
1

High-level Speci£cation and Ef£cient Implementation of Pipelined Circuits

Maria-Cristina Marinescu Martin Rinard

Laboratory for Computer Science Laboratory for Computer Science
Massachusetts Institute of Technology Massachusetts Institute of Technology

Cambridge, MA 02139 Cambridge, MA 02139
email: cristina@lcs.mit.edu rinard@lcs.mit.edu

Abstract— This paper describes a novel approach to high-level
synthesis of complex pipelined circuits, including pipelined cir-
cuits with feedback. This approach combines a high-level, mod-
ular speci£cation language with an ef£cient implementation. In
our system, the designer speci£es the circuit as a set of indepen-
dent modules connected by conceptually unbounded queues. Our
synthesis algorithm automatically transforms this modular, asyn-
chronous speci£cation into a tightly coupled, fully synchronous
implementation in synthesizable Verilog.

I. I NTRODUCTION

An important con¤ict in hardware design is providing a sim-
ple, high-level way of specifying a system without sacri£cing
the ef£ciency of the resulting implementation. An ef£cient im-
plementation is usually synchronous and is obtained as the re-
sult of globally scheduling all of the operations in the system.
In contrast, designers usually £nd it easier to specify the sys-
tem as a collection of reusable, concise, loosely-coupled com-
ponents.

This paper describes an approach that meets both these
challenges. The designer speci£es the circuit as a set of in-
dependent modules connected by queues. Conceptually, the
queues have unbounded length, which decouples the modules
in the design. Unfortunately, implementing this abstraction
directly in hardware using asynchronous queues produces a
circuit with signi£cant handshaking overhead between mod-
ules. Our synthesis algorithm therefore automatically trans-
forms the modular, asynchronous speci£cation into a tightly
coupled, fully synchronous implementation in synthesizable
Verilog. It is designed to handle complex pipelined circuits,
including pipelined circuits with feedback.

It is important to understand the design advantages of this
approach: the asynchrony at the speci£cation level enables the
designer to compose modules together into a complete system
without the need to deal with complex global issues such as
the coordinated assignment of operations to clock cycles. The
approach scales to large circuits, and the circuits are easier to
modify, debug, reuse, and formally verify.

The key idea behind our synthesis algorithm is to automati-
cally compose the module speci£cations to derive, at the gran-
ularity of individual clock cycles, a global schedule for the op-

∗This research was supported in part by NSF Grant CCR-9702297.

erations of the entire system, including the removal and inser-
tion of queue elements. The resulting implementation executes
ef£ciently in a completely synchronous, pipelined manner. We
have built a prototype synthesizer that implements our synthe-
sis algorithm and present experimental results from this syn-
thesizer. We evaluate the ef£ciency of this implementation by
measuring the area and clock cycle time of the circuits that it
generates. For our benchmark design, our algorithm generates
a circuit with area and clock cycle time comparable to those of
a hand-written Verilog model that implements the same basic
functionality.

This paper makes the following contributions:
• Approach: It presents a new approach to high-level syn-

thesis. This approach combines the best of both worlds: a
modular, asynchronous speci£cation language and an auto-
matically generated synchronous, fully pipelined implemen-
tation.

• Algorithms: It presents arelaxation algorithm for decreas-
ing the clock cycle time and a coordinatedglobal schedul-
ing algorithm for mapping the individual operations of the
modules into clock cycles. The latter is the enabling tech-
nology for ef£cient pipelining, as it allows the data to move
together across the circuit even when the pipeline buffers are
full.

• Experimental Results: It presents experimental results that
demonstrate the effectiveness of the technique.
The remainder of the paper is organized as follows. Section

II illustrates how a system is speci£ed using rewrite rules. Sec-
tion III presents the synthesis algorithm. Section IV presents
the experimental results. Section V discusses related work. We
conclude in Section VI.

II. SPECIFICATION EXAMPLE

We illustrate our approach by presenting a short example.
Our example is a linear pipelined datapath with associated con-
trol functionality. Note that none of the techniques of our ap-
proach is speci£c to this particular class of circuits.

