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Abstract
Emerging high-performance architectures are anticipated 
to contain unreliable components that may exhibit soft 
errors, which silently corrupt the results of computations. 
Full detection and masking of soft errors is challenging, 
expensive, and, for some applications, unnecessary. For 
example, approximate computing applications (such as 
multimedia processing, machine learning, and big data 
analytics) can often naturally tolerate soft errors.

We present Rely, a programming language that enables 
developers to reason about the quantitative reliability of an 
application—namely, the probability that it produces the 
correct result when executed on unreliable hardware. Rely 
allows developers to specify the reliability requirements for 
each value that a function produces.

We present a static quantitative reliability analysis that 
verifies quantitative requirements on the reliability of an 
application, enabling a developer to perform sound and 
verified reliability engineering. The analysis takes a Rely pro-
gram with a reliability specification and a hardware speci-
fication that characterizes the reliability of the underlying 
hardware components and verifies that the program satisfies 
its reliability specification when executed on the underlying 
unreliable hardware platform. We demonstrate the applica-
tion of quantitative reliability analysis on six computations 
implemented in Rely.

1. INTRODUCTION
Reliability is a major concern in the design of computer sys-
tems. The current goal of delivering systems with negligible 
error rates restricts the available design space and imposes 
significant engineering costs. And as other goals such as energy 
efficiency, circuit scaling, and new features and functional-
ity continue to grow in importance, maintaining even current 
error rates will become increasingly difficult.

In response to this situation, researchers have developed 
numerous techniques for detecting and masking errors in 
both hardware10 and software.9, 23, 24 Because these techniques 
typically come at the price of increased execution time, 
increased energy consumption, or both, they can substan-
tially hinder or even cripple overall system performance.

Many computations, however, can easily tolerate occasional 
errors. An approximate computation (including many multi-
media, financial, machine learning, and big data analytics 
applications) can often acceptably tolerate occasional errors 
in its execution and/or the data that it manipulates.7, 20, 25 
A checkable computation can be augmented with an efficient 

checker that verifies either the exact correctness4, 14 or the 
approximate acceptability1 of the results that the computa-
tion produces. If the checker does detect an error, it can 
re-execute the computation to obtain an acceptable result.

For both approximate and checkable computations, oper-
ating without (or with at most selectively applied) mecha-
nisms that detect and mask errors can produce (1) fast and 
energy efficient execution that (2) delivers acceptably accurate 
results often enough to satisfy the needs of their users.

1.1. Background
Approximate computations have emerged as a major com-
ponent of many computing environments. Motivated in 
part by the observation that approximate computations 
can often acceptably tolerate occasional computation and/
or data errors,7, 20, 25 researchers have developed a range of 
new mechanisms that forgo exact correctness to optimize 
other objectives. Typical goals include maximizing program 
performance subject to an accuracy constraint and altering 
program execution to recover from otherwise fatal errors.26

Software Techniques: Most software techniques deploy 
unsound transformations—transformations that change the 
semantics of an original exact program. Proposed mecha-
nisms include skipping tasks,16, 25 loop perforation (skipping 
iterations of time-consuming loops),20, 29 sampling reduction 
inputs,30 multiple selectable implementations of a given 
component or components,2, 3, 12, 30 dynamic knobs (configu-
ration parameters that can be changed as the program 
executes)12 and synchronization elimination (forgoing syn-
chronization not required to produce an acceptably accurate 
result).16, 18 The results show that aggressive techniques such 
as loop perforation can deliver up to a fourfold performance 
improvement with acceptable changes in the quality of the 
results that the application delivers.

Hardware Techniques: The computer architecture community 
has begun to investigate new designs that improve per-
formance by breaking the traditional fully reliable digital 
abstraction that computer hardware has traditionally sought 
to provide. The goal is to reduce the cost of implement-
ing a reliable abstraction on top of physical materials and 
manufacturing methods that are inherently unreliable. For 

The original version of this paper appeared in Proceedings 
of the 28th ACM SIGPLAN Conference on Object-Oriented 
Programming, Systems, Languages, and Applications 
(Indianapolis, IN, Oct. 2013).

http://dx.doi.org/10.1145/2958738


research highlights 

 

84    COMMUNICATIONS OF THE ACM   |   AUGUST 2016  |   VOL.  59  |   NO.  8

example, researchers are investigating designs that incor-
porate aggressive device and voltage scaling techniques 
to provide low-power ALUs and memories. A key aspect of 
these components is that they forgo traditional correctness 
checks and instead expose timing errors and bitflips with 
some non-negligible probability.9, 11, 13, 15, 21, 22, 27

1.2. Reasoning about approximate programs
Approximate computing violates the traditional contract that  
the programming system must preserve the standard semantics 
of the program. It therefore invalidates standard paradigms 
and motivates new, more general, approaches to reasoning 
about program behavior, correctness, and acceptability.

One key aspect of approximate applications is that they typi-
cally contain critical regions (which must execute without error) 
and approximate regions (which can execute acceptably even in 
the presence of occasional errors).7, 25 Existing systems, tools, 
and type systems have focused on helping developers iden-
tify, separate, and reason about the binary distinction between 
critical and approximate regions.7, 11, 15, 25, 27 However, in practice, 
no computation can tolerate an unbounded accumulation of 
errors—to execute acceptably, executions of even approximate 
regions must satisfy some minimal requirements.

Approximate computing therefore raises a number of fun-
damental new research questions. For example, what is the 
probability that an approximate program will produce the 
same result as a corresponding original exact program? How 
much do the results differ from those produced by the origi-
nal program? And is the resulting program safe and secure?

