
Implementing Babylonian/G
by Putting Examples into Game Contexts

Eva Krebs
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

eva.krebs@hpi.uni-potsdam.de

Toni Mattis
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

toni.mattis@hpi.uni-potsdam.de

Marius Dörbandt
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

marius.doerbandt@student.hpi.uni-
potsdam.de

Oliver Schulz
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

oliver.schulz@student.hpi.uni-
potsdam.de

Martin C. Rinard
MIT CSAIL

Cambridge, MA, United States
rinard@csail.mit.edu

Robert Hirschfeld
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

robert.hirschfeld@uni-potsdam.de

ABSTRACT
In game development, there are several ways to debug and inspect
systems. These include very specialized and often visual tools, e.g.
an on-demand collision box visualization. More general software
engineering tools are often also available, e.g. "printf" debugging.
However, default tools found in game engines are often either very
specialized (like the collision box tool) or more general, but less
domain-specific and spatially distant (like "printf" debugging).

Thus, we wanted to create a new tool that is as universal and
easy to use as "printf" debugging but supports domain-specific rep-
resentations and has the possibility to be integrated closer to the
actual code parts or game elements that are involved. There are
pre-existing programming environments similar to our goal: Baby-
lonian Programming systems aim to enable developers to interact
with concrete information directly in the code itself. In this paper,
we introduce the resulting toolset: Babylonian/G, a Babylonian-
inspired plug-in for the Godot game engine. This includes a new
way of thinking about Babylonian examples in a game context,
in-application probes, and the possibility of adding user input to
examples.

CCS CONCEPTS
• Software and its engineering→ Development frameworks
and environments.

KEYWORDS
babylonian programming, example-based programming, video games,
game programming, examples

This work is licensed under a Creative Commons Attribution International
4.0 License.

‹Programming›Companion ’24, March 11–15, 2024, Lund, Sweden
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0634-9/24/03
https://doi.org/10.1145/3660829.3660847

ACM Reference Format:
Eva Krebs, Toni Mattis, Marius Dörbandt, Oliver Schulz, Martin C. Rinard,
and Robert Hirschfeld. 2024. Implementing Babylonian/G by Putting Exam-
ples into Game Contexts. In Companion Proceedings of the 8th International
Conference on the Art, Science, and Engineering of Programming (‹Program-
ming›Companion ’24), March 11–15, 2024, Lund, Sweden. ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/3660829.3660847

1 INTRODUCTION
Fast iterations are essential for game development [8]. Being able
to iterate fast allows trying out as many ideas as possible and
fixing problems as quickly as possible. Ideally, programmers could
experiment as much as possible while interacting with a running
game [9].

However, in reality many game tools such as inspector or debug
windows for print statements are not part of the running game but
in separate windows. These context switches are cumbersome and
require additional mental effort to keep track of which values relate
to which part in code and games.

There are existing programming systems and tools that aim to
address this issue. This includes the Babylonian Programming sys-
tem, which allow visualization and other interaction with concrete
values directly in the code itself.

Thus, we combined Babylonian Programming with game pro-
gramming by integrating Babylonian-style tools into an established
game development environment.

In this paper, we make the following contributions:
• Babylonian/G, an extension of the Godot game engine that
enables Babylonian Programming for games

• A new example type aimed at game engines and developers
• The possibility to add recorded input to examples

In the next part of this paper, we will introduce the two main
foundational systems our work is based on: Babylonian Program-
ming, including Babylonian/S, and game engines, including the
open-source game engine Godot, in section 2. The new system
Babylonian/G is the result of integration Babylonian Programming
features into Godot. We will describe the main concepts and tools
in section 3. In section 4, we will discuss related work such as other

1

68

https://orcid.org/0000-0002-9089-7784
https://orcid.org/0000-0001-7024-9838
https://orcid.org/0009-0004-1399-6035
https://orcid.org/0009-0004-9065-1882
https://orcid.org/0000-0001-8095-8523
https://orcid.org/0000-0002-4249-6003
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3660829.3660847
https://doi.org/10.1145/3660829.3660847
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3660829.3660847&domain=pdf&date_stamp=2024-07-09


‹Programming›Companion ’24, March 11–15, 2024, Lund, Sweden Krebs, Mattis, Dörbandt, Schulz, Rinard, Hirschfeld

game development tools. Finally, we will conclude the paper and
describe future work in section 5.

