
M&T: A High-Performance Parallel Lisp

David A. I<ranz* Robert H. Halstead, Jr.+ Eric Mohr’

Abstract

Mul-T is a parallel Lisp system, based on Multilisp’s
future construct, that has been developed to run
on an Encore Multimax multiprocessor, Mul-T is
an extended version of the Yale T system and uses
the T system’s ORBIT compiler to achieve “produc-
tion quality” performance on stock hardware - about
100 times faster than Multilisp. Mul-T shows that fu-
tures can be implemented cheaply enough to be useful
in a production-quality system. Mul-T is fully opera-
tional, including a user interface that supports manag-
ing groups of parallel tasks.

1 Introduction

Mul-T is a parallel Lisp system that has been developed
to run on an Encore Multimax multiprocessor. Mul-
T is an extended version of the T version 3 (or “T3”)
system[17] that supports parallel processing using Mul-
tilisp’s future construct[l0,11,12]. Multilisp’s imple-
mentation uses a layer of interpretation that limits its
speed, but Mul-T uses T3’s ORBIT compiler[l4,15]
(suitably modified) to generate native code for the Mul-
timax’s NS32332 processors, leading to a dramatic in-
crease in speed (about a factor of 100 over the Multilisp
system). Mul-T names both a parallel Lisp system and
the parallel Lisp language it supports; where there is
ambiguity, we refer explicitly to “the Mul-T system” or
“the Mul-T language.”

1.1 Parallelism in Mul-T

Mul-T (like Multilisp) is an extended version of
Scheme[l,lg], a lexically scoped dialect of Lisp. Mul-

l M.I.T. Laboratory for Computer Science
+ DEC Cambridge Research Lab
t Yale University

Permission to copy without fee all or part ofthis material is granted provided that
the copies are not made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date appear, and notice is
given that copying is by permission of the Association for Computing Machinery.
TO copy otherwise. or to republish, requires a fee and/or specific permission.
0 1989 ACM 0-89791-306-X/89/0006/0081 $1.50

T’s executior. environment contains the same sorts of
data types and primitive operators as Scheme or any
Lisp dialect. In Mul-T, however, many lines of compu-
tation, or tn.-Es, can be active simultaneously, manipu-
lating object; in a single shared heap.

M&T’s basic mechanism for generating concurrent
tasks is the future construct. The expression (future
X), where X is an arbitrary expression, creates a task
to evaluate X and also creates an object known as a fu-
iure to eventually hold the value of X. When created,
the future is in an unresolved, or undetermined, state.
When the value of X becomes known, the future re-
solves to that value, effectively mutating into the value
of X and losing its identity as a future. Concurrency
arises because the expression (future X) returns the
future as its value without waiting for the future to
resolve. Thus, the computation containing (future
X) can proceed concurrently with the evaluation of X.
When execution of a Mul-T program is not made ex-
plicitly parallel using future, it is sequential.

The result of supplying a future as an operand of
some operat an depends on the nature of the operation.
Non-strict o aerations, such as passing a parameter to
a procedure, returning a result from a procedure, as-
signing a value to a variable, and storing a value into
a field of a data structure, can use a future as easily
as any other kind of value, and take no special note of
futures. Strict operations such as addition and compar-
ison, if applied to an unresolved future, are suspended
until the future resolves and then proceed, using the
value to which the future resolved as though that had
been the original operand.

The act of suspending if an object is an unresolved
future and then proceeding when the future resolves is
known as to aching the object. The touches that auto-
matically oc .ur when strict operations are attempted
are referred t,o as implicit touches. Mul-T also includes
an explicit t ?uching or “strict” primitive (touch X)
that touchc.:. the value of the expression X and then
returns tha! value.

1.2 Overview of the Paper

Mul-T p erfcr ms several functions whose implementa-
tions had to be either cha.nged from or added to the

81

standard T implementation: dynamic binding, stor-
age allocation and garbage collection, task scheduling
and management, the future construct, and implicit
touches. These implementations had to be efficient and
they had to fit into a parallel system. Additionally, the
T system’s user interface had to be redesigned to sup-
port users in managing and debugging programs con-
taining many tasks.

This paper describes the problems in the abovemen-
tioned areas that were confronted in evolving T into
M&T, and our solutions to those problems. The re-
sulting system is a complete parallel Lisp system, in-
cluding user interface. The performance data in Sec-
tion 4 show Mul-T to be competitive with the best se-
quential Lisp implementations.

Section 2 describes the major implementation chal-
lenges that were confronted in building Mul-T, and Sec-
tion 3 introduces an “inlining” optimization that can
reduce the average cost of the future construct by
avoiding the cost of task creation and future manage-
ment when there are already enough tasks to occupy
all the processors. Mul-T performance data is given in
Section 4. Finally, Section 5 discusses related work and
Section 6 offers some conclusions.

2 Implementation Challenges

Transforming a high-performance sequential Lisp im-
plementation into a parallel one required many changes
to the runtime system, compiler and user interface. We
next describe the difficulties encountered in these three
areas and how they were addressed.

