Jade: A High-Level, Machine-Independent L anguage for Parallel
Programming

Martin C. Rinard, Daniel J. Scales and Monica S. Lam
Computer Systems Laboratory
Stanford University, CA 94305

1 Introduction

The past decade has seen tremendous progress in computer architecture and a proliferation of paralel machines.
The advent of high-speed RISC processors has led to the devel opment of both low-cost high-performance engineering
workstationsand tightly-coupled massively parallel supercomputers. Advancesin VLS technology have enabled the
construction of cost-effective engines dedicated to special functions such as signal processing and high-resolution
graphics. Theimminent widespread availability of high-speed networkswill theoretically enable practitionersto bring
the combined power of all these machines to bear on a single application.

The softwarefor heterogeneous machines can be quitecomplex because of the need to manage thelow-level aspects
of the computation. For aprogram to execute correctly, the software must decompose an application into parallel tasks
and correctly synchronize these tasks. Typically, the software must also use message-passing constructs to manage
the transfer of data between machines; if the machines have different data formats, the software must perform the
format trandation required to maintain a correct representation of the data on each machine. The nondeterministic
nature of parallel program execution complicates the development of such software: programmers often spend their
time struggling to reproduce and fix subtle, nondeterministic bugs.

The previous paragraph only addresses the difficulties associated with constructing a correct paralel program.
While correctness is of paramount importance, parallel programs must also be efficient and portable. Simultaneoudy
achieving these last two goals is difficult because they often conflict. Efficient execution often requires complicated
software that controlsthe parallel execution at avery low level. This software must take into account such machine-
specific details as the degree of parallelism available in the hardware, the processor speed, the communication | atency
and bandwidth, and the amount of memory on each processor. If machine-specific code appears in the application
program, it will not port efficiently to new hardware platforms. Portability iscrucia if applications softwareisto keep
up with the rapid development of parallel hardware.

1.1 High-Level Languages

Heterogeneous machines demand high-level programming paradigms that insulate the programmer from the com-
plexities associated with explicitly paralel programming. A programming language is the usua way to present the

This research was supported in part by DARPA contracts DABT63-91-K-0003 and NO0039-91-C-0138.

paradigm to the programmer. Each language is built around a set of abstractions that simplify and structure the way
the programmer thinks about and expresses a paralel agorithm. These abstractionstypically offer the programmer a
safer, more specidized model of parallel computation that can eliminate such anomalies as nondeterministic execution
and deadl ock.

The implementation of such a high-level language encapsulates a set of agorithms for managing concurrency.
These agorithms automate the process of exploiting the kind of concurrency that the paradigm supports. In effect,
each implementation is a reusabl e package contai ning the knowledge of how to efficiently use a given machine. The
programmer can therefore express the computation at a higher, more abstract level and rely on the implementation to
deal withthelow-level aspects of mapping the computation onto the concrete machine at hand. Programswritteninthe
language should therefore efficiently port to new generations of hardware. The wide application of parallel processing
requires the leverage that high-level programming languages provide.

Languages such as Fortran 90 and C* provide a useful paradigm for programs with regular, data paralld forms of
concurrency. Programmers using these languages view their program as a sequence of operations on large aggregate
data structures such as sets or arrays. The implementation can execute each aggregate operation in paralel by
performing the operation on the individua elements concurrently. This approach works well for programs that fit
the data parallel paradigm. Its success illustrates the utility of having the language implementation, rather than the
programmer, control the parallel execution and data movement.

Parallelizing compilers can also liberate programmers from the oneroustask of writinglow-level, explicitly paralel
code. In this case, the programmer sees the abstraction of a sequential execution semantics and is largely oblivious
to the parallelization process. The compiler is responsible for extracting paralelism from the code and scheduling
the computation efficiently onto the target parallel machine. Like the data parallel approach, this works well for a
restricted kind of paralelism: theloop-level parallelism present in scientific programs that manipul ate dense matrices.
The complexity of the highly tuned, machine-specific code that paralelizing compilers generate [11] illustrates the
need for high-level abstractionsthat shield programmers from the low-level details of their computations.

Boththeparallelizing compiler and thedataparallel approachesaredesigned to exploit regular concurrency available
within a single operation on aggregate data structures. An orthogonal source of concurrency also exists between
operations on different data structures. In contrast to data-paralel forms of concurrency, task-level concurrency
is often irregular and sometimes depends on the input data or on the results of previous computation. The tasks
computations may be heterogeneous, with different tasks executing completely different computations.

Exploiting task-level concurrency isespecially important in a heterogeneous environment because of the ability to
match the execution requirements of different parts of the program with the computational capabilities of the different
machines. Some tasks may require special-purpose hardware, either because the hardware can execute that task’s
computation efficiently, or because the hardware has some unique functionality that the task requires.

No single form of concurrency is sufficient for paralédizing all applications. In general, programs will need to
exploit al kindsof concurrency. The challengeisto come up with a comprehensive model of paralel computing that
encompasses dl of the paradigms. The components of thismodel will cooperate to allow programmers to express all
of the different kinds of concurrency available within a single application.

1.2 Jade

Jade is a high-level, implicitly paralel language designed for exploiting coarse-grain, task-level concurrency in
both homogeneous and heterogeneous environments. Jade presents the programmer with the dua abstractions of a
single address space and serial semantics. Instead of using explicitly paralel constructs to create and synchronize
parallel tasks, Jade programmers guide the parallelization process by providing the high-level, application-specific
information required to execute the program in parallel on a heterogeneous collection of machines. The programmer
must specify three things. 1) a decomposition of the data into the atomic units that the program will access, 2) a
decomposition of asequentia program into tasks, and 3) a description of how each task will access data when it runs.
Given this information, the implementation automatically extracts and exploits the task-level concurrency present in
the computation.

The Jade implementation parallelizes the computation by identifying parts of the serial program that can execute
concurrently without changing the program’sresult. The basic principle is that each part of a seria program reads

and/or writes certain pieces of data. Consider two adjacent parts of aserial program. If each part writes pieces of data
that the other part does not access, it is possible to execute the parts concurrently without changing the result that the
program generates. In this case we say that the parts are independent. If one part writes a piece of datathat the other
part reads or writes, executing the two parts concurrently may cause the program to generate an incorrect result. In
this case we say that the parts are dependent. If a parallel execution executes dependent partsin the same order as the
seria execution, it will generate the same result as the serial execution.

