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Abstract
Software systems often exhibit a surprising flexibility in the
range of execution paths they can take to produce an accept-
able result. This flexibility enables new techniques that aug-
ment systems with the ability to productively tolerate a wide
range of errors. We show how to exploit this flexibility to ob-
tain transformations that improve reliability and robustness
or trade off accuracy in return for increased performance or
decreased power consumption. We discuss how to use em-
pirical, probabilistic, and statistical reasoning to understand
why these techniques work.

Categories and Subject Descriptors D.2.5 [Testing and
Debugging]: Error Handling and Recovery

General Terms Reliability, Security, Verification

Keywords Recovery, Fault, Error

1. Introduction
A primary goal of many software development projects is
to produce a system that is as close to correct as possible
(in the sense that it contains as few errors as possible).
In support of this goal, the programming languages and
software engineering communities have invested significant
time and effort developing techniques to either ensure the
absence of errors in the system or to detect errors before
the system is deployed (which the developers would then
presumably correct before deployment).

In this position paper we present an alternate perspective.
Instead of viewing systems as correct or incorrect, instead
of viewing actions that the system takes as correct actions
or errors, we instead propose to take a broader, more general
perspective. This perspective focuses on systems and actions
as acceptable or unnacceptable. Unless an action causes the
system to behave in an unacceptable way, we may see no
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need to classify the action as an error or the system as incor-
rect. And even if the action does cause the system to behave
unacceptably, it is often possible to apply a simple modifi-
cation that (while not eliminating the error) rehabilitates the
action to have an acceptably benign effect on the overall be-
havior of the system.

1.1 Good Enough Software
So while we may not have correct software, or even software
that a traditional software engineer would call good, we can
obtain good enough software. And good enough software
can be far better than software that aspires (and inevitably
fails) to be correct when one considers broader aspects such
as development cost, performance, robustness, reliability,
and fault tolerance.

This perspective makes new techniques, optimizations,
and approaches available to us. Freed from the burden of
developing correct systems, we can instead focus on devel-
oping systems that best satisfy a range of desirable proper-
ties. We can appropriately invest engineering effort where it
is most effectively deployed — if certain kinds of correct-
ness are not directly relevant, we have the freedom to invest
only as much engineering effort as necessary to produce an
acceptable, good enough, but not necessarily correct system.

1.2 Obtaining Good Enough Software
With this perspective, we can use acceptably incorrect com-
ponents with no modifications whatsoever. Given an unac-
ceptably incorrect component, we can apply simple transfor-
mations that rehabilitate the incorrectness to give us an ac-
ceptably incorrect component. Given an overly engineered
or rigid correct component, we can apply transformations
that relax the correctness to obtain other benefits such as ro-
bustness, reliability, performance, or reduced resource con-
sumption. Examples of such transformations include the fol-
lowing:

• Precondition Expansion: Many components execute
correctly only if their inputs satisfy certain preconditions.
In some systems it may be desirable to use the com-
ponent with inputs that violate the preconditions. Pre-
condition expansion transforms the component so that
it can survive any otherwise fatal errors that might oc-
cur when given an input that does not conform to the



preconditions. Examples of such transformations include
infinite loop termination [3] and failure-oblivious com-
puting [20]. Such techniques enable the component to
generate (ideally acceptable) outputs even for inputs that
do not satisfy the precondition. They also enable the com-
ponent to survive to process additional inputs.

• Input Rectification: Instead of modifying the compo-
nent to process inputs that violate its precondition, input
rectification instead modifies inputs so that they satisy
the precondition [8]. In many cases, input rectification
preserves most or even all of the useful information in
the input, nullifies otherwise fatal vulnerabilities, and en-
ables the component to produce acceptable outputs even
for otherwise problematic inputs.

• Discarding Computation: Task skipping [16, 17], loop
perforation [10, 22], and reduction sampling [23] discard
computations. When appropriately applied, the result is a
significant reduction in the amount of computational re-
sources (time or energy) required to complete the compu-
tation combined with an acceptably small change in the
output that the computation produces.

