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Abstract—We present ClearTrack, a system that tracks meta-
data for each primitive value in Java programs to detect and
nullify a range of vulnerabilities such as integer overflow/under-
flow and SQL/command injection vulnerabilities. Contributions
include new techniques for eliminating false positives associated
with benign integer overflows and underflows, new metadata-
aware techniques for detecting and nullifying SQL/command
command injection attacks, and results from an independent
evaluation team. These results show that 1) ClearTrack operates
successfully on Java programs comprising hundreds of thousands
of lines of code (including instrumented jar files and Java system
libraries, the majority of the applications comprise over 3 million
lines of code), 2) because of computations such as cryptography
and hash table calculations, these applications perform millions
of benign integer overflows and underflows, and 3) ClearTrack
successfully detects and nullifies all tested integer overflow and
underflow and SQL/command injection vulnerabilities in the
benchmark applications.

Index Terms—Computer Security; intrusion detection; Com-
puter errors; Software safety

I. INTRODUCTION

Dynamic taint tracking has been implemented by many
systems [35], [39], [55], [53], [26], [17], [22] to address a
variety of security vulnerabilities such as SQL injection, com-
mand injection, and control-flow integrity [53], [26], [32]. We
present ClearTrack, a new metadata tracking system for Java.
ClearTrack rewrites Java bytecode to include instrumentation
that tracks metadata about the flow of information through the
program to make the following contributions:

Metadata: ClearTrack maintains 32 bits of metadata for every
value that the program manipulates, enabling ClearTrack to
track 32 distinct properties for each value simultaneously.
Unlike previous taint tracking systems [26], [17], [42], [30],
[53], [39], [35], ClearTrack tracks non-source taint metadata
such as the type of integer arguments (numeric or bitwise),
overflow status, divide-by-zero status, whether or not a value
has been bounds checked, and encoding types (such as xpath,
CSS, HTML, etc). Tracking these dynamic properties allows
ClearTrack to detect and repair vulnerabilities that lie beyond
the reach of other systems.

Overflow/Underflow Errors: ClearTrack tracks the status of
integer values to precisely and accurately detect integer over-
flow and underflow errors. To avoid false positives, ClearTrack
deploys the following new techniques:

e Report Only On Dangerous Operations: In contrast to
previous systems, ClearTrack reports an error only when
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a value is used in a dangerous operation such as a memory
allocation or conditional, not when the overflow occurs.

o Numeric Type Inference: ClearTrack introduces the
concept of numeric and bitwise integers. Numeric values
are constants and those used with arithmetic operators
(plus, minus, etc). Bit-wise values are those used with bit
operators (bitwise-or, bitwise-and, etc). Overflows occur
only on numeric values. ClearTrack metadata is used to
set and propagate a tag for numeric vs bitwise values.

e Clearing Overflows: ClearTrack identifies operations
(such as bitwise-and) that safely clear the overflow or
underflow status of a value. Identifying such operations
enables ClearTrack to detect when the program clears
the overflow or underflow (typically with a bit masking
operation) and avoid false positives for legitimate values
derived from overflowed or underflowed values.

The experimental results show that our benchmark applications
contain millions of legitimate integer overflows and underflows
(sources of these legitimate overflows include, for example,
cryptography and hashing calculations) and that all of these
new capabilities are critical for avoiding millions of false
positives on these programs.

Repair: ClearTrack uses the metadata to automatically repair
incorrect or malicious inputs to SQL and shell commands.
ClearTrack implements a metadata aware tokenizer that en-
sures that any untrusted data is used properly only as a literal
(string, numeric or keyword) within the SQL or command
line string and does not contribute to the command syntax.
Untrusted data in SQL commands that would otherwise es-
cape the intended application quotes are properly escaped.
Untrusted data in shell commands that would not be treated
as a single command argument by the shell are forced to
be a single argument. Previous systems, in contrast, at most
signal an error when tainted data appears inappropriately in
the command string [42], [26], [30], [53].

Path Traversal/Equivalence: ClearTrack includes a novel
policy to detect pathname traversal attacks. A pathname traver-
sal attack occurs when untrusted input can specify a pathname
that specifies directories that are not within the directory
intended by the application. ClearTrack automatically checks
for both absolute and relative pathnames that escape the
application root.

Evaluation: This research was sponsored by an anonymous
agency of the United States government. ClearTrack was eval-



uated by an independent Test and Evaluation (T&E) team hired
by the agency that sponsored this research at two separate red
team exercises.

The independent T&E team selected 13 benchmark Java
programs ranging in size from 9,000 to 540,000 lines of Java
source code (Section III). Including the instrumented jar files
and Java system libraries, the majority of the applications
comprised over 3 million lines of code.

Working independently of the ClearTrack developers, the
evaluation showed that, for the 1015 injected vulnerabilities
evaluated with 2030 malicious inputs and 10,150 benign
inputs, ClearTrack successfully nullified all 2030 presented
attacks and correctly processed all 10,150 benign inputs with
no false positives and no false negatives. Depending on the
application, the ClearTrack overhead ranged from 7.7% to
96.6% with an average of 44.5% (Section III).

II. IMPLEMENTATION

ClearTrack tracks 32 bits of metadata for each value in the
program. The metadata includes not only basic taint informa-
tion, but provenance information (file, socket, command line,
etc.) and, for integer values, information about their current
state (normal, overflowed, underflowed) and how they are
used (numerically or bitwise). The information propagates to
appropriately tag newly computed values as they are derived
from other values.

ClearTrack instruments the application, its libraries, and
the Java system libraries, by modifying the bytecode to track
metadata throughout the program. Each program variable has
a paired metadata 32 bit integer variable. Each assignment and
operation acts on both the primitive value and its correspond-
ing metadata value.

« Object Fields: For each primitive object field, ClearTrack
adds a corresponding metadata field. The metadata field
is initialized to zero (no information). When a field is set,
the metadata field is set as well, when a field is read, the
metadata field is read as well. Each original field access
instruction turns into two bytecode instructions.

o Parameters and Locals: For each original primitive
parameter and local variable, ClearTrack adds a corre-
sponding metadata parameter/local variable. ClearTrack
modifies method interfaces to accept corresponding meta-
data values for each parameter.