All attempts to parallelize serial programs have been oriented towards finding independent parts to execute
concurrently. Traditional parallelizing compilers, for example, statically analyze the code to find loopswhoseiterations
are independent. The compiler can then generate an explicitly paralel program that executes loops with independent
iterations concurrently.

It isalso possibleto find independent program parts dynamically. In this case, the program execution consists of
three components: 1) acomponent that runsahead of the actual execution analyzing how the program accesses data, 2)
acomponent that findsindependent program parts and schedules the computation accordingly, and 3) acomponent that
actually executestheschedul ed computation. ThelBM 360/91 [1] applied thisdynamicapproach at theinstructionlevel.
It fetched and decoded severa instructionsat atime, and dynamically determined which memory | ocationsand registers
each instructionread and wrote. The execution unit detected and concurrently executed independent instructions. This
aggressive approach to dynamic instruction scheduling isthe basisfor current superscalar microprocessors such asthe
SuperSPARC, the Motorola 88110 and the IBM RIOS.

Jade promotes a combined model of parallel computing in which the implementation uses both the dynamic and
static approaches to parallelize a Jade program. The Jade constructs provide the necessary dependence information at
the level of the coarse-grain data structures (or objects) that tasks manipulates. Such summary information is highly
useful to acompiler, sinceit isvery difficult to determine statically all the accesses of a coarse-grain task. In sections
of the program where the tasks' data usage information is statically analyzable, the compiler can generate highly
optimized, explicitly parallel code with little dynamic overhead. The remaining data- and computation-dependent
concurrency can be discovered and exploited using the dynamic approach. Our current Jade implementation only
extracts concurrency dynamically and does not do any compile-time analysisto exploit static concurrency.

The coarse granularity of the Jade approach alows Jade programs to quickly discover and exploit concurrency
availabl e between distant parts of the program. Exploiting coarse-grain concurrency al so meansthat Jade can profitably
amortize the communi cation and synchroni zati on overhead associ ated with sending dataand tasksto remote processors
for execution. Jade istherefore suited for programs that execute on loosely coupled multiprocessors and networks of
machines. We do not attempt to exploit fine-grain concurrency using Jade, because of the dynamic overhead in the
current implementation associated with extracting concurrency from the data usage information.

Every Jade program is a seria program augmented with Jade constructs providing information about how the
seria program accesses data. Because Jade preserves the semantics of this seria program, Jade programs execute
deterministically. This property considerably simplifiesthe process of debugging parallel applications. Jade programs
access datausing asingle, global address space. When a Jade program executes in amessage-passing environment, the
implementation, not the programmer, anayzes each task’ s data usage requirements to generate the messages necessary
to communicate the proper data between tasks.

It ispossibleto implement Jade on awide variety of machines: uniprocessors, multiprocessors, distributed memory
machines, networks of workstations, and heterogeneous systems of any size and topology. Because the programmer
does not directly control the parallel execution, each Jade implementation has the freedom to apply machine-specific
optimizations and implementation strategies.

Jade is designed to cooperate with approaches designed to express other forms of concurrency. For example,
Jade's seria semantics enables the direct application of paralelizing compiler techniques to Jade programs. Jade
therefore promotes an integrated model of parallel computation in which a high-level programming language allows
programmers to expl oit coarse-grain, data-dependent concurrency, whilethe compiler exploitsfine-grain, concurrency
statically available within tasks. The difficulty of applying compiler optimizationsto explicitly parallel code[6] limits
the amount of concurrency that compilers can extract from programs written in explicitly parallel languages.

2 Language Overview

Because of Jade' ssequentia semantics, itispossibletoimplement Jade as an extensionto asequentia programming
language. This approach allows programmers to learn how to use Jade quickly, and preserves much of the language-
specific investment in programmer training and software tools. Currently, we have implemented a version of Jade as
an extension to C. We first present the basic Jade constructs and then discuss a detailed example that illustrates their
use.

2.1 Object Modée

Jade supports the abstraction of a single shared memory that al tasks can access; each piece of data allocated
(statically or dynamically) in thismemory is called a shared object. Pointersto shared objects are identified in a Jade
program using the shar ed type qualifier. For example:

doubl e shared A[10];
doubl e shared *B;

The first declaration defines a statically allocated shared vector of doubl es, while the second declaration defines a
reference (pointer) to a dynamically allocated shared vector of doubl es. Programmers use the cr eat e_obj ect
construct to dynamically alocate shared objects; this construct takes as parameters the type and number of alocated
itemsin the shared object. Given the declaration of B presented above, the programmer could dynamically allocate a
shared vector of 100 doubl esasfollows:

B = create_object(double, 100);
2.2 Basic Construct

Jade programmers use the wi t honl y- do construct to identify a task and to specify how that task will access
data. Hereisthe generd syntactic form of the construct:

wi thonly { access declaration } do
(paraneters for task body) {
t ask body

}

Thet ask body section containstheseria code executed when thetask runs. Thepar anet er s section declares
alist of variablesfromthe encl osing environment that thetask body may access. Theaccess decl ar ati on section
summarizes how the task body will access the shared objects.

The access declarationisan arbitrary piece of code containing access specification statements. Each such statement
declares how the task will access a given shared object. For example, ther d (read) statement declares that the task
may read the given object, while the wr (write) statement declares that the task may write the given object. Each
access specification statement takes one parameter: a reference to the object that the task may access. The task’s
access declaration section may contain dynamically resolved variable references and control flow constructs such as
conditionalsand loops. Jade programmers may therefore exploit dynamic concurrency that dependseither ontheinput
dataor on theresult of previouscomputation. Because the access specification section can al so contain procedure cals,
the programmer can use procedures to build access specification abstractions. Each such abstraction could encapsul ate,
for example, the access specification operationsthat declare how a procedure invoked in thetask body will access data

Since the parallelization and data movement are based on access specifications, it is important that the access
specifications be accurate. The Jade implementation checks the accuracy of the access specifications by dynamically
checking each task’ s accesses to shared objects. If atask attemptsto perform an undeclared access, theimplementation
will generatearun-timeerror identifyingthe statement that generated the access. The Jadetypesystem hasamechanism

that all owseach task to perform the dynamic access check once for each object. Because theoverhead isthen amortized
over many object accesses, in practice the total checking overhead is negligible.

