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A b s t r a c t  

The T project is an experiment in language design and im- 
plementation. Its purpose is to test the thesis developed by 
Steele and Sussman in their series of papers about the 
Scheme language: tha t  Scheme may be used as the basis for 
a practical programming language of exceptional expressive 
power; and, tha t  implementations of Scheme could perform 
better than other Lisp systems, and competitively with im- 
plementations of programming languages, such as C and 
Bliss, which are usually considered to be inherently more ef- 
ficient than Lisp on conventional machine architectures. We 
are developing a portable implementation of T, currently tar- 
geted for the VAX under the Unix and VMS operating sys- 
tems and for the Apollo, a MC68000-based workstation. 

1. M o t i v a t i o n  

During the spring of 1981 the Yale Computer Science Depart- 
ment was faced with the problem of deciding how it would 
compute during the next several years. Cheap and powerful 
large address space machines existed, but language, im- 
plementation, or availability problems made the candidate 
Lisp systems unattractive. Instead of waiting for some other 
university to fill this need, the department decided to take 
advantage of the authors' eagerness to implement a produc- 
tion quality Lisp. The resulting project is a relentless com- 
promise (or more optimistically speaking, a successful 
marriage} between the practical necessity of making a work- 
ing system available soon for people to use, and the 
implementors' idealism. The opportunity was before us to 
determine just  what kind of language we really wanted, and 
to proceed to implement that .  

Rather than transport any existing Lisp system to the 
machines we were interested in, or even using an existing lan- 
guage specification (such as NIL) as a foundation on which to 
build, we decided to design a language and implementation 
from the ground up. This section attempts to summarize the 
considerations which led to this decision and which helped 
shape our design. 
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1 .1 .  L i s p  

It almost goes without saying that  the basic Lisp paradigm 
seemed a very good place to start. Lisps in general provide 
the following desirable features: 

• Program as data. A simple, standard internal 
representation is used to represent source 
programs. 

• General-purpose syntax. Lisp provides a standard 
external syntax for representing programs and 
data which is unbiased with respect to applica- 
tion. 

• Incremental procedure redefinition. The fact tha t  
edits to source code are reflected immediately in 
the running environment greatly speeds debug- 
ging. 

• Powerful debugging tools. Lisp systems usually 
supply integrated tools to aid interactive debug- 
ging. 

• Storage management.  A garbage collector relieves 
the programmer of the chore of storage manage- 
ment, thus promoting conciseness and readability 
and eliminating many sources of error. 

• Typed data. Lisp is dynamically typed rather than 
statically typed. This promotes generality and 
abstractness and helps reduce the "noise level" in 
programs by eliminating the need for declara- 
tions. 

• Not a police state. Lisp systems provide the user 
with complete control over the system and 
general access to low-level representations. 

Lisp's use of symbolic lis'~ structure to represent programs in- 
ternally really has no parallel in other languages. The provi- 
sion of a standard internal representation for source code is 
responsible for the ease with which evaluators, compilers, 
translators, and other program synthesizers and analyzers can 
be written. Lisp's macro facility provides a powerful means 
by which the language can be extended and new notations 
and abstractions developed. Their generality, far exceeding 
that  of macro facilities in languages like Bliss and PL/1, 
owes to the fact tha t  the macro expansion routines are writ- 
ten in Lisp itself, and tha t  source code is represented in a 
standard way. 
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Related to the use of standard internal representation is the 
use of a standard external representation. Lisp's "Cambridge 
Polish" notation is unbiased with respect to its interpreta- 
tion. It sacrifices conciseness in certain special cases for 
generality, uniformity, and simplicity. One need not worry 
about low-level syntax issues when dealing with extensions 
and imbedded languages. The computer science literature's 
obsession with lexical and syntactic analysis becomes a mys- 
tery to those familiar with Lisp. 

Incremental redefinition effectively eliminates the compile 
and load phases in the traditional edit /compile/load/test  
debugging cycle; this is absolutely essential when dealing 
with very large programs, where the time required to recom- 
pile a module (and its clients), invoke a linker, start a 
process, initialize, and get into a state where one can proceed 
to locate the next bug in the program, would make any other 
approach absurd. 

Lisps have traditionally paid close attention to interactive 
debugging, providing language-level single-stepping, call trac- 
ing, breakpoints, control stack and environment inspection, 
data structure inspectors and editors, and error recovery. 
These tools have usually not been wired into the system but 
rather have been built by user communities on top of general 
underlying primitives. 

Dynamic typing aids in modularity and orthogonality; 
routines can be trivially defined which work on any kind of 
data, or do generic dispatches in a variety of ways. Type 
declarations are optional. This enhances program conciseness 
and readability. When included, type declarations provide a 
compiler with information that  can be used to improve code 
quality. In an interpreter, they can be used for consistency 
checking. 