« Return Values: ClearTrack maintains a single object,
passed into each method, to carry the metadata for the
return value from the callee to the caller. The caller
extracts the metadata immediately after the call.

o Stack Usage: The Java Virtual Machine (JVM) is a stack
machine, with all expressions and method calls imple-
mented on the stack. ClearTrack instruments the bytecode
as follows. Each time the program pushes a value (field,
local, parameter) onto the stack, the instrumentation also
pushes the metadata for the value (so that the value and its
metadata form a pair on the stack). ClearTrack replaces
binary operators (e.g., add, subtract, multiply) with code
that manipulates the stack to perform the original binary

operation and also the corresponding metadata join op-
eration required to compute the metadata for the newly
computed value. When the program executes, the Java
JIT translates the stack operations into efficient register
code.

Native Calls: ClearTrack supports metadata origination
at and propagation through native calls with method
summaries that appropriately augment the computed val-
ues with metadata when the native call returns. Wrap-
per methods convert the stack representation from the
augmented version used in the Java bytecode to the
original Java stack representation. This allows the original
native routine to be called normally. The wrapper is
implemented in Java making it easy to create summaries
and to originate/propagate taint. ClearTrack currently has
451 summaries. Summaries are used for both native calls
and for optimization of calls whose taint propagation
is expensive. Some summaries (75) are applied to the
specified call and any call that overrides them.

Arrays: ClearTrack replaces each primitive array with an
object that contains an array storing the original values
and a corresponding parallel array storing the metadata.
Storing the values and the metadata in separate arrays
allows the values to be passed through to native and
uninstrumented routines without modification. As with
fields and locals, each time an array element is accessed,
the instrumentation also accesses the corresponding meta-
data.

Reflection: ClearTrack automatically instruments all re-
flective calls to pass metadata correctly to and from the
reflective call. Metadata values for primitive arguments
and the return value metadata are automatically added
to the array of arguments to the callee. Thus, from the
point of view of the callee, the arguments and metadata
are all passed in their normal manner and as with unin-
strumented code, the reflective call is transparent to the
callee. Upon completion of a reflective call that returns a
primitive, the metadata for that primitive is extracted from
the return metadata parameter in the same fashion as it is
for non-reflective calls. Furthermore, all of the reflection
calls that return information about fields and methods are
modified to elide the metadata variables, ensuring that the
instrumentation is transparent to the application.

System Libraries: Java applications make heavy use of
the system libraries. To ensure correct results, ClearTrack
instruments the system libraries in the same manner as
the application is instrumented.

One complication is that the JVM sometimes directly
invokes specific system library methods, with the original
method type signature hardcoded into the JVM imple-
mentation. ClearTrack therefore generates two versions
of each library method: the instrumented version (with
an augmented type signature that includes the metadata
parameters) and a version with the original type signa-
ture that simply invokes the instrumented version. This
mechanism is critical for enabling the JVM to continue to



operate correctly in the presence of instrumented system
library methods.

« Translation Tables: ClearTrack supports implicit data
flow through translation tables by conjoining the metadata
of the index with the metadata of the value.

ClearTrack provides 32 configurable metadata bits for each
primitive Java value. In the current ClearTrack implementation
these bits are configured as follows:

o Bits 0-1: These bits track trusted and untrusted, tracked
separately. Values derived only from trusted sources (such
as constants trusted files or databases) are classified as
trusted. Otherwise it classified as untrusted.

o Bits 2-14: These bits track whether or not string values
have been encoded for safety for various interpreters
(XPATH, CSS, HTML, LDAP, SQL, etc).

o Bits 15-26: These bits track the source of the value (Java
properties, database, environment variables, command
line arguments, files, etc).

« Bits 27-31: These bits track the overflow and type of
integer values (details in Section II-C).

A. Example

We next present a simple example that illustrates the
ClearTrack instrumentation. Note that ClearTrack operates
directly on Java bytecode, not Java source code. For read-
ability, we nevertheless present the example at the level of the
Java source code. Key concepts that the example illustrates,
such as metadata fields, parameters, and return values and
the additional instructions required to propagate the metadata,
transfer directly to Java bytecode.

The example is a method that shifts a Point object right by
an amount dx:

class Point {
int x, y;
int shift(dx) {
X = x + dx;
return x;

3
3

The ClearTrack instrumentation adds an int field x_t and
y_t for each of the x and y fields in the Point object.
This additional field stores the metadata for the corresponding
Point field. ClearTrack similarly adds a parameter dx t to
store the metadata for the dx parameter of the shift method.

Each method also takes an additional rval parameter to
store the metadata for the return value of the method. The
caller extracts this metadata from the rval parameter imme-
diately when the invoked method returns.

The instrumented version would be

class {
int x; int x_t;
int y; int y_t;
int shift (dx, dx_t, RetVal rval) {
x = Instrument.iadd (x, x_t, dx, dx_t, rval);
x_t = rval.metadata;
return x;

}

}

The instrumented code implements the integer add operation
by invoking the iadd method in the Instrument class. The
iadd method checks for overflow and underflow and sets the
appropriate bits in the metadata return value if these conditions
occur. The iadd method also propagates the metadata from the
operands of the add through to the result.

class Instrument {
int iadd(int v1, int vi_t,
int v2, int v2_t, RetVal rval) {

rval .metadata = vi_t | v2_t;

long result = ((long) v1) + v2;

if (result > MAX_INT_VALUE)
ret.metadata |= OVERFLOW;

else if (result (< MIN_INT_VALUE)
ret.metadata |= UNDERFLOW;

return (int) result;

3
}

Applying the instrumentation at the bytecode level enables
the Java JIT to productively optimize the metadata tracking
code in conjunction with the base code from the application.
Potential optimizations include placing metadata values in
registers, unrolling loops, eliminating unnecessary checks, and
inlining methods (such as the iadd method in our example).
The result is an efficient register-based implementation with
substantially less overhead (as a percentage of the total run
time) than would be incurred by an implementation that simply
interpreted the instrumented bytecode.

B. Optimized Method Summaries

ClearTrack also applies method summaries to optimize
some expensive operations. For example, instrumenting Java
I/O operations can incur substantial propagation overhead
because they often include data intensive operations such as
character encoding. Instead of instrumenting such methods,
ClearTrack applies method metadata propagation summaries to
implement the metadata propagation tracking at the granularity
of method calls (rather than at the granularity of individual
operations within the invoked method).