2.1 Runtime System

The runtime system may be thought of as consisting of
“kernel” functions (such as garbage collection and stack
mana.gement) and “user library” functions (such as the
procedures append and map). In this paper, we de-
scribe the modifications necessary to produce the “ker-
nel” part of a parallel runtime system. For the most
part, the production of parallel “user library” functions
is not addressed here.

2.1.1 Global State

When converting any sequential program to a parallel
one it becomes obvious that mutable global state in the
sequential program should have been minimized and
localized. The Mul-T runtime system is just a parallel
T program derived from T3’s runtime system. We were
fortunate that this system has very little global state
thanks to the diligence of Jonathan Rees.

82

The notic), of a mutable global variable is different
in a parallel program because a procedure that reads or
writes the veriable may be running on more than one
processor at the same time. We can identify two kinds
of mutable global variables that sequential programs
may have:

A mutable variable may have been made global to
avoid passing it as an argument to many or all pro-
cedures in the program. In this case the variable
should not be shared between instantiations.

The variable may truly represent some global state
of the program. In this case the variable must be
shared by different instantiations; access to such a
variable may need to be controlled by a semaphore
or some other locking mechanism.

In a parallel program the first sort of global vari-
able can cause problems, for example if each of several
tasks depends on a private value of the variable. One
can either eliminate the global by making it an explicit
parameter of any procedure that references it, or the
variable can be made “process specific”, allowing each
task to have its own copy. Mul-T provides support for
process specific variables’ and a syntax for specifying
them. All global variables in the T3 runtime system
had to be examined to see if they should be process
specific (such as *print-radix*) or protected with a
critical section (such as symbol-table).

2.1.2 Memory Management and Garbage Col-
lection

One value which is normally represented by a global
variable is the heap poin2er. In Mul-T each proces-
sor allocates memory out of a chunk assigned to that
processor. T;lese chunks are replenished from a global
heap when necessary. A garbage collection is triggered
when there is no space left in the global heap. In addi-
tion, large objects are allocated directly from the global
heap.

The use of chunks reduces contention for the global
heap pointer by using a local heap pointer within a pro-
cessor’s curr?nt chunk for most allocations. The alIoca-
tion of large objects directly from the global heap mini-
mizes fragmentation inside of chunks. Since all memory
is equidistant, from all processors in a bus-based multi-
processor such as the Multimax, there is no penalty in
loss of localit : for allocating large objects outside of the
chunk system. (The situation might be different in a
multiprocessor with nonuniform memory access times,
where it would generally be beneficial for all objects,

‘by convert ‘ug T3’s dynamic binding mechanism from shallow
to deep bindir. T

large or small, allocated by a processor to be in the
“chunk” of memory closest to that processor.)

To increase its speed, the garbage collector was par-
allelized. Increasing the garbage collector’s speed was
important because Mul-T can have independent “jobs”
running concurrently and the garbage collector uses a
stop-and-copy algorithm. If garbage collection took
a long time, garbage collections triggered by “back-
ground” jobs running concurrently with the read-eval-
print loop could cause long pauses and impair the qual-
ity of a user’s interaction with Mul-T.

T3 uses a depth-first garbage collection algorithm
based on [4] to help preserve locality of reference. The
root set is the stack and a static data area. This algo
rithm was modified to work in Mul-T by dividing the
static data area into segments and having a lock asso-
ciated with each object to make sure it is only moved
once. The steps are:

1. The processor which discovers that no space re-
mains in the global heap interrupts all other pro-
cessors (via a Unix signal) and waits for them to
signal that they are ready. The other processors
wait on a semaphore after signalling ready.

2. That original processor then signals the others to
start collecting and it starts collecting as well.

3. Each processor roots from the task it was executing
when the garbage collection was signalled and then
processes segments from the static data area until
they are exhausted.

4. The processors synchronize again and, when all
have finished collecting, they continue from where
they were interrupted.

The results of the parallel garbage collection are quite
reasonable but might be improved. In the current al-
gorithm, once an object is moved by a particular pro-
cessor all of its components will be moved by the same
processor. This might lead to an uneven distribution
of work. We have not studied the general problem of
parallel garbage collection in any detail.

2.1.3 Task Queues

As in other parallel Lisp systems, processors obtain
Mul-T tasks from queues. Mul-T actually has two
queues per processor, one for newly created tasks (the
new task queue) and one for tasks ready to run again
after blocking (the suspended task queue). An attempt
is made to increase locality by scheduling a task which
has already run on the processor it last ran on. This
may be important to reduce turbulence in the Multi-
max’s snoopy caches. When a new task is created it is

put on the n< w task queue of the processor creating the
task. When 2 blocked task is made ready to continue it
is placed on the suspended task queue of the processor
on which it was running when it blocked.

When a pr jcessor finishes a task it searches for an-
other according to the following priority order:

1. It runs a task from its own suspended task queue.

2. It runs i task from its own new task queue.

3. It steals a task from the new task queue of another
processor.

4. It steals a task from the suspended task queue of
another processor.

This policy is a first cut at increasing locality and de-
creasing the rate of process migration. It does not ad-
dress the issue of which task should be selected from
several on a queue. At present this is simply done in a
last-in-first-out manner.