Specifying the behavior of a system consists of two steps:
• Module Speci£cation:The designer speci£es the behavior

of each module as a set of update rules. Modules communi-
catesolelyusing FIFO queues.

updates
condition

rq
<INC r v> = head(rq) ->

iq = tail(iq), rq = insert(rq,<INC r rf[r]>)
rf = rf[r->v+1], rq = tail(rq);

iq = tail(iq), rq = insert(rq,<JRZ rf[r] l>);

<INC r> = head(iq) and

...

 iq notin(rq,<INC r _>) ->

notin(rq,<INC r _>) ->
<JRZ r l> = headIiq) and

<JRZ v l> = head(rq) and v != 0 ->

enabling

 INSTRUCTION FETCH MODULE - IFM REGISTER OPERAND FETCH MODULE - ROFM COMPUTE AND WRITEBACK MODULE - CWBM

iq = insert(iq,im[pc]),

rq = tail(rq);

pc = l, iq = nil, rq = nil;
<JRZ v l> = head(rq) and v = 0 ->

RESET RESET

true ->
...

pc = pc + 1;

Fig. 1. Speci£cation Example

• State Declarations:The designer speci£es the state of the
system as a set of typed variable declarations.

A. Modules

Fig. 1 shows the three functional modules in our example
and the queues that interconnect them. Each module is im-
plemented by a set ofupdate rules. An update rule has an
enabling condition and a set of updates to the state. When the
enabling condition evaluates totrue , the rule is enabled and
can execute, in which case its updates are atomically applied
to the state. Conceptually, the execution of the system repeat-
edly chooses an enabled rule and executes it. This is a standard
model of asynchronous execution found, for example, in sys-
tems such as Unity [?] and term rewriting systems [?]. In our
implementation, priority is given to rules according to the tex-
tual ordering in the speci£cation.

Queues provide buffered, £rst-in, £rst-out connections be-
tween modules. There are several operations that modules can
perform on a queueq:
• head(q): Retrieves the £rst element in the queue.
• tail(q): Returns the rest ofq after the £rst element.
• insert(q,e): Returns the queueq after inserting the el-

emente at the end ofq.
• notin(q,e): Returnstrue if the elemente is not in q;

otherwise returnsfalse.
• q = nil: Resets the queue to be empty.

We illustrate the conceptual model of execution in our sys-
tem by discussing the operation of the rules in our example.
We would like to emphasize that this asynchronous model of
execution is used primarily to reason about the abstract behav-
ior of the modules and the correctness of the system. It does
not directly re¤ect the actions of the generated circuit.

The condition for the rule in module IFM istrue , which
means that the rule is always enabled. When it executes, it
fetches an instruction from the instruction memory and inserts
it into the instruction queueiq . It also increments the program
counterpc to set up the next fetch.

The two rules in the module ROFM remove instructions
from iq , fetch the register operands, and insert them intorq .
The £rst rule processesINC instructions, and the second one
processesJRZ instructions. Both rules use a form of pattern

matching similar to that found in ML and Haskell. The en-
abling condition of the £rst rule is<INC r> = head(iq)
and notin(rq, <INC r >) . If the £rst clause is true,
the clause matches andbinds the variabler to the register
name argument of theINC instruction, to be used later in
the rule when reffering to this operand. The second clause,
notin(rq, <INC r >) uses the binding to check for a
read before write hazard. If there is a pending instruction wait-
ing to execute that will write the registerr , the machine delays
the operand fetch so that it fetches the value after the write (this
translates intostalling1). If there is a pending instruction that
will write r , the instruction is inrq . The clausenotin(rq,
<INC r >) checks to make sure that there is no such in-
struction inrq . The rule as a whole is enabled and can exe-
cute only if there is no hazard. If enabled, the rule atomically
executes the block in the right-hand-side of the arrow.

The other rules perform similar actions. The updaterf =
rf[r->v+1] from the £rst rule in the compute and writeback
module sets elementr of the register £lerf to bev+1 . The
updatesiq = nil/rq = nil clear the queuesiq/rq .