• Removing Functionality: Many systems build on general-
purpose software bases that provide more functionality
than the system requires. This excess functionality can
make the system vulnerable to security attacks and prone
to exhibit irrelevant behaviors. Indeed, acceptable func-
tionality may be available with a fraction of the code in
the original implementation [18]. Automatically elimi-
nating excess functionality can shrink the size of the code
base and eliminate undesirable unanticipated behaviors.

• Race-Full Parallelization: Data races are often seen as
unacceptable behavior [1]. The facts show, however, that
many acceptable parallelizations have data races [9, 15].
Advantages of considering computations with data races
include the elimination of synchronization overhead [15]
and compilers that can automatically parallelize a much
broader range of computations [9].

• Data Structure Repair: If a system’s data structures vi-
olate key consistency properties, a system can produce
unacceptable outputs or crash. Data structure repair de-
tects and repairs corrupted data structures [4–6]. In many
cases this technique can rehabilitate the error that origi-
nally caused the corruption, enabling the system to gen-
erate acceptable output for the input that caused the cor-
ruption and (in many cases more importantly) continue
to execute to successfully provide service to its clients.

1.3 Critical and Forgiving Regions and Developer
Observation Bias

In our experience, many developers are surprised that the
techniques we outline above can improve software systems
— the perception is that the system must walk a narrow path
to execute correctly and that any deviation from this path is

likely to cause the system to fail. Our experimental results
show that, at least for the benchmark systems that we use in
our experiments, this perception is simply false.

So why do some developers have this incorrect percep-
tion? Our hypothesis is that observation bias is a large part
of the reason. Our results indicate that systems usually have
critical regions, which must be close to correct for the sys-
tem to operate acceptably, and forgiving regions, which can
tolerate significant changes [2, 10, 16, 17, 21, 22]. Every
developer has encountered a memorable situation (typically
associated with debugging) in which a small change to the
system caused large changes to its behavior. Our hypothe-
sis is that these memorable events often involve errors in the
critical regions of the system. Errors in forgiving regions, to
the extent that developers notice them at all, may have much
less memorable consequences. This experience may bias the
perceptions of some developers and impair their ability to
conceive of, understand, and realize the significant benefits
that are available from the techniques outlined above.

1.4 Reasoning About Good Enough Software
So how might we help such developers obtain a more bal-
anced understanding of the systems that they develop? And
how might we develop better explanations for the reasons
why systems exhibit these surprising characteristics?

We present several different reasoning approaches that
can help explain results that we have observed in existing
systems and predict outcomes across a broader range of sys-
tems. We consider different transformations in turn and rea-
son about the interaction of the system with each of these
transformations. Depending on the transformation, the sys-
tem, and the usage context, different reasoning approaches
may be appropriate.

2. Empirical Reasoning
With empirical reasoning, we apply the transformation, then
use executions on representative inputs to explore the effect
of the transformation. This is essentially a form of software
testing, which is currently the dominant way to validate soft-
ware systems. An advantage of this approach is its universal-
ity — it is possible to apply it to virtually any transformation
and any system.

As with any reasoning approach based on empirical ob-
servations, a question that can arise is how to generalize the
reasoning to other systems and other inputs. Our initial ap-
proach analyzes the implementation of the system to under-
stand why the transformation produces an acceptable sys-
tem. This analysis often enables us to recognize general sys-
tem properties that make the system interact well with the
transformation. When given a new system or input, we can
then analyze the system (potentially in the context if the in-
put) to understand if it satisfies these properties.



2.1 Failure-Oblivious Computing
Failure-oblivious computing is a technique that renders sys-
tems oblivious to memory access errors such as out of
bounds accesses or null pointer dereferences [20]. We have
explored two techniques for out of bounds writes: discarding
the write and modulo writes (in which each out of bounds
access wraps back around to write a location in the accessed
data block). We have also explored two similar techniques
for out of bounds reads: manufactured values (which makes
up values for out of bounds reads) and modulo reads (in
which the out of bounds access wraps back around to read
a location in the accessed data block). Our empirical results
indicate that, for a range of applications, failure-oblivious
computing can eliminate security vulnerabilities and enable
applications to survive otherwise fatal memory accessing
errors.

