high cost for
redefining the open-coded routines - - he may have to recom-
pile all of his code or perhaps even. the entire T system itself
if CAR changes. T decouples open-coding from runtime con-
sistency checking, and users always have independent control
over each on a per-call, per-procedure, or per-module basis.
If incremental redefinition conflicts with previous early bind-
ing decisions the user is warned and provided with an oppor-
tunity to regain consistency either by backing out or by
recompiling the offending code.

3. Implementation

Most of T is currently implemented for the VAX-112 under
Unix 3 and VMS and for the Motorola MC68000-based Apollo
Domain 4 workstation. [Apollo 821 Internally these implemen-
tations are structured quite similarly and share most of their
code, to the extent tha t sometimes we refer to "the
VAX/68000 implementation." This section describes these
implementations, although much of what is described will ap-
ply to future implementations on different machines as well.
Many pieces of the VAX/68000 implementation will be
directly usable in other architectures.

Many specific implementation techniques, for example the
way type codes work, the means by which position-
independent code is achieved, and the idea of a global system
constants table, have been borrowed from the VAX NIL im-
plementation. [White 79]

We have written as much code as possible in T itself. We
exploit the compiler and its ability to generate good code
quite heavily. In fact, in terms of lines of source code, the
compiler comprises at the moment well more than half of the
implementation. In this way T's character resembles tha t of
more traditional compiled languages, where the runtime
library is relatively unimportant compared to the compiler,
so one tends to think of the language as implemented by the
compiler rather than by the runtime system. However, this
is not to say that the compiler knows many specific things,
but rather, it knows a lot about a small number of things
(like LAMBDA).
The compiler is a substantial modification of one written by
Guy Steele, the S-1 Common Lisp compiler, which is
described in detail elsewhere in these proceedings. [Gabriel
82] It is based on principles similar to the RABBIT compiler,
and incorporates a register allocation algorithm similar to
tha t in the Bliss-ll compiler. [Steele 78c, Wulf 75] In ad-
dition to changes in the surface language and code generator,
we extended the compiler to implement lexical closures. En-
vironments are allocated using generalizations of the methods
used in RABBIT. Heap-allocated environments are
represented not by lists as in RABBIT but by chained vec-
tors. Environment consing is postponed until the latest pos-
sible point, and contours are collapsed where appropriate to
obtain more compact representations.

118

In January 1982 we decided to suspend work on a critical
subphase of the code generator, to get a chance to work on
the rest of the system. As a result the object code is much
more verbose than it will be when this subphase is working.
We expect about a factor of two improvement in the overall
speed of the system after we have a chance to work on the
code generator again. We anticipate no problems in making
this change.

Because most of the system is written in T, its machine-
language kernel is small. For example, it does not include
the evaluato# or garbage collector. However, it is bigger than
we would like it to be. The reason for its size is mostly that
it was generally more expeditious to introduce new assembly-
language routines than new code generators and compiler
features; in practical terms, the choice between these two al-
ternatives is often a toss-up. We expect the size of the ker-
nels to decrease as time passes.

By requiring that all objects be quadword aligned, the low
three bits of a T pointer can be used to encode the low-level,
internal type of the object represented by the pointer. The
internal type escape indicates that the actual internal type
can be obtained from a standard place in the object itself.
The pointer tags are used to encode the same internal types
on both the VAX and 68000, though this need not be the
case. There is, in fact, some variation between the two im-
plementations in the mapping of tag to type. Internal types
that are currently represented directly by pointer tags are:

f ixnum immediate integer, 29 bits
pair a single list cell
flonum floating point number
strin 9 character string header
miscellaneous 0 and characters
template type descriptor

The use of the one unassigned tag will soon be decided based
on the results of system metering.

The representations have been engineered to minimize the
pointer calculation needed in order to manipulate the objects
represented. For example, a pair (cons cell) consists of two
32-bit pointers for the cell's CAR and C0R. Suppose the type
tag used for pointers to pairs is 5 (this is a system
parameter). If R0 is a register which holds such a pointer,
then the assembly operands -5(R0) and -1 (R0) fetch the CAR
and CDR, respectively. Fixnum arithmetic can be compiled in
line efficiently because the fixnum tag is 0. Two fixnums can
be added or subtracted in a single instruction. Multiplication
requires that one of the fixnums be pre-normalized with a 3
bit shift right; the result of division must be post-normalized
with a 3 bit shift left.