2.2 Compiler

Two features of Mul-T require changes to the compiler:

1. The im*)ortance of supporting a large number of
very lightweight tasks.

2. The implicit touches performed by strict opera-
tions.

Supporting these features means introducing overhead
even in programs that don’t make use of them. To a
large extent, the effectiveness of Mul-T as a general pur-
pose envirc~ ment will depend on how small this over-
head can be made.

In most sequential Lisp systems with compilers there
is a single stack used by the system and user programs.
Stack overfio.v is either not detected at all or some form
of memory protection is used to generate a trap. Under
Unix, a large number of stacks can be handled only by
explicitly checking for overflow. The check need not be
done on every push but must be done by every pro-
cedure that, needs space on the stack. This check will
involve at least a compare and a conditional branch.

A future is implemented as a data object with a par-
ticular type tag. Among its components are:

l A stack

l A slot tLr hold the eventual value being computed

l A repre :entation of the process specific variables

83

l A queue for other futures waiting for the value be-
ing computed

Having strict operations such as + and car implicitly
touch their operands means that a type test must be
performed on each operand to make sure it is not a fu-
ture. The cost of both this test and the stack overflow
check could be absorbed by well known hardware tech-
nology, but they are a real problem on conventional
hardware like the Encore Multimax which uses Na-
tional Semiconducter NS32000 series processors. Im-
plicit touches occur with great frequency and must be
reduced to a compare tag and branch. On the NS32000,
as well as on the Vax and Motorola MC68000, a cheap
tag (bit field) compare can only be performed on a
bit or byte. Using the high-order byte of a word as
the tag field is not acceptable for a number of reasons,
the most important being that 8 bits of the 32 bit ad-
dress space are lost. Some sequential systems have used
this scheme, but parallel programs will use much more
space. The other choice is to use one of the low-order
bits of a pointer as the future bit. We chose the low bit
so code for (eq ? x y), where x is in ri and y is in r2,
looks like:

tbit $O,rl ; test bit 0, the future bit
beq Li ; if clear, not a future
jsr chase-future-in-r 1

Li: tbit $O,r2
beq L2
jsr chase-future-in-r2

L2: cmp rl,r2
. . .

Many of these touch operations can be eliminated by
having the compiler perform a simple first-order type
analysis. For example, if a value has been tested once, it
doesn’t need to be tested the next time it is referenced.
In several benchmarks the overhead without these op-
timizations was about 100%; with the optimizations it
ranges from under 20% to nearly 100%; however, 65%
seems to be a fairly typical number for programs that
do not heavily emphasize iterative loops, such as the
Boyer and compiler benchmarks (see Section 4 and
the data in Table 4).

2.2.1 Futures

The introduction of the future construct to the lan-
guage didn’t require any changes to the compiler
because (future ezpr) was simply transformed into
(*future (lambda (> erpcpr)), where *future is a
procedure. The creation of the closure argument to
*future automatically causes the free variables of ezpcpr
to be copied into the heap, as they must be for ezpr’s
execution as a separate task. *future creates a task
containing the closure and puts it on the new task
queue.

2.3 User Interface

Sequential Lisp systems are known for their strong pro-
gram development environment. Extending this envi-
ronment to handle multiple tasks gracefully presents
some problems, which other parallel Lisp systems have
been only partially successful in solving. Mul-T’s so-
lutions are based on the group, a collection of tasks
resulting from the evaluation of a single expression
typed by the user. Groups can be started, stopped,
resumed, and killed independently of other groups of
tasks. An important departure from conventional se-
quential Lisp implementation strategy is required to
support groups well-the Mul-T runtime system uses
distinguished tasks to control exception handling and
access to terminal I/O.

Sequential Lisp systems handle an exception (error
or keyboard interrupt) by suspending the original com-
putation and invoking a breakloop, wherein the user has
all the capabilities of the top-level read-eval-print loop.
The user may examine the state of the computation,
perform an arbitrary amount of other computations,
and resume the original computation after correcting
the error. If another exception occurs during interac-
tion with the breakloop, a nested breakloop is invoked.

Thus there is a one-to-one correspondence between
breakloops and stopped computations. The obvious
parallel extension, followed by several other parallel
Lisp systems, is for any task receiving an exception to
invoke a breakloop. This can cause problems, for ex-
ample when many tasks get the same error and several
breakloops Lre invoked. In Multilisp, a censor is used
to control which of multiple breakloops has access to
the terminal, in Butterfly Lisp[Z], a separate window is
created to run each breakloop. In both cases the user
must interact with an abundance of breakloops. And
if related ta& continue to run, the source of the error
may be obscured. MultiScheme[lG] stops all tasks when
an exception occurs, but the user can inspect only one
task from the subsequent breakloop.

Groups in Mul-T allow a more natural parallel ex-
tension of the stopped computation idea. All tasks
created during evaluation of an expression typed by
the user belong to the same group G. If an excep-
tion occurs t.he group G is stopped, suspending all of
its constitue:.lt tasks. At this point the user regains
control and may examine and alter the state of any
of the stopped tasks. Even though several tasks may
be stopped, t.he computation is represented by a single
stopped gro: p. There may be several stopped groups
at a given ti ne, analagous to the nested breakloops of
sequential Lisps. The most recently stopped group is
called the current group, and the task in which the ex-
ception occurred is called the current tusk. The usual
Lisp debugging commands apply by default to the cur-
rent task.of ths current group, so using Mul-T feels just

84

like using T. But the commands also allow referring to
other tasks or other stopped groups.

