

High-level Speci£cation and Ef£cient Implementation of Pipelined Circuits

Maria-Cristina Marinescu Martin Rinard
Laboratory for Computer Science Laboratory for Computer Science
Massachusetts Institute of Technology Massachusetts Institute of Technology
Cambridge, MA 02139 Cambridge, MA 02139
email: cristina@Ics.mit.edu rinard@Ics.mit.edu

Abstract— This paper describes a novel approach to high-level erations of the entire system, including the removal and inser-
synthesis of complex pipelined circuits, including pipelined cir- tion of queue elements. The resulting implementation executes
cuits with feedback. This approach combines a high-level, mod- efEciently in a completely synchronous, pipelined manner. We
ular speci£cation language with an efEcient implementation. In have built a prototype synthesizer that implements our synthe-
our system, the designer specifes the circuit as a set of indepen- sis algorithm and present experimental results from this syn-
dent modules connected by conceptually unbounded queues. Our thesizer. We evaluate the efEciency of this implementation by
synthesis algorithm automatically transforms this modular, asyn- measuring the area and clock cycle time of the circuits that it
chronous specifcation into a tightly coupled, fully synchronous generates. For our benchmark design, our algorithm generates
implementation in synthesizable Verilog. a circuit with area and clock cycle time comparable to those of
a hand-written Verilog model that implements the same basic
functionality.

This paper makes the following contributions:

An important congict in hardware design is providing a sime Approach: It presents a new approach to high-level syn-
ple, high-level way of specifying a system without sacrifcing thesis. This approach combines the best of both worlds: a
the efEciency of the resulting implementation. An efEcientim- modular, asynchronous specifcation language and an auto-
plementation is usually synchronous and is obtained as the re-matically generated synchronous, fully pipelined implemen-
sult of globally scheduling all of the operations in the system. tation.

In contrast, designers usually £nd it easier to specify the sy&- Algorithms: It presents aelaxation algorithm for decreas-
tem as a collection of reusable, concise, loosely-coupled com-ing the clock cycle time and a coordinatgkbbal schedul-
ponents. ing algorithm for mapping the individual operations of the

This paper describes an approach that meets both thesenodules into clock cycles. The latter is the enabling tech-
challenges. The designer specifes the circuit as a set of in-nology for ef£cient pipelining, as it allows the data to move
dependent modules connected by queues. Conceptually, theogether across the circuit even when the pipeline buffers are
gueues have unbounded length, which decouples the modulesull.
in the design. Unfortunately, implementing this abstractiom Experimental Results: It presents experimental results that
directly in hardware using asynchronous queues produces alemonstrate the effectiveness of the technique.
circuit with signi£cant handshaking overhead between mod- The remainder of the paper is organized as follows. Section
ules. Our synthesis algorithm therefore automatically transtillustrates how a system is specifed using rewrite rules. Sec-
forms the modular, asynchronous specifcation into a tightlyon 11l presents the synthesis algorithm. Section IV presents

coupled, fully synchronous implementation in synthesizablghe experimental results. Section V discusses related work. We
Verilog. It is designed to handle complex pipelined circuitsgonclude in Section VI.

including pipelined circuits with feedback.

It is important to understand the design advantages of this
approach: the asynchrony at the specifcation level enables the I1. SPECIFICATION EXAMPLE
designer to compose modules together into a complete system
without the need to deal with Complex glObal issues such as\We illustrate our approach by presenting a short examp|e_
the coordinated assignment of operations to clock cycles. Tlgyr example is a linear pipelined datapath with associated con-
approach scales to large circuits, and the circuits are easiefg| functionality. Note that none of the techniques of our ap-
modify, debug, reuse, and formally verify. proach is specifc to this particular class of circuits.

The key idea behind our synthesis algorithm is to automati- Specifying the behavior of a system consists of two steps:
cally compose the module specifcations to derive, at the 988" Module Specifcation: The designer specifes the behavior
ularity of individual clock cycles, a global schedule for the op- of each module as a set of update rules. Modules communi-

*This research was supported in part by NSF Grant CCR-9702297. catesolelyusing FIFO queues.