Each shared object represents a unit of synchronization. If one task writes part of a shared object and another task
accesses that object, the implementation executes the tasks serialy. Furthermore, the implementation preserves the
serial semantics but executing the tasksin the same order asin the original seria execution. Tasks that access different
shared objects or read the same objects can execute concurrently. The programmer must therefore alocate objects at
afine enough granularity to expose the desired amount of concurrency.

In a message-passing environment, each shared object is aso a unit of communication. If atask will access an
object, the implementation will either move (on a write access) or copy (on a read access) the entire object to the
machine on which the task will execute. If the task only accesses a small part of the object, the communication
overhead may negate any performance gains from concurrency. The programmer must therefore allocate objects at a
fine enough granularity to minimize superfluous communication.

3 An Example

In this section we present a programming example. This example introduces the basic Jade model of parallel
execution. It illustrates both how Jade programmers express irregular, dynamically determined concurrency and how
the implementation extracts this source of concurrency.

3.1 Sparse Cholesky Factorization

The sparse Cholesky factorization a gorithm factors a sparse, symmetric, positive definite matrix A into the form
LLT where L islower triangul ar. Because the matrix is symmetric, the algorithm only needsto storethelower triangle
of thematrix. The factorization a gorithmthen repeatedly updates the data structures that represent thislower triangle.
We assume that the matrix is stored using the data structurein Figure 1. The matrix itself is represented as a vector of
columns. The non-zero eements of each column of the matrix are stored in packed form in variable-length vectors.
The sparsity pattern of the matrix is represented using one contiguous vector of integers that contains the row indices
of each of the matrix’s nonzero elements, as they appear in column-major order. Each column consists of a pointer
to the packed vector containing its non-zero elements and an offset into the row index vector that tells where the row
indices for that column begin. Figure 2 providesthe C data structure declarations for the sparse matrix data structure.

° vector@ @ E
[J E ° E
.|s R,
. o \ TT 177 / column
column_vector 3 5/ 6|8 9 start_row
(] [] []

row_indices ‘0‘3‘ 4‘ 1‘ 2‘ 2‘ 3‘ 4‘4‘

Figure 1. Sparse Matrix Data Structure

The serial factorization algorithm processes the columns of the matrix from left to right. The agorithm first
performs an internal update on the current column; this update divides the column by the square root of its diagonal
element. After thisinterna update the current column reaches its final value. The algorithm then uses the current
column to update some subset of the columns to its right. For a dense matrix the algorithm would update dl of the

typedef int *row_ indices;
t ypedef doubl e *vector;
typedef struct {
int start_row,
vect or col umm;
} col um_dat a;
t ypedef col unm_data *col um_vector;

Figure 2: C Data Structure Declarations

factor(c, r, n)
col um_vector c;
row_i ndices r;

int n;
int i, j;
for (i =0; i <n; i++) {
/* update colum i */
I nt ernal Update(c, r, i);
for (j = c[i].start_row, j < c[i+l].start_row, j++) {
/* update colum r[j] with colum i */
Ext ernal Update(c, r, i, r[jl);
}
}
}

Figure 3: Sparse Cholesky Factorization Algorithm

columnsto right of the current column. For sparse matrices the algorithm omits some of these updates because they
would not change the updated column. Figure 3 contains the seria code for this agorithm.

One way to parallelize this agorithm is to turn each update into a task. In this case the parallel computation
consists of a coarse-grain task graph of update tasks. Each update task performs either an | nt er nal Updat e or
an Ext er nal Updat e; there are precedence constraints between tasks that enforce the dynamic data dependence
congtraints of the underlying computation. Figure 4 shows a sparse matrix and its corresponding paralel task
graph. The nodes of the task graph represent update tasks, while the edges represent precedence constraints. Each
I nt er nal Updat e task islabelled with the index of the column that it updates, while each Ext er nal Updat e task
islabelled with the indices of thetwo columnsthat it accesses. The structure of thistask graph depends on the sparsity
pattern of the matrix to be factored. Because the sparsity pattern of the matrix depends on the input, a programmer
parallelizing thisagorithm must be able to express dynamic, data-dependent concurrency.

Figure 4: Dynamic Task Graph

3.2 Using Jadeto Parallelize Spar se Cholesky Factorization

The first step in paraldizing a program using Jade is to determine the design of the shared objects. For some
applications the programmer may need to explicitly decompose objects into smaler alocation units to alow the
application to concurrently write digjoint parts of the object, or replicate certain objects to expose more concurrency.
In the sparse Cholesky example the objects are already allocated at the appropriate granularity. The programmer only
needs to modify the matrix declaration to identify the references to shared objects, as shown in Figure 5.

t ypedef doubl e shared *vector
typedef int shared *row_i ndi ces;
typedef struct {
int start_row,
vect or col umm;
} col um_dat a;
t ypedef col unm_data shared *col unm_vect or

Figure 5: Jade Data Structure Declarations

The programmer next augments the sequential code with wi t honl y- do constructs to identify the tasks and
specify how they access shared objects. To parall€elize the sparse Cholesky factorization code, the programmer adds
two wi t honl y- do constructs to the origina serial code; each construct identifies an update as a task. Figure 6
contains the Jade version of the sparse Cholesky factorization algorithm. Thefirstwi t honl y- do construct uses the
rdw and rd access specification statements to declare that the | nt er nal Updat e will execute with only reads

factor(c, r, n)
col um_vector c;
row_i ndi ces r;

int n;
int i, j;
for (i =0; i <n; i++) {
wi thonly {
rd_w (c[i].colum); rd(c); rd(r);
} do (¢, r, i) {
I nt ernal Update(c, r, i);
}
for (j = c[i].start_row, j < c[i+l].start_row, j++) {
wi t honly {
rd_w (c[r[j]].colum);
rd(c[i].colum); rd(c); rd(r);
} do (c, r, i, j) {
Ext ernal Update(c, r, i, r[j]);
}
}
}
}

Figure 6: Jade Sparse Cholesky Factorization

and writes to thei "th column of the matrix and reads to the column array and row index data structures. The second
wi t honl y- do construct uses the same access specification statementsto declare that the Ext er nal Updat e will
execute with only reads and writesto ther [j] "th column of the matrix, reads to thei 'th column of the matrix, and
reads to the column vector and row index data structures.