When a stream is created on an entity such as a socket
or file, ClearTrack sets the metadata system’s current con-
figuration for trusted/untrusted data (which classifies each
entity as trusted or untrusted). When the program creates
a stream based on an existing stream (such as adding a
BufferedInputStream to a FileInputStream), ClearTrack
takes the trusted/untrusted status from the existing stream. If
the bytes in the underlying stream have different metadata,
ClearTrack invokes an instrumented version of invoked meth-
ods to ensure that the metadata is correctly propagated for
each byte.

ClearTrack does not generate instrumented versions of many
container class methods (examples include some ArraylList
or HashMap methods) — because these methods are known to
not access the underlying objects in the container, they do not
change the metadata information of the objects in the container



or propagate the metadata from the contained objects to the
fields of the container object.

We generate the ClearTrack method summaries manually
for standard methods with known behavior. In the absence of
a summary, ClearTrack instruments the method.

C. Integer Overflow Errors

ClearTrack can precisely detect integer overflows (we use
the term overflow to refer to both integer overflow and
integer underflow errors; ClearTrack tracks both underflows
and overflows) without any false positives in our benchmark
evaluation programs. A key to the approach is that ClearTrack
takes an action only when an untrusted overflowed value is
used in a dangerous operation and not when an overflow
occurs. Dangerous operations are

o Array indexing
o Conditionals (loops or if statements)
« Memory allocation.

Note that printing (to text) is not considered a dangerous
operation. ClearTrack simply prints ‘Overflow’ for the value.

ClearTrack uses several metadata bits to track precise infor-
mation about the status of each value. These are:

o Overflow: Indicates that the value has overflowed or was
derived from an overflowed value.

o Underflow: Indicates that the value has underflowed or
was derived from an overflowed value.

« Bitwise: Indicates that the value was generated from a
bitwise computation or was derived from such a value.
Set on a bitwise operation and cleared on a numeric
operation. See Section II-E for more details.

« Divide by Zero: Indicates that the value was the result
of a divide by zero operation or was derived from such
a value. Set when a value is divided by zero. Note
that ClearTrack changes the standard Java semantics to
not throw an ArithmeticException on divide by zero.
ClearTrack instead sets and propagates the divide by zero
bit in the metadata. Unlike overflows, there are no bitwise
or arithmetic operators that clear the divide by zero.
Divide by zero values can, however, be safely printed
(they will print as infinity). This behavior allows safe
continued execution in the presence of divide by zero. It
is also configurable.

Each numeric operation (e.g., add, subtract, multiply, divide,
etc) is checked to determine if it overflows (see the iadd
method in Section II-A). If so, the metadata for the value is
marked as such. For all integer types except long, the overflow
check is achieved by performing the operation in a higher
precision type (e.g., long for integer) and checking the result
to ensure it fits in the destination type. Longs are handled
with operation-specific checks. For example, add operations
overflow iff the sign of each operand is the same and is
different from the result.

At each dangerous operation, the metadata for the value is
checked and an exception is thrown if the value is overflowed
or divide-by-zero.

The key to this approach is that the overflow can be cleared
if an operation occurs that removes the overflow. Under Java’s
semantics, the bits that are present in an integer (the lower
order bits) are correct when an overflow occurs. If operations
that clear the higher order bits are executed on the value,
the result will be exactly correct (as if arbitrary precision
arithmetic were used on the value). Operations that clear the
high order bits include, for example, masking operations and
casting operations (e.g., integer to short). ClearTrack thus
clears the overflow bits in the metadata when these operations
occur. Figure 1 defines the semantics of the overflow field
more precisely.

This approach ensures that ClearTrack does not interfere
with common anticipated and desirable sources of overflows
(cryptography, hashing, etc.) because the high order bits of
the overflowed values are masked off before being used in
dangerous operations.

ClearTrack can also optionally clear the overflow bit on
mod operations (%) and logical right shift (>>>). The mod
operation limits the size of the result in a manner very
similar to masking. However, unless the divisor is a power
of 2, the result will not be numerically the same as with
arbitrary precision arithmetic. In all of the actual use cases
we examined, however, mod was used to create a tag (such as
a hash table index) where the exact numerical value was not
relevant.

Logical right shift shifts in zeroes rather than sign extending
the value. The results of this operation are specific to the size
of the operand. Since bits beyond the bounds of the operand
are being explicitly discarded, clearing the overflow flag on
this operation is reasonable.

As described in section III-C, for untrusted values, only
clearing on bitwise-and is required for correct operation over
all of the evaluation programs. If trusted inputs are considered,
then mod and logical right shift need to clear overflows as well
on some of the programs.

E O(E) Comment
c - Constants are clean
\% Vo The overflow field from

the metadata for V
op(E) O(E) Unary arithmetic/bit op
E; op E» O(F1) || O(E2) Most binary arithmetic/bit ops
Ey opc By - Bit-and, mod, logical right shift
abs(E) O(E) Includes inline abs code
(l-cast)E O(E) Cast to larger type
(s-cast)E - Cast to smaller type

Fig. 1. Definition of overflow for expressions. Clearing overflow on mod and
logical right shift is optional.

Normally conditionals are treated as dangerous operations
on overflowed values. However, in some cases, the conditional
and its block form a higher-level function over the value. In
this case, rather than treating the conditional as a dangerous
operation, ClearTrack simply marks the result of the combined
operation as overflowed. This is analogous to the way that
lower-level operations (such as add and multiply) are treated.



The most common example of this is code that is calculating
absolute value. For example:

if (x < Q)
X = =X

ClearTrack includes a template-matching component that
detects commonly-used code patterns. Matching conditional
branches and bodies are treated as a single functional block,
and the conditional on the overflowed value is allowed. The
resulting value is, however, still marked as overflowed.

The other templates (very similar) are:

if (x < 0)

if (x < 0)
.~ X *

X = 7X; X = -1;

D. Integer Divide-by-zero Errors

Divide-by-zero errors are treated very similarly to overflow
errors. The only difference is that the divide-by-zero metadata
flag cannot be cleared (as there is no correct value for infinity).
When such a value is used in a dangerous operation, an
exception is thrown. When printed, divide-by-zero values print
as ’Infinity’.