I. INTRODUCTION

INSTRUCTION FETCH MODULE - IFM REGISTER OPERAND FETCH MODULE - ROFM COMPUTE AND WRITEBACK MODULE - CWBM

<INC r> = head(iq) and <INC rv> = head(rq) ->
> iq notin(rq,<INC r _>) -> q f = rf[r->v+1], rq = tail(rq);
iq = tail(iq), rq = insert(rq,<INC r rf[r]>) <IRZv 1> = head(rq) and v = 0 ->

iq = insert(iq,im[pc]),

pc =1, ig = nil, rg = nil;

pc=pc+1; RESET <JRZr I> = headliq) and RESET
notin(rq,<INC r _>) -> <IRZvI>= hea_d(rq) andv!=0->
iq = tail(iq), rq = insert(rq,<JRZ rf[r] I>); rq = tail(rg);

enabling ¢updates
condition

Fig. 1. Specifcation Example

e State Declarations: The designer specifes the state of thenatching similar to that found in ML and Haskell. The en-

system as a set of typed variable declarations. abling condition of the £rst rule SINC r> = head(iq)
and notin(rq, <INC r >) . If the £rst clause is true,
the clause matches ariinds the variabler to the register
A. Modules

name argument of théNC instruction, to be used later in

Fig. 1 shows the three functional modules in our exampli€ rule when reffering to this operand. The second clause,
and the queues that interconnect them. Each module is if@tin(ra, <INC r ->) uses the binding to check for a
plemented by a set afpdate rules An update rule has an read before write hazard. If there is a pending instruction wait-

enabling condition and a set of updates to the state. When thig t0 execute that will write the register the machine delays
enabling condition evaluates taue |, the rule is enabled and the operand fetch so that it fetches the value after the write (this
can execute, in which case its updates are atomically applid@nsiates inttalling®). If there is a pending instruction that
to the state. Conceptually, the execution of the system repe$fi! Write r, the instruction is imq . The clauseotin(rq, _
edly chooses an enabled rule and executes it. Thisis a standaf§C I ->) checks to make sure that there is no such in-
model of asynchronous execution found, for example, in syStruction inrq .. The rule as a whole is enabled and can exe-
tems such as Unity?] and term rewriting system&[. In our ~ CUte only if there is no hazard. If enabled, the rule atomically
implementation, priority is given to rules according to the tex€x€cutes the block in the right-hand-side of the arrow.
tual ordering in the speci£cation. The other rules perform similar actions. The upddite
Queues provide buffered, £rst-in, £rst-out connections b&fl>v+1l fromthe £rstrule in the compute and writeback
tween modules. There are several operations that modules C330UI€ Sets element of the register £lef to bev+1. The

perform on a queus: updatesq = nil/rg = nil clear the queues/rq
e head(q): Retrieves the £rst element in the queue.
o tail(q): Returns the rest af after the £rst element. B. State
e insert(q,e): Returns the queug after inserting the el-
emente at the end ofj. 1 type reg = int(3), val = int(8), loc = int(8);
e notin(qg,e): Returnstrue if the elemente is noting; 2 type ins = <INC reg> | <JRZ reg loc>;

otherwise returnfalse 3 type irf = <INC reg val> | <JRZ val loc>;

e g = nil: Resets the queue to be empty. 4 var pc : loc, im : ins[N], rf : val[8];

We illustrate the conceptual model of execution in our syss var ig = queue(ins), rq = queue(irf);
tem by discussing the operation of the rules in our example.
We would like to emphasize that this asynchronous model 519. 2 State Variables and Type Declarations for Example in Fig. 1
execution is used primarily to reason about the abstract behav-
ior of the modules and the correctness of the system. It doesLine 4 and5 in Fig. 2 present the state declarations, which
not directly remect the actions of the generated circuit. consist of the following state variables: a program coupter

The condition for the rule in module IFM isue , which an instruction memorim, a register £lef , and two queues,
means that the rule is always enabled. When it executes,iqt andrg . Lines1 through3 contain the type declarations for
fetches an instruction from the instruction memory and inserthese variables. The type declarations include a 3 bit register
it into the instruction queuig . It also increments the program name typeeg , an 8 bit integer typgal , an 8 bit integer type
counterpc to set up the next fetch. loc which represents the locations of instructions in the in-

The two rules in the module ROFM remove instructionstruction memory, an instruction tyjes , and a typerf for
fromiq , fetch the register (_)peran(_is, and insert them igto 1This is not a particularity of our algorithm, but rather what the original
The £rst rule processédIC instructions, and the second ONegescription specites. The machine could as easily generate, for example, by-
processedRZ instructions. Both rules use a form of patternpassing logic if this choice is explicitly made in the speci£cation.