Programmers are free to manipulate the system in potentially 
dangerous ways, if they need to be able to do so. Language 
designers and implementors should not presume that  a 
programmer will never need to do something "dangerous" or 
"unportable". Security and consistency checks should exist 
as an aid to the programmer, not as a hindrance (as in Pas- 
cal, for example). [Kernighan 81] 

1.2. Modern Lisps 

In addition to these standard Lisp features, a number of 
other important issues have been addressed in various 
production Lisp implementations. More and more is becom- 
ing expected of modern production-quality Lisps and their 
implementations. [Teitelman 78, Weiureb 81] Some of the 
issues we consider important are ou.tlined below. 

Maclisp's popularity owes much to the quality of its 
compiler's object code and the years of effort devoted to sys- 
tem tuning. [Moon 74, Steele 77a, Steele 77b] The belief that  
Lisp is inherently inefficient is still prevalent, though recent 
work has begun to clear up that  misconception. Some recent 
large-system Lisp efforts have argued that  the amount of ef- 
fort required to produce effective compilers for conventional- 
architecture machines, and the potential for complexity and 
error, are so great that  the best approach is to develop 
special-purpose processors better suited to the task of run- 
ning Lisp programs. [Bawden 77] While there is much to be 
said for that,  the authors believe that  the verdict is not yet 
in on the need for hardware support. 

As Lisp's popularity grows and its use in developing useful, 
production programs increases, portability becomes impor- 
tant .  However, a perhaps stronger argument for portability 
is the need to take advantage of new techno lo~  and ar- 
chitectures as they become available. Franz Lisp, Portable 
Standard Lisp, Interlisp, and Common Lisp have each ad- 
dressed portability issues in different ways. [Steele 
81, Foderaro 80, Griss 82, Moore 79] 

Object-oriented languages have been implemented often in 
Lisp, but the Lisp Machine was the first production Lisp of 
which the authors are aware which made the message-passing 
idiom an integral part of the system. [Weiureb 81] The Lisp 
Machine "flavor" system has proved to work quite success- 
fully as a tool to achieve modularity and is a standard and 
popular part of the programmer's repertoire. 

Many Lisps implement some form of functional closm'e, 
though they are often neither completely general nor well in- 
tegerated. 

Modern Lisps provide general CATCH and THROW constructs for 
performing non-local exits. Another related feature is some- 
times called UNWIND-PROTECT: the ability to force some sort 
of clean-up to happen even if during the computation of 
some expression there is a THROW out of it. For example, a 
routine which manipulates an open file would like to make 
sure the file gets closed even if the routine is aborted or 
otherwise exits abnormally. UNWIND-PROTECT can be thought 
of as a generalization of shallow dynamic binding, where 
variables which have been "temporarily" assigned values are 
always reset to their previous values even if the form which 
binds them exits abnormally. Coroutines and multitasking 
are also desirable features, particularly where the machine's 
operating system is Lisp itself. 

As the size of a system grows the potential for naming con- 
flicts increases. When one tries to run several large programs 
in a single Lisp environment, as on the Lisp Machine where 
the editor, compiler, "operating system," and different al> 
plication programs all run in the same address space, using 
the traditional flat, global namespace is out of the question; 
multiple namespaces are necessary. 

In order to develop correct and compi}able programs, it is im- 
portant  that  the compiler and interpreter implement the 
same language. Usually, Lisps have been dynamically scoped 
at heart, but when code is compiled, bound variables not 
declared to be "special" become lexically seoped. This use of 
lexical scoping has been considered a concession to efficient 
implementation, not a language feature. ~rhen a program 
runs well enough that  a user thinks about trying to compile 
it, the user usually must make a pass over the program, ad- 
ding declarations and even changing code and file organiza- 
tion, in order to make it compilable. Some programs 
(especially those making heavy use of FE×PR's) may never run 
compiled, while others (especially those making heavy use of 
functional arguments) will not run interpreted. In Lisp 
Machine Lisp some important language features are imple- 
mented only in compiled code, not in interpreted code. 

One approach to this problem is to sacrifice efficiency by 
forcing the compiler to implement the same dynamic binding 
semantics as the interpreter. To the authors' knowledge, 
MIT's New Implementation of Lisp (NIL) is the only produc- 
tion Lisp system which endorses lexical scoping and employs 
an interpreter which correctly handles lexical binding as well 
as "special" declarations. 
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1.3. S c h e m e  

Scheme is a lexically scoped variant of Lisp which has had 
broad influence in Lisp circles, in spite of the fact tha t  no 
production implementations are generally available. [Steele 
78a] Scheme is appealing for a number of reasons. 

Scheme is a small language. It is easy to learn and straitfor- 
ward to implement. In Scheme, a few powerful concepts 
combine well to provide a rich and expressive environment. 