2 BACKGROUND
To create an example-based game programming system, we mainly
built upon two existing concepts and related coding environments.
The first foundation is Babylonian Programming and its implemen-
tations whose concepts we integrated into the game programming
context. The second essential part are game engines, programming
environments commonly used in game creation and in one of which
we integrated our tools.

2.1 Babylonian Programming
Babylonian Programming environments allow example-based pro-
gramming directly in the code itself [5, 6]. Programmers interact
and view the code itself, the examples are not in separate windows
or tools. There are two main concepts that define Babylonian Pro-
gramming. First, programmers need to be able to define some sort
example for the code they are interested in. Second, the developers
should be able make use of these examples directly in the code
itself, usually by adding interactive widgets. This often includes a
widget to visualize state provided by the example in-line.

Babylonian/S. Babylonian/S is a Babylonian Programming sys-
tem implemented in Squeak/Smalltalk [7]. It thus allows combin-
ing Babylonian Programming with live programming and related
tools already provided by Squeak/Smalltalk. A Babylonian/S code
browser can be seen in Figure 1.

There are several different kinds of examples in Babylonian/S,
but the examples are always defined for exactly one method and
usually aim to invoke this method. Example types include but are
not limited to theMethod example, the Script Example, and theWorld
Example. For a Method Example, the receiver and all arguments
need to be defined individually via scripts or references to existing
objects, called live specimen. These are then used to invoke the
methodwhen the example is run. Another type is the Script Example
where developers can write any script that directly or indirectly
calls the method. Lastly, the world example will use any method
invocations already happening in the system.

To make use of these examples, developers can add widgets
directly in the code. One of the most commonly used widget is the
Probe, which allows visualizing data directly in the code itself to
better understand it. Probes can display data as text but also support
custom visualizations e.g. for numbers or visual elements. Other
widgets include, but are not limited to, replacements (to quickly
replace part of the code for example runs without removing the
original piece of code) and assertions (to check certain aspects of
on example run).

2.2 Game Engines
Game programmers often use game engines to create games. A
game engine is a development system that provides a collection of
code and tools for common game programming challenges such as
developing a game loop or adding graphical components. Thus, we
used a pre-existing game engine as a basis for integration Babylo-
nian Programming features.

Figure 1: A screenshot of Babylonian/S. It shows a Squeak/S-
malltalk code browser with an area to select a class and
method to edit (A) and code edit area (B). At the top of the
code area is a widget to create and manage examples (1) and
two probes are placed in the code (2).

Godot. We have chosen the engine Godot as our target system,
as this open-source game engine is well suited for the integration
of new tools [1]. Godot has three main view: a 2D scene editor
to alter graphical components, a second scene editor but for 3D
objects, and a code editor. The editors as well a running game can
be seen in Figure 2. If a developer chooses to run the game (or a
game scene), the game will open in a separate window.

The scene editor allow arranging scene objects, called nodes, in
a scene tree. These objects can be arranged using drag-n-drop in
the visual editor displaying a preview of the current scene. Nodes
can have attached code, so called scripts, to give them behavior.

These scripts can be written and changed in the code editor. It is
a file-based code editor that in standard Godot distributions only
uses text. If developers add print statement to the code, these will
be displayed while the game is run in a special debug area that is
separate from both the code editing view and the game window.