At this point the programmer is done: the Jade implementation has all the information it needs to execute the
factorizationin parallel. When the program executes, the main task creates theinternal and external update tasks as it
executes the body of thef act or procedure. When the implementation creates each task, it first executes thetask’s
access specification section to determine how the task will access data. It is this dynamic determination of tasks
access specifications that alows programmers to express dynamic, data-dependent concurrency patterns. Given the
access specification, the implementation next determines if the task can legally execute or if the task must wait for
other tasks to complete. The implementation maintains a pool of executable tasks, and dynamically load baances
the computation by assigning these tasks to processors as they become idle. In a message-passing environment the
implementation also generates the messages required to move or copy the columns between processors so that each
task accesses the correct version of each column. As tasks complete, other tasks become legally executable and join
the pool of executable tasks. In effect, the Jade implementation dynamically interpretsthe high-level task structure of
the program to detect and expl oit the concurrency.

This example highlightsthe data-oriented, implicitly paralel aspects of Jade. The Jade programmer only provides
information about how parts of the program access data. The programmer does not explicitly specify which tasks
can execute in paradlel. The Jade implementation, not the programmer, detects the available concurrency. Because
the access specifications are dynamically determined, the programmer can express the dynamic, data-dependent
concurrency availablein the sparse Cholesky factorization.

4 Advanced Language Features

We have, so far, described the basic programming model in Jade. Here we describe briefly some of the advanced
congtructs of the Jade language that allow a Jade programmer to achieve more sophisticated parallel behavior.

4.1 Higher-level Access Specifications

The Jade access specifications introduced so far only alow the programmer to declare that atask will read or write
certain objects. The programmer, however, may have higher-level knowledge about the way tasks access objects. For
example, the programmer may know that even though two tasks update the same object, the updates can happen in
either order. The Jade programming model generalizes to include access specifications that alow the programmer to
express such higher-level program knowledge.

4.2 Hierarchical Concurrency

Programmersmay createhierarchical formsof concurrency inaJadeprogramby dynamicaly nestingwi t honl y- do
congtructs. The task body of awi t honl y- do construct may execute any number of wi t honl y- do consgtructs, in
afully recursive manner. The access specification of atask that hierarchically creates child tasks must declare both its
own accesses and the accesses performed by al of its child tasks.

4.3 More Precise Access Specifications

As described so far, Jade constructs support only a limited model of paralel computation in which al synchro-
nization takes place at task boundaries. Two tasks may either execute concurrently (if none of their accesses conflict)
or sequentially (if any of their accesses conflict). Thewi t honl y- do construct allows no partial overlap in the exe-
cutions of tasks with data dependence conflicts. Thislimitation makes it impossibleto exploit pipelining concurrency
available between tasks that access the same data.

Jade relaxes this restricted model by allowing the programmer to provide more precise information about when
a task actually accesses data. Jade provides this functionality with an additiona construct, wi t h- cont , and the
additional access specification statements df _r d, df -wr, no_rd, and no.wr . The general syntactic form of the
wi t h- cont constructis:

with { access decl aration} cont;

Asinthew t honl y- do congtruct, theaccess decl ar at i on sectionisan arbitrary piece of code containing
access declaration statements. These statements update the task’s access specification, allowing the specification to
reflect more precisely how the remainder (or continuation, as the cont keyword suggests) of the task will access
shared objects.

Thedf _r d and df .wr statements declare adeferred access to the shared object. That is, they specify that the task
may eventually read or write the object, but that it will not do so immediately. Because the task cannot immediately
access the object, it can execute concurrently with earlier tasks that do access the object. When the task reaches the
point whereit will access the object, it must executeawi t h- cont construct that usesther d or wr access declaration
statements to convert the deferred declaration to an immediate declaration. Thisimmediate declaration then gives the
task the right to access the object. In order to preserve the serial semantics, the Jade implementation may suspend the
task at thewi t h- cont construct until preceding tasks with conflicting accesses to the object have compl eted.

Theno.r d (nofutureread) and no_wr (no futurewrite) statements allow the programmer to declare that atask has
finished its access to a given object and will no longer read or write the object. This declaration dynamically reduces
atask’s access specification and may potentialy eliminate a conflict between the task executing thewi t h- cont and
later tasks. In this case the later tasks may execute as soon asthewi t h- cont executes rather than waiting until the
first task completes.

5 A Digital Video Applicationin Jade

We now provide an example which illustrates how to use some of the more advanced Jade features. In this section
we show how towriteasimpledigital video imaging program that runs on the High-Resol ution Video (HRV) machine
at Sun Laboratories[9].

Figure 7 contains asimplified block diagram of the HRV machine. This machine containsfour SPARC processors
and five 1860 processors as graphi cs accel erators that drive a high-definitiontelevision monitor. The SPARCsinterface
to severd input devices; the imaging application uses a video camera. The HRV machine has both a control bus and
a high-bandwidth internal bus over which the SPARC and i860 processors communicate. The SPARCs use an ATM
network to communicate with the rest of the computational environment.

Video
Output
Processor i
Sparc HDTV Display
e i
J

‘ High Speed Bus ‘

L I ri vi wi wi

i860
Bulk Accelerators
Memory

Figure 7: HRV Machine

] Control Bus

The digital video processing program is a simple application. It applies an image transformation to the camera
input and displays it on the HDTV display. The SPARCs repeatedly acquire compressed camera frames and ship
them to the i860-based processors. These processors decompress the frames, apply the transformation, and display the
transformed frames in windows on the HDTV monitor.

The explicitly parallel version of this application first uses operating-system primitives to start up a process on
each processor and to set up communication channels between the processes. The programmer must sequence the
process creation correctly, or the communication channel setup will fail. When the communication has been initiated,
the processes use message-passing primitivesto transfer image frames between the processes.

To write this application in Jade, the programmer first starts with a serid program that performs the acquisition,
decompression, image transformation, and display. This program manipulates a set of buffers that store successive
compressed camera frames. The program decompresses the images in these buffers to an uncompressed frame, then
performs the image transformation on the uncompressed frame. Figure 8 presents the data structures used to store the
buffers and uncompressed frames, whilefigure 9 presents a high-level description of the serial program. The program
loops through the set of buffers that b pointsto; cb isthe current buffer. The decompress routine uncompresses the
frame in the current buffer and storesitin f . The transform routine operates on the uncompressed framef . To display
the image, the program writesit into the frame buffer f b.