The one-breakloop-per-task approach used by other
parallel Lisps is a consequence of the natural implemen-
tation of breakloops in sequential systems: exceptions
are handled by a procedure call to the breakloop rou-
tine, which executes using the stack of the task where
the exception occurred. When control of the termi-
nal is “welded on” in this way to tasks performing user
computations, exception handling for multiple tasks be-
comes difficult .

It seems reasonable to unweld the breakloop by using
multiple tasks. In Mul-T, control of the interactive ter-
minal stream lies in a distinguished task separate from
all tasks performing user computations. Further, there
is a distinguished exception-handler task for each pro-
cessor in the system. These special-purpose “server”
tasks run only during exception handling or group ter-
mination, and coordinate with the Mul-T scheduler to
insure that:

After an exception is signalled by one task in a
group, no other tasks in the group wiI1 run.

Only one processor at a time may run the terminal
control task.

A side-benefit of decoupling stopped computations is
that the user may resume them in any order, as opposed
to sequential Lisp systems where only the most recently
suspended computation may be resumed.

3 Optimization of future

An opportunity to optimize the implementation of
future arises out of the observation that, in the expres-
sion (future X), execution of the parent task concur-
rently with the evaluation of X is permissible but is not
required. It is thus permissible for an implementation
to evaluate X fully before proceeding with execution
of the parent task: in other words, to treat future as
an identity operator. We refer to this treatment as in-
lining because the expression X is effectively evaluated
“in line” as a subroutine, rather than concurrently as
a separate task.

In many parallel Lisp programs, creating a task for
every use of future leads to creation of tasks far in
excess of the number of processors available to exe-
cute them. It is attractive to consider inlining these
excess tasks, assuming (1) that we can accurately iden-
tify which tasks are “excess” and hence candidates for
inlining and (2) that processing an inlined future is
cheaper than processing a future that creates a con-
current task. The latter assumption is definitely true:

inlining (future X) avoids the costs of setting up a
new task (e.g., allocating and initializing space for its
stack), the queue management associated with schedul-
ing the new task for execution, and even the cost of
allocating and initializing a future object to act as a
placeholder for X’s value. Further savings are realized
when the value of the inlined expression (future X>
is touched: since no future was ever actually created
for X, touching the value of the inlined (future X> is
no more expensive than touching the value of X itself.

Identifying suitable places to apply inlining is the
real challenge in applying inlining effectively. A sim-
ple strategy is for a processor to apply inlining to all
futures encountered when the number of tasks on that
processor’s queues is greater than or equal to some
threshold T. If T = 0, then all futures are inlined
and no parallel tasks are created; if T = 1, then the
existence of a single queued task will be enough to sup-

press task creation; and so on.

The rationale for this strategy is that these queued
tasks represent a backlog of work that is available if
any processor becomes idle. If this backlog is large
enough, there is little point in adding to it. On the
other hand, one can speculate that it might be de-
sirable to set T somewhat larger than 1 to provide a
modest buffer against variations in the rate at which
futures are encountered: if several processors became
idle within a short period of time, one would like to
have “saved up” enough tasks to keep these processors
busy, so they will not have to wait for new tasks to be
created before resuming useful work.

This inlining strategy can be ineffective due to lash
starvation caused either by bursty task creation or
parent-child welding. Bursty task creation refers to the
fact that opportunities to create tasks may be dis-
tributed unevenly across a program. At the moment
when a task is inlined, it may appear that there are
plenty of other tasks available to execute, but by the
time these tasks finish executing, there may be too few
opportunities to create more tasks. Consequently, pro-
cessors may go idle that could have been kept busy if
less inlining iiad been done earlier in the program’s ex-
ecution. Parent-child welding refers to the fact that
inlining effectively “welds” together a parent and child
task. If an i4ined child becomes blocked waiting for a
future to resolve (or for some other event), the parent
is blocked as well and is not available for execution. If,
on the other hand, a non-inlined child blocks, then the
parent is still runnable.

In some extreme cases, parent-child welding can even
result in deadlock. Consider the following odd program
fragment, where make-semaphore creates a semaphore
and semaphore-p and semaphore-v perform the usual
P and V opt rations on a semaphore:

85

(let ((s (make-semaphore) >
(x 0))

(semaphore-p s> ; lock the semaphore
(let ((a (future (begin (semaphore-p s)

(+ x 1)))))
(set! x (f 17)) ; compute x
(semaphore-v s> ; now allow access to x
(+ a 1))) ; await a and return

The code for the future will block pending the
semaphore-v operation on x; but if the future is in-
lined, then the semaphore-v operation will never take
place. Fortunately, such deadlock can never occur in
the simple case of Mul-T programs generated by start-
ing from a side-effect-free sequential program and just
wrapping future around selected subexpressions; nev-
ertheless, whether or not the program given above is
viewed as pathological, the fact that inlining can cause
it to deadlock where it would otherwise produce an an-
swer is a concern.