Plugin System. We built our tools using the plugin system of
Godot which allows modifying Godot using Godot itself and its
tools; the underlying engine code did not need to be altered. Thus,
our tools can be used with the official engine builds distributed by
Godot itself and is in theory usable together with other plugins.

3 BABYLONIAN/G
By adding Babylonian Programming features to the game engine
Godot we created the Godot extension Babylonian/G. Our tools are
focused on two aspects of Babylonian Programming: One, make
it possible to use widgets directly where programmers work (thus
directly in the code itself) and two, find an example concept suitable
for game development.

2

69



Implementing Babylonian/G
by Putting Examples into Game Contexts ‹Programming›Companion ’24, March 11–15, 2024, Lund, Sweden

Figure 2: Screenshots of Godot. Godot has a code editor (1), a scene editor (2), and games can be run in new windows (3).

3.1 Watching game values with Probes
We added one of the interactive widgets from Babylonian Program-
ming: The Probe. The Probes allow visualizing state directly in the
code itself. Developers need to write B.probe (...) around the piece
of code they are interested in. This makes probes as easy to use as
"printf" debugging, with the addition that the probe call will not
alter the original functionality. The probe call acts as a wrapper that
executes and returns the result of the code it is wrapping, which
means developers can probe expressions in existing lines of code
and do not have to add new lines just to probe values. On save, this
wrapper will cause the actual Probe widget to appear in the editor,
three of which can be seen in Figure 3.

The Probe widget is modular configurable. Developers can thus
switch between different kinds of visualization: a vector for instance
could either be displayed as text of the numeric values or as an
arrow pointing in the same direction as the vector. Since the Probes
work with running games and thus may get many values depending
on the framerate, these values can be plotted over time (e.g. numbers
as a graph) or the Probe can be set to only display the current value.
Probes can be paused and will continue displaying the last values
received before pausing.

As we currently cannot adjust line height of the Godot editor, the
Probes have limited space. To allow programmers more freedom,
the Probes’ position can be changed via drag-n-drop. A line will
connect the Probe to the line it originates from while it can be
placed in more convenient position.

These Probes work with any game opened through the engine,
using the running game as "an example", which is similar to World
Example found in Babylonian/S, and the newly introduced example
concepts. Because of this connection, we also added the possibility
to display the Probes in-game. In-game Probes can be set to either
always be on the screen, e.g. to display an essential value related

Figure 3: A screenshot of in-line Probes in the code editor in
Babylonian/G

to the player character always in the top left. But in-game Probes
can also be displayed for and attached to each node that uses the
script, e.g. to see one Probe attached to each individual enemy in
the game in order to easily to mentally connect the values to the
specific enemies, which can be seen in Figure 4.

3.2 What is an example in a game engine?
In Babylonian/S, examples are currently aimed at one specific
method. However, in game development programmers often think
about the entire game scene and its interactions in order to un-
derstand code behavior. Because of this, we shifted the focus from
examples that run one specific method to examples that are in-
terconnected with existing tools for running and altering game
scenes.

3

70



‹Programming›Companion ’24, March 11–15, 2024, Lund, Sweden Krebs, Mattis, Dörbandt, Schulz, Rinard, Hirschfeld

Figure 4: A screenshot of in-game Probes attached to each
enemy node in Babylonian/G

Thus, the Watches display values recorded from a currently run-
ning game. This makes the game scene file together with events
that occur during runtime an example that can be used for Baby-
lonian Programming. However, except for the initial state, these
examples are hard to reproduce.

In order to have examples that are easier to reproduce and fit
to a specific game situation, we added a new kind of example: the
Game Scene State Example. Developers can run the game and save
an example at any point, which cause a serialized version of the
current game state to be saved. These examples can then be reloaded
in the game window at any point. This makes it possible to have
examples at any point in the scene and also to preserve state that
might otherwise change (e.g. if enemy attack power is initialized
with a random value at game start, this value would be preserved in
the Game Scene State Example). The UI and workflow of recording
and loading examples can be seen in Figure 5.