instructions whose register operands have been fetched fronthis way, we shorten the clock cycle of the circuit, and, indi-
the register £le. The instruction type is a tagged union type, rectly, increase its throughput. Relaxation donesinsert or
similar to those found in ML and Haskell. To keep the exam- remove delays in/from the circuit.

ple clear, the instruction set contains onlylAIC instruction, e Global Scheduling: In the initial speci£cation, queues have
which increments the value in its single register argument, andunbounded length. But the hardware implementation must
aJRZ instruction, which tests the value in its register argument have a £nite, specifc humber of entries allocated for each
and, if the value is zero, jumps to the location in its location ar- queue. Given a designer-specifed length for each queue, the
gument. synthesis algorithm must generate an implementation that
does not exceed that length. In the actual hardware, a given
length of 1 for each queue translates into the synthesis of a
standard pipeline.

The synthesis algorithm takes an asynchronous speci£cati?)r‘lsymbOIIC Execution: N_ext, the algorithm symbol!call_y ex-
and converts it into a synchronous implementation by generat-ecutes all of the rules N Sequence. An expression is gener-
ing a global schedule for all of the operations in the rules. This ated for each statg variable that rezects all Of the poss_lble
schedule enables the synchronous and concurrent execution oll‘pdateS of that variable for that.clock.cycle. This expression
multiple rules per clock cycle and produces a circuit that, when represents the value of the variable in the next C.IOCk cycle.
no hazards are present, reads and writes each queue in the sanmince only a SUbS_Et of the r_ules may Ere in a given clock
cycle. It implements each queue as a £nite hardware buffer. cycl_e, _the_expressmns Conta'n cond|t|pnals. .

The basic approach is to give each rule an opportunity o Optimizations: The synthesis algorithm next applies a

execute at each cycle. The challenge is to ensure that the gnapPectrum O,f opt|m|zat|ons geared toyva_rds_avmdmg unnec-
result at the end of the cycle correctly recects the sequential,essary replication of hardware and eliminating false paths in

atomic execution of all of the rules that execute in that cycle. the implementation. These optimizations currently include

The algorithm meets this challenge by symbolically executing ;:or?mofn stl:]b-express[on egml_nagont and meL_JtuaI excf[l_usmlr;
the rules in sequence, with each rule operating on the output esting for the expressions derived at Symbolic execution.
an expression contains a value that will never actually oc-

of the previou$ rule. The derived expression for each state - . " . ;
variable represents its new value at the beginning of the nextCUr in practice because the conditions required to obtain that
value are mutually exclusive, its computation is eliminated

clock cycle. f th ’ Th tual lusion testing is i
The synthesis algorithm assumes that each operation is im- rom the expression. € mutual exclusion testing 1S im-

plemented by a dedicated hardware component. It is Conceiv-plemented using resolutior?][and a set of reduction and

able to modify the algorithm as to give the designer the option S|_mpl|£cat|on rules. . .
of trading parallelism for silicon area. Fig. 3 presents the result of the expression evaluation; note

The algorithm consists of six phases: the introduction of the temporary variablés, t2 , t3 , and

e Associating Versions With Each State Variable: Order t i These varigbles will turp directly ‘T“O _combinational
the rules for symbolic execution and compute the version logic in the £nal implementation of the circuit.
of each state variable that each rule accesses. The £rst rule o
will read version 0 of the variables and compute version 1. 1 = <NC r> = head(ig o) and
The second rule will read version 1 and compute version 2 notin(rq ,<INC r 1)
and so on. By feeding the output of the previous rule into 2 = <JRZ r I> = head(iq o) and
the next rule, we establish an initial schedule for symbolic o _ ;i i Or[g’ct";(];q 0<INC 1 1>)
execution. t4 = tail(t3)
e Relaxation: The result of the operation performed in the iqe=
previous step suffers from an excessively long clock cycle, if <JRZ v I> = head(rq o) and v = 0 then nil
as rule execution is completely sequentialized. The goal 2:22 :I g :222 :2
of the relaxation is to shorten the critical patfithin each else if length(iq o) < Ny then t3
clock cycle. Whenever possible, the algorithm relaxes the else ig ¢
calculation of theenabling conditionfor each rule so that it Fig. 3. Result of Symbolic Execution fdg
is evaluated in the initial state (at the beginning of the clock
cycle) rather than in the state created by the previously exe-Verilog Generation: In the £nal phase we generate synthe-
cuted rule. To maintain correctness, the updates still executesizable Verilog for the optimized expressions in the previ-
sequentially if they operate on the same state variable. Thisous step. Each state variable is implemented as one or more
transformation ensures that each element of data traverses akegisters, depending on its type; each memory variable as
most one module per clock cycle, producing an acceptablea library block. Queues are implemented as hardware regis-
critical path for the circuit. By increasing the parallelism in ters. The derived expression for each state variable evaluates
2Previous and next refer to the textual ordering of the rules in the original to the r.'eW value that gets written back into the state at the
speciEcation. beginning of the next clock cycle.
30ur implementation uses textual ordering of the rules. We next discuss the two more complicated phases of the al-