Failure-oblivious computing works well for applications
with short error propagation distances. In many servers, for
example, the computations that process each request are
largely independent. Failure-oblivious computing can elim-
inate data structure corruption and prevent the server from
crashing when it encounters an out of bounds access or null
pointer dereference. The server can then survive to success-
fully process subsequent requests. Modulo accesses can be
effective in ensuring that the server observes values that con-
form to the data structure consistency constraints even for
out of bounds accesses. Consider, for example, out of bounds
accesses to an array of structures. Modulo reads redirect the
accesses back into the array to observe an existing structure
that will typically conform to the consistency constraints.

We anticipate that failure-oblivious computing will also
work well with self-stabilizing computations, which, as long
as they survive and continue to execute, eventually discard
the effect of any errors or perturbations [4–6].

Finally, we anticipate that failure-oblivious computing
may be appropriate in any situation with a need for con-
tinued execution. For example, it may be critical in ensur-
ing the continued execution of systems that control unstable
physical phenomema. To cite one example, simply ignoring
arithmetic overflow and using whatever value was produced
would have eliminated the cause of the Ariane 5 launch fail-
ure [7].

2.2 Boundless Memory Blocks
Boundless memory blocks store out of bounds writes in a
hash table for retrieval when the system generates a corre-
sponding out of bounds read [19]. With this technique, each
memory block is conceptually unbounded, with its initial
range implemented efficiently with a continguous block of
memory. Boundless memory blocks work well when the de-
veloper has produced a program that is mostly correct but
produces data block sizes that are smaller than some execu-
tions require.

More generally, systems often have multiple interacting
aspects, each of which must operate acceptably for the sys-
tem as a whole to operate acceptably. Because of the redun-
dancy between aspects, it may be possible to use the behav-
ior of one aspect to adjust another aspect to become more
correct. It is possible, for example, to examine the array ac-
cessing patterns of applications to find out of bounds ac-
cesses that expose errors in the computation of the required
array size [14]. Using the offset of the out of bounds index
to compute a new, larger, array size may (but, unlike bound-
less memory blocks, is not guaranteed to) eliminate the out
of bounds accesses.

2.3 Data Structure Repair
Data structure repair finds data structures that violate key
consistency constraints, then modifies the data structures to
eliminate the inconsistency [4–6]. Note that there is no guar-
antee that the repair will create the data structure that a (hy-
pothetical) correct execution would have produced — the
error that caused the inconsistency may have destroyed in-
formation required to obtain this data structure, or the re-
pair algorithm may be unable to determine which of several
alternative consistent data structures the correct execution
would have generated. Nevertheless, the results show that
data structure repair can restore acceptable, if not perfect, ex-
ecution and enable the system to continue to execute produc-
tively. A key aspect of this technique (like failure-oblivious
computing) is that it ensures consistent (even though perhaps
not perfect) data structures, prevents the system from crash-
ing, and enables the system to continue to provide service.
The general pattern that repeatedly emerges is that contin-
ued execution with consistent data structures, regardless of
the specific mechanism used to obtain this continued execu-
tion, typically delivers acceptable results.

2.4 Cyclic Memory Allocation
Cyclic memory allocation eliminates memory leaks by al-
locating a fixed-size buffer, then cyclically allocating mem-
ory out of that buffer [13]. With this technique, it is possi-
ble to allocate two objects into the same slot in the buffer,
in effect overlaying live data. Maintaining a separate buffer
for each different allocation site tends to ensure that each
individual object in the buffer preserves the basic consis-
tency constraints for that object (but not necessarily consis-
tency constraints that involve linked relationships between
objects). An examination of the behavior of the systems after
overlaying indicates that this form of consistency facilitates
continued acceptable execution.

Our results show that, when cyclic memory allocation
overlays live objects, the system may lose some function-
ality, but typically continues to execute acceptably for many
inputs. An analysis of the system also indicates that preserv-
ing basic object integrity constraints in the face of overlaid
live data (by maintaining separate buffers for different allo-
cation sites) facilitates this acceptable continued execution.