Because traditional correctness properties do not pro-
vide an appropriate conceptual framework for addressing 
these kinds of questions, we instead work with acceptability 
properties—the minimal requirements that a program must 
satisfy for acceptable use in its designated context. We iden-
tify three kinds of acceptability properties and use the fol-
lowing program (which computes the minimum element 
min in an N-element array) to illustrate these properties:

int min = INT_MAX ;
for (int i = 0; i < N; ++i)

if (a[i] < min) min = a[i];

Integrity Properties: Integrity properties are properties that 
the computation must satisfy to produce a successful result. 
Examples include computation-independent properties (no 
out of bounds accesses, null dereferences, divide by zero 
errors, or other actions that would crash the computation) 
and computation-dependent properties (e.g., the computa-
tion must return a result within a given range). One integ-
rity property for our example program is that accesses to the 
array a must always be within bounds.

Reliability Properties: Reliability properties characterize the 
probability that the produced result is correct. Reliability prop-
erties are often appropriate for approximate computations 
executing on unreliable hardware platforms that exhibit occa-
sional nondeterministic errors. A potential reliability property 
for our example program is that min must be the minimum 
element in a[0]–a[N–1] with probability at least 95%.

Accuracy Properties: Accuracy properties characterize 
how accurate the produced result must be. For example, an 

accuracy property might state that the transformed program 
must produce a result that differs by at most a specified 
percentage from the result that a corresponding original 
program produces.19, 30 Alternatively, a potential accuracy 
property for our example program might require the min to 
be within the smallest N/2 elements a[0]–a[N–1]. Such 
an accuracy property might be satisfied by, for example, a 
loop perforation transformation that skips N/2–1 of the 
loop iterations.

In this article we focus on reliability properties for 
approximate computations executing on unreliable hard-
ware platforms. In other research, we have developed 
techniques for reasoning about integrity properties5, 6 
and both worst-case and probabilistic accuracy proper-
ties.5, 19, 30 We have also extended the research presented 
in this article to include combinations of reliability and 
accuracy properties.17

1.3. Verifying reliability (contributions)
To meet the challenge of reasoning about reliability, we 
present a programming language, Rely, and an associated 
program analysis that computes the quantitative reliability 
of the computation—that is, the probability with which the 
computation produces a correct result when parts of the 
computation execute on unreliable hardware with soft errors 
(independent errors that occur nondeterministically with 
some probability). Specifically, given a hardware specification 
and a Rely program, the analysis computes, for each value 
that the computation produces, a conservative probability 
that the value is computed correctly despite the possibility of 
soft errors.

Rely supports and is specifically designed to enable parti-
tioning a program into critical regions (which must execute 
without error) and approximate regions (which can execute 
acceptably even in the presence of occasional errors).7, 25 
In contrast to previous approaches, which support only 
a binary distinction between critical and approximate 
regions, quantitative reliability can provide precise static 
probabilistic acceptability guarantees for computations 
that execute on unreliable hardware platforms. This article 
specifically presents the following contributions:

Quantitative Reliability Specifications: We present quan-
titative reliability specifications, which characterize the 
probability that a program executed on unreliable hardware 
produces the correct result, as a constructive method for 
developing applications. Quantitative reliability specifica-
tions enable developers who build applications for unreli-
able hardware architectures to perform sound and verified 
reliability engineering.

Language: We present Rely, a language that enables devel-
opers to specify reliability requirements for programs that 
allocate data in unreliable memory regions and use unreli-
able arithmetic/logical operations.

Quantitative Reliability Analysis: We present a program 
analysis that verifies that the dynamic semantics of a Rely 
program satisfies its quantitative reliability specifications. 
For each function in the program, the analysis computes a 
symbolic reliability precondition that characterizes the set 
of valid specifications for the function. The analysis then 
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verifies that the developer-provided specifications are valid 
according to the reliability precondition.

Case Studies: We have used the Rely implementation to 
develop unreliable versions of six building block compu-
tations for media processing, machine learning, and data 
analytics applications. These case studies illustrate how to 
use quantitative reliability to develop and reason about both 
approximate and checkable computations in a principled way.

2. EXAMPLE
Rely is an imperative language for computations over inte-
gers, floats (not presented), and multidimensional arrays. 
To illustrate how a developer can use Rely, Figure 1 presents 
a Rely-based implementation of a pixel block search algo-
rithm derived from that in the x264 video encoder.a

The function search_ref searches a region (pblocks) of 
a previously encoded video frame to find the block of pixels 
that is most similar to a given block of pixels (cblock) in 
the current frame. The motion estimation algorithm uses 

the results of search_ref to encode cblock as a function 
of the identified block.

This is an approximate computation that can trade cor-
rectness for more efficient execution by approximating the 
search to find a block. If search_ref returns a block that 
is not the most similar, then the encoder may require more 
bits to encode cblock, potentially decreasing the video’s 
peak signal-to-noise ratio or increasing the video’s encoded 
size. However, previous studies on soft error injection9 and 
more aggressive transformations like loop perforation20, 29 
have demonstrated that the quality of x264’s final result is 
only slightly affected by perturbations of this computation.

2.1. Reliability specifications
The function declaration on Line 6 specifies the types 
and reliabilities of search_ref’s parameters and return 
value. The parameters of the function are pblocks(3), a 
three-dimensional array of pixels, and cblock(2), a two-
dimensional array of pixels. In addition to the standard 
signature, the function declaration contains reliability 
specifications for each result that the function produces.