IIl. SYNTHESISALGORITHM

replace (vj,Exp)

gorithm in turn. if version(vj) =0

then Exp
A. Relaxation else v = earlier-version(Vi)
.) P« = rule-that-updates(vj)

The execution of a rulR can update state variables tested by if (P, R) mutual exclusive
a subsequent rul. If this is the case, theR' has to wait folR then replace(w,Exp[i/ vj])
to execute and update the state, before testing its precondition. else if Rw/vj] implies R
But if we can prove that the execution Bfwill not disable then replace(w,Exp[wi/ vj])
the enabling condition dR’, we can relax the precondition of else Exp

R’ to test the state befolR executes. This transformation ex-rig. 4. Relaxation Algorithm
poses parallelism in the specifcation, reducing the length of

the critical path IOf thel urcun.h | iDeli he i __enabled regardless of the number of elements inserted at the
In our examp €, relaxing t € TUl€s pIpelines the mstruch_oga” of the queue, provided that no rule previously removes the
fetch and execution over multiple clock cycles, thus reducmgead of the queue. This property allows such a rule to test the

cycle tlme_.)) , initial version of the queue, rather than versions produced by
Relaxation is the process of replacing each version of eagérlier rules

state variable with its earli€ssafe version. An earlier version

Conceptually, the algorithm could include an initial phase
of vj, namedy, is safe if the following property holds: P 4 g P

that can in many cases order the modules/rules so as to match
the now of data in the pipeline. Being able to put the rules in

If the rule’s enabling conditionR, is true with)) ,
g l this order is suffcient (but not necessary) to ensure that they

vj replaced byv, then it is also true withv;, i.e. 2> .
j rep Wk ! all test the initial version of each queue.

Vi /Vj] impliesR.
A [vic/vi] implies A Currently, the framework does not provide a sexible support

This is an application of the following more general rulefor trading concurrency for cycle time. By default, if two rules
Assume a predicatB[e/d] (i.e. the predicat® with the ex- simultaneously evaluate their preconditions to true, they are
pressiond replaced by another expressienimpliesP. Then both going to £re in the current clock cycle, either in parallel
for any rule with preconditio®, we can (subject to liveness if there are no data dependencies or sequentially if there are.
concerns) use the predicae/d] instead ofP.

This transformation is valid because of two reasons: B. Global Scheduling

e Partial Correctness: If a rule in the transformed numbering .
. - The scheduler augments each rule that inserts an element
executes, the rule would also execute in the original number-

ina and vield the same result. This takes care of the safe to a queue to ensure that it never overaows any of the buffers
isgue y ' that implement the queues in hardware. The basic approach
. Liven.essSince the rule in the transformed numberin testiS to assume all queues are within length at the beginning of
AN . .) . gte ﬁme clock cycle and schedule only those rules for £ring that are
the initial state, if a rule is enabled in the original numbenngl) enabled and 2) whose combined execution leaves the queue
?r:tng%[rr':et:?]J?SZ:?;??MOS”:”OST?QSIﬁvgﬁgggtes in the within its length at theend of the clock cycle. All the other
The algorithm processes the rules in reverse order, repegf!es remain u_nc_h_anged. As part of this process, Jgueue n-
: , . §ert|ons are prioritized. In hardware, global scheduling corre-
edly attempting to replace the current version of each variable . . 2
) . " . : sponds to generating the control signals for the combinational
in the enabling condition of the rule, with the previous Coriogic
responding version, starting from the immediately preceding Glé)bal scheduling is the enabling technology for effcient
rule. Fig. 4 shows how to obtain a new expression from an. clining. The kev insiaht is that. every clock cvcle. the num-
initial expressiorExp, by replacingv; in Exp with its earliest pip g y nsig ' y yee,