Cyclic memory allocation is conceptually similar to
failure-oblivious computing and data structure repair in that
it is designed to rehabilitate otherwise fatal errors to keep
the system executing acceptably although not necessarily
perfectly. it differs in that the threat to the application is
different. Instead of a single error that kills the application
immediately (like a heart attack), memory leaks are a form
of unbounded resource consumption that (more like cancer)
eventually monopolizes all of the resources that the system
needs to survive.

2.5 Infinite Loop Termination
Infinite loops can cause systems to become unresponsive.
Infinite loop termination techniques detect (in some cases
only likely) infinite loops, then exit the loop [3, 21]. One ap-
proach compares states before and after loop iterations to de-
tect repeated states [3]. Another approach learns how many
iterations loops typically execute, then terminates loops after
they exceed this number of iterations by some conservative
factor [21]. After exiting the infinite loop, the system can
then proceed on to perform the rest of the computation re-
quired to generate the anticipated output. Our results show
that this continued execution typically produces a better out-
come than the alternative (terminating the program).

Like cyclic memory allocation, infinite loop termination
eliminates an (effectively fatal) unbounded resource con-
sumption problem — cyclic memory allocation eliminates
the fatal monopolization of memory; infinite loop termi-
nation eliminates the fatal monopolization of the program
counter (which must typically be shared between different
parts of the system for the system to produce acceptable out-
puts).

2.6 Immortal Systems
It is possible to combine failure-oblivious computing, cyclic
memory allocation, and infinite loop termination to obtain a
conceptually (at the software level) immortal system. Specif-
ically, the system will keep executing, will not exhaust mem-
ory, and will not become stuck in an infinite loop (of course,
we provide a way for the developer to specify that a spe-
cific loop, for example the main control loop of the system,
should never terminate). The acceptability of the results that
such an immortal system will produce will vary depending
on the system and the context in which it is used. However,
our results show that, when augmented with such techniques,
systems often have a surprising ability to produce acceptable
outcomes even in the fact of otherwise fatal errors.

2.7 Injected Errors
Given the success of these techniques in enabling systems
to tolerate otherwise fatal errors, a natural question to ask is
How many errors can the system contain and still execute ac-
ceptably? We explored this question by injecting errors into
the source code of the system, then using various techniques
to ensure that the system executes through the errors [21].

Our specific error injection mechanism changed loop termi-
nation conditions to simulate off by one errors. Our results
indicate that software systems with these injected off by one
errors often execute acceptably even when the errors visibly
perturb the execution.

2.8 Task Skipping and Loop Perforation
Inspired by our success in enabling programs to tolerate off
by one errors, we next explored transformations designed to
increase robustness and performance. Two transformations
include skipping tasks in parallel programs [16, 17] and
skipping iterations of time-consuming loops [10, 22]. The
motivation is to discard pieces of computation that contain
errors (thereby preserving the integrity of the system and
enabling it to survive the error) or to reduce the amount
of computational resources required to obtain the result.
Our results show that this technique can deliver significant
improvements in robustness and performance at the cost of
small changes in the result that the system produces.

2.9 Critical and Forgiving Code and Data
One of the results of this research was the distinction be-
tween critical and forgiving code and data. Our results indi-
cated that systems typically contain some components that
must be essentially perfect for the system to execute ac-
ceptably. Other components can, if appropriately augmented
with techniques such as failure-oblivious computing that
enable the system to execute through errors, tolerate sig-
nificant imperfection or transformations that significantly
change what the component does [2, 10, 16, 17, 21, 22].

2.10 Developer Observation Bias
In our experience many software developers view systems
as walking a single narrow correct execution path, with any
deviation from this path causing the system to execute incor-
rectly. This belief has produced software development ap-
proaches that focus on bringing systems as close to perfect
as possible — after all, if the slightest deviation from cor-
rect execution is unacceptable, anything less than perfection
is simply pointless. Another counterproductive consequence
of this belief is underinvestment in techniques that enable
systems to tolerate errors — after all, if only the correct ex-
ecution is acceptable, techniques that attempt to rehabilitate
systems when they diverge from the correct path are irrele-
vant.