All objects have templates, which are low-level type descrip-
tors. 5 These roughly correspond to classes in Smalltalk, or
flavors in Lisp Machine Lisp. In the case of objects whose
type is represented directly in the pointer's tag field, the
template is obtained by a table lookup (except tha t the
miscellaneous type is multiplexed, requiring further
disambiguation); otherwise, the pointer's tag field is the es-
cape tag, and the template is found by following the pointer
(similarly to CAR, described above). An objeet's template
provides information for the garbage collector, and contains
the procedure used to handle generic operations applied to
the object.

In the case of procedures, the template also gives the
machine code to run when the procedure is called, the
procedure's name, number of arguments, and other infor-
mation. Templates thus correspond to source-level
LhMSOh-expressions or "open procedures".

Invoking unknown procedures is uniform and cheap; one can
jump directly to the called procedure's template. In Maclisp
the FUhlCAI_L primitive is considerably more expensive than a
call to a known procedure, because a type dispatch must be
performed, and different calling sequences must be handled.
The T implementation has a single standard calling sequence
and one representation for procedures, so its equivalent of
FUNCAI.L has overhead more similar to Maclisp's SOl3RCALL.
The implementation permits dynamic alteration, on a per-
module basis, of the amount of consistency checking (e.g.
number of arguments) performed on each procedure call.

Stack frames are valid language-level objects at no extra
cost. A stack frame's template is precisely its return address.
This has allowed considerable simplification and generality in
those parts of the system which are concerned with stacks,
for example, THROW, stack inspection in the debugger, and the
garbage collector. The correspondence between stack frames
and the implicit continuation discussed in [Steele 76b] is
reflected in the implementation, to the extent that returning
a value - - that is, invoking an implicit continuation - - be-
haves nearly the same as procedure calling.

We open-code consing (alloction) in one or two instructions;
the top-of-heap pointer is contained in a register. A simple
copying garbage collector is employed. When necessary or
desirable, the system stops and traces all active pointers,
making a compact copy of the active heap. Objects may
also be statically allocated if desired, in which case they are
traced but not copied. The garbage collector is data-driven;
each low-level type descriptor (template) effectively contains
a pointer to the routine to be used to copy instances of the
type.

As in Maclisp, asynchronous interrupts (for example, timer or
user keyboard interrupts) may occur between any two in-
structions. Since interrupt handlers consist of arbitrary code,
they may potentially invoke the garbage collector, which
might involve relocating the interrupted object code itself.
Getting this right requires some care if consing is interrupted.

One register is used to point into a global system constants
table. This is a structure, whose format is known by the
compiler, which holds frequently-used quantities of various
kinds, like O, pointers to important procedures, and bit
masks. This is important because all code must be position-
independent.

The implementation supports position-independent sharable
code. This has advantages in the virtual memory multi-
processing architectures for which T was designed. Multiple
T processes (perhaps invoked by different users) may
dynamically load object files and obtain sharing, using an
exit-vector strategy similar to that used in the Multics and
Apollo operating systems. (Unfortunately, we can' t make use
of this under Unix, due to its per-process limit on the number
of open files.) Code which is loaded into the active storage
area (heap) is moved during garbage collections, and if all
pointers into a module have been dropped, its storage is
reclaimed.

119

A compiler option permits generation of modules in such a
way that they can loaded using native operating system
linkers, such as I d in Unix. Because the T dynamic loader
need not process these modules we call them "pre-eooked."
Along with the object code for pre-eooked modules, the com-
piler also produces the skeleton of an initial heap, which con-
sists of the symbols and value cells required by those
modules. Only the dynamic loader, and the support it re-
quires, need be pre-cooked; when the system starts up it
dynamically loads all of the remaining system. Actually, the
dynamic loader's loading (file I/O) and relocation phases are
independent. This allows ordinary (not pre-cooked) modules
to be linked into the system with the operating system's
linker; they are automatically Lisp-relocated in the system in-
itialization sequence.