The programmer next converts this serial program to a Jade program. As in the sparse Cholesky factorization
example, theobjectsare aready alocated at the correct granularity, so the programmer only needsto modify the buffer
and frame declarations to identify the references to shared objects, as shown in Figure 10. The programmer next
augments the sequential code with Jade constructs to identify the tasks and specify how they access shared objects.
Figure 11 contains the Jade version of the program. To parallelize the digital video application, the programmer adds
two wi t honl y- do constructs to the original serial code. The first construct identifies each frame acquisition as
atask, the second construct identifies the decompression, transformation and display of each frame as another task.
Because the SPARCs control the camera, the frame acquisition tasks must run on a SPARC. Jade allows programmers

10

#def i ne SI ZE BUFFER 1024

#defi ne SI ZE FRAME 8192

#def i ne NUM BUFFERS 4

typedef char *buffer;

typedef buffer buffers[NUM BUFFERS] ;
typedef char frame[Sl ZE_FRAME] ;
typedef char *frane_buffer;

Figure 8: Buffer Data Structure Declarations

view(b, fb)
buffers b;
frame_buffer fb;
{

buffer cb;

int ich;

frame f;

ich = 0;
while (TRUE) ({
cb = b[ichb];
Get Frane(ch);
Deconpr essFrane(ch, f);
Transf or nFrame(f);
Di spl ayFrame(f, fb);
icb = (icb + 1) % NUM BUFFERS;

Figure 9: Codefor Digital Video Processing

11

to declare that tasks require a specific resource associated with one of the processors. In this case the programmer uses
the r esour ce construct to declare that these tasks must execute on a processor that controls the camera. Each of
these tasks writes the current buffer, which will hold the compressed frame that the task acquires.

#def i ne SI ZE BUFFER 1024

#define SI ZE FRAME 8192

#def i ne NUM BUFFERS 4

t ypedef char shared *buffer;

typedef buffer buffers[NUM BUFFERS] ;
typedef char frame[Sl ZE_FRAME] ;

t ypedef char shared *frame_buffer;

Figure 10: Jade Buffer Data Structure Declarations

view(b, fb)
buffers b;
frame_buffer fb;
{

buf fer cb;

int ich;

ich =
wh| e (TRUE) {
cb = b[ichb];
W|thonly{ wr(ch); } resource (CAMERA) do (cb) {
Get Frane(ch);
}
withonly { rd(cb); df _w (fb); } resource (ACCELERATOR) do (ch, fb) {
frame f;
Deconpr essFrane(ch, f);
Transf or nFrame(f);
with { w(fb); } cont;
Di spl ayFranme(f, fb);

ich = (icb + 1) % NUM BUFFERS;

Figure 11: Jade Code for Digital Video Processing

Thetaskscreated at thesecondwi t honl y- do construct should run on the graphicsaccel erators. The programmer
therefore declares that these tasks require the accelerator resource. Each of these tasks reads the current compressed
frame, and eventually writes the transformed frame into the frame buffer. Because the write to the frame buffer only
takes place after the decompress and transform phases, thewi t honl y- do construct declares adeferred write access
to the frame buffer instead of an immediate write access. The task body then usesawi t h- cont construct to convert
this deferred access to an immediate access just before the frame is displayed. As written, the program serializes the
tasks only asthey display successive frames. The use of an immediate (rather than deferred) access declaration would
have seriaized the decompression and transformation of successive frames.

12

As part of the programming process, the programmer moved the declaration of the uncompressed framef intothe
second task body. Each task therefore hasits own private copy of f , which no other task can access. The programmer
therefore does not declare that the task accesses f — programmers only declare tasks' externaly visible accesses to
shared objects. This privatization of f , aong with the use of the deferred access declaration, enables the concurrent
decompression and transformation of successive frames.

Thisapplicationillustratesseveral aspects of Jade. First, because the program containsno low-level invocation and
communication constructs, it will trivially port to new generations of the HRV machine with more hardware resources
and generalized communication interfaces. Because the communication startup code is packaged inside the Jade
implementation, the applications programmer does not have to deal with thelow-level details of correctly sequencing
startup and initiating communication. Because Jade preserves the abstraction of a single address space, programmers
do not need to use low-level message-passing constructs to manage the movement of data through the machine — the
Jade implementation manages this movement. For a coherent image to appear, the frames must be displayed in the
same order as they came off the camera. Because the Jade implementation preserves the order of writesto the frame
buffer, it automatically generates the synchronization required display the frames in this order. By encapsulating the
synchronization, the Jade implementation frees programmers from having to deal with complexities such as deadlock
and nondeterministic execution that are associated with explicitly parallel environments.

6 Discussion and Comparison

Systems that provide software support for parale programming vary widely in the functionality that they provide
for the communi cation of dataand expression of parallelism. Jade addresses these problemsby providing the high-level
abstractions of a single shared address space and implicit concurrency derived from data usage information. In the
following sections, we describe some of the aternate ways of addressing these issues and explain the implications of
the approach taken in the Jade language.

6.1 Communication of Data

Existing systems provide avariety of levelsof abstraction for the communication of datain heterogeneous parallel
systems. At the lowest level of abstraction are toolsthat provide only basic message-passing capabilitiesfor sending
data between processors, but hide the heterogeneity from the programmer. Software packages such as PVM [10]
manage the trandation issues associated with heterogeneity. This allows the same message-passing code to run on
machines with different internal data formats — for example, a heterogeneous set of workstations connected by a
network. While this set of tools provides a low-level abstraction, it has the greatest degree of generality and is useful
as afoundationfor high-level tools.

Linda [3] provides a higher-level abstraction in the form of a shared tuple space. Rather than communicating
via messages, tasks communicate via data that are added to and removed from the shared tuple space. Linda's tuple
space operations port across a variety of paralel hardware environments. While the Linda tuple space provides the
high-level abstraction of a common address space, its low-level operations leave the programmer with the difficult
task of correctly synchronizing the program execution. Generd -purpose implementations of Linda s associative tuple
space operations have been inefficient. Linda compilerstherefore use global static analysis that attempts to recognize
common higher-level idioms that can be more efficiently implemented. This approach leads to a model of paralel
programming in which the programmer encodes the high-level concepts in low-level primitives only to have the
compiler attempt to reconstruct the higher-level structure.

The next layer of software support implements the abstraction of shared memory on a set of message-passing
machines. Shared Virtuad Memory systems such as Ivy [8] and Munin [4] use the virtua memory hardware to
implement a page-based coherence protocol. The page-fault hardware is used to detect accesses to remote or invalid
pages, and the page-fault handler can be used to move or copy pages from remote processors. Shared virtual memory
systems deal with the raw address space of the application and typically have no knowledge of the types of the data
stored in various locations in memory. Each parallel program must therefore have the same address space on al the

13

different machines on which it executes. Thisrestriction has so far limited these systems to homogeneous collections
of machines (except for a prototype described in [12]). The comparatively large size of the pages also increases
the probability of an application suffering from excessive communication caused by false sharing (when multiple
processors repeatedly access digoint regions of a single page in conflicting ways).