Lexical scoping is not merely a compromise to make the lan- 
guage compilable, as some dynamic binding partisans will at- 
test. It aids the programmer as well as the compiler. The 
ease for lexical binding is presented eloquently throughout 
Steele and Sussman's work, especially in [Steele 78b]. Essen- 
tially their point is tha t  dynamic binding violates referential 
transparency, the requirement tha t  "the meanings of parts of 
a program be apparent and not change, so tha t  such mean- 
ings can be reliably depended upon." Because of its global ef- 
fect on the meaning of names, dynamic binding can be an 
obstacle to the development of modular programs. Note tha t  
the choice between lexical and dynamic binding does not 
need to be either/or; in Scheme, lexical binding is the 
default, but one obtains dynamic binding where its is ex- 
plicitly requested. Each discipline has its own justifications 
in different cases, and both are necessary to writing modular 
programs. 

In Scheme, procedures are ~first-class citizens"; they may be 
stored in data structures and returned as the value of other 
procedures. Procedures are created by evaluating 
LAMBDh-expressions, which are closed in the current lexical en- 
vironment; tha t  is, free variables obtain their values from the 
environment in effect at the time the LhMBDh-expression is 
evaluated. This simple and obvious feature not only has 
remarkably broad applicability, but can be implemented ef- 
ficiently. Lexical closures can be used to implement lazy 
evaluation, procedurally defined data, and complex control 
structures. They facilitate the use of combinators and func- 
tional programming style. [Steele 76a, Steele 76b, Steele 77c] 

The gcneral consensus in the Lisp community appears to be 
tha t  [=E×PR's and NLAMBDA's are harmful and unnecessary, and 
should be removed from the language. Their use precludes 
structural analysis of programs by compilers, people, and 
other program understanders. [Pitman 80, Steele 82] Macros 
serve the notational and modularity needs tha t  FEXPR's at- 
tempt to address, often more elegantly and correctly. This 
idea was probably first articulated by Steele and Sussman, 
and has since found its way into NIL and Common Lisp. 
[Steele 81, White 79] 

2. L a n g u a g e  

This section outlines the way in which the T language 
presents itself to users. 

T is based on Scheme, and as such its most prominent 
characteristics are lexical scoping and full closures. (But see 
the discussion of dynamic binding, below.) Unlike closures in 
dynamically scoped Lisps, lexical closures may be efficiently 
implemented, and their existence incurs no overhead where 
they are not used. 

T centers around a small core language, free of complicated 
features, thus easy to learn. We have sought to replace fea- 
tures which introduce what we considered to be undue 
semantic or implementation difficulties with acceptable alter- 
natives. Where this was not possible, we have refrained from 
supporting features that  we didn' t  feel completely right 
about. T's omissions are important: we have avoided the 
complicated argument list syntax of Common Lisp, keyword 
options, and multiple functionality overloaded on single func- 
tions. It's far easier to generalize on something later than to 
implement, something now that  one might later regret. All 
features have been carefully considered for stylistic purity 
and generality. 

In designing T, we decided not to constrain ourselves by ad- 
hering to Lisp tradition. Instead, we have sought to 
regularize the language even if incompatibilities are intro- 
duced. One way in which we have done this is in our choice 
of names for primitive procedures and special forms. Ex- 
amples of naming conventions are: predicates end in 
question-mark (ATOM?, NULL?, SYM801_?); destructive variants 
of non-destructive procedures end in exclamation mark 
(APPEND! instead of NCONC); the consistent use of hyphens to 
separate words (READ-LINE instead of READLINE); and use of 
asterisks around global variable names (*PRINT-LFVEI.* in- 
stead of PRINLEVEL). We have avoided all but the most ob- 
vious abbreviations. These conventions have made the lan- 
guage much easier to learn and remember. 

Another way we have sought regularity is in argument pass- 
ing conventions. Accessors take aggregate arguments first, 
and selector arguments following (like array referencing, and 
unlike Maclisp's NTH). Assignment routines take the value to 
be stowed as their last argument. Optional arguments go 
last. 

T attempts to provides components which compose well. For 
example, NIL and Common Lisp provide a procedure FILL 
which destructively stores a given object as consecutive ele- 
ments of a sequence (list, vector, or string). To obtain full 
generality, /=ILL accepts optional arguments which specify the 
range of a sequence to be filled. The problem with this is 
that. all other routines which manipulate sequences must also 
accept and process such optional arguments to obtain similar 
generality; this introduces undue complexity in specification 
and implementation, especially where two or more sequences 
are involved. T's equivalent routine /=ILL! accepts only the 
object and the sequence, and if a subsequence is to be 
selected, tha t  is done with a call to SLICE which returns a 
shared subsequence. We rely on the compiler to make sure 
this strategy incurs no efficiency penalty. 

As in Common Lisp, T provides a rich set of data types, in- 
eluding characters, strings, bit vectors, arrays, record struc- 
tures, and queues. 