Our experimental results show that this understanding of
software systems is simply incorrect — our results demon-
strate, time and again, that software systems, when appropri-
ately transformed to better tolerate unanticipated errors, ex-
hibit remarkable flexibility in generating acceptable results
across a large range of behaviors.

So why do some software professionals believe some-
thing that is simply wrong? Observation bias may account
for part of this misconception. Every developer has encoun-
tered situations in which a very small change to the source



code of the software system has a huge impact on the over-
all behavior. Developers may be (mistakenly) generalizing
from this experience to conclude that any small change will
make a large difference. The concept of critical and forgiv-
ing regions may be particularly important here [2, 10, 16, 17,
21, 22]. Our results indicate that programs tend to have crit-
ical regions which must be perfect (or close to perfect) for
the system to execute acceptably. It is our hypothesis that er-
rors in these critical regions shape some developers’ beliefs
about the need for perfection in software systems — errors
in forgiving regions typically have less memorable effects
and may even go largely unnoticed.

3. Probabilistic Reasoning
Probabilistic reasoning models uncertainty about various as-
pects of the system and its execution (for example, the values
of input variables or the local effect of certain transforma-
tions), then reasons how this uncertainty may affect the ex-
ecution of the system and the results that it produces. In our
research we have focused on obtaining probabilistic bounds
of the form Pr(e > b) < p, where e is a measure of the
inaccuracy of the transformed computation, b is a bound on
the inaccuracy, and p is an upper bound on the probability
with which the inaccuracy e exceeds the inaccuracy bound
b [12, 23]. The analyzed transformations include loop per-
foration [12] and the combination of approximate function
substitution (using less accurate but more efficient imple-
mentations of functions) and reduction sampling (approxi-
mating a reduction using only a subset of the inputs to the
reduction) [23].

An advantage of probabilistic reasoning is that it provides
guarantees that are quantified over all inputs and all execu-
tions. This universal quantification is important because the
guarantee characterizes all system behaviors, not just those
exposed via representative inputs.

4. Statistical Reasoning
Our statistical reasoning uses families of mathematical ob-
jects to model aspects of the transformed system. We then
use observations from representative executions to select
a specific mathematical object, or, more generally, a set
of mathematical objects, that characterize the transformed
computation. For example, we use multiple linear regression
to model the effect of task skipping on the accuracy of the
result that the system produces [16, 17]. Starting with ob-
servations from representative executions, the regression al-
gorithm computes linear coefficients to obtain a single lin-
ear model for the effect of task skipping on the system. We
have also used statistical approaches to select appropriate
probability distributions to model the values that perforated
loops manipulate [11]. With these probability distributions,
we then use probabilistic reasoning to model the effect of
loop perforation.

As these examples illustrate, our statistical approaches
combine elements of both the probabilistic approach (they
produce probabilistic models of the transformed system)
and the empirical approach (they rely on observations from
representative executions to select the final model).

5. Future Directions
At this point we have accumulated significant empirical ev-
idence that systems have a significant degree of flexibility
in the computation they execute to produce an acceptable
result. Systems typically have both critical parts, which ex-
hibit little flexibility to vary their execution, and forgiving
parts, which exhibit substantial flexiblity. Our results show
that empirical test executions on transformed programs can
effectively separate critical and forgiving regions [2, 10, 16,
17, 22]. These results, along with our manual analysis of
the behavior of the transformed systems, also show that em-
pirical techniques can identify transformations that are ap-
propriate for all inputs and not just those inputs used in the
representative executions used to evaluate the effect of the
transformations.

The next step is to develop more general explanations for
these phenomena. We have already obtained the first results
in this area, which use probabilistic and statistical reason-
ing to model systems which exhibit these phenomena. But
these results, as important as they may be, only explain a few
classes of behaviors. As this new approach to program analy-
sis and transformation continues to evolve, we anticipate the
development of increasingly sophisticated techniques that
explain ever broader ranges of techniques. And we also an-
ticipate the development of new and more powerful tech-
niques for productively tolerating errors and optimizing var-
ious aspects of (not necesssarily perfect) systems. While the
resulting systems may not be correct or even good, they will
be better than correct and better than good — they will be
good enough. An exciting and interesting time to be work-
ing in this area!
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