The incidence of task starvation due to inlining varies
widely from one program to the next: inlining is quite
effective on some programs and actually degrades the
performance of others (even when the deadlock issue
does not arise). Inlining is implemented in Mul-T, and
we have been able to measure its benefits in the cases
where it works well (see Section 4) and observe the
degradation when it does not work well. In the cases
where inlining works well, the benefits are large enough
that we have been driven to speculate about how to re-
tain inlining’s benefits without its liabilities. The result
of this speculation is a mechanism called lazy futures,
which is not implemented in the current Mul-T system.
We briefly outline the idea here, however, and hope to
report on it in more detail after further work.

Lazy futures is essentially a revocable inlining mech-
anism: when a future is encountered, its task is provi-
sionally inlined, but enough information is retained to
enable the inlining decision to be retroactively reversed
at a later time. To allow this, tasks must have a stack
structure such that the “seam” between the portions of
stack pertaining to the parent and child task executions
can be found, and that the stack can be split apart at
that point to yield two independent stacks-one for the
parent and one for the child--even after the child has
gone some distance into its execution. This provides a
way to “unweld” a blocked child from its parent so that
the parent can resume execution, thus solving the as-
sociated problems discussed above, including the dead-
lock problem. Even a running child can be “unwelded”
from its parent, furnishing an additional task if it is
needed because some other processor has just finished
a task.

A system with lazy futures can provisionally inline
every future and split a task whenever a processor needs

86

a new task to execute. If there were no extra cost
to making inlining decisions revocable, this would of-
fer the best of both worlds: the performance advan-
tages of inlining would be obtained in every situation
except where task splitting yielded additional needed
parallelism. Quantifying the costs and benefits of lazy
futures more precisely, however, requires a careful im-
plementation study.

4 Performance of Mul-T

Mul-T’s performance can be understood both by exam-
ining the cost of individual operations and by studying
the performance of entire application programs. A use-
ful “benchmark” for the former is an expression such
as (touch (future 0) >, whose execution involves ex-
actly one creation of a task and a future and exactly
one synchronization operation on the future. In more
detail, the operations performed in evaluating this ex-
pression are

1.

2.

3.

4.

5.

6.

Make the thunk (in this case, (lambda 0 0)) to
be executed in the child task, and call *future.

Create a future, create a child task, and enqueue
the child task (on the new task queue) for execu-
tion.

Block the parent task (thanks to the touch oper-
ation) and enqueue it to await resolution of the
future.

Dequeue the child task and begin to execute it.

Resolve the future and enqueue any tasks waiting
on that future (in this case, just the original par-
ent task) on the suspended task queue of the pro-
cessor where they were executing just before they
blocked.

Dequeue the original parent task and resume its
execution.

Table 1 gives the number of NS32332 instructions
needed for each of these steps. (The figures for steps
4 and 6 are approximate since processors that are idle
and waiting for an executable task to be enqueued will
not always be in the same phase of their waiting loop at
the moment when an executable task appears. More-
over, the figures for steps 2-6 assume no lock contention
will occur.) The experimentally measured execution
time for the Approximately I96 instructions required to
execute the expression (touch (future 0)) is about
220 psec whm executed on one processor. This sug-
gests that the NS32332 is dehvering about 1 MIPS on
this instruct:on mix, which emphasizes data structure
manipulation and memory-to-memory instructions to a

1. Make thunk and call *future 15
2. Create future and task; enqueue task 41
3. Block touching task 33
4. Dequeue and start executing a task 37

c
5. Resolve a future and enqueue waiters 26 + 14~
6. Deuueue interrunted task and resume 30

Table 1: Cost of Mul-T future operations, in NS32332
instructions; w is the number of waiting tasks restarted
in step 5.

greater extent than a typical computational instruction
mix does.

For comparison, a call to (and return from) the triv-
ial procedure (lambda 0 0) takes 8 instructions. The
approximately 25:l ratio between the execution times
of (touch (future 0)) and ((lambda 0 0)) con-
trasts with about a 3:l ratio between the costs of eval-
uating the same two expressions in Multilisp, where
a great deal of interpretive overhead is added to both
operations but the impact of the overhead on the pro-
cedure call is proportionately greater.

This example actually gives a pessimistic estimate of
the overhead associated with future. In many cases
no tasks will block on a future, reducing the overhead
to approximately 119 instructions.

To evaluate Mul-T’s performance on a more realis-
tic program, we ran a modified version of the Boyer
theorem-proving benchmark from the Gabriel book of
Lisp benchmarks[6]. The modifications involved re-
moving some global side effects, yielding a cleaned-
up, sequential Boyer benchmark, and then using fu-
tures to create a parallel program. As Table 2 shows,
the cleaned-up, sequential Boyer benchmark takes 14.5
seconds to run on the unmodified, sequential T3 sys-
tem. Since the performance of compiled code in the
T3 system is about as good as that of any other com-
piled code on the same hardware[l4], we view this as a
good estimate of top speed for this application on the
Multimax’s NS32332 processor. The same sequential
code, when run under Mul-T with touch optimizations
disabled, takes twice as long to run. Since this code
contains no futures, the increase in running time is at-
tributabie solely to implicit touches. Although every
one of these touches reveals that no action is necessary,
they occur frequently enough to double the execution
time of the program. When the touch optimizations
discussed in Section 2.2 are enabled, the time for the
cleaned-up, sequential Boyer benchmark is reduced to
24 seconds, representing a reduction in the overhead
due to touch checks from 100% of the execution time
on T3 to 65%.