In T~ as in object-oriented languages like Smalltalk, 
[Goldberg 76] the type of an object is defined by its be- 

havior. Unlike more conventional Lisp systems, T has no no- 
tion of "the" type of an object. Types per se are only 
represented by type predicates, and objects may answer true 
to several predicates; for example, 35 answers true to both 
INIEGER? and NUMBER?. 
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In T one might write the above example as follows: 

(DEFINE (KONS THE-KAR THE-KDR) 
(OBJECT NIL 

((KAR SELF) THE-KAR) 
((KDR SELF) THE-KDR) 
((PARE? SELF) T))) 

(DEFINE-OPERATION (KAR OBJECT) (ERROR)) 
(DEFINE-OPERATION (KDR OBJECT) (ERROR)) 
(DEFINE-OPERATION (PARE? OBJECT) NIL) 

The clauses in the OBJECT form consist of pattern/behavior 
pairs. Calls on generic operations where the first argument is 
the result of a call to g0ss are matched against the patterns 
in the OBJECT-expression. This is accomplished not by calling 
the object directly, as in the Scheme version of the example, 
but by calling its handler. 

DEFINE-0PERATION closely resembles DEFINE. The body of 
the definition provides the operation's default method. In 
the case of the PARE? operation defined above, this works out 
nicely because PARE? behaves as a predicate which returns 
true for objects which specifically handle the PARE? operation 
by returning true, and returns false (NIL) otherwise. Presum- 
ably objects like 3 and APPEND will not handle the PARE? 
operation, so (PARE? APPEND) will return false as expected. 

T provides a simple, standardized mechanism for defining 
generic operations and for creating objects which handle such 
operations in idiosyncratic ways. Generic operations are 
procedures which may elicit distinguishing behavior from an 
object. Such operations may also have default methods for 
dealing with objects which do not otherwise handle the 
operation. This system for creating objects and defining 
generic operations allows users to define types abstractly, and 
forms the basis or T's type system. 

The standard protocol by which objects handle operations is 
isomorphic to the Scheme technique of implementing data 
structures procedurally. The difference in T is that all ob- 
jects participate in this type system, not just those 
procedures which are prepared to handle the protocol. In ef- 
fect, all objects have two ways in which they may be called: 
normally as a procedure (this is not always permissible; for 
example 35 is not callable), or alternately to handle generic 
operations (this alternate entry point, or handler, is always 
present). 

For example, in Scheme one might write 

(DEFINE (KONS THE-KAR THE-KDR) 
(LAMBDA (REQUEST) 

(CDND ((EQ? REQUEST 'WAR) (LAMBDA 0 THE-KAR)) 
((E(~? REQUEST 'KDR) (LAMBDA 0 THE-KDR)) 
((EQ? REQUEST 'PARE?) (LAMBDA 0 T))))) 

(DEFINE (KAR OBJECT) ((OBJECT 'KAR))) 
(DEFINE (KDR OBJECT) ((OBJECT 'KDR))) 
(DEFINE (PARE? OBJECT) ((OBJECT 'PARE?))) 

One problem with the above example is that given an ar- 
bitrary object, there is no way to determine whether or not it 
is a PARE. For example, to determine whether the procedure 
APPEND is a PARE, it is not sufficient to say (PARE? APPEND) 
because this would wind up doing ((APPEND 'PARE?)), which 
is inappropriate and would cause an error. 

This generic operation protocol is used by the T system for 
several purposes, most notably for input and ouput, general- 
ized assignment, and debugging. Because generic operations 
are used these aspects of the system are inherently user- 
extensible. The following example illustrates the use of 
OBJECT in defining a new I /O stream. 
MAKE-PREFIXED-STREAM is defined to be a routine which 
returns an ! /O stream which behaves like a given 1/O 
stream, except that each output line is prefixed with a given 
string: 

(DEFINE (MAKE-PREFIXED-STREAM STREAM PREFIX) 
(OBJECT NIL 

((WRITEC SELF CHARACTER) 
(WRITEC STREAM CHARACTER)) 

((NEWLINE SELF) 
(NEWLINE STREAM) 
(WRITES STREAM PREFIX)))) 

WRITEC, WRITES and NEWLINE are generic operations which are 
intended to write a character, write a string, and start a 
newline, respectively. 

Ordinary procedures may have handlers distinct from the 
code invoked when the procedure is called. This permits 
operations on procedures other than invocation, a feature not 
present in Scheme. For example, SETTER is a generic opera- 
tion used for general assignment, a feature similar to SETF in 
Lisp Machine Lisp. 

(SETTER access-procedure) 

should return an assignment procedure which "inverts" 
access-procedure; (SETTER CAR) returns the procedure used to 
alter a pair's CAR (SET-CAR, that is, RPLACA). Similarly, a 
debugging system may obtain a procedure's name, expected 
number of arguments, documentation, or the name of the file 
in which it is defined, by invoking generic operations. 