B. State

1 type reg = int(3), val = int(8), loc = int(8);
2 type ins = <INC reg> | <JRZ reg loc>;
3 type irf = <INC reg val> | <JRZ val loc>;

4 var pc : loc, im : ins[N], rf : val[8];
5 var iq = queue(ins), rq = queue(irf);

Fig. 2. State Variables and Type Declarations for Example in Fig. 1

Line 4 and5 in Fig. 2 present the state declarations, which
consist of the following state variables: a program counterpc ,
an instruction memoryim , a register £lerf , and two queues,
iq andrq . Lines1 through3 contain the type declarations for
these variables. The type declarations include a 3 bit register
name typereg , an 8 bit integer typeval , an 8 bit integer type
loc which represents the locations of instructions in the in-
struction memory, an instruction typeins , and a typeirf for

1This is not a particularity of our algorithm, but rather what the original
description speci£es. The machine could as easily generate, for example, by-
passing logic if this choice is explicitly made in the speci£cation.

instructions whose register operands have been fetched from
the register £le. The instruction type is a tagged union type,
similar to those found in ML and Haskell. To keep the exam-
ple clear, the instruction set contains only anINC instruction,
which increments the value in its single register argument, and
aJRZ instruction, which tests the value in its register argument
and, if the value is zero, jumps to the location in its location ar-
gument.

III. SYNTHESIS ALGORITHM

The synthesis algorithm takes an asynchronous speci£cation
and converts it into a synchronous implementation by generat-
ing a global schedule for all of the operations in the rules. This
schedule enables the synchronous and concurrent execution of
multiple rules per clock cycle and produces a circuit that, when
no hazards are present, reads and writes each queue in the same
cycle. It implements each queue as a £nite hardware buffer.

The basic approach is to give each rule an opportunity to
execute at each cycle. The challenge is to ensure that the £nal
result at the end of the cycle correctly re¤ects the sequential,
atomic execution of all of the rules that execute in that cycle.
The algorithm meets this challenge by symbolically executing
the rules in sequence, with each rule operating on the output
of the previous2 rule. The derived expression for each state
variable represents its new value at the beginning of the next
clock cycle.

The synthesis algorithm assumes that each operation is im-
plemented by a dedicated hardware component. It is conceiv-
able to modify the algorithm as to give the designer the option
of trading parallelism for silicon area.

The algorithm consists of six phases:
• Associating Versions With Each State Variable: Order

the rules3 for symbolic execution and compute the version
of each state variable that each rule accesses. The £rst rule
will read version 0 of the variables and compute version 1.
The second rule will read version 1 and compute version 2
and so on. By feeding the output of the previous rule into
the next rule, we establish an initial schedule for symbolic
execution.

• Relaxation: The result of the operation performed in the
previous step suffers from an excessively long clock cycle,
as rule execution is completely sequentialized. The goal
of the relaxation is to shorten the critical pathwithin each
clock cycle. Whenever possible, the algorithm relaxes the
calculation of theenabling condition for each rule so that it
is evaluated in the initial state (at the beginning of the clock
cycle) rather than in the state created by the previously exe-
cuted rule. To maintain correctness, the updates still execute
sequentially if they operate on the same state variable. This
transformation ensures that each element of data traverses at
most one module per clock cycle, producing an acceptable
critical path for the circuit. By increasing the parallelism in

2Previous and next refer to the textual ordering of the rules in the original
speci£cation.

3Our implementation uses textual ordering of the rules.

this way, we shorten the clock cycle of the circuit, and, indi-
rectly, increase its throughput. Relaxation doesnot insert or
remove delays in/from the circuit.

• Global Scheduling: In the initial speci£cation, queues have
unbounded length. But the hardware implementation must
have a £nite, speci£c number of entries allocated for each
queue. Given a designer-speci£ed length for each queue, the
synthesis algorithm must generate an implementation that
does not exceed that length. In the actual hardware, a given
length of 1 for each queue translates into the synthesis of a
standard pipeline.

• Symbolic Execution: Next, the algorithm symbolically ex-
ecutes all of the rules in sequence. An expression is gener-
ated for each state variable that re¤ects all of the possible
updates of that variable for that clock cycle. This expression
represents the value of the variable in the next clock cycle.
Since only a subset of the rules may £re in a given clock
cycle, the expressions contain conditionals.