During summer 1982 we plan to generalize the garbage col-
lector to be able to copy the entire current state of the sys-
tem (including heap and control stack) to a file, which can
later be invoked to recover this state, like SUSPEND in
Maclisp. Unlike the situation with Maclisp on the PDP-10,
however, the operating systems under which we must run T
do not provide any support for a suspension facility; in fact,
on the Apollo, we are constrained to use a position-
independent representation for suspended systems. This
representation will be similar to the object file representation,
and we will use the same relocation program to resume after
the suspension.

We provide general interfaces to arbitrary non-Lisp code;
usually C on the VAX and Pascal on the Apollo. The im-
plementations use these interfaces to do basic I /O functions
and other system control. This is one major means by which
we have avoided writing code in assembly language.

Portability is achieved in the conventional way by a well
modularized compiler and (small} machine dependent run-
time system that handles, among other things, machine inter-
rupts, memory management, and low level input and output.
The compiler's register allocation and optimization phases
are machine independent. Both are driven by information
which may be machine specific, for example, the number of
registers, and restrictions on the types of instruction operands
permissible in , open-coded procedures such as CAR and
FIXNUM-ADD.

Because the language design is still experimental, we have
been careful to avoid premature optimization. The emphasis
has been on providing functionality first and working on per-
formance later; correctness and completeness have taken
priority over efficiency.

4. S t a t u s

The most important components of the system are already in
place. There is a preliminary manual [Adams 82], and users
at Yale are developing new applications programs in T, as
well as transporting code previously developed in other Lisp
dialects. The system is now in good enough shape that work
can begin transporting the T compiler, which currently runs
in Tops-20 Maclisp, to T on the VAX and Apollo. We ex-
pect no major problems doing this, as most of the compiler is
written in a common subset of Maclisp and T, using a simple
T compatibility mode developed for Maclisp.

Work on the project began in June 1981 with a staff of
three. During this initial period an interpreter for Scheme
was developed in which many language and system design
issues were explored; this interpreter ran in DEC-20 Maclisp.
We also converted the compiler, which when we obtained it
generated code for the S-l computer, to generate code for the
VAX and the 68000, and adjusted its source language to be
more Scheme-like than Lisp-like.

From September 1981 to May 1982 the project was staffed
with one and a quarter full-time people. About half this time
was devoted to further work on the compiler to support
closures and dynamic loading. The other half was spent
writing and debugging system code: interpreter, garbage col-
lector, I /O system, and so forth.

During summer 1982 two of us will be working full-time.
Most of our effort will be directed towards improving perfor-
mance. Inspired in part by reported experience with im-
plementing Interlisp [Burton 80], we intend to develop and
begin using general tools for profiling and metering the sys-
tem as soon as possible. Debugging aids and user interface
will also receive much attention.

Plans for future development include the following.

Arithmetic. We intend to support rational and arbitrary-
precision integer arithmetic, and possibly interval and com-
plex arithmetic. This area has so far received comparatively
little attention. This is not because we don' t consider it im-
portant, but because we've had so many other things to
worry about.

Early bindin9 and module interfaces. The early binding
facilities outlined in section 2 are designed and partially
coded. We need to develop more complete tools for source
code control and module interface specification.

Declarations and type propagation. We want to be able to
statically transform generic to specific operations with a min-
imum of hints (in the form of assertions or declarations on
the types of expressions and variables} from the user; for ex-
ample, transforming generic + to open-coded fixnum or
flonum addition based on knowledge of the types of operands
and result. This is conceptually similar to constant folding.
Ideally this would be done with a general partial evaluation
strategy similar to that already in the compiler.

Open-coded references to procedural data. For example, if a
variable F is known to be a closure over a particular lambda-
expression (LAMBDA () Y), where Y is a local variable, then
calls to F may be open-coded as references to Y's position in
F's environment structure. This problem is discussed in
[Steele 76b]. Once this is possible, the current structure

package, which is currently distinct from the rest of the type
system for efficiency reasons, may be implemented using
closures.

General stack-allocated objects. In particular, the ability to
create closures on the stack allows one to pass general
"downward funargs" to programs without heap-allocating en-
vironments.

Multiple control stacks. We need to re-introduce some kind
of coroutine mechanism, to compensate for our restriction on
the use of escape procedures to enforce stack-like behavior.
With this facility we could easily implement multiple tasks
within a single T image, with a simple scheduler. We an-
ticipate no problems extending the garbage to be able to
reclaim stacks and coroutines to which there are no active
pointers.