E. Integer Conversion Errors

When an integer value is cast to a smaller type (e.g., integer
to short) or between signed and unsigned types (e.g., short and
character) the original value may not be able to be represented
in the destination type. For example, consider the following
code:

char c = OxFFFF;
short s = (short) c;

Since characters are unsigned, they can represent OxFFFF
(65535). Shorts are signed, so the same bit pattern is inter-
preted as -1. Problems can also occur when casting from a
larger type to a smaller type (values too large for the smaller
type will be truncated).

ClearTrack checks each integer cast operation and marks
the result as overflowed if it is not equal to the original value.
This check is appropriate if the values being cast are used as
numbers.

In some cases, however, the values in integer variables are
manipulated as bits. In this case, a different numerical result
could be expected. Consider code that reads a short from a
binary stream as two bytes and then forms them into short.

short readShort(InputStream is) {
byte b1 = is.read();
byte b2 = is.read();
int value = (b1 << 8)
return (short) value;

}

| b2;

Within a Java expression, all (non-long) integer operations
are performed as integers (32 bits). As an integer the result of
(b1 << 8) | b2 will always be a positive value (between 0
and 65535). When it is cast to a short, however, it will then
have a possible range of -32768 to 32767. This would fail

the overflow test (original value must match the result value).
This conversion, however, is expected and the resulting value
should not be marked as an overflow.

ClearTrack handles these situations by keeping track of the
type of each value. Values can be either bitwise or numeric.
Bitwise values are those that are created with bit operators
(bitwise-and, bitwise-or and compliment). Numeric values are
constants and values created with the numeric operators (plus,
subtract, minus, divide, and mod). The check for overflow on
a cast is only applied to numeric values.

FE. Injection attacks

Injection attacks can occur when the program sends text
commands that include untrusted inputs to external subsystems
(such as SQL servers, command shells, etc). Because the
commands are parsed externally, attackers may be able to
inject text that subverts the intention of the application. For
example, consider a program that looks up some contact
information by running the grep program on a file. The
application might execute the following command using bash
(where the untrusted data is underlined) and send the results
to a remote user.

grep -i david "/contacts
Rather than entering a name as expected, an attacker could
enter "david; cat /etc/passwd’ yielding the following command:

grep -i david; cat /etc/passwd “/contacts

This would send the contents of /etc/passwd and the contact
file to the attacker.

Injection problems can be addressed by ensuring that all
untrusted inputs are limited to numeric and string literals and
language-specific reserved values (for SQL, true, false, null,
etc). This restriction ensures that the untrusted input cannot
change the meaning of the command.

ClearTrack contains a novel metadata-aware tokenizer that
considers both the character and its metadata when tokenizing.
ClearTrack adjusts the tokenization to ensure that untrusted
data follows the above policy for untrusted inputs. When
processing trusted characters, the metadata-aware tokenizer
acts in the same manner as a traditional tokenizer. It processes
untrusted data as follows.

First, when processing string literals (quoted strings), the
tokenizer includes all characters starting with the initial appli-
cation (trusted) quote character up to the enclosing application
quote character. Untrusted quote characters do not terminate
the quoted string. Consider the following example:

String sql = String.format

("...where ... and passwd="'\%s

(Rl

, passwd);

Regardless of the input values for passwd, the tokenizer will
treat them as a single quoted string (surrounded by application
quotes).

Second, when tokenizing tokens other than string literals,
the token terminates only on a trusted character. This ensures
that the untrusted input is treated as a single entity. Consider
the command injection example earlier in this section. In the
command



grep -i david; cat /etc/passwd “/contacts

the ClearTrack metadata-aware tokenizer produces the fol-
lowing tokens: *grep’, ’-i’, *david; cat /etc/passwd’, and ’ /con-
tacts’.

ClearTrack detects injection attacks only at the point where
the command is executed. This ensures that the check and
possible repair are subsystem (e.g., SQL, command shell)
specific. It also allows the same untrusted input to be passed

to different subsystems (with possibly different repairs).

G. SQL Injection Detection and Repair

In Java, SQL commands are executed via the execute()
methods in the sql.Statement class, the prepare() methods
in the sql.Connection class and the createQuery() call in
the org.hibernate.Session class. ClearTrack checks queries
at each of these calls using the metadata-aware tokenizer to
analyze the input.

With metadata-aware tokenization, an SQL injection attack
is present if either of two conditions hold. In string literals,
an attack is present if there are unescaped special characters
(quotes or backslashes) within the string literal (between
the two trusted application quotes). ClearTrack repairs these
attacks by properly escaping the characters. This ensures that
the input does not change the meaning of the command so that
the application executes correctly for both malicious inputs
and valid inputs that happen to contain embedded special
characters (e.g, O’Malley).

In other tokens, an attack is present if the token is neither
a valid SQL numeric constant nor a SQL reserved constant.
Consider the following example (where untrusted input is
underlined):

select * from table t
where value=123;drop table t

In these cases, ClearTrack could be configured to repair the
input by discarding the invalid value characters (in this case:
; drop table t). However, unlike quoted string repairs, this
risks database interactions that were not intended by the user
(if, for example, the invalid characters were simply a typo).
Thus, by default, ClearTrack throws an exception when it finds
an invalid input in a non-quoted string.

We tested ClearTrack on the 11 canonical examples of
injection attacks described by Ray and Ligatti [36]. Our taint-
aware tokenizer approach matches their suggested results for
10 of their 11 examples. The one example with a different
result is:

create table t (name CHAR(49))

Ray and Ligatti classify this as code injection. We do not as
we consider integer literals, even in SQL type definitions, to
be values and thus not an attack.

In a later paper [37], Ray and Ligatti describe non-code
injection attacks. These are injections that, while not code
themselves, change the interpretation of later portions of the
command. For example a trailing backslash can remove an
application quote and thus change the interpretation of the rest
of the command. Because ClearTrack checks for all special
characters (including backslashes) within trusted application

quotes it correctly handles and repairs this example as well.
Essentially, any user input is constrained to remain within the
trusted application quotes achieving the same result as param-
eterized queries without requiring program modifications.

Using the taint-aware tokenizer allows ClearTrack to work
effectively without requiring a full SQL parser. This allows it
to support multiple dialects of SQL and versions for which
the full grammar may not be available.