Rely’s reliability specifications express the reliability of 
a function’s results—when executed on an unreliable hard-
ware platform—as a function of the reliabilities of its inputs. 
A reliability specification has the form r ⋅ R(X), where r is a 
real number between 0 and 1 and X is a set of variables. For 
example, the specification for the reliability of search_
ref’s result is int<0.99*R(pblocks,cblock)>. This 
specification states that the return value is an integer with 
a reliability that is at least 99% of the joint reliability of the 
parameters pblocks and cblock (denoted by R(pblocks, 
cblock)). The joint reliability of a set of parameters is the 
probability that they all have the correct value when passed 
in from the caller. This specification holds for all possible 
values of the joint reliability of pblocks and cblock. For 
instance, if the contents of the arrays pblocks and cblock 
are fully reliable (correct with probability one), then the 
return value is correct with probability 0.99.

In Rely, arrays are passed by reference and the execution 
of a function can, as a side effect, modify an array’s contents. 
The reliability specification of an array therefore allows a 
developer to constrain the reliability degradation of its con-
tents. Here pblocks has an output reliability specification 
of R(pblocks) (and similarly for cblock), meaning that 
all of pblock’s elements are at least as reliable when the 
function exits as they were on entry to the function.

Joint reliabilities serve as an abstraction of a function’s 
input distribution, which enables Rely’s analysis to be both 
modular and oblivious to the exact shape of the distribu-
tions. This is important because (1) such exact shapes can be 
difficult for developers to identify and specify and (2) known 
tractable classes of probability distributions are not closed 
under many operations found in standard programming 
languages, which can complicate attempts to develop com-
positional analyses that work with such exact shapes.19, 28

2.2. Unreliable computation
Rely targets hardware architectures that expose both reli-
able operations (which always execute correctly) and more 

Figure 1. Rely code for motion estimation computation.

i

1 #define nblocks 20
2 #define height 16
3 #define width 16
4
5 int <0.99*R(pblocks , cblock)>
6 search_ref (
7 int<R(pblocks)> pblocks(3) in urel ,
8 int<R(cblock)> cblock(2) in urel)
9 {
10 int minssd = INT_MAX ,
11 minblock = -1 in urel;
12 int ssd, t, t1, t2 in urel;
13 int i = 0, j, k;
14
15 repeat nblocks {
16 ssd = 0;
17 j = 0;
18 repeat height {
19 k = 0;
20 repeat width {
21 t1 = pblocks[i,j,k];
22 t2 = cblock[j,k];
23 t = t1 -. t2;
24 ssd = ssd +. t *. t;
25 k = k + 1;
26 }
27 j = j + 1;
28 }
29
30 if (ssd <. minssd) {
31 minssd = ssd;
32 minblock = i;
33 }
34
35 i = i + 1;
36 }
37 return minblock;
38 }

a x264 (http://www.videolan.org/x264.html).
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additional checking logic, enabling the unit to execute 
more efficiently but also allowing for soft errors that may 
occur due to, for example, power variations within the 
ALU’s combinatorial circuits or particle strikes.

To prevent the execution from taking control flow 
edges that are not in the program’s static control flow 
graph, the control unit of the CPU reliably fetches, 
decodes, and schedules instructions (as is supported by 
existing unreliable processor architectures11, 27). In addi-
tion, given a virtual address in the application, the control 
unit correctly computes a physical address and operates 
only on that address.

Memory: Rely supports machines with memories that 
consist of an arbitrary number of memory partitions (each 
potentially of different reliability), but for simplicity Figure 2 
partitions memory into two regions: reliable and unreliable. 
Unreliable memories can, for example, use decreased DRAM 
refresh rates to reduce power consumption at the expense of 
increased soft error rates.15, 27

2.4. Hardware reliability specification
Rely’s analysis works with a hardware reliability specifica-
tion that specifies the reliability of arithmetic/logical and 
memory operations. Figure 3 presents a hardware reli-
ability specification that is inspired by results from the 
existing computer architecture literature.10, 15 Each entry 
specifies the reliability—the probability of a correct exe-
cution—of arithmetic operations (e.g., +.) and memory 
read/write operations.

For ALU operations, the presented reliability specifi-
cation uses the reliability of an unreliable multiplication 
operation from Ref.10, Figure 9. For memory operations, the 
specification uses the probability of a bit flip in a memory 
cell from Ref.15, Figure 4 with extrapolation to the prob-
ability of a bit flip within a 32-bit word. Note that a memory 
region specification includes two reliabilities: the reliability 
of a read (rd) and the reliability of a write (wr).

energy-efficient unreliable operations (which execute cor-
rectly with only some probability). Specifically, Rely supports 
reasoning about reads and writes of unreliable memory 
regions and unreliable arithmetic/logical operations.

Memory Region Specification: Each parameter declaration 
specifies the memory region in which the data of the param-
eter is allocated. Memory regions correspond to the physical 
partitioning of memory at the hardware level into regions of 
varying reliability. Here pblocks and cblock are allocated 
in an unreliable memory region named urel.

Lines 10–13 declare the local variables of the function. 
By default, variables in Rely are allocated in a fully reliable 
memory region. However, a developer can also optionally 
specify a memory region for each local variable. For exam-
ple, the variables declared on Lines 10–12 reside in urel.

Unreliable Operations: The operations on Lines 23, 24, 
and 30 are unreliable arithmetic/logical operations. In 
Rely, every arithmetic/logical operation has an unreliable 
counterpart that is denoted by suffixing a period after the 
operation symbol. For example, “−.” denotes unreliable 
subtraction and “<.” denotes unreliable comparison.

Using these operations, search_ref’s implementa-
tion approximately computes the index (minblock) of the 
most similar block, that is, the block with the minimum 
distance from cblock. The repeat statement on line 15, 
iterates a constant nblock number of times, enumerating 
over all previously encoded blocks. For each encoded block, 
the repeat statements on lines 18 and 20 iterate over the  
height * width pixels of the block and compute 
the sum of the squared differences (ssd) between each 
pixel value and the corresponding pixel value in the cur-
rent block cblock. Finally, the computation on lines 30 
through 33 selects the block that is—approximately—the 
most similar to cblock.