. . - ber of rules that can execute and insert into a queean be
safe version.R stands for the enabling condition of the rulebi er than the number of emoty slotsinwithout causin
that contain€Exp. A replacement is successful if either of the 99 bty siotsqn g

. . to overaow. The condition is that enough rules will also exe-
two is true:

e The enabling condition with the earlier version instead of th?u\}v?t;lri]ntklfg Ctlﬁcgt %SZﬁgdofrihmec’\éfoie?i?és f?mf?:ln?his
current one implies the enabling condition with the curren eng ycie. Applying

version mechanism boosts the throughput of the circuit.
e The condition of the rule that computes the earlier version

and the current enabling condition are mutually exclusive.B-1 Basic Concepts

The relaxation algorithm is especially well suited for us&ye defne aueue pathusing arule graph. The nodes in
with queues. An element inserted at the tail of the queue dogs, graph are the rules. There is a directed edge between two
not affect the element that was at the head of the queue befe{fas if the £rst inserts items into a given queue and the second
the insertion. Rules that test the £rst element of a queue remaitinoves items from the same queue. By de£nition, the spec-

“4Earlier here refers to the ordering established in the £rst step of tﬂgca_tio_n is acyclic if there are no cycles in the rule graph and
algorithm. cyclic if there are.

By de£nition, a rule is an appending rule if its set of updates state x : queue(int)
contains at least one insertion of an element into some queue. state y : queue(int)
state z : queue(int);
0: t = head(x) ->

1
N

B.2 Acyclic Specifcations

y = insert(y,(t+3)&15), x = tail(x);
Acyclic specifcations contain no cyclic queue paths. For 1: t = head(y) ->
acyclic specifcations, the scheduling algorithm ensures that x = insert(x,(t+5)&15), y = tail(y);
the queues do not oversow by computing an additional con- 2 t = head(x) and (&3 = 0) ->
straint as shown in Fig. 5. We uB&for rule Raugmented with) z = insert(z,f), x = tail(x);
. o . 3: t = head(y) and (t&3 = 0) ->
the corresponding additional constraints &uabn{q) for the 7 = insert(z), y = tail(y):
number of empty locations ig at the beginning of the clock I implementation constraints '
cycle. Functioreval(R) returns 0 ifR is falseand 1 ifR is length(x) =
true. indexX) returns the set of indices of all the rulesXn length(y) =
The constraint counts the number of elements in each queuei:at 6. Cyclic Example
the beginning of each clock cycle. It also considers queue red
movals and previous insertions to augment the enabling condi-
tion of each rule so that it does not execute if it would overaow
the queue. adds 3, then 5 to each number, retaining the lower 4 bits af-
ter each addition. The computation records the values of the
for each rule R [in topological sort order] numbers when their bottom 2 bits become 0. In our implemen-
i(f?:({?qll an inserts into q} tation, each number is stored in a queue, and the designer spec-
then for each 4€Q ifes that each queue h_as a single entry. Because of the cyclic
I={R; | R; inserts into a} nature of the specifcation, the numbers must move through the
D={R« | R« removes from g} gueues together — if they attempt to move separately, there is
Se'e.‘;(R‘*q)‘:. he onlv rule | | no room in the queues. The synthesis algorithm must therefore
' VEL iF; G'T_ (ti fizc)mn);um;ly'nexclusivé o schedule the rules involved in the cycle (rules 0 and 1) together
then "vk € indexD). to coordinate their queue insertions and removals.
Roon{q) + Zeval(R,) > 0"
else "vkecindexD).Vj € index).j <i. e Idea: The key idea is to £nd, for each rule that inserts an
Roon{q) +Xeval(R,) > Zeval(R;)" element into a queug, the maximal sets of rules that have
else NOP to execute together to preserve the “non-overaow” invariant
Fig. 5. Computing the Additional Constraints for a Rule in an Acyclic of g, at the end of each clock cycle. To do this, the algorithm
Speci£cation starts from each rule and traverses the rule graph on all pos-

sible paths, gathering for each rule that we go through, the
conditions that would let that rule £re. We stop if either a
rule is not an appending rule, so will always £re when its