120

Portability. We need to make the transportation process
smoother, in preparation for moves to other machines, which
will inevitably differ from the VAX and 68000 to a greater
extent than those machines differ from each other. The in-
terfaces between components of the compiler which deal with
more or less machine-independent must be made more ex-
plicit than they are now. We are considering beginning an
IBM 370 implementation this summer.

Common Lisp compatibility. We believe that T will be
general enough to be useful as an implementation vehicle for
Common Lisp. We expect programs which adhere to the
Common Lisp specification to run transparently in a Com-
mon Lisp subsystem implemented within T. Determining the
difficulty of this task will need to wait until the Common
Lisp language specification has stabilized.

In the long ruo, we would like to continue to improve ef-
ficiency towards a degree competitive with, say, Bliss. We
feel that there is ultimately no reason that programmers
should have to resort languages besides Lisp (that is, T) to
obtain desired performance levels.

5. Conclusions

The T project has benefited from having not been con-
strained by the need for compatibility with other Lisps. We
have made every effort to ensure that this incompatibility is
not gratuitous.

We believe our methodology has proved effective. Our ap-
proach has emphasized the following principles:

• Avoid premature optimization.

• Approach ends not monolithically but by progres-
sive approximation.

• If there's a problem, generalize it, then solve the
more general problem.

This approach has permitted a small number of people to
design and implement a powerful system in a relatively short
amount of time. Much remains to be done, but it can be
said that at one year old T is already a practical system.

T's emphasis and dependence on an optimizing compiler may
be a new idea in the Lisp world, especially today when
everyone seems to be opting for special hardware, but it is
accepted practice outside the Lisp world. Early experience
with T seems to justify our belief that conventional machine
architectures can be used effectively to implement a produc-
tion Lisp system.

T is a synthesis of those concepts and features we have seen
elsewhere and liked. But we believe that in spite of its
diverse influences we have built a clean, coherent, and power-
ful programming language.

Acknowledgements

Kent Pitman's generous contributions to this project are
much appreciated.

The authors wish to thank John Ellis, Drew McDermott,
Nathaniel Mishkin, John O'Donnell, and Robert Nix, for
their support during the preparation of this paper.

The work of Guy L. Steele Jr. and Gerald J. Sussman has
been a continuing inspiration.

[Adams 82]

[Apollo 821

[Bawden 77]

[Burton 80]

[Foderaro 80]

[Gabriel 82]

[Goldberg 76]

[Griss 82]

[Kernighan 81]

[Moon 74]

R e f e r e n c e s

Norman I. Adams and Jonathan A. Rees.
The T Manual.
Yale University, Department of Computer

Science, New Haven, Connecticut, 1982.
Pre-release Edition.

System Programmer's Reference Manual.
Apollo Computer, Inc., 19 Alpha Road,

Chelmsford, Massachusetts 01824, 1982.

Alan Bawden, Richard Greenblatt, Jack
Holloway, Tom Knight, David Moon,
and Daniel Weinreb.

Lisp Machine progress report.
AI Memo 444, Artificial Intelligence

Laboratory, Massachusetts Institute of
Technology, August 1977.

Richard R. Burton, L. M. Masinter, Daniel
G. Bobrow, Willie Sue Haugeland,
Ronald M. Kaplan, and B. A. Sheil.

Overview and status of Doradolisp.
In Conference Record o f the 1980 Lisp

Conference, pages 179-187. Stanford
University, Computer Science Depart-
ment, August 1980.

John K. Foderaro.
The Franz Lisp manual: A document in

four movements.
Computer Science Research Group, Univer-

sity of California at Berkeley, 1980.

Richard P. Gabriel, Rodney A. Brooks and
Guy L. Steele.

S- 1B Corn mon Lisp implementation.
In Proceedings of the 1982 ACM Sym-

posium on Lisp and Functional
Programming. Association for Comput-
ing Machinery, August 1982.

To appear.

Adele Goldberg and Alan Kay.
Smalltalk-72 instruction manual.
Technical Report, Xerox Palo Alto Research

Center, March 1976.

Martin L. Griss.
Portable Standard LISP: A brief overview.
Operating Note 58, University of Utah,

Department of Computer Science,
January 1982.

Brian W. Kernighan.
Why Pascal is not my favorite program-

ming language.
Computing Science Technical Report 100,

Bell Laboratories, Murray Hill, New Jer-
sey, July 1981.