2.3. Hardware semantics
Figure 2 illustrates the conceptual machine model behind 
Rely’s reliable and unreliable operations; the model con-
sists of a CPU and a memory.

CPU: The CPU consists of (1) a register file, (2) arithmetic 
logical units that perform operations on data in registers, 
and (3) a control unit that manages the program’s execution.

The arithmetic-logical unit can execute reliably or unre-
liably. Figure 2 presents physically separate reliable and 
unreliable functional units, but this distinction can be 
achieved through other mechanisms, such as dual-volt-
age architectures.11 Unreliable functional units may omit 

Figure 2. Machine model. Orange boxes represent unreliable 
components.
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Figure 3. Hardware reliability specification.

reliability spec {
operator (+.) = 1 - 10^-7;
operator (-.) = 1 - 10^-7;
operator (*.) = 1 - 10^-7;
operator (<.) = 1 - 10^-7;
memory rel {rd = 1, wr = 1};
memory urel {rd = 1 - 10^-7, wr = 1};

}

Figure 4. Rely analysis overview.
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2.5. Reliability analysis
Given a Rely program, Rely’s reliability analysis verifies that 
the each function in the program satisfies its reliability 
specification when executed on unreliable hardware. Figure 4 
presents an overview of Rely’s analysis. The analysis con-
sists of two components: the precondition generator and the 
precondition checker.

Precondition Generator: Given a Rely program and a hard-
ware reliability specification, the precondition generator 
generates a symbolic reliability precondition for each func-
tion. A reliability precondition is a set of constraints that 
is sufficient to ensure that a function satisfies its reliability 
specification when executed on the underlying unreliable 
hardware platform. The reliability precondition is a con-
junction of predicates of the form Aout ≤ r ⋅ R (X), where Aout 
is a placeholder for a developer-provided reliability specifi-
cation for an output named out, r is a real number between 
0 and 1, and the term R (X) is the joint reliability of a set of 
parameters X.

Conceptually, each predicate specifies that the reliability 
given in the specification (given by Aout) should be less than 
or equal to the reliability of a path that the program may take 
to compute the result (given by r ⋅ R(X) ). The analysis com-
putes the reliability of a path from the probability that all 
operations along the path execute reliably.

The specification is valid if the probabilities for all paths 
to computing a result exceed that of the result’s specifica-
tion. To avoid the inherent intractability of considering 
all possible paths, Rely uses a simplification procedure to 
reduce the precondition to one that characterizes the least 
reliable path(s) through the function.

Precondition Checker: Rely verifies that the function’s 
specifications are consistent with its reliability precondi-
tion. Because reliability specifications are also of the form 
r ⋅R(X), the final precondition is a conjunction of predicates 
of the form r1 ⋅R(X1) ≤ r2 ⋅R(X2), where r1 ⋅R(X1) is a reliability 
specification and r2 ⋅R(X2) is a path reliability. If these predi-
cates are valid, then the reliability of each computed output 
is greater than that given by its specification.

The validity problem for these predicates has a sound 
mapping to the conjunction of two simple constraint valid-
ity problems: inequalities between real numbers (r1 ≤ r2) and 
set inclusion constraints over finite sets (X2 ⊆ X1). Checking 
the validity of a reliability precondition is therefore decid-
able and efficiently checkable.

Design: As a key design point, the analysis generates 
preconditions according to a conservative approximation 
of the semantics of the function. Specifically, it character-
izes the reliability of a function’s result according to the 
probability that the function computes that result fully 
reliably.

To illustrate the intuition behind this design point, con-
sider the evaluation of an integer expression e. The reliabil-
ity of e is the probability that it evaluates to the same value n 
in an unreliable evaluation as in the fully reliable evaluation. 
There are two ways that an unreliable evaluation can return 
n: (1) the unreliable evaluation of e encounters no faults and 
(2) the unreliable evaluation possibly encounters faults, but 
still returns n by chance.

Rely’s analysis conservatively approximates the reliabil-
ity of a computation by only considering the first scenario. 
This design point simplifies the reasoning to the task of 
computing the probability that a result is reliably computed 
as opposed to reasoning about a computation’s input distri-
bution and the probabilities of all executions that produce 
the correct result. As a consequence, the analysis requires 
as input only a hardware reliability specification that gives 
the probability with which each arithmetic/logical opera-
tion and memory operation executes correctly. The analysis 
is therefore oblivious to a computation’s input distribution 
and does not require a full model of how soft errors affect 
its result.

Precondition generator. For each function, Rely’s analy-
sis generates a reliability precondition that conservatively 
bounds the set of valid specifications for the function. The 
analysis produces this precondition by starting at the end of 
the function from a postcondition that must be true when 
the function returns and then working backward to produce 
a precondition such that if the precondition holds before 
execution of the function, then the postcondition holds at 
the end of the function.

Postcondition: The postcondition for a function is the con-
straint that the reliability of each array argument exceeds 
that given in its specification. For search_ref, the post-
condition Q0 is

which specifies that the reliability of the arrays pblocks 
and cblock—R(pblocks) and R(cblock)—should be at 
least that specified by the developer—A

pblocks
 and A

cblock
.