The decision between Icxical and dynamic binding is not an 
either/or question; as in Scheme, T provides both, with lex- 
ical binding the default. In T, however, no distinct syntactic 
form (FLUID) is required to access dynamic variables, since 
dynamic binding consists merely of a temporary assignment 
to a lexieal variable (which is usually global). 1 

Reliably optimized tail-recursion permits direct implemen- 
tation of iteration constructs using recursion, simplifying the 
language's implementation and semantics. This also en- 
hances extensibility and expressiveness by permitting easy 
specification of new or unusual control structures. 

CATCH implements a non-local exit facility similar to that in 
Lisp. Within the body of 

(CATCH variable body) 

the variable is bound to an ¢s~..zpe procedure. The body is 
evaluated and its value is the value of the CATCH-expression. 
If the escape procedure is called the CATCH-expression returns 
immediately and its value is the argument passed to the es- 
cape procedure. This differs from CATCH in Lisp in that the 
escape procedure is itself an independent object unrelated to 
the variable whose value it is. In Lisp the user does not have 
access to the escape procedure and its name is dynamically 
(globally) bound. Scheme's lexical CATCH may be used to 
implement constructs like Lisp's RETURN and C's break, al- 
though it is more similar to Bliss's more general leave be- 
cause it is named. Because the identifier is lexically bound, 
and all references to it may be detected statically by the 
compiler, calls to the escape procedure can often compile as 
simple jumps. 
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As a concession to efficient implementation on standard ar- 
chitectures, escape procedures are not valid outside the 
dynamic extent of the CATCH-expression which creates them; 
this ensures that  the control stack behaves in a stack-like 
way, unlike in Scheme, where the control stack must be 
heap-allocated. 

Some aspects of the language, particularly lexical scoping and 
optimized tail-recursion, present special problems for debug- 
ging tools. A program's execution history is lost early, and 
variable environments of interest are not always easily acces- 
sible. We have designs for mitigating these inconveniences. 

T is a portable language, one whose implementation neither 
requires nor precludes any particular "conventional" or 
special-purpose hardware. This is a kind of insurance against 
the future. By minimizing one's reliance on particular 
hardware, one obtains good vendor support for hardware and 
software, the ability to take advantage quickly of new tech- 
nologies as soon they become available, and low cost. 

On the other hand, users have access to special machine and 
environment features where desired. On the Apollo one may 
call arbitrary operating system code, providing easy low-level 
access to the Apollo's display, window system, graphics, 
process and file system control, and inter-process communica- 
tion. 

T supports full compatibility between interpreted and com- 
piled code. The interface between compiled and interpreted 
code is transparent  to the user. Code which runs compiled 
will run interpreted, and vice versa. Problems that  users eno 
counter of the form "my code runs interpreted but not 
compiled" are either an interpreter or compiler bug. As dis- 
cussed in the previous section, most Lisps have suffered from 
a schizophrenia where interpreted and compiled code imple- 
ment different default binding rules: dynamic binding in the 
interpreter, lexical in the compiler. 

T provides support for building large systems. Lisps have 
usually only a single flat global namespace. Lisp Machine 
Lisp provides a hierarchy of namespaces to aid modularity 
and avoid name conflicts; this system operates using multiple 
hash arrays in which symbols are "interned"; thus names are 
resolved when programs are translated to S-expression by 
READ. The method has problems with forward references, 
shadowing, and import/export. Our solution was inspired 
by, and is being worked out with the help of, Gerry Sussman 
and colleagues at MIT. We eliminate the distinction between 
global and local variables, and consider all names as bound in 
some lexica[ contour. Some of these lexical contours have the 
property that  they are editable; tha t  is, new variable bindings 
may be added or old ones removed. Language-level primi- 
tives are provided for manipulating these contours in various 
ways and for accessing names not in lexical environments 
other than the current one. Such editable contours behave 
something like file directories, and subsume the role of the 
global environment. 

Open-coding and block compilation are techniques whereby 
users may sacrifice security and incremental redefinition to 
obtain faster execution and more compact code. When a 
user permits the compiler to open-code *, CAR, or structure 
field accessors, for example, he is asserting that  he is willing 
to put up with the loss of argument type checking (probably 
because he believes his code to be correct) and a high cost for 
redefining the open-coded routines - -  he may have to recom- 
pile all of his code or perhaps even. the entire T system itself 
if CAR changes. T decouples open-coding from runtime con- 
sistency checking, and users always have independent control 
over each on a per-call, per-procedure, or per-module basis. 
If incremental redefinition conflicts with previous early bind- 
ing decisions the user is warned and provided with an oppor- 
tunity to regain consistency either by backing out or by 
recompiling the offending code. 

3. Implementation 

Most of T is currently implemented for the VAX-112 under 
Unix 3 and VMS and for the Motorola MC68000-based Apollo 
Domain 4 workstation. [Apollo 821 Internally these implemen- 
tations are structured quite similarly and share most of their 
code, to the extent tha t  sometimes we refer to "the 
VAX/68000 implementation." This section describes these 
implementations, although much of what  is described will ap- 
ply to future implementations on different machines as well. 
Many pieces of the VAX/68000 implementation will be 
directly usable in other architectures. 