H. Command Injection Detection and Repair

Command injection is treated in a similar fashion to SQL
injection except that the grammar is that of shell commands
(such as bash). In Java shell commands are executed by the
Runtime.exec() calls or the ProcessBuilder class using the
-c command line option to bash (or other shells). For example:

bash -c 'grep -i david "“/contacts'

Similarly to SQL injection, the policy for command in-
jection is that untrusted input should only specify single
arguments to the command. Untrusted input should also never
specify a command itself.

Command injection attacks are automatically repaired so
that the command executes as intended by the application. As
with SQL injection, any untrusted special characters are prop-
erly escaped so that they do not escape the trusted application
quotes. If application quotes are not present (perhaps because
the application presumed the untrusted input was a single
token) ClearTrack also automatically repairs commands for
which application quotes are not present (perhaps because the
application presumed the untrusted input was a single token)
by quoting contiguous tokens that contain untrusted input. For
example, the input:

grep -i david; cat /etc/passwd “/contacts

is modified to:
grep -i 'david; cat /etc/passwd' “/contacts

This passes the entire input value (david; cat /etc/passwd) to
grep as a single argument. This approach also fixes inadvertent
input errors such as embedded blanks. For example, the
untrusted input *David Smith’ would also be quoted ensuring
that it is treated as a single argument.

1. Pathname Traversal

ClearTrack includes a policy to detect pathname traversal
attacks. A pathname traversal attack occurs when untrusted
input can specify a pathname that specifies directories that are
not within the directory intended by the application. This can
occur with absolute pathnames (those that begin with slash)
and with relative pathnames that reference parent directories
(using ../).

Absolute pathnames are straightforward to detect. The lead-
ing slash should not be specified by untrusted data. Relative
pathnames are more complex. Consider a simple FTP server
that allows the user to traverse the user’s directory tree, but
does not intend the user to be able to enter a different user’s
tree. User fred should be able to specify a directory of

fred/root/dir1/../dir2




where, as shown, the application specifies the root, and the
user can use .. to traverse the tree under the root. However,
the following input is not valid because it leaves the users
directory tree and enters a different users tree:
fred/root/../../david/root/dir1

Simply disallowing parent directory references would not
allow valid traversals within the users directory tree. Clear-
Track implements a more precise policy that allows only
valid traversals. Untrusted parent directory references can only
reference directories below the trusted root of the path. In this
case, the trusted root is ’fred/’. If there is no trusted root, a
trusted ./ is added to the beginning of the reference.

Note that Java does not provide a call to change the current
working directory. All pathnames must be either absolute or
relative to the initial working directory.

III. EXPERIMENTAL EVALUATION

The United States government hired an independent test and
evaluation (T&E) team to evaluate ClearTrack [47]f. We next
present the results of this evaluation.

A. Applications and Vulnerabilities

The T&E team identified a set of Java applications (see
Figure 2) to drive the evaluation. The applications range in size
from 9K to 540K lines of Java source code. These numbers do
not include classes from external jar files or the Java system
libraries, which ClearTrack also instruments. Including these
classes, most of the applications comprise over 3 million lines
of code each.

The T&E team inserted vulnerabilities [45] into the 5 largest
programs and developed malicious inputs to exercise the vul-
nerabilities. The vulnerabilities were chosen to cover a range
of scenarios over five axes: data source (environment, file,
socket), data type (primitive, array, reference), data flow (con-
stant, return value, basic, index alias, Java generics, variable
arguments), control flow (labeled break, callback, overloaded
functions, recursion, indirect recursion, infinite loop, call depth
(1, 2, 10, 50), interrupt, sequence) and vulnerability type (SQL
injection, command injection, path traversal, numeric over-
flow, numeric underflow, unexpected sign extension, signed to
unsigned conversion, unsigned to signed conversion, numeric
truncation). To test for false positives, the T&E team also
developed benign inputs to exercise the standard functionality
of each program.

Figure 3 summarizes the resulting inputs. There are a total
of 1015 distinct vulnerabilities, 2030 malicious inputs, and
10,150 benign inputs. Each of the benign inputs exercises a
different application setup with different arguments to exercise
a distinct execution path.

The T&E team also developed a Test and Evaluation system
(TEXAS) [46], [48], which comprises an interconnected set
of virtual machines to compile and execute the benchmark
applications. TEXAS also includes required support services
such as the MySQL, PostgreSQL, SQLServer (Microsoft), and
Hibernate database systems.

B. Application Executions

Working with the delivered ClearTrack system indepen-
dently from the ClearTrack development team, the T&E team
produced two versions of each application for each vulnera-
bility. The unprotected version executes in the standard Java
execution environment. The hardened version executes with
the ClearTrack metadata tracking, vulnerability detection, and
repair enabled. The T&E team next ran the unprotected ver-
sions of each application on the malicious and benign inputs
to verify that the malicious inputs successfully triggered the
vulnerability and that the benign inputs produce the expected
correct results.

The T&E team next ran the hardened versions of each
application on the malicious and benign inputs. The results
show that ClearTrack successfully nullified all of the exercised
vulnerabilities for all of the malicious inputs and generated no
false positives on any of the benign inputs. All executions were
performed on Debian 6.03 with the virtual machines executing
on a 12 core machine using Xeon 3.47Ghz processors. We next
discuss each class of vulnerabilities in more detail.

Program Application Lines of Code
Ant[4] 256K
Barcode4J[28] 28K
FindBugs[34] 208K
FTPS[5] 40K
HtmlICleaner[52] 9K
JMeter[7] 178K
PMDI[19] 100K
SchemaSpy[18] 16K
CoffeeMUD[56]* 537K
Elastic Search[21]* 297K
Apache Jena[6]* 377K
Apache Lucene[8]* 440K
Apache POI[9]* 292K

Fig. 2. Evaluation applications and their lines of code. Those marked with a
star (*) were injected with vulnerabilities

Coffee Elastic Apache Apache Apache

Vulnerability MUD Search Jena Lucene POI
Path Traversal 38 37 43 39 38
Path Equivalence 15 14 10 14 15
Command Injection 18 23 17 22 19
SQL Injection 61 57 63 58 60
Numeric Overflow 27 29 22 25 26
Sign Extension 9 6 11 11 7
Signed to Unsigned 7 10 11 8 11
Unsigned to Signed 11 7 10 8 8
Numeric Truncation 9 9 9 9 9
Divide by zero 9 9 8 8 11
Totals 204 201 204 202 204
Fig. 3. Number of test cases by vulnerability and base program

C. Numeric Vulnerabilities

The T&E team inserted numeric vulnerabilities in the
following CWE (Common Weakness Enumeration) cate-
gories [1]. Each reads a value from an untrusted source that
can trigger the vulnerability.



e Numeric Overflow (CWE 190) and Underflow (CWE
191): Performs an operation that overflows or underflows
an integer type, then uses the result in a dangerous
operation.

o Unexpected Sign Extension (CWE 194), Unsigned to
Signed Conversions (CWE 195), Signed to unsigned
Conversions (CWE 195): Performs operations that move
data between signed and unsigned (character in Java)
types such that the destination does not match the source.