Precondition Generation: The analysis of the body of the 
search_ref function starts at the return statement. 
Given the postcondition Q0, the analysis creates a new pre-
condition Q1 by conjoining to Q0 a predicate that states that 
the reliability of the return value (r0 ⋅R(minblock) ) is at 
least that of its specification (Aret):

The reliability of the return value comes from the design prin-
ciple for reliability approximation. Specifically, this reliability 
is the probability of correctly reading minblock from unreli-
able memory—which is r0 = 1 − 10−7 according to the hardware 
reliability specification—multiplied by R(minblock), the 
probability that the preceding computation correctly com-
puted and stored minblock.

Loops: The statement that precedes the return state-
ment is the repeat statement on Line 15. A key difficulty 
with reasoning about the reliability of variables modified 
within a loop is that if a variable is updated unreliably and 
has a loop-carried dependence then its reliability mono-
tonically decreases as a function of the number of loop 
iterations. Because the reliability of such variables can, 
in principle, decrease arbitrarily in an unbounded loop, 
Rely provides both an unbounded loop statement (with an 
associated analysis) and an alternative bounded loop state-
ment that lets a developer specify a compile-time bound 
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Step 3: In the final step, the analysis leaves the scope of 
the conditional and conjoins the two preconditions for its 
branches after transforming them to include the direct 
dependence of the control flow variable on the reliability of 
the if statement’s condition expression.

The reliability of the if statement’s expression is greater 
than or equal to the product of (1) the reliability of the <. oper-
ator (r0), (2) the reliability of reading both ssd and minssd 
from unreliable memory (r 2

0), and (3) the reliability of the 
computation that produced ssd and minssd (R(ssd, 
minssd) ). The analysis therefore transforms each predicate 
that contains the variable 30, by multiplying the right-hand 
side of the inequality with r 3

0 and replacing the variable 30 
with ssd and minssd.

This produces the precondition Q2:

Simplification: After unrolling a single iteration of the loop 
that begins at Line 15, the analysis produces  
R(pblocks, cblock, i, ssd, minssd) as the precondition for 
a single iteration of the loop’s body. The constant 2564 rep-
resents the number of unreliable operations within a single 
loop iteration.

Note that there is one less predicate in this precondition 
than in Q2. As the analysis works backwards through the 
program, it uses a simplification technique that identifies 
that a predicate Aret ≤ r1 ⋅R(X1) subsumes another predicate 
Aret ≤ r2 ⋅ R(X2). Specifically, the analysis identifies that  
r1 ≤ r2 and X2 ⊆  X1, which together mean that the sec-
ond predicate is a weaker constraint on Aret than the first 
and can therefore be removed. This follows from the fact 
that the joint reliability of a set of variables is less than 
or equal to the joint reliability of any subset of the vari-
ables—regardless of the distribution of their values.

This simplification is how Rely’s analysis achieves scal-
ability when there are multiple paths in the program; specifi-
cally a simplified precondition characterizes the least reliable 
path(s) through the program.

Final Precondition: When the analysis reaches the begin-
ning of the function after fully unrolling the loop on Line 15, it 
has a precondition that bounds the set of valid specifications 
as a function of the reliability of the parameters of the func-
tion. For search_ref, the analysis generates the precondition

Precondition checker. The final precondition is a con-
junction of predicates of the form Aout ≤ r ⋅R(X), where 
Aout is a placeholder for the reliability specification of an 
output. Because reliability specifications are all of the 
form r ⋅R(X), each predicate in the final precondition 
(where each Aout is replaced with its specification) is of 
the form form r1 ⋅R(X1) ≤ r2 ⋅R(X2), where r1 ⋅R(X1) is a 
reliability specification and r2 ⋅R(X2) is computed by the 
analysis. Similar to the analysis’s simplifier (see Precon-

on the maximum number of its iterations that therefore 
bounds the reliability degradation of modified variables. 
The loop on Line 15 iterates nblocks times and therefore 
decreases the reliability of any modified variables nblocks 
times. Because the reliability degradation is bounded, Rely’s 
analysis uses unrolling to reason about the effects of a 
bounded loop.

Conditionals: The analysis of the body of the loop on Line 
15 encounters the if statement on Line 30.b This if statement 
uses an unreliable comparison operation on ssd and 
minssd, both of which reside in unreliable memory. The 
reliability of minblock when modified on Line 32 therefore 
also depends on the reliability of this expression because 
faults may force the execution down a different path.

Figure 5 presents a Hoare logic style presentation of the 
analysis of the conditional statement. The analysis works in 
three steps; the preconditions generated by each step are 
numbered with the corresponding step.

Step 1: To capture the implicit dependence of a variable 
on an unreliable condition, Rely’s analysis first uses latent 
control flow variables to make these dependencies explicit. 
A control flow variable is a unique program variable (one for 
each statement) that records whether the conditional evalu-
ated to true or false. We denote the control flow variable for 
the if statement on Line 30 by 30.

To make the control flow dependence explicit, the analy-
sis adds the control flow variable to all joint reliability terms 
in Q1 that contain variables modified within the body of the 
if conditional (minssd and minblock).

Step 2: The analysis next recursively analyzes both the 
“then” and “else” branches of the conditional, produc-
ing one precondition for each branch. As in a standard 
precondition generator (e.g., weakest-preconditions) 
the assignment of i to minblock in the “then” branch 
replaces minblock with i in the precondition. Because 
reads from i and writes to minblock are reliable (accord-
ing to the specification) the analysis does not introduce 
any new r0 factors.