Introducing additional enabling conditions raises the possibil- initial enabling condition becomes true, or if we already tra-
ity of deadlock. For acyclic speci£cations, this is not an issue versed that rule on the current path, so we already consid-
because the acyclicity ensures that the queues will eventuallyered that the rule £res. Once we reach such a point there’s
drain, enabling rules that were originally suspended for lack no additional information on that path in the circuit that was
of space. But this line of reasoning does not hold for cyclic not already collected at the £rst traversal. Nothing needs to
speci£cations. The key insight is that the additional enabling be added to yield a correct solution. When all paths reach
conditions need not introduce deadlock if there is a way to co- such points, the set of all rules that have to £re together be-
ordinate the removals and insertions of elements from all of the COMes provably maximal.
queues in the cycle so that the removal of each element leaved\lgorithm: The scheduling algorithm processes each rule
room for the insertion of the element behind it. The algorithm inthe cyclic specifcation in turn. Fig. 7 shows the algorithm
for cyclic specifcations therefore analyzes groups of rules to- that produces the additional enabling condition for a Rile
gether to generate a global schedule that allows all of the dataCrtPathkeeps the currently explored path, for purposes of
in a cycle to move together through the cycle. termination. This variable is initially empty for each sym-
We use the example in Fig. 6 to illustrate the operation of bolic execution of a rule. The symbolic execution of a rule
the algorithm for cyclic specifcations. To simplify the presen- terminates if either one of the two scenarios below is true:
tation, we present the rules by themselves, omitting the mod-® R« is @ non-appending rule and in this casawh = Rk.
ule decomposition. We also omit the rule(s) that remove from We callnewR what we derive fronR after enhancing it
queuez and any rules that do not affect the contents of queues ~ With the additional constraints.
x andy. e Ry is arule previously examined on the current path. This
This example is modeled after a random number generation means we already assunf@gtres on that path, so there’s
process that starts with two numbers (2 and 3) and repeatedly N0 need to explore further, therefarewR = true.

B.3 Generalization for Cyclic Specifcations

SymbolicExecution (R, CrtPath)
Q={q | R inserts into q}

it Q != nil Fig. 9. Clock Cycle and Area Estimates for a Few Basic Data Processing
then for each geQ Elements
I={Rj | R; inserts into q}
D—{Rc | Re removes from g} Benchmark| Cycle (MHz) | Area
Vil,i2€1,(i1,i2) mutually exclusive FFT 104.42 5411
D FIR 105.01 | 3757
else DUl
for each rule R«€eS .
newCrtPath= CrtPathuU R¢ 16 CoefEC'e_ntS-))]
newR = if R € CrtPath The running time of our system is roughly proportional to
then true _ the complexity of the generated control. For all applications
neng‘; ((;Yg")bz";Eéi‘;g'%’;?newaﬁ%”ewc“Pa”) except the pipelined processor, our system required less than
SelectR,.q) Z newse|em:q) one minute to generate the Verilog output. For the processor, it
newR= (R and SelecfR;,q)) took roughly half an hour. We tested the generated Verilog for
| R = newR each application, including the pipelined processor, using the
o else R N _ , _ Cadence NCVerilog simulator.
Fig. 7. Computing the Additional Constraints for a Rule in a Cyclic
Specifcation

V. RELATED WORK

Fig. 8. Comparative Clock Cycle and Area Estimates . .
HDLs like VHDL or Verilog use a model of concurrency

g:g@tle;c_turlg 9P Cycﬁl;; %l\/gl)Hz) 23A1r9e55125 in which processes communicate using signals. A signal is
IPElINEd Frocessar ' ' a direct physical connection with no buffering and with dy-
SCURTL 98 DSP 90.91 22999.50 namic synchronization overhead. Designed for formal verif-

cation and synthesis of communication protocols, SUAYE [
improves the communication features of VHDL by provid-