« Divide by Zero (CWE 369): Bypasses the standard Java
implementation to divide without checking for zero.

o Numeric Truncation (CWE 197): Unexpected truncation
that occurs when casting to a smaller type.

With the exception of divide by zero, all of these issues
result in a value that does not fit correctly within the size of
the destination type. For simplicity, we refer to all of these
vulnerabilities as overflows.

We compare the ClearTrack implementation with an imple-
mentation that triggers an error immediately when an overflow
occurs. We distinguish two cases: when the overflow occurs
in a trusted value derived from internal program values and
when the overflow occurs in an untrusted value derived (at
least in part) from user input.

The Overflow columns in Table 4 present the number of
such overflows that occur in each of the applications when
running on the benign inputs. As these numbers show, all of
the applications encounter significant numbers of overflows
even under normal execution. All of these overflows would
be false positives under implementations that trigger an error
immediately when an overflow occurs.

The next columns (Dangerous) present the number of times
that an overflown value (or a value derived from an overflown
value) is used in a dangerous operation disregarding opera-
tions such as bitwise and, logical shift, or mod that eliminate
the overflow. The remaining columns present how many values
survive when each of these operations is taken into account.
So, for example, all of the 27.6K uses of trusted overflown
values in CoffeeMUD are actually cleared by a bitwise and
before they are used in a dangerous operation. Similarly, the
19.9M uses of trusted overflown values in Elastic Search that
are not cleared by either bitwise and or logical shift are cleared
by a mod operation before they are used in a dangerous
operation.

These results show that ClearTrack correctly determines that
no overflown value reaches a dangerous operation for any of
the benign inputs — in other words, ClearTrack has no false
positives on these inputs.

D. SQL Injection

As shown in Figure 3 there were 299 inputs for SQL
injection vulnerabilities, 2 malicious and 10 benign inputs
for each vulnerability. These inputs cover the MySQL, Post-
greSQL, and Hibernate databases. ClearTrack detected all of
the malicious inputs with no false positives on the benign
inputs. With repair enabled, ClearTrack successfully repaired

all of string attacks triggered by the malicious inputs to enable
successful continued execution.

E. Command Injection

As shown in Figure 3 there were 99 inputs for command
injection vulnerabilities, 2 malicious and 10 benign inputs for
each vulnerability. Each input included untrusted input as part
of the issued command string. ClearTrack detected all of the
malicious inputs with no false positives on benign inputs.

With repair enabled, ClearTrack modified all of the com-
mand strings so that the command could execute with no
negative impacts. In most cases, the modified command simply
returned an empty data set. For example, one attack looks like:

find .

ClearTrack ensures that the user input is treated as a single
value by quoting it as follows:

find .
In this case, the malicious input will all be treated as the

argument to -iname and will simply not match any files. The
program will continue to operate correctly.

-iname "x" -a -exec cat /etc/passwd;

-iname '"*" -a -exec cat /etc/passwd;’

F. Path Traversal

As shown in Figure 3 there were 195 path traversal tests
and 68 path equivalence tests. A path equivalence (CWE-41)
attack uses special characters in file names to make equivalent
filenames that will not be treated as equivalent. For example
the filename execute.jsp and the filename execute. jsp/
refer to the same filename but may not be treated as equivalent.
Malicious patch equivalence inputs are often designed to avoid
black list checks. For example, a check that rejects requests
for files that end in . jsp might not detect the same file when
named with a trailing slash.

ClearTrack detected all of the malicious inputs with no false
positives on the benign inputs. Each test included untrusted
input as part of the pathname.

G. Overhead

To measure the execution time overhead, we measured
the execution time of each of the applications with and
without the ClearTrack instrumentation (with the exception
of CoffeeMUD, whose custom client precludes accurate ex-
ecution time measurements). The experiments executed each
application 100 times for each set of benign inputs, measuring
the total wall-clock time for each execution. We repeated
this process with the hardened version of each program and
compared the times. As shown in Figure 5 the execution time
overheads range from 7.7% for JMeter to 96.6% for Apache
Lucene with a mean overhead of 44.5% across all applications.

We also measured server overhead on OpenCMS [2] (an
open source content manager with over 100k lines of code).
OpenCMS runs as a web application in the Apache Software
Foundation’s Tomcat framework [3]. It uses a database to store
web site content and configurations. ClearTrack instrumented
both the OpenCMS application and Tomcat (another 340K
lines of code).



Trusted values

Untrusted values

App Overflow Dangerous bitwise-and logical shift mod Overflow Dangerous bitwise-and
CoffeeMUD 68.0K 27.6K 0 0 0 16.7K 1.03K 0
Elastic Search 41.2M 51.1M 28.2M 19.9M 0 8.33M 9.72M 0
Apache Jena 15.8K 0 0 0 0 5.78K 5.76K 0
Apache Lucene 19.6M 9.07M 221K 0 0 84.7K 878K 0
Apache POI 3.92K 0 0 0 0 345 139K 0
Fig. 4. Operations that overflow and overflowed values that reach dangerous operations for trusted and untrusted values. The bitwise-and, local shift, and

mod columns indicate how many overflows reach dangerous operations when the overflow bit is cleared on those operations. Results are totaled over runs on

each of the ten different application setups.

Number  Average

Program Inputs  Overhead
Ant 5 33.6%
Barcode4] 1 45.7%
FindBugs 2 54.4%
HtmlCleaner 1 33.0%
JMeter 1 7.7%
PMD 1 62.0%
SchemaSpy 1 22.8%
Apache Jena 10 37.6%
Apache Lucene 10 96.6%
Apache POI 10 55.8%
Elastic Search 10 51.5%

Fig. 5. Overhead percentage over 10 runs of each program. As indicated, some
of the programs were run over multiple input sets. Results over different input
sets are averaged together.