(3) {Q0 ∧ Aret ≤ r4
0 · R(i, ssd, minssd) 

∧ Aret ≤ r4
0 · R(minblock, ssd, minssd)}

if (ssd <. minssd) {
(2) {Q0 ∧ Aret ≤ r0 · R(i, �30)}

minssd = ssd;
{Q0 ∧ Aret ≤ r0 · R(i, �30)}
minblock = i;
{Q0 ∧ Aret ≤ r0 · R(minblock, �30)}

} else {
(2) {Q0 ∧ Aret ≤ r0 · R(minblock, �30)}

skip;
{Q0 ∧ Aret ≤ r0 · R(minblock, �30)}

}
(1) {Q0 ∧ Aret ≤ r0 · R(minblock, �30)}

Figure 5. if statement analysis in the last loop iteration.

b This happens after encountering the increment of i on Line 35, which 
does not modify the current precondition because it does not reference i.



 

AUGUST 2016  |   VOL.  59  |   NO.  8  |   COMMUNICATIONS OF THE ACM    89

dition checker section), the precondition checker verifies 
the validity of each predicate by checking that (1) r1 is 
less than r2 and (2) X2 ⊆ X1.

For search_ref, the analysis computes the following 
predicates:

Because these predicates are valid according to the check-
ing procedure, search_ref satisfies its reliability specifi-
cation when executed on the specified unreliable hardware.

3. CASE STUDIES
We have used Rely to build unreliable versions of six build-
ing block computations for media processing, machine 
learning, and data analytics applications. These case stud-
ies illustrate how quantitative reliability enables a developer 
to use principled reasoning to relax the semantics of both 
approximate computations and checkable computations.

Benchmarks: We analyze the following six computations:

• newton: This computation searches for a root of a uni-
variate function using Newton’s Method.

• bisect: This computation searches for a root of a uni-
variate function using the Bisection Method.

• coord: This computation calculates the Cartesian coor-
dinates from the polar coordinates passed as the input.

• search_ref: This computation performs a simple 
motion estimation. We presented this computation in 
Section 2.

• mat_vec: This computation multiplies a matrix and a 
vector and stores the result in another vector.

• hadamard: This computation takes as input two blocks 
of 4 × 4 pixels and computes the sum of differences 
between the pixels in the frequency domain.

3.1. Deriving reliability specification
A developer’s choice of reliability specifications is typi-
cally influenced by the perceived effect that the unreliable 
execution of the computation may have on the accuracy of 
the full program’s result and its execution time and energy 
consumption. We present two strategies for how developers 
can use Rely to reason about the trade-offs between accuracy 
and performance that are available for checkable computa-
tions and approximate computations.

Checkable Computations: Checkable computations can 
be augmented with an efficient checker that dynamically 
verifies the correctness of the computation’s result. If the 
checker detects an error, then it re-executes the computa-
tion or executes an alternative reliable implementation. 
For instance, a Newton’s method computation searches for 
value of input x for which a function f(x) is 0. Once this com-
putation finds a zero of the function, x0, it is typically much 
less expensive to compute f(x0) and check if it equals 0.

Quantitative reliability enables a developer to model the 
performance of this checked implementation of the compu-
tation. We will use Tpass to denote the expected time required 
to compute the correct value of the computation and per-
form the check and Tfail to denote the expected time required 
to compute an incorrect result, perform the check, and then 
rerun the reliable version of the computation (that produces 
the correct result).

If r denotes the reliability of the computation, then the 
expected execution time of the checked computation as a 
whole is T′ = r ⋅ Tpass + (1 − r) ⋅ Tfail. This time can be compared 
with the time to always perform a reliable version of the 
computation. Therefore, this reasoning allows a developer 
to find the reliability r that meets the developer’s perfor-
mance improvement goal and can be analogously applied 
for alternative resource usage measures, such as energy con-
sumption and throughput.

Approximate Computations: For computations that are 
inherently approximate, we can perform reliability profiling 
to relate the errors in the approximate computational ker-
nels to the full application’s errors.

To estimate the error of the computation, a developer 
can provide a sensitivity testing procedure, that specifies how 
the noise can be injected in the application. For instance, to 
estimate the error of the function search_ref from Figure 1,  
a profiler can modify the program to produce the correct 
minimum distance block with probability r and produce 
the maximum distance block with probability 1 − r. This 
modification provides a conservative estimate of the 
bound on search_ref’s accuracy loss given the reliabil-
ity r (when the computation’s inputs are reliable) and the 
assumption that a fault causes search_ref to return the 
worst-case result.

The profiler can then run the application on represen-
tative inputs, for different values of r. The profiler then 
compares the outputs of the original and modified pro-
gram by computing a developer-provided application 
level quality-loss-metric. The profiler estimates the rela-
tionship between computation-level error, controlled by 
r, and application-level quality loss. Based on this esti-
mate, the developer can select an appropriate value of r. 
In our example, if the developer is willing to accept 1% 
loss in the video’s peak-signal-to-noise ratio (the quality-
loss metric for the video encoder), then this procedure 
can help the developer select r to be 0.98.

Benchmark analysis summary.

Predicates

Benchmark Type LOC Time (ms) N S

newton Checkable 21 8 82 1
bisect Checkable 30 7 16,356 2
coord Checkable 36 19 20 1
search_ref Approximate 37 348 36,205 3
matvec Approximate 32 110 1061 4
hadamard Approximate 87 18 3 3
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desirable to reason about the accuracy of the result that the 
computation produces. Dynamic techniques observe the 
accuracy impact of program transformations, for exam-
ple, Refs.,2, 3, 16, 20, 25, 29 or injected soft errors, for example, 
Refs.9, 15, 27 Researchers have developed static techniques 
that use probabilistic reasoning to characterize the accu-
racy impact of various sources of uncertainty.8, 19, 30 And of 
course, the accuracy impact of the floating point approxi-
mation to real arithmetic has been extensively studied in 
numerical analysis.