3.3 Using User Input in Examples
Additionally to saving examples based on game state alone, we
made it possible to also record user input such as keyboard events.
This makes it possible for examples to also include common actions
that a player would take. We currently experimented with two main
use cases for this feature. Firstly, game developers want to use this
in combination with Watches to illustrate how certain core game-
play loops work. Secondly, by playing the example with input in an
endless loop it is possible to experiment with game behavior (e.g.
jump height of the player character) without having to manually
recreate the situation each time.

This concept could potentially be reapplied to other Babylonian
Programming environments such as Babylonian/S. This would re-
quire to either add a way for users to record input for already
defined examples whose graphical objects etc are currently usually
not visible to the user. It could also be integrated into the Example
Mining toolset, which enables users to record method invocations
while interaction with the system [3].

Figure 5: A screenshot of an Example in Babylonian/G. The
player is moved through the level to a fitting point in front of
a cliff (1). Then, example recording is started with a shortcut
(2). The player moves the character across the cliff and ends
the recording (3). The recorded example can now be replayed
any time: The game will reset to point (2) and perform the
recorded jump afterwards.

4 RELATEDWORK
There are game development tools that address similar concerns
to the ones our tools address. For instance, if the code values a
programmer wants to view are variables of a scene object, many
game engines like Godot have tools to view these values while
running the game. However, this view is usually detached from
code and running game

The examples used for Babylonian/G are similar to general con-
cept of a save game. Many games have a feature to save progress in
the game. While some games limit when and what is saved, games
that enough information to recreate the state of an entire scene
might inform future versions of our examples.

There are also other game development tools that save game
state and user input: replays tools can be used by developers both
to provide tutorials for users as well as to easily receive problem
situation from users to debug [2].

5 CONCLUSION AND FUTUREWORK
In this paper, we described an extension for the Godot game engine
called Babylonian/G. The new tools make it possible to use core
Babylonian Programming features for game development. Devel-
opers can now visualize example data directly in the code editor
and in the game scene using Watches. At any point while running
the game, programmers can create examples based on game state,
and user input if wanted, in order to explore and experiment with
specific game situations.

The current state of these tools is prototypical; in the future,
many quality of life adjustments could be made such as spacing
widgets to be well readable while also addressing the issue of lim-
ited screen space. The Watches could also support more custom
visualizations, e.g. for enumerations, arrays, and trees. It should

4

71



Implementing Babylonian/G
by Putting Examples into Game Contexts ‹Programming›Companion ’24, March 11–15, 2024, Lund, Sweden

also be possible to use in-game Watches to jump back to the related
parts in the code. Since the example currently rely on a running
game, it would also be interesting to experiment with saving spe-
cific Watch values permanently; we initially did not see a use case
for this, but for e.g. an educational purpose it might prove useful.
Also, we currently were focussed on the 2D scene editor. Exploring
the 3D editor and making adjustments (e.g. to correctly display 3D
vectors) is also of interest.

Babylonian/Gwas currently only tested internally andwith a few
pilot testers. In the future, conducting user study on the usability of
our tools and their effect an certain game programming tasks would
give us more insights on the strength and challenges of the tools.
Initially these studies could be conducted using computer science
students, but later studies might also recruit industry experts.

The Game Scene State Examples are currently limited because of
the serialization process. If a developer changes the game scene, an
example based on serialization will often not reflect these changes.
For instance, we could add a new node to the original scene that
displays hat on top of the player character. If we load the example
using our current mechanism, the hat would be gone after loading
the example because it was not part of the original serialization.
Because of this, we are looking into saving examples as patches
that can preserve such changes.

Lastly, we might also integrate features from other system. This
might include more Babylonian Programming widgets such as re-
placements or assertions. However, might also include other game
development tools that have possibilities for synergy with Babylo-
nian Programming. For instance, being able to easily create in-game
sliders to experiment with values like in the Pronto prototyping
framework could work well in tandem with input-based exam-
ples [4].