‘I’3 14.5 set
Mul-T, no touch optimizations 29
Mul-T plus touch optimizations 24

Table 2: Performance of cleaned-up, sequential Boyer
benchmark.

Number of processors: 12 48
Without inlining (T = 00) 44 23 12 7.5 set
With inlining (T = 1) 25 13 7 4

Table 3: Performance of parallel Boyer benchmark.

Table 3 sL.ows the performance of the parallel Boyer
benchmark for different numbers of processors and dif-
ferent settings of the inlining threshold. Touch op-
timizations were enabled during these measurements.
Without inlining (i.e., when the inlining threshold
T= oo) the execution time on one processor was
44 seconds--20 seconds more than the corresponding
time in Table 2. This represents the extra overhead
introduced by the use of future in the parallel bench-
mark. The execution times given in Table 3 for 2, 4,
and 8 processors, however, clearly indicate that Mul-T
has successfully exploited a substantial amount of par-
allelism in t&e benchmark, so that the execution time
on 4 and 8 processors is less than that of the sequential
benchmark on T3.

The second line of Table 3, which was obtained by
setting the inlining threshold T = 1, offers further en-
couragement. Inlining is seen to be an extremely effec-
tive optimii ition for the Boyer benchmark, reducing
the extra execution time on one processor due to intro-
ducing future from 20 seconds to one second. More-
over, the execution times given for 2, 4, and 8 proces-
sors show that Mul-T has continued to be successful
in exploiting parallelism, bettering the T3 performance
even when only two processors are used.

Table 4 shows timings of four other Mul-T programs.
The first line (“seq”) shows the time of a sequential ver-
sion of each -y>rogram in T3; subsequent lines show Mul-
T times for increasing numbers of processors. Our tim-
ings were somewhat variable because Mul-T’s “proces-
sors” are rea!ly Unix processes, subject to interruptions
by the UMAY (U nix SC e u er.) h d 1 The figures shown are
averaged over 5 or 10 successive trials; typically varia-
tion did not, exceed 5%.

permute finds a set of 10,000 vectors of 20 integers
each,’ such that any two vectors chosen from the set
differ in at 1 ast 10 positions. The integers range from
0 to 31 and omprise four independent permuations of

87

mergesort
n permute queens compiler measured theoretical

seq 8520 27.8 98 .99
1 11554 33.2 159 1.82 (1.82)
2 5823 16.6 94 .99 .98
4 2995 8.5 64 .57 .60
8 1598 4.3 53 .45 .42

1 12] 1293 3.0 54 .a3 .I

Table 4: Execution time (in seconds) for Mm-T benchmarks.

eight numbers taken five at a time. The program gen-
erates new candidates using a pseudo-random number
generator. Each candidate thus generated is compared
against every vector already accepted into the set, and
is only accepted into the set if it passes the distance
criterion in every comparison. The comparison process
for each candidate is broken up into parallel tasks, each
of which compares the candidate against 40 vectors in
the already accepted set. Moreover, up to 16 vectors
can simultanously be tested against the accepted set,
and as soon as any candidate is either accepted or re-
jected, another candidate is generated so testing can
continue[20]. The result, as seen in Table 4, is that
plenty of parallelism was generated with moderate over-
head, even though no inlining was used (T = CQ).

queens finds all solutions to the n-queens problem
for n = 11. The numerous branches of this search pro-
gram are independent, although the costs of computing
the branches are very uneven. In the version used here,
a task was created for each possible pair of positions
in the first two rows. This results in n2 = 121 tasks of
large granularity, so inlining was not used. The speedup
is close to linear; the small difference is probably due
to the large task granularity, meaning idle processors
toward the end of the computation.

compiler is a transformation-based compiler devel-
oped by Richard Kelsey [13]; here it is compiling a Pas-
cal program with 21 procedures. The parallel compiler
consists of a sequential parsing phase, a compilation
phase where each procedure in the file is handled by
a separate task, and a sequential output phase. The
compiler contains roughly 20,000 lines of T code; the
Mul-T version was created in about 3 days. The ease
of this translation is as much due to careful, mostly-
functional coding in the sequential version as it is to
the simplicity of the Mul-T primitives.

The timings show successful parallel execution of the
compiler, although several factors limit the speedup-
the sequential parse and output phases, uneven loads
due to the small number of tasks, and the fact that
currently only one task at a time may use the assembler.