We measured the ClearTrack overhead with a script devel-
oped to send 1,000 benign URLs to an OpenCMS installation
and record the resulting HTML responses. (The URLs were
captured while interacting with the installation to manage
a web site.) The total time required to process all of the
URLs was measured both before and after hardening of the
OpenCMS code by ClearTrack. The average overhead was was
13.8%. A comparison of the recorded HTML responses shows
that ClearTrack did not alter the functionality.

We performed OpenCMS experiments on a virtual machine
running Ubuntu 12.04 on a 3.6Ghz 4 core iMac with 32
GBytes of memory. Both the client and the server ran on the
same machine, using localhost for negligible network delays.

The average overhead is significant, but the ramifications
of security errors are dangerous enough to justify substantial
overhead at least in security sensitive applications. Addition-
ally, servers (a common use case) are often not CPU bound
and the overall impact on the load might well be significantly
less (as seen in the OpenCMS experiment above). The system
is also not heavily optimized and significant performance
improvements via common compiler optimization techniques
such as specialization are likely possible. For example, an
Android provenance system [25] was able to reduce metadata
overhead to 14% with optimizations such as loop/method
specialization and array aggregations. Also, Iodine [10] was
able to achieve an overhead for DIFT of 9% on C programs
using an optimistic hybrid analysis. While neither are di-
rectly applicable to ClearTrack (because ClearTrack modifies
metadata on numeric operations), they illustrate that further

significant optimizations are likely possible.

IV. RELATED WORK

A. Integer Overflows

1) Run-time Instrumentation for Overflow Errors: 10C [20]
dynamically instruments C/C++ code to identify possible
overflow errors. IOC signals overflows as they occur and not
when they are used in dangerous operations. The results show
that the vast majority of overflows that IOC found are false
positives. RICH [12] compiles C programs to dynamically
check integer operations for overflows. Like IOC, it signals
overflows as they occur and the majority of the detected
overflows are false positives.

Because ClearTrack signals an error only when over-
flowed values are used in dangerous operations, and because
ClearTrack correctly clears the overflow flag on operations
such as bitwise-and, it supports legitimate uses of overflows
in operations such as hashing, cryptography, and random
number generation. Our results show that programs generate
millions of legitimate overflows, all of which, in the absence
of techniques such as those deployed in ClearTrack, would be
false positives.

SoupInt [49] diagnoses exploited integer overflow from
captured attack instances and automatically generates patches
to fix the vulnerability. Unlike SoupInt, ClearTrack does not
require attack instances and addresses all numeric vulnerabil-
ities in the program automatically.

IntPatch [54] and IntTracker [43] insert overflow checks
only at operations that they can statically determine (via type
or static analysis) may flow to memory allocations. They
argue that such operations do not have benign overflows. Both
analyses are conservative so they may check operations that
do not lead to memory allocations. And some programs may
perform operations with benign overflows even in allocation
size calculations. Either condition may lead to false positives.

ClearTrack differs from both IntPatch and IntTracker in
that it tracks all overflowed values precisely at run-time
with no false positives. This approach enables it to check a
variety of possibly dangerous operations (such as comparisons
and array indexing) as opposed to only memory allocations.
Since benign overflows are certainly possible in non-memory
allocation cases, the IntPatch and IntTracker approach cannot
be applied to them.



2) Symbolic Test Generation: A number of tools [13],
[14], [23], [24], [27], [29], [40], [50] employ various forms
of symbolic test generation (e.g., concolic testing) to look
for possible overflow bugs. By design, these tools can only
uncover overflow problems on paths they are able to fully
explore. Fully analyzing complex significant real-world pro-
grams is beyond the current state of the art.

DIODE [41] focuses on overflowed values that are used in
memory allocation sites. It looks at memory allocation sites
that are exercised by its seed inputs and can either find an
input value that triggers an overflow or show that there is no
input that would trigger an overflow for the observed target
expression at that site. It is, however, limited to the seed-
input/allocation site combinations exercised by its test inputs.

By using run-time instrumentation, ClearTrack, however,
has the capability to catch all overflows that lead to dangerous
operations without incurring false positives.

3) Static Analysis: Several static analysis tools have been
proposed to find integer overflow and/or sign errors [15], [38],
[51], [16], [31]. KINT [51], for example, generates constraints
from source code and user annotations to determine if an inte-
ger error can occur. A substantial number of false positives still
exists. KINT also proposes NaN integers that track whether or
not they have overflowed. Unlike ClearTrack, NaN integers re-
quire a dedicated NaN value (which could occur normally) and
have no facility to clear overflowed values (which is critical to
resolving false positives (see Section III-C). IntPTI [16] uses
a type analysis to find errors and generate possible fixes for
C programs that are evaluated by users for correctness. While
IntPTI has good results, it still has both false negatives and
false positives and unlike ClearTrack requires users to verify
its results. IntREPAIR [31] uses static symbolic execution
to find possible overflows. Unlike ClearTrack, it detects all
overflows and does not attempt to determine which ones are
intentional. Users of the tool must determine the validity of
each overflow.

B. Java Taint Tracking Systems

Phosphor [11] is a taint tracking system for Java that, like
ClearTrack, tracks 32 bits of metadata for each primitive Java
value. The reported overhead numbers for the two systems are
similar. Unlike ClearTrack, Phosphor only implements source
taint/propagation and does not implement any actions based
on taint information. In particular, it does not identify, track,
or clear numeric errors such as overflows or underflows. It
also does not identify or repair SQL or command injection
attacks.

WASP [26] is a taint tracking system for Java strings that
tracks trusted, rather than untrusted, data. Trusted data com-
prises string constants and strings derived from configuration
files. WASP uses its MetaStrings library to mimic and extend
the behavior of Java’s standard string classes. It replaces
strings allocated in the application with the MetaStrings equiv-
alent.

Chin et al. [17] modify the Java String classes to imple-
ment a string taint tracking system that distinguishes trusted
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from untrusted data. The modified String classes are com-
patible only with the IBM JVM and do not support com-
mon string related functions, such as regular expressions and
String.format().