More recently, we developed the Chisel optimization 
system to automate the placement of approximate opera-
tions and data.17 Chisel extends the Rely reliability specifi-
cations (that capture acceptable frequency of errors) with 
absolute error specifications (that also capture accept-
able magnitude of errors). Chisel formulates an integer 
optimization problem to automatically navigate the trad-
eoff space and generate an approximate computation that 
provides maximum energy savings (for the given model of 
approximate hardware) while satisfying the developer’s 
reliability and absolute error specifications.

Fault Tolerance and Resilience: Researchers have devel-
oped various software, hardware, or mixed approaches for 
detection and recovery from specific types of soft errors 
that guarantee a reliable program execution, for example, 
Refs.9, 23, 24 For example, Reis et al.24 present a compiler 
that replicates a computation to detect and recover from 
single event upsets. These techniques are complemen-
tary to Rely in that each can provide implementations of 
operations that need to be reliable, as either specified by 
the developer or as required by Rely, to preserve memory 
safety and control flow integrity.

5. CONCLUSION
Driven by hardware technology trends, future computa-
tional platforms are projected to contain unreliable hard-
ware components. To safely exploit the benefits (such as 
reduced energy consumption) that such unreliable compo-
nents may provide, developers need to understand the effect 
that these components may have on the overall reliability of 
the approximate computations that execute on them.

We present a language, Rely, for exploiting unreliable 
hardware and an associated analysis that provides probabi-
listic reliability guarantees for Rely computations executing 
on unreliable hardware. By enabling developers to bet-
ter understand the probabilities with which this hardware 
enables approximate computations to produce correct 
results, these guarantees can help developers safely exploit 
the benefits that unreliable hardware platforms offer.

Acknowledgments
We thank Deokhwan Kim, Hank Hoffmann, Vladimir 
Kiriansky, Stelios Sidiroglou, and Rishabh Singh for their 
insightful comments.

This research was supported in part by the National 
Science Foundation (Grants CCF-0905244, CCF-1036241, 
CCF-1138967, CCF-1138967, and IIS-0835652), the United 
States Department of Energy (Grant DE-SC0008923), and 
DARPA (Grants FA8650-11-C-7192, FA8750-12-2-0110). 

3.2. Analysis summary
The table here presents Rely’s analysis results on the bench-
mark computations. For each benchmark, the table presents 
the type of the computation (checkable or approximate), its 
length in lines of code (LOC), the execution time of the anal-
ysis, and the number of inequality predicates in the final 
precondition produced by the precondition generator both 
without and with our simplification strategy.

Analysis Time: The analysis times for all benchmarks are 
under one second when executed on an Intel Xeon E5520 
machine with 16 GB of main memory.

Number of Predicates: We used Rely with the hardware reli-
ability specification from Figure 3 to generate a reliability 
precondition for each benchmark. The second to last column 
(labeled N) presents the number of predicates in the precon-
dition when using a naïve strategy that does not include our 
simplification procedure. The rightmost column (labeled S)  
presents the number of predicates in each precondition 
when Rely employs our simplification procedure.

When Rely uses simplification, the size of each precondi-
tion is small (all consisting of less than five predicates). The 
difference in size between the naïvely generated precondi-
tions and those generated via simplification demonstrates 
that simplification reduces the size of preconditions by 
multiple orders of magnitude. Simplification achieves these 
results by identifying that many of the additional predicates 
introduced by the reasoning required for conditionals can 
be removed. These additional predicates are often sub-
sumed by another predicate.

4. RELATED WORK
In this section, we present an overview of the other work that 
intersects with Rely and its contributions to modeling and 
analysis of approximate computations, and computation 
fault tolerance.

Integrity: Almost all approximate computations have 
critical regions that must execute without error for the 
computation as a whole to execute acceptably. Dynamic 
criticality analyses automatically change different 
regions of the computation or internal data structures, 
and observe how the change affects the program’s out-
put, for example, Refs.7, 20, 25 In addition, specification-
based static criticality analyses let the developer identify 
and separate critical and approximate program regions, 
for example, Refs.15, 27 Carbin et al.5 present a verification 
system for relaxed approximate programs based on a rela-
tional Hoare logic. The system enables rigorous reason-
ing about the integrity and worst-case accuracy properties 
of a program’s approximate regions.

In contrast to the prior static analyses that focus on the 
binary distinction between reliable and approximate com-
putations, Rely allows a developer to specify and verify that 
even approximate computations produce the correct result 
most of the time. Overall, this additional information can 
help developers better understand the effects of deploying 
their computations on unreliable hardware and exploit the 
benefits that unreliable hardware offers.

Accuracy: In addition to reasoning about how often a 
computation may produce a correct result, it may also be 



AUGUST 2016  |   VOL.  59  |   NO.  8  |   COMMUNICATIONS OF THE ACM    91

 

References
 1. Achour, S., Rinard, M. Approximate 

checkers for approximate 
computations in topaz. In OOPSLA 
(2015).

 2.  Ansel, J., Wong, Y., Chan, C., 
Olszewski, M., Edelman, A., 
Amarasinghe, S. Language and 
compiler support for auto-tuning 
variable-accuracy algorithms. In CGO 
(2011).

 3.  Baek, W., Chilimbi, T.M. Green: A 
framework for supporting energy-
conscious programming using 
controlled approximation. In PLDI 
(2010).

 4.  Blum, M., Kanna, S. Designing 
programs that check their work. In 
STOC (1989).

 5.  Carbin, M., Kim, D., Misailovic, S., 
Rinard, M. Proving acceptability 
properties of relaxed nondeterministic 
approximate programs. In PLDI 
(2012).

 6.  Carbin, M., Kim, D., Misailovic, S.,  
Rinard, M. Verified integrity 
properties for safe approximate 
program transformations. In PEPM 
(2013).