• Optimizations: The synthesis algorithm next applies a
spectrum of optimizations geared towards avoiding unnec-
essary replication of hardware and eliminating false paths in
the implementation. These optimizations currently include
common sub-expression elimination and mutual exclusion
testing for the expressions derived at symbolic execution. If
an expression contains a value that will never actually oc-
cur in practice because the conditions required to obtain that
value are mutually exclusive, its computation is eliminated
from the expression. The mutual exclusion testing is im-
plemented using resolution [?] and a set of reduction and
simpli£cation rules.
Fig. 3 presents the result of the expression evaluation; note
the introduction of the temporary variablest1 , t2 , t3 , and
t4 . These variables will turn directly into combinational
logic in the £nal implementation of the circuit.

let
t1 = <INC r> = head(iq 0) and

notin(rq 0,<INC r l>)
t2 = <JRZ r l> = head(iq 0) and

notin(rq 0,<INC r l>)
t3 = insert(iq 0,im 0[pc 0])
t4 = tail(t3)

iq 6 =
if <JRZ v l> = head(rq 0) and v = 0 then nil
else if t1 then t4
else if t2 then t4
else if length(iq 0) < N iq then t3
else iq 0

Fig. 3. Result of Symbolic Execution foriq

• Verilog Generation: In the £nal phase we generate synthe-
sizable Verilog for the optimized expressions in the previ-
ous step. Each state variable is implemented as one or more
registers, depending on its type; each memory variable as
a library block. Queues are implemented as hardware regis-
ters. The derived expression for each state variable evaluates
to the new value that gets written back into the state at the
beginning of the next clock cycle.
We next discuss the two more complicated phases of the al-

gorithm in turn.

A. Relaxation

The execution of a ruleRcan update state variables tested by
a subsequent ruleR′. If this is the case, thenR′ has to wait forR
to execute and update the state, before testing its precondition.
But if we can prove that the execution ofR will not disable
the enabling condition ofR′, we can relax the precondition of
R′ to test the state beforeR executes. This transformation ex-
poses parallelism in the speci£cation, reducing the length of
the critical path of the circuit.

In our example, relaxing the rules pipelines the instruction
fetch and execution over multiple clock cycles, thus reducing
cycle time.

Relaxation is the process of replacing each version of each
state variable with its earliest4 safe version. An earlier version
of vj , namedvk, is safe if the following property holds:

If the rule’s enabling condition,Pl , is true with
vj replaced byvk, then it is also true withvj , i.e.
Pl [vk/vj] impliesPl .

This is an application of the following more general rule:
Assume a predicateP[e/d] (i.e. the predicateP with the ex-
pressiond replaced by another expressione) impliesP. Then
for any rule with preconditionP, we can (subject to liveness
concerns) use the predicateP[e/d] instead ofP.

This transformation is valid because of two reasons:
• Partial Correctness: If a rule in the transformed numbering

executes, the rule would also execute in the original number-
ing and yield the same result. This takes care of the safety
issue.

• Liveness:Since the rule in the transformed numbering tests
the initial state, if a rule is enabled in the original numbering
but not in the transformed one,somerule executes in the
transformed numbering. This ensures liveness.
The algorithm processes the rules in reverse order, repeat-

edly attempting to replace the current version of each variable
in the enabling condition of the rule, with the previous cor-
responding version, starting from the immediately preceding
rule. Fig. 4 shows how to obtain a new expression from an
initial expressionExp, by replacingvj in Exp with its earliest
safe version.Pl stands for the enabling condition of the rule
that containsExp. A replacement is successful if either of the
two is true:
• The enabling condition with the earlier version instead of the

current one implies the enabling condition with the current
version.

• The condition of the rule that computes the earlier version
and the current enabling condition are mutually exclusive.
The relaxation algorithm is especially well suited for use

with queues. An element inserted at the tail of the queue does
not affect the element that was at the head of the queue before
the insertion. Rules that test the £rst element of a queue remain

4Earlier here refers to the ordering established in the £rst step of the
algorithm.

replace (vj ,Exp)
if version(vj) = 0

then Exp
else vk = earlier-version(vj)

Pk = rule-that-updates(vj)
if (Pk, Pl) mutual exclusive

then replace(vk,Exp[vk/ vj])
else if Pl [vk/vj] implies Pl

then replace(vk,Exp[vk/ vj])
else Exp

Fig. 4. Relaxation Algorithm

enabled regardless of the number of elements inserted at the
tail of the queue, provided that no rule previously removes the
head of the queue. This property allows such a rule to test the
initial version of the queue, rather than versions produced by
earlier rules.

Conceptually, the algorithm could include an initial phase
that can in many cases order the modules/rules so as to match
the ¤ow of data in the pipeline. Being able to put the rules in
this order is suf£cient (but not necessary) to ensure that they
all test the initial version of each queue.

Currently, the framework does not provide a ¤exible support
for trading concurrency for cycle time. By default, if two rules
simultaneously evaluate their preconditions to true, they are
both going to £re in the current clock cycle, either in parallel
if there are no data dependencies or sequentially if there are.