We have implemented a prototype synthesis system badf bounded_or unbounldeq message buffers. The synchronous
on the algorithms presented in this paper. The algorithm geﬁgmmunlcatlon model IS S|.m|Iar to. those ,Of CSR énd Oc-
erates synthesizable Verilog implementations at the RTL leveidM (1. Our approgch_ Is different in ‘h?t it displays an asyn-
We wrote the specifcation of a 32-bit datapath, RISC—styI&h_rOnous communlce_ltlon model fdt design level, while gener-
linearly pipelined processor with a complete instructioﬁ",setatlng a synchronous implementation.
ran it through our synthesis algorithm, then synthesized theAnother approach uses software 'af?guag‘?s such as C and
resulting Verilog model using the Synopsis Design Compiley "= The Olympus/Hercules system is designed to support

to an industry standard .25 micron standard cell process. %ainly ASIC synthesis from Hardware@][a C-like syn-

serve as a reference point, we also synthesized, in the salid behavioral language. HardwareC supports concurrency by

environment, the Santa Clara University SCU RTL 98 DSP, groviding synchror_wus queues With blocking send anc_i re_ceive
hand-written, standard 32-bit £xed point DSP that impIemen&onStrUCtS' IrBcenid ?], the semantics of concurrency is sim-

the same basic functionality. Table 8 shows area and clo gr to that of CSP and processes communicgte \{ia signals. .In
cycle numbers for the two applications. Notice that the sy yoth approaches, the synchronous communication semantics

thesized area is roughly the same, while clock-cycle-wise, o rce the designer think about the global timing when describ-

processor is within 3 percent of the hand coded version. mgsthe systim. 4 on hi hical PB duction Based
It took us less than £ve hours to develop the specifcati ystems based on hierarchica s(Production Base

o) ;) ! LAt .
for the processor, which we believe is signi£cantly faster th ﬁpechaﬂon) spemfy t'he control implicitly via the production
developing the DSP model by hand. Our specication contai erarchy. The simplicity of PBS comes from the local nature

15 lines for state declarations and 21 lines of rule de£nitior each production, allowing the designer not worry about the

for module speci£cations. The SCU RTL 98 DSP applicationeXp”Cit construction of the global sow. PBS is closer to our

%escription language in the sense that both describe external

IV. EXPERIMENTAL RESULTS

on the other hand, consists of approximately 885 lines of Ve havior rather than particular imolementations of tem
ilog code. Our automatically generated implementation co xehavior rather than particular implementations of a system.
oreover, the actions for a given behavior are described lo-

sists of about 1200 lines of synthesizable Verilog. . ; . . .
. : . cally, even if possibly simultaneous actions can be described
We have also tried our synthesis algorithm on several non- :
. elsewhere. On the other hand, the framework is synchronous.
processor benchmarks. Table 9 shows cycle time and aré

numbers for a speci£cation describing bubblesort for eight 8-aSyStemS like Ptolemy?, GRAPE [?], SPW from_Cadence
. L or COSSAP from Synopsys start from block diagram lan-
bit numbers, a butteray network similar to the ones used in .
o ; . .guages based on a datarow semantics and are targeted to DSP
bitonic sorting networks and in FFTs, and a cascaded FIR witf” " o
esign, mostly for minimizing memory usage and buffer mem-

5The instruction set contains load, store, jump, ALU, multiply and variabl@!y- 1N SD_F (Syn(?hronous Data Flow), a S_tatiC schedule for
shift operations. the block diagram is found that £res eaxdtorin the datacow

graph at least once and does not change the net number ofqueues are a natural way to isolate pipe stages.

kensqueued on each edge. In our approach, not every update
rule has to £re every clock cycle, the number of elements in
the queues may vary in time and the desired lengths for the
queues are specifed by the designer. Unlike DDF (Dynamig
Data Flow), which implements a run-time scheduler, our ap-
proach provides a statically scheduled model.

In synchronous languages like Esterd], [Lustre [?], Sig-

nal [?] and Statechart¥], the programmer thinks about a pro- [21

gram as reacting instantaneously to external events. Processes

Bl

are tightly coupled and deterministic, communication being re
alized by instantaneous broadcasting.

Classic work on pipelining optimization by Pat&] [David-
son, Shar and Thomag][starts from a given reservation table
for the task mows in a system and develops methodologies fqg;
increasing the throughput of a pipeline. In our approach there
is no initial knowledge of what gets assigned to each pipeline
stage at each clock cycle; there is no notion of synchronicity. [6]

Several specifcation and veri£cation systems have taken an
approach similar to ours, based on describing the behavior df
a system by a state transition system7]. Closely related to
our research, Hoe and Arvin@][develop a method for hard- (8]
ware description and synthesis based on an operation-centric
approach. (9]