Unlike WASP and Chin et. al., ClearTrack tracks all Java
primitives, not just strings. ClearTrack can therefore accurately
track metadata through character primitives, character arrays,
byte arrays, integer types, and transfers between strings and
other types. It also tracks 32 bits of metadata instead of a single
trusted bit. WASP, unlike ClearTrack, does not track strings
created in Java libraries. Unlike Chin et. al., ClearTrack is
compatible with standard JVMs.

TaintDroid [22] tracks 32 bits of taint information with a
modified Android VM at the level of primitives, strings and
arrays (conflating the taint over array elements). TaintDroid
is designed to track information leaks specifically and sets
the 32 bits to track different information sources. It does
not support detection of integer overflow errors. Because it
conflates the character taint within strings (it records the same
taint for all characters within the same string), it does not
support the detection of SQL or command injection attacks
(detecting these attacks requires maintaining character-level
metadata within each string). Users must flash custom-built
firmware to their device to use TaintDroid.

TaintART [44] applies an approach similar to TaintDroid
but applies it to newer versions of Android that use the
Android RunTime (ART) environment. ART uses ahead-of-
time compilation for Android applications. TaintART modifies
the ART compiler to track taint. Like TaintDroid it conflates
string and array elements for efficiency.

Unlike TaintDroid and TaintART, ClearTrack precisely
tracks metadata for all primitive values, including characters
within strings and elements within arrays. ClearTrack therefore
supports the detection of SQL and command injection attacks.
ClearTrack also detects integer errors such as overflows.
Because ClearTrack instruments the bytecode, instrumented
applications execute without modification on new versions of
standard JVMs. TaintDroid and TaintART, in contrast, work
only with their modified Android VM and must be manually
ported to new Android VMs (and specific devices) as they are
released. The latest version of Android supported by Taint-
Droid is 4.3 (released in July 2012 and no longer supported).
TaintART supports Android 5.0 and 6.0. The current version
of Android is 8.X.

C. Other Taint Tracking Systems

There are a numerous systems that implement run-time taint
tracking on various platforms (discussed in more detail in
the following subsections). However, these systems are either
limited in the number of bits they track, the precision of
their tracking (for example conflating all elements of the same
array), cannot be applied to Java, have significant overhead,
or some combination thereof.

1) Binary systems: There are a number of taint tracking
systems for binaries. These suffer from high overhead (300%
or more) and/or cannot be applied to systems (such as the



JVM) that use JITs to dynamically compile code. Even when
they can handle dynamic code creation, support for that
increases the overhead of the system.

LIFT [35] is a binary taint tracking system built on a dy-
namic binary instrumentation tool (StarDBT). It has overhead
of approximately 360% on SPEC INT2000 applications. It was
not tested on systems (such as Java) that include dynamically
generated code.

Saxena et al. implement a binary taint tracking system [39]
at the byte level that has approximately 100% overhead. It
cannot be applied to dynamically compiled Java code as it
relies on static binary rewriting to add instrumentation to
binaries.

EMS64 [55] is a binary system for memory shadowing
system on 64 bit architectures. When configured to support
8 bits of shadow memory for each program byte, it has
approximately 300% overhead (including shadow memory
propagation).

None of these systems detect or track overflowed value,
perform repairs on injection attacks, or handle path traversal
attacks.

2) C Source systems: Xu et al. implement a C source taint
tracking system [53] with overhead from 61% to 106% on
non-server programs.

Iodine [10] also implements a C source taint tracking using
an optimistic hybrid analysis that uses profiles to optimize
paths based on likely run-time invariants over taint. It is sound
as it can revert to a conservative policy if the invariants are
violated. Iodine achieves an overhead of 9%.

These (and other similar systems) cannot effectively be di-
rectly applied to the JVM because they do not support dynamic
code creation. However, at least some of the optimizations
used by lodine could be utilized in bytecode instrumentation.

Neither of these systems detect or track overflowed value,
perform repairs on injection attacks, or handle path traversal
attacks.

3) PHP string systems: Mui et al. implement complemen-
tary encoding [30] to track user input in PHP. Untrusted
characters are encoded differently from trusted characters. The
system is implemented by modifying the PHP interpreter to
treat both versions of the character as the same except at check
points. The system is effective at maintaining character taint as
long as characters are not manipulated at a low level (such as
encoding them to/from byte arrays, using less-than or greater-
than comparisons, or using characters as array indices). The
system supports SQL queries and cross-site scripting.

Diglossia [42] tracks string taint in PHP as a shadow string.
Trusted characters in the shadow string are mapped to different
characters (somewhat similar to complementary encoding).
The system applies checks by ensuring that untrusted input is
not included in the query. Diglossia supports database queries
in SQL, JSON, or JavaScript.

Neither of these systems supports integer values or trans-
lations to/from bytes and byte arrays, nor do they detect or
track overflowed values or repair attacks.
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D. Injection Attacks

1) SQOL Injection: SQL injection attacks have been ad-
dressed by a number of taint tracking systems on a variety
of platforms including Wasp [26](Java), Diglossia [42] (PHP),
Mui et al. [30] (PHP), and Xu et al. [53] (C).

ClearTrack is the only system, of which we are aware, that
automatically repairs queries.

2) Command Injection and Path Traversal: Nguyen-Tuong
et al. implement a PHP taint tracking system [33] by mod-
ifying the PHP interpreter. It addresses command injection
by disallowing some system calls that contain any tainted
data. This approach would not allow legitimate commands that
contain tainted arguments.

Xu et al. implement a C source taint tracking system [53]
that supports policies that can be used to address command
injection and path traversal. The policies, however, are too
simple to precisely define command injection or path traversal.
The policy only rejects the presence of dangerous operators
and does not support quoted strings or other more subtle
restrictions.

ClearTrack is the only system, of which we are aware, that
automatically repairs commands and handles path traversal
attacks.

V. CONCLUSION

We present ClearTrack, which precisely and efficiently
tracks metadata on all primitive values in Java programs.
Results from an evaluation performed by an independent
test and evaluation team hired by the United States govern-
ment demonstrate ClearTrack’s effectiveness in leveraging the
tracked metadata to detect and nullify malicious inputs without
false positives or false negatives on the benchmark applications
and inputs. ClearTrack also automatically repaired SQL string
injection and command injection attacks.
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