 7.  Carbin, M., Rinard, M. Automatically 
identifying critical input regions and 
code in applications. In ISSTA (2010).

 8.  Chaudhuri, S., Gulwani, S., 
Lublinerman, R., Navidpour, S. Proving 
programs robust. In FSE (2011).

 9.  de Kruijf, M., Nomura, S., 
Sankaralingam, K. Relax: An 
architectural framework for software 
recovery of hardware faults. In ISCA 
(2010).

 10.  Ernst, D., Kim, N.S., Das, S., Pant, S., 
Rao, R., Pham, T., Ziesler, C., Blaauw, D.,  
Austin, T., Flautner, K., Mudge, T. 
Razor: A low-power pipeline based on 
circuit-level timing speculation.  
In MICRO (2003).

 11.  Esmaeilzadeh, H., Sampson, A., 
Ceze, L., Burger, D. Architecture 
support for disciplined approximate 
programming. In ASPLOS (2012).

 12.  Hoffman, H., Sidiroglou, S., Carbin, M.,  
Misailovic, S., Agarwal, A., Rinard, M.  
Dynamic knobs for responsive  
power-aware computing. In ASPLOS 
(2011).

 13.  Leem, L., Cho, H., Bau, J., Jacobson, Q.,  
Mitra, S. Ersa: Error resilient system 
architecture for probabilistic 
applications. In DATE (2010).

 14.  Leveson, N., Cha, S., Knight, J.C., 
Shimeall, T. The use of self checks 
and voting in software error detection: 
An empirical study. In IEEE TSE 
(1990).

 15.  Liu, S., Pattabiraman, K., Moscibroda, T.,  
Zorn, B. Flikker: Saving dram 
refresh-power through critical data 

partitioning. In ASPLOS (2011).
 16.  Meng, J., Chakradhar, S., 

Raghunathan, A. Best-effort parallel 
execution framework for recognition 
and mining applications. In IPDPS 
(2009).

 17.  Misailovic, S., Carbin, M., Achour, S., 
Qi, Z., Rinard, M. Chisel: Reliability- 
and accuracy-aware optimization of 
approximate computational kernels. 
In OOPSLA (2014).

 18.  Misailovic, S., Kim, D., Rinard, M. 
Parallelizing sequential programs 
with statistical accuracy tests. ACM 
TECS Special Iss. Prob. Embedded 
Comput. (2013).

 19.  Misailovic, S., Roy, D., Rinard, M. 
Probabilistically accurate program 
transformations. In SAS (2011).

 20.  Misailovic, S., Sidiroglou, S., 
Hoffmann, H., Rinard, M. Quality of 
service profiling. In ICSE (2010).

 21.  Narayanan, S., Sartori, J., Kumar, R.,  
Jones, D. Scalable stochastic 
processors. In DATE (2010).

 22.  Palem, K. Energy aware computing 
through probabilistic switching: A 
study of limits. IEEE Trans. Comput. 
(2005).

 23.  Perry, F., Mackey, L., Reis, G., Ligatti, J.,  
August, D., Walker, D. Fault-tolerant 
typed assembly language. In PLDI 
(2007).

 24.  Reis, G., Chang, J., Vachharajani, N., 
Rangan, R., August, D. Swift: Software 
implemented fault tolerance. In CGO 
(2005).

 25.  Rinard, M. Probabilistic accuracy 
bounds for fault-tolerant 
computations that discard tasks. In 
ICS (2006).

 26.  Rinard, M., Cadar, C., Dumitran, D.,  
Roy, D., Leu, T., Beebee, W. Jr. 
Enhancing server availability and 
security through failure-oblivious 
computing. In OSDI (2004).

 27.  Sampson, A., Dietl, W., Fortuna, E.,  
Gnanapragasam, D., Ceze, L., 
Grossman, D. EnerJ: Approximate 
data types for safe and general 
low-power computation. In PLDI 
(2011).

 28.  Sankaranarayanan, S., Chakarov, A.,  
Gulwani, S. Static analysis for 
probabilistic programs: Inferring 
whole program properties from 
finitely many paths. In PLDI 
(2013).

 29.  Sidiroglou, S., Misailovic, S., 
Hoffmann, H., Rinard, M. Managing 
performance vs. accuracy trade-offs 
with loop perforation. In FSE (2011).

30.  Zhu, Z., Misailovic, S., Kelner, J., 
Rinard, M. Randomized accuracy-
aware program transformations for 
efficient approximate computations. 
In POPL (2012).

Copyright held by authors.

Michael Carbin, Sasa Misailovic, and 
Martin C. Rinard, Computer Science 
and Artificial Intelligence Laboratory, 
Massachusetts Institute of Technology, 
Cambridge, MA.

&CM
Association for  
Computing Machinery CM&

Morgan & Claypool  
Publishers

For more info please visit  
http://books.acm.org

ACM Books.

In-depth.  
Innovative. 
Insightful.
The VR Book: Human-Centered 
Design for Virtual Reality
By Jason Jerald, PhD
Good VR design requires strong communication between 
human and machine, indicating what interactions are 
possible, what is currently occurring, and what is about to 
occur. A human-centered design principle, like lean 
methods, is to avoid completely defining the problem at 
the start and to iterate upon repeated approximations and 
modifications through rapid tests of ideas with real users. 
Thus, The VR Book is intended as a foundation for anyone 
and everyone involved in creating VR experiences 
including: designers, managers, programmers, artists, 
psychologists, engineers, students, educators, and user 
experience professionals.

Available in hardcover, paperback and eBook.  
DOI:  10.1145/2792790