Many specific implementation techniques, for example the 
way type codes work, the means by which position- 
independent code is achieved, and the idea of a global system 
constants table, have been borrowed from the VAX NIL im- 
plementation. [White 79] 

We have written as much code as possible in T itself. We 
exploit the compiler and its ability to generate good code 
quite heavily. In fact, in terms of lines of source code, the 
compiler comprises at the moment well more than half of the 
implementation. In this way T's character resembles tha t  of 
more traditional compiled languages, where the runtime 
library is relatively unimportant  compared to the compiler, 
so one tends to think of the language as implemented by the 
compiler rather than by the runtime system. However, this 
is not to say that  the compiler knows many specific things, 
but rather, it knows a lot about a small number of things 
(like LAMBDA). 
The compiler is a substantial modification of one written by 
Guy Steele, the S-1 Common Lisp compiler, which is 
described in detail elsewhere in these proceedings. [Gabriel 
82] It is based on principles similar to the RABBIT compiler, 
and incorporates a register allocation algorithm similar to 
tha t  in the Bliss-ll compiler. [Steele 78c, Wulf 75] In ad- 
dition to changes in the surface language and code generator, 
we extended the compiler to implement lexical closures. En- 
vironments are allocated using generalizations of the methods 
used in RABBIT. Heap-allocated environments are 
represented not by lists as in RABBIT but by chained vec- 
tors. Environment consing is postponed until the latest pos- 
sible point, and contours are collapsed where appropriate to 
obtain more compact representations. 
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In January 1982 we decided to suspend work on a critical 
subphase of the code generator, to get a chance to work on 
the rest of the system. As a result the object code is much 
more verbose than it will be when this subphase is working. 
We expect about a factor of two improvement in the overall 
speed of the system after we have a chance to work on the 
code generator again. We anticipate no problems in making 
this change. 

Because most of the system is written in T, its machine- 
language kernel is small. For example, it does not include 
the evaluato# or garbage collector. However, it is bigger than 
we would like it to be. The reason for its size is mostly that  
it was generally more expeditious to introduce new assembly- 
language routines than new code generators and compiler 
features; in practical terms, the choice between these two al- 
ternatives is often a toss-up. We expect the size of the ker- 
nels to decrease as time passes. 

By requiring that  all objects be quadword aligned, the low 
three bits of a T pointer can be used to encode the low-level, 
internal type of the object represented by the pointer. The 
internal type escape indicates that  the actual internal type 
can be obtained from a standard place in the object itself. 
The pointer tags are used to encode the same internal types 
on both the VAX and 68000, though this need not be the 
case. There is, in fact, some variation between the two im- 
plementations in the mapping of tag to type. Internal types 
that  are currently represented directly by pointer tags are: 

f ixnum immediate integer, 29 bits 
pair a single list cell 
flonum floating point number 
strin 9 character string header 
miscellaneous 0 and characters 
template type descriptor 

The use of the one unassigned tag will soon be decided based 
on the results of system metering. 

The representations have been engineered to minimize the 
pointer calculation needed in order to manipulate the objects 
represented. For example, a pair (cons cell) consists of two 
32-bit pointers for the cell's CAR and C0R. Suppose the type 
tag used for pointers to pairs is 5 (this is a system 
parameter). If R0 is a register which holds such a pointer, 
then the assembly operands -5(R0) and -1 (R0) fetch the CAR 
and CDR, respectively. Fixnum arithmetic can be compiled in 
line efficiently because the fixnum tag is 0. Two fixnums can 
be added or subtracted in a single instruction. Multiplication 
requires that  one of the fixnums be pre-normalized with a 3 
bit shift right; the result of division must be post-normalized 
with a 3 bit shift left. 

All objects have templates, which are low-level type descrip- 
tors. 5 These roughly correspond to classes in Smalltalk, or 
flavors in Lisp Machine Lisp. In the case of objects whose 
type is represented directly in the pointer's tag field, the 
template is obtained by a table lookup (except tha t  the 
miscellaneous type is multiplexed, requiring further 
disambiguation); otherwise, the pointer's tag field is the es- 
cape tag, and the template is found by following the pointer 
(similarly to CAR, described above). An objeet's template 
provides information for the garbage collector, and contains 
the procedure used to handle generic operations applied to 
the object. 

In the case of procedures, the template also gives the 
machine code to run when the procedure is called, the 
procedure's name, number of arguments, and other infor- 
mation. Templates thus correspond to source-level 
LhMSOh-expressions or "open procedures". 

Invoking unknown procedures is uniform and cheap; one can 
jump directly to the called procedure's template. In Maclisp 
the FUhlCAI_L primitive is considerably more expensive than a 
call to a known procedure, because a type dispatch must be 
performed, and different calling sequences must be handled. 
The T implementation has a single standard calling sequence 
and one representation for procedures, so its equivalent of 
FUNCAI.L has overhead more similar to Maclisp's SOl3RCALL. 
The implementation permits dynamic alteration, on a per- 
module basis, of the amount of consistency checking (e.g. 
number of arguments) performed on each procedure call. 