B. Global Scheduling

The scheduler augments each rule that inserts an element
into a queue to ensure that it never over¤ows any of the buffers
that implement the queues in hardware. The basic approach
is to assume all queues are within length at the beginning of
the clock cycle and schedule only those rules for £ring that are
1) enabled and 2) whose combined execution leaves the queue
within its length at theendof the clock cycle. All the other
rules remain unchanged. As part of this process, queue in-
sertions are prioritized. In hardware, global scheduling corre-
sponds to generating the control signals for the combinational
logic.

Global scheduling is the enabling technology for ef£cient
pipelining. The key insight is that, every clock cycle, the num-
ber of rules that can execute and insert into a queueq can be
bigger than the number of empty slots inq, without causingq
to over¤ow. The condition is that enough rules will also exe-
cute in that clock cycle and remove elements fromq, leaving
it within length at the end of the clock cycle. Applying this
mechanism boosts the throughput of the circuit.

B.1 Basic Concepts

We de£ne aqueue path using arule graph. The nodes in
the graph are the rules. There is a directed edge between two
rules if the £rst inserts items into a given queue and the second
removes items from the same queue. By de£nition, the spec-
i£cation is acyclic if there are no cycles in the rule graph and
cyclic if there are.

By de£nition, a rule is an appending rule if its set of updates
contains at least one insertion of an element into some queue.

B.2 Acyclic Speci£cations

Acyclic speci£cations contain no cyclic queue paths. For
acyclic speci£cations, the scheduling algorithm ensures that
the queues do not over¤ow by computing an additional con-
straint as shown in Fig. 5. We useR′ for ruleRaugmented with
the corresponding additional constraints andRoom(q) for the
number of empty locations inq at the beginning of the clock
cycle. Functioneval(R′) returns 0 ifR′ is f alseand 1 ifR′ is
true. index(X) returns the set of indices of all the rules inX.
The constraint counts the number of elements in each queue at
the beginning of each clock cycle. It also considers queue re-
movals and previous insertions to augment the enabling condi-
tion of each rule so that it does not execute if it would over¤ow
the queue.

for each rule Ri [in topological sort order]
Q = {q | Ri inserts into q}
if Q != nil
then for each q∈ Q

I = {Rj | Rj inserts into q}
D = {Rk | Rk removes from q}
Select(Ri ,q) =

if (Ri is the only rule in I) or
∀i1, i2∈ I ,(i1, i2) mutually exclusive

then ′′∀k∈ index(D).
Room(q)+Σeval(R′

k) > 0′′
else ′′∀k∈ index(D).∀ j ∈ index(I). j < i.

Room(q)+Σeval(R′
k) > Σeval(R′

j)
′′

else NOP

Fig. 5. Computing the Additional Constraints for a Rule in an Acyclic
Speci£cation

B.3 Generalization for Cyclic Speci£cations

Introducing additional enabling conditions raises the possibil-
ity of deadlock. For acyclic speci£cations, this is not an issue
because the acyclicity ensures that the queues will eventually
drain, enabling rules that were originally suspended for lack
of space. But this line of reasoning does not hold for cyclic
speci£cations. The key insight is that the additional enabling
conditions need not introduce deadlock if there is a way to co-
ordinate the removals and insertions of elements from all of the
queues in the cycle so that the removal of each element leaves
room for the insertion of the element behind it. The algorithm
for cyclic speci£cations therefore analyzes groups of rules to-
gether to generate a global schedule that allows all of the data
in a cycle to move together through the cycle.

We use the example in Fig. 6 to illustrate the operation of
the algorithm for cyclic speci£cations. To simplify the presen-
tation, we present the rules by themselves, omitting the mod-
ule decomposition. We also omit the rule(s) that remove from
queuez and any rules that do not affect the contents of queues
x andy .