88

mergesort performs a destructive merge sort on a
list of 8192 jntegers. The execution pattern of this
divide-and-conquer sort is independent of the input
data: a list is divided into two sublists, which are re-
cursively sorted in parallel and then merged together.
An analysis of this algorithm for 2’ processors sorting
n = 2k elements predicts an execution time t of:

f(k, Z) = 0 [(k - I - 2)2k-‘-1 + a”]

As expected, this reduces to O(nk) for 1 = 0 (i.e.
0 (n log n) on one processor) and 0 (n) for I= k (even
with n processors, the linear data structure must be
traversed). Given the time for mergesort on one pro-
cessor, the above equation was used to predict execu-
tion times for 2, 4, 8, and 16 processors, also shown in
Table 4. The analysis shows that M&T is correctly ex-
ploiting the parallelism in mergesort. Inlining (T = 1)
is crucial to good performance in this benchmark, re-
ducing the number of futures created from 8191 to, for
example, 350 on 8 processors.

Of the five benchmarks, mergesort compares least
favorably to its sequential T version, running about
twice as slov~ly in Mul-T on one processor. This is
because mergesort contains several tight loops into
which the compiler must insert implicit touches. Some
of the touches are not strictly necessary, and we are
considering further compiler optimizations to eliminate
them.

5 Related Projects

The Mul-T project builds on the results of several other
projects. Aside from the obvious debts to the develop-
ers of T3 and Multilisp, Mul-T borrows from the work
of Carl Hewitt and Henry Baker, who first articulated
the concept af futures[3]. Another early parallel Lisp
system, which was developed for the BBN Butterfly
Machine[5], is MultiScheme[lG]. Like Multilisp, Multi-
Scheme used a layer of interpretation in its implementa-
tion (although there have been plans to add a compiler)
and thus waz not fast in absolute terms.

We are aware of three other parallel Lisp systems that
have been implemented using a compiler for high per-
formance: Butterfly Lisp[2], implemented for the But-
terfly Machine; Qlisp[7,8,9], implemented for the Al-
liant FX-8; and a parallel version of Portable Standard
Lisp[lS] (let us call this “PPSL”), also for the Butter-
fly Machine. Butterfly Lisp and PPSL, like Multilisp
and Mul-T, rely primarily on future as a concurrency
mechanism. Qlisp supports futures but also provides
several other concurrency constructs.

Butterfly Lisp, like Multilisp and Mul-T, includes im-
plicit touches for strict operations, but Qlisp and PPSL
require programmers to insert explicit touch opera-
tions whenever a future might appear as an operand
to a strict operation (the implementors of Qlisp are in
the process of incorporating implicit touches). As Sec-
tion 4 shows, implicit touches are expensive on stock
hardware, but inserting explicit touches will be tedious
and error-prone for programs that use futures heavily.

No performance figures have been published for But-
terfly Lisp, but figures are available for Qlisp[S] and
for PPSL[lS]. S ince both the Qlisp and PPSL fig-
ures are for Lisps without implicit touches, they offer
no basis for comparison with the approximately 65%
overhead for implicit touches in Mul-T. As far as task
management overhead itself is concerned, Mul-T’s cost
of approximately 200 instructions for (touch (future
0)) compares with 1400 instructions to create a pro-
cess in Qlisp[9], which may actually represent only the
first part of the processing required to evaluate (touch
(future 0)). PPSL requires approximately 470 psec
to create and execute a future containing a trivial pro-
cedure call on one processor of a Butterfly Plus multi-
processor, which may be around 50% faster than one
NS32332 processor[l9].

These performance differences may better reflect the
priority attached by implementors of different systems
to optimizing different parts of their implementations
than any inherent differences in the cleverness of par-
ticular parallel Lisp implementations. Nevertheless, the
lower cost of futures in Mul-T than in these other sys-
tems leads to a more optimistic view of the potential
benefits of using futures for “production quality” par-
allel computing on stock multiprocessors.

6 Conclusion

Among the unknowns we faced before undertaking the
Mul-T project was the question of what performance to
expect, especially for highly parallel programs. Multi-
lisp’s layer of interpretation tended to hide the cost of
task management and implicit touches under a moun-
tain of interpretive overhead. The lurking question,
never definitively answered by experience with Multi-
lisp, was whether a system not burdened by interpretive

overhead woclld find the cost of managing futures to be
prohibitive. Mul-T is generally a conservative exten-
sion of T: Mul-T’s strategies for dealing with futures
and tasks ar\- generally fairly simple and straightfor-
ward. It is thus encouraging to note that we have been
able to implement futures at a moderate cost.

The development of Mul-T has been valuable in sev-
eral ways. First, Mul-T is a complete, working paral-
lel Lisp system, publicly available to interested users.
Second, its single-processor performance is competitive
with that of “production quality” sequential Lisp imple-
mentations, and therefore a parallel program running
under Mul-T can show absolute speedups over the best
sequential implementation of the same algorithm. This
is attractive to application users whose primary inter-
est is raw speed rather than the abstract gratification
of having denonstrated speedup via a time-consuming
simulation. Finally, implementing Mm-T has allowed
us to experiment with and evaluate implementation
strategies such as inlining. The Mul-T experience has
also allowed us to probe the limits of implementing fu-
tures on stock multiprocessors, and has suggested (for
example) that hardware assistance for tag management
may be a more significant benefit in a machine for par-
allel Lisp (where it can eliminate the 65% overhead of
implicit touches) than it has ever proven to be in ma-
chines for sequential Lisps.