Stack frames are valid language-level objects at no extra 
cost. A stack frame's template is precisely its return address. 
This has allowed considerable simplification and generality in 
those parts of the system which are concerned with stacks, 
for example, THROW, stack inspection in the debugger, and the 
garbage collector. The correspondence between stack frames 
and the implicit continuation discussed in [Steele 76b] is 
reflected in the implementation, to the extent that  returning 
a value - -  that  is, invoking an implicit continuation - -  be- 
haves nearly the same as procedure calling. 

We open-code consing (alloction) in one or two instructions; 
the top-of-heap pointer is contained in a register. A simple 
copying garbage collector is employed. When necessary or 
desirable, the system stops and traces all active pointers, 
making a compact copy of the active heap. Objects may 
also be statically allocated if desired, in which case they are 
traced but not copied. The garbage collector is data-driven; 
each low-level type descriptor (template) effectively contains 
a pointer to the routine to be used to copy instances of the 
type. 

As in Maclisp, asynchronous interrupts (for example, timer or 
user keyboard interrupts) may occur between any two in- 
structions. Since interrupt handlers consist of arbitrary code, 
they may potentially invoke the garbage collector, which 
might involve relocating the interrupted object code itself. 
Getting this right requires some care if consing is interrupted. 

One register is used to point into a global system constants 
table. This is a structure, whose format is known by the 
compiler, which holds frequently-used quantities of various 
kinds, like O, pointers to important procedures, and bit 
masks. This is important because all code must be position- 
independent. 

The implementation supports position-independent sharable 
code. This has advantages in the virtual memory multi- 
processing architectures for which T was designed. Multiple 
T processes (perhaps invoked by different users) may 
dynamically load object files and obtain sharing, using an 
exit-vector strategy similar to that  used in the Multics and 
Apollo operating systems. (Unfortunately, we can' t  make use 
of this under Unix, due to its per-process limit on the number 
of open files.) Code which is loaded into the active storage 
area (heap) is moved during garbage collections, and if all 
pointers into a module have been dropped, its storage is 
reclaimed. 
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A compiler option permits generation of modules in such a 
way that  they can loaded using native operating system 
linkers, such as I d in Unix. Because the T dynamic loader 
need not process these modules we call them "pre-eooked." 
Along with the object code for pre-eooked modules, the com- 
piler also produces the skeleton of an initial heap, which con- 
sists of the symbols and value cells required by those 
modules. Only the dynamic loader, and the support it re- 
quires, need be pre-cooked; when the system starts up it 
dynamically loads all of the remaining system. Actually, the 
dynamic loader's loading (file I/O) and relocation phases are 
independent. This allows ordinary (not pre-cooked) modules 
to be linked into the system with the operating system's 
linker; they are automatically Lisp-relocated in the system in- 
itialization sequence. 

During summer 1982 we plan to generalize the garbage col- 
lector to be able to copy the entire current state of the sys- 
tem (including heap and control stack) to a file, which can 
later be invoked to recover this state, like SUSPEND in 
Maclisp. Unlike the situation with Maclisp on the PDP-10, 
however, the operating systems under which we must run T 
do not provide any support for a suspension facility; in fact, 
on the Apollo, we are constrained to use a position- 
independent representation for suspended systems. This 
representation will be similar to the object file representation, 
and we will use the same relocation program to resume after 
the suspension. 

We provide general interfaces to arbitrary non-Lisp code; 
usually C on the VAX and Pascal on the Apollo. The im- 
plementations use these interfaces to do basic I /O functions 
and other system control. This is one major means by which 
we have avoided writing code in assembly language. 

Portability is achieved in the conventional way by a well 
modularized compiler and (small} machine dependent run- 
time system that  handles, among other things, machine inter- 
rupts, memory management, and low level input and output. 
The compiler's register allocation and optimization phases 
are machine independent. Both are driven by information 
which may be machine specific, for example, the number of 
registers, and restrictions on the types of instruction operands 
permissible in ,  open-coded procedures such as CAR and 
FIXNUM-ADD. 

Because the language design is still experimental, we have 
been careful to avoid premature optimization. The emphasis 
has been on providing functionality first and working on per- 
formance later; correctness and completeness have taken 
priority over efficiency. 

4. S t a t u s  

The most important components of the system are already in 
place. There is a preliminary manual [Adams 82], and users 
at Yale are developing new applications programs in T, as 
well as transporting code previously developed in other Lisp 
dialects. The system is now in good enough shape that  work 
can begin transporting the T compiler, which currently runs 
in Tops-20 Maclisp, to T on the VAX and Apollo. We ex- 
pect no major problems doing this, as most of the compiler is 
written in a common subset of Maclisp and T, using a simple 
T compatibility mode developed for Maclisp. 