ACKNOWLEDGMENTS
This work is supported by the HPI–MIT “Designing for Sustainabil-
ity” research program1.

REFERENCES
[1] Ariel Manzur Juan Linietsky and contributors. [n. d.]. Godot Engine. https:

//godotengine.org/
[2] Stas Korotaev. [n. d.]. Time Manipulation in Unity - Recorded Solu-

tions. https://www.gamedeveloper.com/design/time-manipulation-in-unity---
recorded-solutions. Accessed: 2024-02-08.

[3] Eva Krebs, Patrick Rein, and Robert Hirschfeld. 2022. Example Mining: Assisting
Example Creation to Enhance Code Comprehension. In Companion Proceedings of
the 6th International Conference on the Art, Science, and Engineering of Programming
(Porto, Portugal) (Programming ’22). Association for Computing Machinery, New
York, NY, USA, 60–66. https://doi.org/10.1145/3532512.3535226

[4] Eva Krebs, Beckmann Tom, Leonard Geier, Stefan Ramson, and Robert Hirschfeld.
[n. d.]. Pronto: Prototyping a Prototyping Tool for Game Mechanic Prototyping
(PPIG 2023).

[5] Fabio Niephaus, Patrick Rein, Jakob Edding, Jonas Hering, Bastian König, Kolya
Opahle, Nico Scordialo, and Robert Hirschfeld. 2020. Example-based live pro-
gramming for everyone: building language-agnostic tools for live program-
ming with LSP and GraalVM. In Proceedings of the 2020 ACM SIGPLAN In-
ternational Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software, Onward! 2020, Virtual, November, 2020. ACM, 1–17.
https://doi.org/10.1145/3426428.3426919

[6] David Rauch, Patrick Rein, Stefan Ramson, Jens Lincke, and Robert Hirschfeld. 2019.
Babylonian-style Programming - Design and Implementation of an Integration
of Live Examples Into General-purpose Source Code. Art Sci. Eng. Program. 3, 3
(2019), 9. https://doi.org/10.22152/programming-journal.org/2019/3/9

1https://hpi.de/en/research/cooperations-partners/research-program-designing-for-
sustainability.html

[7] Patrick Rein, Jens Lincke, Stefan Ramson, Toni Mattis, Fabio Niephaus, and Robert
Hirschfeld. 2019. Implementing Babylonian/S by Putting Examples Into Contexts.
In Proceedings of the Workshop on Context-oriented Programming - COP '19. ACM
Press. https://doi.org/10.1145/3340671.3343358

[8] Jesse Schell. 2014. The Art of Game Design - A Book of Lenses, Second Edition. CRC
Press, Boca Raton, Fla.

[9] Bret Victor. 2012. Inventing on Principle. http://vimeo.com/36579366

Received 2024-02-08; accepted 2024-02-26

5

72

https://godotengine.org/
https://godotengine.org/
https://www.gamedeveloper.com/design/time-manipulation-in-unity---recorded-solutions
https://www.gamedeveloper.com/design/time-manipulation-in-unity---recorded-solutions
https://doi.org/10.1145/3532512.3535226
https://doi.org/10.1145/3426428.3426919
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://hpi.de/en/research/cooperations-partners/research-program-designing-for-sustainability.html
https://hpi.de/en/research/cooperations-partners/research-program-designing-for-sustainability.html
https://doi.org/10.1145/3340671.3343358
http://vimeo.com/36579366

	Abstract
	1 Introduction
	2 Background
	2.1 Babylonian Programming
	2.2 Game Engines

	3 Babylonian/G
	3.1 Watching game values with Probes
	3.2 What is an example in a game engine?
	3.3 Using User Input in Examples

	4 Related Work
	5 Conclusion and Future Work
	Acknowledgments
	References