David A. Moon.
Maclisp reference manual, revision 0.
Project MAC, MIT, Cambridge, Massachu-

setts, 1974.

121

[Moore 79]

[Pitman 80]

[Steele 76a]

[Steele 76b]

[Steele 77a]

[Steele 77b]

[Steele 77c]

[Steele 78a]

[Steele 78b]

J. Strother Moore 11.
The lnterlisp Virtual Machine specification.
Technical Report CSL 76-5, Xerox Palo

Alto Research Center, March 1979.

Kent M. Pitman.
Special forms in Lisp.
In Conference Record of the 1980 Lisp

Conference, pages 179-187. Stanford
University, Computer Science Depart-
ment, Atlgust 1980.

Guy Lewis Steele, Jr. and Gerald Jay
Sussman.

Lambda, the ultimate imperative.
AI Memo 353, Artificial Intelligence

Laboratory, Massachusetts Institute of
Technology, March 1976.

Guy Lewis Steele, Jr.
Lambda, the ultimate declarative.
AI Memo 379, Artificial Intelligence

Laboratory, Massachusetts Institute of
Technology, November 1976.

Guy Lewis Steele, Jr.
Data representation in PDP-10 Maclisp.
AI Memo 420, Artificial Intelligence

Laboratory, Massachusetts Institute of
Technology, September 1977.

Guy Lewis Steele, Jr.
Fast arithmetic in Maclisp.
AI Memo 421, Artificial Intelligence

Laboratory, Massachusetts Institute of
Technology, September 1977.

Guy Lewis Steele, Jr.
Debunking the expensive procedure call

myth, or, procecdure call implemen-
tations considered harmful, or, lambda:
The ultimate goto.

AI Memo 443, Artificial Intelligence
Laboratory, Massachusetts Institute of
Technology, October 1977.

Guy Lewis Steele, Jr. and Gerald Jay
Sussman.

The revised report on Scheme, a dialect of
Lisp.

Al Memo 452, Artificial Intelligence
Laboratory, Massachusetts Institute of
Technology, January 1978.

Guy Lewis Steele, Jr. and Gerald Jay
Sussman.

The art of the interpreter or, the
modularity complex (parts zero, one,
and two).

AI Memo 453, Artificial Intelligence
Laboratory, Massachusetts Institute of
Technology, May 1978.

[Steele 78c] Guy Lewis Steele, Jr.
Rabbit: A compiler for Scheme (a study in

compiler optimization}.
Technical Report 454, Artificial Intelligence

Laboratory, Massachusetts Institute of
Technology, May 1978.

[Steele 81] Guy L. Steele, Jr. and Scott E. Fahlman.
Common Lisp reference manual.
Spice Document S061, Computer Science

Department, Carnegie-Mellon University,
September 1981.

[Steele 82] Guy L. Steele.
Report on the 1980 Lisp Conference, Stan-

ford Universty, August 25-27, 1980.
ACM SIGPLAN Notices 17(3):22-35,

March 1982.

[Teitelman 78] Warren Teitelman.
Interlisp Reference Manual.
Xerox Palo Alto Research Center, Palo

Alto, California, 1978.

[Weinreb 81] Daniel Weiureb and David Moon.
Lisp h4achine Manual.
Third edition, Artificial Intelligence

Laboratory, Massachusetts Institute of
Technology, Cambridge, Massachusetts,
1981.

[White 79] Jon L. White.
Nil: A perspective.
In 1979 Macsyraa Users' Conference

Proceedings. Macsyma User's Con-
ference, Washington, D.C., June 1979.

[Wulf 75] William Wulf, Richard K. Johnsson,
Charles B. Weinstock, Steven O. Hobbs,
Charles M. Gesehke.

The Design o f an Optimizing Compiler.
Elsevier North-Holland, New York, 1975.

1Shallow binding works only in uniprocessor architectures. If
T were implemented in a multiprocessor architecture we
would need to go to some sort of deep-binding strategy for
dynamic variables. Thanks to Guy Steele for this insight.

2VAX is a trademark of Digital Equipment Corporation.

3UNIX is a trademark of Bell Laboratories.

4Domain is a trademark of Apollo Computer, Inc.

5This is not strictly true in the current system, but it might
as well be.

122