This example is modeled after a random number generation
process that starts with two numbers (2 and 3) and repeatedly

state x : queue(int) = 2 ;
state y : queue(int) = 3 ;
state z : queue(int);
0: t = head(x) ->

y = insert(y,(t+3)&15), x = tail(x);
1: t = head(y) ->

x = insert(x,(t+5)&15), y = tail(y);
2: t = head(x) and (t&3 = 0) ->

z = insert(z,t), x = tail(x);
3: t = head(y) and (t&3 = 0) ->

z = insert(z,t), y = tail(y);
// implementation constraints
length(x) = 1;
length(y) = 1;

Fig. 6. Cyclic Example

adds 3, then 5 to each number, retaining the lower 4 bits af-
ter each addition. The computation records the values of the
numbers when their bottom 2 bits become 0. In our implemen-
tation, each number is stored in a queue, and the designer spec-
i£es that each queue has a single entry. Because of the cyclic
nature of the speci£cation, the numbers must move through the
queues together — if they attempt to move separately, there is
no room in the queues. The synthesis algorithm must therefore
schedule the rules involved in the cycle (rules 0 and 1) together
to coordinate their queue insertions and removals.

• Idea: The key idea is to £nd, for each rule that inserts an
element into a queueq, the maximal sets of rules that have
to execute together to preserve the “non-over¤ow” invariant
of q, at the end of each clock cycle. To do this, the algorithm
starts from each rule and traverses the rule graph on all pos-
sible paths, gathering for each rule that we go through, the
conditions that would let that rule £re. We stop if either a
rule is not an appending rule, so will always £re when its
initial enabling condition becomes true, or if we already tra-
versed that rule on the current path, so we already consid-
ered that the rule £res. Once we reach such a point there’s
no additional information on that path in the circuit that was
not already collected at the £rst traversal. Nothing needs to
be added to yield a correct solution. When all paths reach
such points, the set of all rules that have to £re together be-
comes provably maximal.

• Algorithm: The scheduling algorithm processes each rule
in the cyclic speci£cation in turn. Fig. 7 shows the algorithm
that produces the additional enabling condition for a ruleRi .
CrtPath keeps the currently explored path, for purposes of
termination. This variable is initially empty for each sym-
bolic execution of a rule. The symbolic execution of a rule
terminates if either one of the two scenarios below is true:
• Rk is a non-appending rule and in this casenewRk = Rk.

We callnewRk what we derive fromRk after enhancing it
with the additional constraints.

• Rk is a rule previously examined on the current path. This
means we already assumedRk £res on that path, so there’s
no need to explore further, thereforenewRk = true.

SymbolicExecution (Ri , CrtPath)
Q = {q | Ri inserts into q}
if Q != nil
then for each q∈ Q

I = {Rj | Rj inserts into q}
D = {Rk | Rk removes from q}
S= if (Ri is the only rule in I) or

∀i1, i2∈ I ,(i1, i2) mutually exclusive
then D
else D∪ I

for each rule Rk ∈ S
newCrtPath= CrtPath∪Rk
newRk = if Rk ∈CrtPath

then true
else SymbolicExecution(Rk, newCrtPath)

newSelect(Ri ,q) = Select(Ri ,q)[newRk/R′
k]

Select(Ri ,q) = newSelect(Ri ,q)
newRi = (Ri and Select(Ri ,q))
Ri = newRi

else Ri

Fig. 7. Computing the Additional Constraints for a Rule in a Cyclic
Speci£cation

Fig. 8. Comparative Clock Cycle and Area Estimates

Architecture Cycle (MHz) Area
RISC Pipelined Processor 88.89 23195.25
SCU RTL 98 DSP 90.91 22999.50

IV. EXPERIMENTAL RESULTS

We have implemented a prototype synthesis system based
on the algorithms presented in this paper. The algorithm gen-
erates synthesizable Verilog implementations at the RTL level.
We wrote the speci£cation of a 32-bit datapath, RISC-style,
linearly pipelined processor with a complete instruction set5,
ran it through our synthesis algorithm, then synthesized the
resulting Verilog model using the Synopsis Design Compiler
to an industry standard .25 micron standard cell process. To
serve as a reference point, we also synthesized, in the same
environment, the Santa Clara University SCU RTL 98 DSP, a
hand-written, standard 32-bit £xed point DSP that implements
the same basic functionality. Table 8 shows area and clock
cycle numbers for the two applications. Notice that the syn-
thesized area is roughly the same, while clock-cycle-wise, our
processor is within 3 percent of the hand coded version.

It took us less than £ve hours to develop the speci£cation
for the processor, which we believe is signi£cantly faster than
developing the DSP model by hand. Our speci£cation contains
15 lines for state declarations and 21 lines of rule de£nitions
for module speci£cations. The SCU RTL 98 DSP application,
on the other hand, consists of approximately 885 lines of Ver-
ilog code. Our automatically generated implementation con-
sists of about 1200 lines of synthesizable Verilog.