(4

VI. CONCLUSIONS [10]
This paper presents a new approach for hardware syntrgl-
sis. The designer uses a design language based on conn c{
ing modules with asynchronous queues. The synthesis algo-
rithm eliminates the inefEciency associated with a direct asyir
chronous implementation by automatically generating a coor-
dinated global schedule for all operations in the system. Thjgs)
schedule is used to generate an efEcient and fully pipelined
synchronous implementation. [14]
The primary advantages of this approach include good sup-
port for concurrency, modularity, debugging, and reuse in th&s]
design language. The use of update rules provides support for
formal verif£cation and concurrency, and enables concise, be-
havioral descriptions. This gives the resulting implementatio[f]le]
a better chance to correctly recect the designer’s intent. The
synthesis algorithm is the key to enabling the designer to US§3;
convenient design language while obtaining an efEcient hard-
ware implementation of the design. The global scheduling aqu]
relaxation algorithms maximize the throughput. Relaxation
also reduces the clock cycle time by parallelizing the evalua-
tion of the enabling conditions of the rules. Global scheduling
eliminates the need for handshaking hardware, while apply-
ing optimizations at a global level optimizes the combinational
logic. Our experimental results provide encouraging evidence
that the approach can deliver efEcient implementations of high-
level specifcations. The approach also greatly improves on
design time and has reasonable run-times of the synthesis al-
gorithm. Our approach is well-suited to systems that are nat-
urally described as a composition of interacting sub-systems.
The class of pipelined circuits is one such system, as FIFO

REFERENCES

P. Ashenden, R. Esser, and P. Wilsey. Communication and synchroniza-
tion using bounded channels in SUAVE. Rroceedings of the 1999
International Hardware Description Languages Conference and Exhibit
(HDLCON99) 1999.

F. Baader and T. NipkowTerm rewriting and all that Cambridge Uni-
versity Press, 1998.

M. Ballantyne. Automatic deduction. Technical Report STAN-CS-82-
937, Dept. of Computer Science, Stanford Univ., Stanford, Calif., Octo-
ber 1982.

F. Boussinot and R. de Simone. The ESTEREL languagerdoeedings
of the IEEE pages 79(9):1293-1304, September 1991.

J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: a frame-
work for simulating and prototyping heterogeneous systeim. J. of
Computer Simulatign995.

A. Burns. Programming in Occam.2Addison-Wesley, Reading, Mass.,

K. M. Chandy and J. Misra.Parallel program design: a foundation
Addison-Wesley, Reading, Mass., 1988.

E.S. Davidson, L.E. Shar, A.T. Thomas, and J.H. Patel. Effective control
for pipelined computers. IRroceedings of the 1975 Spring COMPCON

A. Ghosh, J. Kunkel, and S. Liao. Hardware synthesis from C/C++.
In Design, Automation and Test in Europe Conference and Exhibition
1999.

P. Le Guernic, M. Le Borgne, T. Gauthier, and C. Le Maire. Program-
ming real time applications with Signal. Knother Look at Real Time
Programming, Proceedings of the IEEE, Special IsSeptember 1991.

N. Halbwachs, P. Caspi, and D. Pilaud. The synchronous datacow pro-
~ gramming language Lustre. Another Look at Real Time Programming,
Proceedings of the IEEE, Special Iss@eptember 1991.

D. Harel. Statecharts: a visual approach to complex systen&ciémce
of Computer Programmingages 8:231-274, 1987.

C. A. R. Hoare. Communicating Sequential Processérentice-Hall,
Englewood Cliffs, N.J., 1985.

J. Hoe and Arvind. Hardware synthesis from term rewriting systems. In
VLSI: Systems on a chipisbon, Portugal, December 1999.

D. Ku and G. De Micheli. HardwareC: a language for hardware de-
sign. Technical Report SCSL/CSL/TR-90-419, Computer Systems Lab-
oratory, Stanford Univ., Stanford, Calif., August 1990.

R. Lauwereins, P. Wauters, M. Ade, and J. A. Peperstraete. Geometric
parallelism and cyclo-static data @ow in grape-ii. Aroc. IEEE Work-
shop on Rapid System Prototypjt@grenoble, France, June 1994.

Janak Patel. Pipelines with internal buffers.Amceedings of the Fifth
Annual Symposium on Computer Architecture, ISCA78

Andrew Seawright and Forrest Brewer. Synthesis from Production-
Based Specifcations. Proceedings of 29th Design Automation Con-
ference 1992.