Work on the project began in June 1981 with a staff of 
three. During this initial period an interpreter for Scheme 
was developed in which many language and system design 
issues were explored; this interpreter ran in DEC-20 Maclisp. 
We also converted the compiler, which when we obtained it 
generated code for the S-l computer, to generate code for the 
VAX and the 68000, and adjusted its source language to be 
more Scheme-like than Lisp-like. 

From September 1981 to May 1982 the project was staffed 
with one and a quarter full-time people. About half this time 
was devoted to further work on the compiler to support 
closures and dynamic loading. The other half was spent 
writing and debugging system code: interpreter, garbage col- 
lector, I /O system, and so forth. 

During summer 1982 two of us will be working full-time. 
Most of our effort will be directed towards improving perfor- 
mance. Inspired in part  by reported experience with im- 
plementing Interlisp [Burton 80], we intend to develop and 
begin using general tools for profiling and metering the sys- 
tem as soon as possible. Debugging aids and user interface 
will also receive much attention. 

Plans for future development include the following. 

Arithmetic. We intend to support rational and arbitrary- 
precision integer arithmetic, and possibly interval and com- 
plex arithmetic. This area has so far received comparatively 
little attention. This is not because we don' t  consider it im- 
portant,  but because we've had so many other things to 
worry about. 

Early bindin9 and module interfaces. The early binding 
facilities outlined in section 2 are designed and partially 
coded. We need to develop more complete tools for source 
code control and module interface specification. 

Declarations and type propagation. We want to be able to 
statically transform generic to specific operations with a min- 
imum of hints (in the form of assertions or declarations on 
the types of expressions and variables} from the user; for ex- 
ample, transforming generic + to open-coded fixnum or 
flonum addition based on knowledge of the types of operands 
and result. This is conceptually similar to constant folding. 
Ideally this would be done with a general partial evaluation 
strategy similar to that  already in the compiler. 

Open-coded references to procedural data. For example, if a 
variable F is known to be a closure over a particular lambda- 
expression (LAMBDA () Y), where Y is a local variable, then 
calls to F may be open-coded as references to Y's position in 
F's environment structure. This problem is discussed in 
[Steele 76b]. Once this is possible, the current structure 

package, which is currently distinct from the rest of the type 
system for efficiency reasons, may be implemented using 
closures. 

General stack-allocated objects. In particular, the ability to 
create closures on the stack allows one to pass general 
"downward funargs" to programs without heap-allocating en- 
vironments. 

Multiple control stacks. We need to re-introduce some kind 
of coroutine mechanism, to compensate for our restriction on 
the use of escape procedures to enforce stack-like behavior. 
With this facility we could easily implement multiple tasks 
within a single T image, with a simple scheduler. We an- 
ticipate no problems extending the garbage to be able to 
reclaim stacks and coroutines to which there are no active 
pointers. 
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Portability. We need to make the transportation process 
smoother, in preparation for moves to other machines, which 
will inevitably differ from the VAX and 68000 to a greater 
extent than those machines differ from each other. The in- 
terfaces between components of the compiler which deal with 
more or less machine-independent must be made more ex- 
plicit than they are now. We are considering beginning an 
IBM 370 implementation this summer. 

Common Lisp compatibility. We believe that T will be 
general enough to be useful as an implementation vehicle for 
Common Lisp. We expect programs which adhere to the 
Common Lisp specification to run transparently in a Com- 
mon Lisp subsystem implemented within T. Determining the 
difficulty of this task will need to wait until the Common 
Lisp language specification has stabilized. 

In the long ruo, we would like to continue to improve ef- 
ficiency towards a degree competitive with, say, Bliss. We 
feel that there is ultimately no reason that programmers 
should have to resort languages besides Lisp (that is, T) to 
obtain desired performance levels. 

5. Conclusions 

The T project has benefited from having not been con- 
strained by the need for compatibility with other Lisps. We 
have made every effort to ensure that this incompatibility is 
not gratuitous. 

We believe our methodology has proved effective. Our ap- 
proach has emphasized the following principles: 

• Avoid premature optimization. 

• Approach ends not monolithically but by progres- 
sive approximation. 

• If there's a problem, generalize it, then solve the 
more general problem. 

This approach has permitted a small number of people to 
design and implement a powerful system in a relatively short 
amount of time. Much remains to be done, but it can be 
said that at one year old T is already a practical system. 

T's emphasis and dependence on an optimizing compiler may 
be a new idea in the Lisp world, especially today when 
everyone seems to be opting for special hardware, but it is 
accepted practice outside the Lisp world. Early experience 
with T seems to justify our belief that conventional machine 
architectures can be used effectively to implement a produc- 
tion Lisp system. 

T is a synthesis of those concepts and features we have seen 
elsewhere and liked. But we believe that in spite of its 
diverse influences we have built a clean, coherent, and power- 
ful programming language. 
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