Object-oriented parallel languages such as Amber [5] and Orca [2] provide shared memory a an object level.
These systems support the shared memory abstraction by alowing methods to be invoked on any existing object from
any processor. Some systems may implement this abstraction by running the method on the remote processor that
owns the object; other systems bring a copy of the object to the local processor for execution of the method.

Jade al so supportsthe shared memory abstraction at thelevel of user-defined objects. Object-based shared memory
systems can ded effectively with heterogeneity, because the system knowsthe types of each data object and can do the
necessary trandations as objects are sent from one processor to another. The problem of false sharing does not arise,
since datais communicated at the level of the user-defined object, rather than at the level of pages. A main difference
between Jade and the object-based parallel languages discussed in the previous paragraph is that Jade supports the
concept that a unit of computation can access arbitrarily many objects. This makes it easy for the programmer to
express agorithmsthat need to atomically access multiple objects. The languages described above make each method
invocation into a separate unit of computation; each method can access only the receiver directly. If a programmer
using such a language needs to write a program that atomically accesses multiple objects, he must insert additional
synchronization code.

6.2 Expression of Parallelism

Most parald programming systems provide constructs that programmers use to explicitly create and control
paralelism. For example, many systems provide a threads package that alows for the creation of threads and the
synchronization of the threads vialocks and barriers. The programmer breaks up the program into a set of tasks, each
to be executed by a separate thread. The programmer enforces inter-task data dependence constraints by inserting
synchronization primitives into tasks that access the same data. This synchronization code can create new explicit
connections between parts of the program that access the same data, destroying the modularity of the progam and
making it harder to create and modify. If the program’s concurrency pattern changes, the programmer must go through
the program modifying the distributed pieces of synchronization code.

Some parallel programming languages augment a serial programming language with explicitly parallel constructs
such as fork/join, par_begin/par_end, and doall statements. These constructs alow the programmer to spawn several
independent tasks; the program then blocks until all the spawned processes terminate. Data parallel languages take a
similar approachinwhich al paralelismiscreated in constructsthat operatein parallel on dataaggregates. Thesekinds
of parallel constructs cannot express irregular, task-level paralldism. Additionaly, they may require the programmer
to restructure hisorigina codein order to place concurrently executable pieces of code in the same parallel construct.
It isthe programmer’s responsibility to ensure that there are no race conditions between the independent tasks created
by these constructs.

Jade provides constructs for implicitly expressing parallelism and synchronizing tasks. Jade programmers only
provide information about how tasks access shared data, and tasks execute in parald if they have no conflicting
accesses to data. Thisimplicit, data-oriented approach to parallelism has a number of implications:

o Deterministic Execution - Because they execute identically to the seria program on which they are based, al
Jade programs execute deterministically. Jade programs can therefore be debugged in the same way as serid
programs, without the difficul ties associated with reproduci ng timing-dependent bugs that can occur in explicitly
paralel programs.

The Jade serial semantics also restricts the expressive power of the language. Some parallel agorithms are
inherently nondeterministic. It isimpossibleto writethese agorithmsin Jade. We have conscioudly limited the
expressive power of Jade to provide a higher-level, more tractable programming model.

o Familiar Programming Model - The high-level abstraction of seria execution, in conjunctionwith the abstraction
of a shared address space, together provide a model of programming that is familiar to programmers and

14

convenient for them to use.

¢ Irregular and Dynamic Concurrency - Jade programs can naturally express both regular and irregul ar patterns of
concurrency. There are no explicit control pointswhere concurrency is crested or ended. Instead, tasks execute
concurrently based solely on whether their accesses conflict. Because the Jade access specifications are executed
at run-time, Jade programs can express dynamic concurrency patterns that depend on the input data. However,
because of the overhead of dynamically extracting concurrency in thisway, Jade isnot intended for expressing
fine-grain concurrency.

o Modularity - The programmer does not disrupt the modul arity of the code by inserting synchronizationoperations
that control the interactions between between tasks that access the same data. Jade programs only contain local
information about how each task accesses data. It isthe responsibility of the Jade implementation, and not the
programmer, to generate the synchronization required to correctly execute the program.

o Maintainability - When the programmer modifies a parallel program, the program’s underlying concurrency
pattern may change. If the programmer is using an explicitly paralel programming language, these changes to
the concurrency pattern may entail many changes to the explicit synchronization code throughout the program.
A Jade programmer simply updates the the data usage information to reflect any changes in the dataaccesses
of tasks. The Jade implementation can then generate the new concurrency pattern using its encapsulated
synchronization algorithm.

o Portability - Jade's high-level programming model can be implemented on awide variety of parallel machines.
Other languages expose enough of the low-level details of the targeted hardware platform to preclude the
possibility of porting applications without source code modifications.

7 Jadelmplementation

In this section we briefly discuss the Jade implementation. Because Jade adopts such a high-level programming
model, the implementation handles much of the complexity involved in running a parallel application. Severd aspects
of the Jade implementation involve executing the application correctly according to the Jade programming mode:

o Parald Execution. The Jade implementation analyzes tasks' access declarations to determine which tasks can
execute concurrently without violating the seria semantics. It aso generates the synchronization required to
execute conflicting tasksin the correct order.

e Access Checking. The Jade implementation dynamically checks each task’s accesses to ensure that its access
specification is correct. If atask attempts to perform an undeclared access, the implementation generates an
error.

o Object Management. In a message-passing environment, the Jade implementation moves or copies objects
between machines as necessary to implement the shared address space abstraction. The implementation also
trangdlates globally valid object references to pointersto thelocal version of objects.

¢ Data Format Conversion. In a computing environment with different representations for the same data items,
the Jade implementation performs the data format conversion required to maintain a coherent representation of
the data on different machines.

Jade's high level programming model gives the Jade implementation the flexibility it needs to optimizethe parallel
execution of Jade programs. The current Jade implementati on uses thefollowing optimization a gorithmsin an attempt
to execute applications efficiently:

¢ DynamicLoadBaancing. TheJadeimplementation keepstrack of which processorsmay beidleand dynamically
assigns executabl e tasks to processors which may become idle. Dynamic load balancing is especially important
in a heterogeneous environment in which some machines execute faster than others.