We have also tried our synthesis algorithm on several non-
processor benchmarks. Table 9 shows cycle time and area
numbers for a speci£cation describing bubblesort for eight 8-
bit numbers, a butter¤y network similar to the ones used in
bitonic sorting networks and in FFTs, and a cascaded FIR with

5The instruction set contains load, store, jump, ALU, multiply and variable
shift operations.

Fig. 9. Clock Cycle and Area Estimates for a Few Basic Data Processing
Elements

Benchmark Cycle (MHz) Area
Bubblesort 107.06 5434
FFT 104.42 5411
FIR 105.01 3757

16 coef£cients.
The running time of our system is roughly proportional to

the complexity of the generated control. For all applications
except the pipelined processor, our system required less than
one minute to generate the Verilog output. For the processor, it
took roughly half an hour. We tested the generated Verilog for
each application, including the pipelined processor, using the
Cadence NCVerilog simulator.

V. RELATED WORK

HDLs like VHDL or Verilog use a model of concurrency
in which processes communicate using signals. A signal is
a direct physical connection with no buffering and with dy-
namic synchronization overhead. Designed for formal veri£-
cation and synthesis of communication protocols, SUAVE [?]
improves the communication features of VHDL by provid-
ing bounded or unbounded message buffers. The synchronous
communication model is similar to those of CSP [?] and Oc-
cam [?]. Our approach is different in that it displays an asyn-
chronous communication model at design level, while gener-
ating a synchronous implementation.

Another approach uses software languages such as C and
C++. The Olympus/Hercules system is designed to support
mainly ASIC synthesis from HardwareC [?], a C-like syn-
tax behavioral language. HardwareC supports concurrency by
providing synchronous queues with blocking send and receive
constructs. InScenic[?], the semantics of concurrency is sim-
ilar to that of CSP and processes communicate via signals. In
both approaches, the synchronous communication semantics
force the designer think about the global timing when describ-
ing the system.

Systems based on hierarchical PBSs [?] (Production Based
Speci£cation) specify the control implicitly via the production
hierarchy. The simplicity of PBS comes from the local nature
of each production, allowing the designer not worry about the
explicit construction of the global ¤ow. PBS is closer to our
description language in the sense that both describe external
behavior rather than particular implementations of a system.
Moreover, the actions for a given behavior are described lo-
cally, even if possibly simultaneous actions can be described
elsewhere. On the other hand, the framework is synchronous.

Systems like Ptolemy [?], GRAPE [?], SPW from Cadence
or COSSAP from Synopsys start from block diagram lan-
guages based on a data¤ow semantics and are targeted to DSP
design, mostly for minimizing memory usage and buffer mem-
ory. In SDF (Synchronous Data Flow), a static schedule for
the block diagram is found that £res eachactor in the data¤ow

graph at least once and does not change the net number ofto-
kensqueued on each edge. In our approach, not every update
rule has to £re every clock cycle, the number of elements in
the queues may vary in time and the desired lengths for the
queues are speci£ed by the designer. Unlike DDF (Dynamic
Data Flow), which implements a run-time scheduler, our ap-
proach provides a statically scheduled model.

In synchronous languages like Esterel [?], Lustre [?], Sig-
nal [?] and Statecharts [?], the programmer thinks about a pro-
gram as reacting instantaneously to external events. Processes
are tightly coupled and deterministic, communication being re-
alized by instantaneous broadcasting.

Classic work on pipelining optimization by Patel [?], David-
son, Shar and Thomas [?] starts from a given reservation table
for the task ¤ows in a system and develops methodologies for
increasing the throughput of a pipeline. In our approach there
is no initial knowledge of what gets assigned to each pipeline
stage at each clock cycle; there is no notion of synchronicity.

Several speci£cation and veri£cation systems have taken an
approach similar to ours, based on describing the behavior of
a system by a state transition system [?, ?]. Closely related to
our research, Hoe and Arvind [?] develop a method for hard-
ware description and synthesis based on an operation-centric
approach.

VI. CONCLUSIONS

This paper presents a new approach for hardware synthe-
sis. The designer uses a design language based on connect-
ing modules with asynchronous queues. The synthesis algo-
rithm eliminates the inef£ciency associated with a direct asyn-
chronous implementation by automatically generating a coor-
dinated global schedule for all operations in the system. This
schedule is used to generate an ef£cient and fully pipelined
synchronous implementation.