7 Acknowledgments

We would li:;e to thank Encore Computer Corporation
for sponsoring Rick Mohr’s summer visit at M.I.T. to
work on Mul-T, and thank Paul Hudak for supporting
Rick in takir.g a summer off from Yale for this project.
We also thank M.I.T. for providing a home for Bert
Halstead during the period when this work took place.
The other members of the Parallel Processing Group
at the M.I.T. Laboratory for Computer Science cre-
ated a pleas &nt environment for Mm-T’s development
and graciously contributed their own time and energy
to porting :.pplications and developing Mul-T profil-
ing tools. Richard Kelsey was kind enough to port
his compiler to Mul-T. We are also grateful to Gau-
tam Thaker of the Harris GSS Advanced Technology
Department, and to Dan Nussbaum of M.I.T. for their
work on the permute benchmark. This research was
sponsored ir part by the Defense Advanced Research
Projects Age ncy of the United States Government and
monitored bv the Office of Naval Research under con-
tract number N00014-841<-0099.

89

References

PI Abelson, H., and G.J. Sussman with J. Suss-
man, Structure and Interpretation of Computer
Programs, MIT Press, Cambridge, 1985.

PI Allen, D., S. Steinberg, and L. Stabile, “Recent
developments in Butterfly Lisp,” AAAI 8’7, July
1987, Seattle, pp. 2-6.

PI Baker, H., and C. Hewitt, “The Incremental Gar-
bage Collection of Processes,” M.I.T. Artificial
Intelligence Laboratory Memo 454, Cambridge,
Mass., Dec. 1977.

PI Clark, D.W., “An efficient list-moving algorithm
using constant workspace,” Communications of
the ACM 19(6), pages 352-354, June 1976.

PI Crowther, W., et al., “Performance Measurements
on a 12%Node Butterfly Parallel Processor,” 1985
Int ‘Z. Conf. on Parallel Processing, St. Charles, Ill.,
Aug. 1985, pp. 531-540.

PI Gabriel, R., Performance and Evaluation of Lisp
Systems, M.I.T. Press, Cambridge, Mass., 1985.

171 Gabriel, R-P., and J. McCarthy, “Queue-based
Multi-processing Lisp,” 1984 ACM Symp. on Lisp
and Functional Programming, Austin, Tex., Aug.
1984, pp. 2544.

PI Gabriel, R.P., and 3. McCarthy, “Qlisp,” in
J. Kowalik, ed., Parallel Computation and Com-
puters for Artificial Intelligence, Kluwer Academic
Publishers, Boston, 1988, pp. 63-89.

PI I Goldman, R., and R.P. Gabriel, “Preliminary Re-
sults with the Initial Implementation of &lisp,”
1988 ACM Symp. on Lisp and Functional Pro-
gramming, Snowbird, Utah, July 1988, pp. 143-
152.

PO1 Halstead, R., “Multilisp: A Language for Con-
current Symbolic Computation,” ACM Trans. on
Prog. Languages and Systems 7:4, October 1985,
pp. 501-538.

PI Halstead, R., “Parallel Symbolic Computing,”
IEEE Computer 19:8, August 1986, pp. 35-43.

I121 Halstead, R., “An Assessment of Multilisp:
Lessons from Experience,” Int’l. I. of Parallel Pro-
gramming 15:6, Dec. 1986, pp. 459-501.

[I31 Kelsey, R., and P. Hudak, “Realistic Compilation
by Program Transformation,” 1989 ACM Symp.
on Principles of Programming Languages, Austin,
Texas, January 1989, pp. 281-292.

M

WI

WI

WI

WI

PO1

Kranz, D., et al., “Orbit: An Optimizing Com-
piler for Scheme,” Proc. SIGPLAN ‘86 Symp. on
Compiler Construction, June 1986, pp. 219-233.

Kranz, D., “ORBIT: An Optimizing Compiler
for Scheme,” Yale University Technical Report
YALEUi’DCS/RR-632, February 1988.

Miller, J., MultiScheme: A Parallel Processing
System Based on MIT Scheme, Ph.D. thesis,
M.I.T. E.E.C.S. Dept., Cambridge, Mass., August
1987.

Rees, J., N. Adams, and J. Meehan, The T Man-
ual, fourth edition, Yale University Computer Sci-
ence De-.)artment, January 1984.

Rees, J.. and W. Clinger, eds., “Revised3 Report
on the Algorithmic Language Scheme,” A CM SIG-
PLAN Notices 21:12, Dec. 1986, pp. 37-79.

Swanson, M.R., R.R. Kessler, and G. Lindstrom,
“An 1m;)lementation of Portable Standard Lisp on
the BBN Butterfly,” 1988 A CM Symp. on Lisp and
Functional Programming, Snowbird, Utah, July
1988, pp. 132-142.

G.H. Thaker, D.B. Bradley, D. Nussbaum, “Com-
parative Study of a Parallel Algorithm,” Harris
Concert Application Note 31, March 89.

90