15

o Matching Exploited Concurrency with Available Concurrency. The Jade implementation suppresses excess task
Cregtion as necessary in order to prevent the excessive generation of concurrency from overwhel ming the parallel
machine.

e Enhancing Locality. The Jade implementation uses a heuristic that attempts to execute tasks on the same
processor if they access some of the same objects. Such atask assignment may improve locality, because tasks
can reuse objects fetched by other tasks.

o Hiding Latency with Concurrency. If there is excess concurrency in the application, the Jade implementation
hides the latency associated with accessing remote objects by executing one task while fetching the shared
objects that another task will access.

o Object Replication. In a message-passing environment, the Jade implementation replicates shared objects for
concurrent access.

The list of activities of the implementation illustrates the utility of Jade. In effect, the Jade implementation
encapsulates a set of algorithms for managing parallel computation. Programmers painlessly reuse these algorithms
every time they write a Jade program. Without Jade, programmers would have to manage the associated problems
themselves. In alarge or complicated paralel program, this management software could dominate the application
devel opment process. Jade allows programmers to concentrate on the a gorithmic aspects of the particular application
at hand rather than on the systems i ssues associated with mapping that application onto the current parallel machine.

8 ApplicationsExperience

We have implemented Jade on shared memory parallel processors and on both heterogeneous and homogeneous
message-passing environments. There are no source code modifications required to port Jade applications between
these platforms. Our shared memory implementation of Jade runs on the Silicon Graphics 4D/240S multiprocessor,
and on the Stanford DA SH multiprocessor [7]. The workstationimplementation of Jade uses PVYM asareliable, typed
transport protocol. Currently, thisimplementation of Jade runs on the SPARC-based SUN Microsystems workstations,
and MIPS-based systems including the DECStation 3100 and 5000 machines, the Silicon Graphics workstations and
the Stanford DASH multiprocessor. Jade applications can use any combination of these kinds of workstationsin the
course of asingle execution. We have also implemented Jade on the Intel iPSC/860 using the NX/2 message passing
system. Jade aso runs on the High Resolution Video (HRV) Workstation from SUN Microsystems Laboratories
described earlier.

To test the Jade paradigm, we have implemented severa computational kernels, including a sparse Cholesky
factorization algorithm and the Barnes-Hut algorithm for solving the N-body problem. The digital image processing
application described earlier isan example of aprogram that uses the diverse resources of a heterogeneous machine.

We have aso implemented severa complete applications in Jade. The following describes our experience in
devel oping several benchmarks chosen to illustrate different aspects of Jade. We ran the applicationsin three different
paralel environments: the Stanford DASH shared-memory multiprocessor, an Intel iPSC/860 and a Mica multipro-
cessor. The Mica multiprocessor isan array of Sparc ELC boards connected by a private 10Mbit/sec Ethernet. This
machine represents a standard, widely avail able environment consisting of a network of workstations. For each of the
applicationswe used data sets that reflected the way the applications would be used in practice.

81 Make

make is a UNIX program that incrementally recompiles a program based on which of its dependent files have
changed. This application illustrates how easy it is to express data-dependent concurrency in Jade. make reads as
input a “makefile” which describes, for each file involved in the compilation process, the command to be executed
to rebuild that file from its dependent files. The serial make program contains a loop that sequentialy executes the
commands required to rebuild out-of -datefiles. 1n the Jade version of this program the body of thisloop isenclosed in

16

awi t honl y- do construct that declares which files each recompilation command will access. As theloop executes
it generates atask to recompile each out-of-datefile; the Jade implementation executes these tasks concurrently unless
one command depends on the result of another command. The dynamic parallelism available in the recompilation
process defeats static analysis: it depends on the makefile and on the modification dates of the files it accesses. It is
easy to express this form of concurrency in Jade, however. The performance of the make program is limited by the
amount of parallelism in the recompilation process and the avail able disk bandwidth.

8.2 Liquid Water Simulation

Water isa program derived from the Perfect Club benchmark MDG that eval uates forces and potentialsin a system
of water moleculesin the liquid state. For the problem sizes that we are running, amost al of the computation takes
place inside the O(n?) phase that determines the pairwise interactions of the n molecules. We therefore execute only
that phasein parallel and runthe O(n) phases serialy. To pardl€lize thisprogramin Jade we first restructured several
of the program’ s data structures and then added 24 Jade constructs—22wi t h- cont constructsand 2wi t honl y- do
congtructs. These modifications increased the size of the program from 1216 to 1358 lines of code.

Figure 12 shows a plot of the speedup for the Jade Water program in thethree different parallel environments. The
speedups are given relative to the serial code with no Jade overhead. The data set for the Water program consists of
2197 molecules, and simulates these molecules for four timesteps. The presented speedup curve omits the time spent
inaninitialization phase. In practicethe applicationwould run for at |east one hundred time steps, and theinitialization
time would be negligible compared to the rest of the compute time.

8.3 String

String isa program from the Stanford Geophysics department. It uses seismic travel time inversion to construct a
velocity model of the geology between two oil wells. The seismic data are collected by firing non-destructive seismic
sourcesin onewell and recording the seismic waves digitally asthey arrive at the other well. Theinter-well travel times
of the waves can be measured from the resulting seismic traces. The application iteratively computes the velocity of
the seismic waves in the media between the two wells by inverting the travel time equation (velocity = distance/time).

The main part of the application shoots rays from one well to the other, using a discretized velocity model to
compute the travel time. The application then calculates the difference between the computed travel time and the
measured travel time for each ray. It backprojects the differences along the ray paths, and updates the vel ocity model
to account for the differences. The application repeats this process of shooting rays and updating the vel ocity model
until the differences are reduced to an acceptable level. This produces a velocity model which can be related to the
underlying geology between the two wells.

To paralleizethisapplication in Jade we replicated one of the main data structuresto allow the program to trace the
rays concurrently. After therays aretraced the program performsaparalel reduction of the replicated data structure to
derive the improved velocity model. These modificationsinvolved the insertion of 35wi t h- cont constructs and 3
wi t honl y- do constructs, which increased the size of the program from 2591 lines of C to 2909 linesof C augmented
with Jade constructs.