The primary advantages of this approach include good sup-
port for concurrency, modularity, debugging, and reuse in the
design language. The use of update rules provides support for
formal veri£cation and concurrency, and enables concise, be-
havioral descriptions. This gives the resulting implementation
a better chance to correctly re¤ect the designer’s intent. The
synthesis algorithm is the key to enabling the designer to use a
convenient design language while obtaining an ef£cient hard-
ware implementation of the design. The global scheduling and
relaxation algorithms maximize the throughput. Relaxation
also reduces the clock cycle time by parallelizing the evalua-
tion of the enabling conditions of the rules. Global scheduling
eliminates the need for handshaking hardware, while apply-
ing optimizations at a global level optimizes the combinational
logic. Our experimental results provide encouraging evidence
that the approach can deliver ef£cient implementations of high-
level speci£cations. The approach also greatly improves on
design time and has reasonable run-times of the synthesis al-
gorithm. Our approach is well-suited to systems that are nat-
urally described as a composition of interacting sub-systems.
The class of pipelined circuits is one such system, as FIFO

queues are a natural way to isolate pipe stages.

REFERENCES

[1] P. Ashenden, R. Esser, and P. Wilsey. Communication and synchroniza-
tion using bounded channels in SUAVE. InProceedings of the 1999
International Hardware Description Languages Conference and Exhibit
(HDLCON99), 1999.

[2] F. Baader and T. Nipkow.Term rewriting and all that. Cambridge Uni-
versity Press, 1998.

[3] M. Ballantyne. Automatic deduction. Technical Report STAN-CS-82-
937, Dept. of Computer Science, Stanford Univ., Stanford, Calif., Octo-
ber 1982.

[4] F. Boussinot and R. de Simone. The ESTEREL language. InProceedings
of the IEEE, pages 79(9):1293–1304, September 1991.

[5] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: a frame-
work for simulating and prototyping heterogeneous systems.Intl. J. of
Computer Simulation, 1995.

[6] A. Burns. Programming in Occam 2. Addison-Wesley, Reading, Mass.,
1988.

[7] K. M. Chandy and J. Misra.Parallel program design: a foundation.
Addison-Wesley, Reading, Mass., 1988.

[8] E.S. Davidson, L.E. Shar, A.T. Thomas, and J.H. Patel. Effective control
for pipelined computers. InProceedings of the 1975 Spring COMPCON.

[9] A. Ghosh, J. Kunkel, and S. Liao. Hardware synthesis from C/C++.
In Design, Automation and Test in Europe Conference and Exhibition,
1999.

[10] P. Le Guernic, M. Le Borgne, T. Gauthier, and C. Le Maire. Program-
ming real time applications with Signal. InAnother Look at Real Time
Programming, Proceedings of the IEEE, Special Issue, September 1991.

[11] N. Halbwachs, P. Caspi, and D. Pilaud. The synchronous data¤ow pro-
gramming language Lustre. InAnother Look at Real Time Programming,
Proceedings of the IEEE, Special Issue, September 1991.

[12] D. Harel. Statecharts: a visual approach to complex systems. InScience
of Computer Programming, pages 8:231–274, 1987.

[13] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,
Englewood Cliffs, N.J., 1985.

[14] J. Hoe and Arvind. Hardware synthesis from term rewriting systems. In
VLSI: Systems on a chip, Lisbon, Portugal, December 1999.

[15] D. Ku and G. De Micheli. HardwareC: a language for hardware de-
sign. Technical Report SCSL/CSL/TR-90-419, Computer Systems Lab-
oratory, Stanford Univ., Stanford, Calif., August 1990.

[16] R. Lauwereins, P. Wauters, M. Ade, and J. A. Peperstraete. Geometric
parallelism and cyclo-static data ¤ow in grape-ii. InProc. IEEE Work-
shop on Rapid System Prototyping, Grenoble, France, June 1994.

[17] Janak Patel. Pipelines with internal buffers. InProceedings of the Fifth
Annual Symposium on Computer Architecture, ISCA78.

[18] Andrew Seawright and Forrest Brewer. Synthesis from Production-
Based Speci£cations. InProceedings of 29th Design Automation Con-
ference, 1992.