Figure 13 shows a plot of the speedup for the Jade String program in the three different paralel environments.
The speedups are given relative to the serial code with no Jade overhead. The speedup curve presented is for the
application’sentire computation, including initial and final 1/0. The data set for the String program isfrom an oil field
in West Texas and discretizes the 185 foot by 450 foot velocity image at the resolution of 1 foot by 1 foot. It shoots
approximately 37,000 rays per iteration and runs six iterations.

84 Search
Search isaprogram from the Stanford Electrical Engineering department. This program simulates the interaction
of electron beams with various solids. In particular, the program uses a Monte-Carl o technique to simulate the elastic

scattering of each electron from the el ectron beam into the solid. Theresult of thissimulation is used to measure how
closely an empirical equation for € ectron scattering matches afull quantum mechanica expansion of thewave equation

17

Water Compute Time Speedup

287

241—

161

121

DASH

O iPSC/860
pp - Z A Sparc ELC
o]]]]]] | |
0 4 8 12 16 20 24 28 32

Number of Processors

Figure 12: Speedups for Water

18

String Total Time Speedup

287

241—

161

121

st < DASH
O iPSC/860
pp - A Sparc ELC
o]]]]]] | |
0 4 8 12 16 20 24 28 32

Number of Processors

Figure 13: Speedupsfor String

19

stored in tables. The main computation simulates six different solids at 10 initial beam energies. Each solid-energy
data point requires the Monte-Carlo simulation of 5,000 electron trgjectories. All of the electron trgjectories and all
of the solid-energy points can execute concurrently. The program contains nine wi t h- cont constructs and one
wi t honl y- do construct, and consists of 676 lines of code.

Figure 14 shows a plot of the speedup for the Jade Search program in the three different parallel environments.
The speedups are given relative to the serial code with no Jade overhead. The speedup curve presented is for the
application’s entire computation.

281
241—
20—

161

Search Total Time Speedup

81— <& DASH
O iPSC/860
pp - Z A Sparc ELC

]]]]]] | |
0 4 8 12 16 20 24 28 32

Number of Processors

Figure 14: Speedupsfor Search

9 Conclusions

Jadeisahigh-level languagefor devel oping portable coarse-grain parallel programs. Jade supportsthedevel opment
of such programs by providing programmers with the abstractions of sequentia execution and a shared address space.
Jade programmers employ their application knowledge to define suitable task and data granularity and describe how
each task accesses data. The Jade implementation uses thisinformation to detect the concurrency in the application,
map the tasks onto the various paralel machines, and, in message-passing environments, manage the data movement
required to implement the shared address space abstraction. Because the Jade implementation dynamically resolves
tasks access specifications, Jade programs can exploit dynamic, data-dependent concurrency.

We have implemented Jade in awide variety of computationa environments, from tightly-coupled shared memory
multiprocessors through networks of workstations to heterogeneous systems with specia-purpose accel erators con-
nected by high-speed networks. Jade programs execute without modification on al of these computational platforms.
Our initial applicationsexperience demonstratesthat Jade effectively supportsthe devel opment of efficient coarse-grain
paralel programs.

Most portable paralld programming languages give the programmer only the low-level functionality present on all
of the targeted platforms. With a sequential semantics and a single address space model, Jade provides portability and
efficiency asit maintainsahigh level of programming abstraction.

20

Acknowledgments

Jennifer Anderson participated in the initia design and implementation of Jade. We thank Edward Rothberg for
hel ping us with the sparse Chol esky factorization code and Jason Nieh for advising us on porting Jade to the i PSC/860.
We acknowledge the support of Jim Hanko, Eugene Kuerner, and Duane Northcutt, who helped us port Jade to the
HRV workstation. We thank Dave Ditzel for use of the Mica network of Suns and David Chenevert for hel ping us use
the Mica environment. Ray Browning wrote the Search program. We thank Jerry Harris for letting us use the String
program. We thank Caroline Lambert and Mark Van Schaack for helping us to understand the structure of the String
program.

References

[1] D.W. Anderson, F.J. Sparacio, and F.M. Tomasulo. The IBM System/360 Model 91: Machine Philosophy and Instruction-
Handling. IBM Journal of Research and Development, 11(1):8-24, January 1967.

[2] Henri E. Bal, M. Frans Kaashoek, and Andrew S. Tanenbaum. Orca: A Language for Parallel Programming of Distributed
Systems. |IEEE Transactionson Software Engineering, 18(3), March 1992.

[3] N. Carriero and D. Gelernter. Applications Experience with Linda. In Proceedings of the ACM Symposium on Parallel
Programming, pages 173-187, July 1988.

[4] JB. Carter, JK. Bennett, and W. Zwaenepod. Implementation and performance of Munin. In Thirteenth ACM Symposiumon
Operating Systems Principles, pages 152—164, October 1991.

[5] Jeffrey S. Chase, Franz G. Amador, Edward D. Lazowska, Henry M. Levy, and Richard J. Littlefield. The Amber System:
Parallel Programming on aNetwork of Multiprocessors. In Proceedingsof the Twelfth ACM Symposiumon Operating Systems,
pages 147-158, December 1989.

[6] Jyh-Herng Chow and William Ludwell Harrison I1l. Compile-Time Analysis of Parallel Programs that Share Memory. In
Record of the Nineteenth Annual ACM Symposiumon Principles of Programming Languages, pages 130-141, January 1992.

[7] D. Lenoski, K. Gharachorloo, J. Laudon, A. Gupta, J. Hennessy, M. Horowitz, and M. Lam. The Stanford DASH Multipro-
cessor. Computer, 25(3):63-79, March 1992.

[8] Kai Li. IVY: A Shared Virtual Memory System for Parallel Computing. In Proceedingsof the 1988 International Conference
on Parallel Processing, pages|l 94-101, August 1988.

[9] J. DuaneNorthcutt, Gerard A. Wall, James G. Hanko, and Eugene M. Kuerner. A High Resolution Video Workstation. Sgnal
Processing: Image Communication, 4(4 & 5):445-455, 1992.

[10] V.S. Sunderam. PVM: aframework for parallel distributed computing. Concurrency: Practice and Experience, 2(4):315-339,
December 1990.

[11] M. E. Wolf and M. S. Lam. A loop transformation theory and an algorithm to maximize parallelism. |EEE Transactionson
Parallel and Distributed Systems, Oct. 1991.

[12] Songnian Zhou, Michael Stumm, Kai Li, and David Wortman. Heterogeneous Distributed Shared Memory. Technical Report
CSRI-244, Computer Systems Research Institute, University of Toronto, September 1990.

21

