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Abstract. We present the formal framework for a novel approach for
specifying and automatically implementing systems such as digital cir-
cuits and network protocols. The goal is to reduce the design time and
effort required to build correct, efficient, complex systems and to elimi-
nate the need for the designer to deal directly with global synchronization
and concurrency issues. Our compiler automatically transforms modu-
lar and asynchronous specifications of circuits written in our specification
language, into tightly coupled, fully synchronous implementations in syn-
thesizable Verilog. We formally state the correctness theorems and give
an outline of the correctness proofs for two of the three main techniques
that our compiler implements.
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1 Introduction

We present the formal framework for our novel approach for specifying and
automatically implementing efficient systems such as digital circuits and network
protocols. We formally state our correctness theorems and give an outline of the
correctness proofs for two of the three primary implementation techniques.

Our goal is to reduce the design time, effort, and expertise required to build
correct and efficient systems. The key challenge is to reconcile the three goals of
(1) shielding the developer from having to deal with difficult global issues such
as coordinating the timing of events in widely separated parts of the system, (2)
supporting a broad class of systems, and (3) enabling the automated synthesis of
systems that are as efficient as the corresponding manually-developed versions.
To meet this challenge, we have designed a specification language that is concise,
expressive, and simple to use and implemented a compiler able to deliver efficient
synchronous implementations of these specifications. Our language supports the
following features:
• Modular Specification via FIFO Queues: The designer specifies a sys-

tem as a set of modules connected by conceptually unbounded FIFO queues.
These queues temporally separate the modules at the design level and enable
meaningful local reasoning about the behavior of each module.
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• Atomic Updates: The designer uses a set of atomic update rules to specify
the behavior of each module. Atomic execution allows the developer to fo-
cus on one rule at a time when reasoning about the behavior of the system,
without the need to consider the complex non-local interactions that occur
with explicitly parallel models. This approach also facilitates the automated
analysis and transformation of the specification.

The key implementation challenge is to construct the synchronization and schedul-
ing details otherwise given explicitly by the designer. Three techniques together
meet this challenge: (1) relaxation, which automatically extracts the concurrency
from the specification, (2) global scheduling, which transforms the specification to
implement each unbounded queue as a finite buffer, and (3) pipelining, which au-
tomatically transforms the base specification to obtain a more efficient pipelined
implementation. Except for the last step of our synthesis algorithm, which gener-
ates Verilog from symbolic expressions, our compiler technology is not specially
targeted to circuit design.

The primary contribution of this paper is the formalization of our design ap-
proach. Specifically, we provide a formal definition of our target class of systems
and the algorithms that our compiler uses to implement these systems. We also
sketch correctness proofs for two of our three primary compiler algorithms. This
formal foundation gives the designer the guarantee that, if she starts from a cor-
rect initial specification, the resulting implementation is also correct (assuming
the compiler is implemented correctly).

The remainder of the paper is organized as follows. Section 2 presents a
simple example that illustrates our approach. Section 3 reviews our specification
language and the basic idea behind the synthesis and pipelining algorithms.
Section 4 presents the formal framework and the correctness proofs. Section 5
presents experimental results. Section 6 discusses related work; we conclude in
Section 7.

2 Example
In general, a system consists of state and computation. Our language enables the
designer to specify the computation as a set of modules. Each module performs
local computation and interacts with other modules by reading and writing parts
of the state. For circuits, the state holds values across clock cycles, is distributed
throughout the circuit, and is implemented as hardware registers and memory.
The computations are implemented as combinational logic that transforms data
during each clock cycle.

We illustrate this approach by presenting a simple circuit example: a linear
pipelined datapath with associated control, which implements a very reduced
instruction set: an ’increment’ instruction INC, and a ’jump if register value zero’
instruction JRZ. We next present the specification for a three-stage pipelined
implementation of this instruction set.

2.1 State
The state consists of all the state variables used to specify the system. Figure 1
presents the state declarations for our example. Line 1 declares three type names:



1 type reg = int(3), val = int(8), loc = int(8);

2 type ins = <INC reg> | <JRZ reg loc>;

3 type irf = <INC reg val> | <JRZ val loc>;

4 var pc : loc, im : ins[N], rf : val[8];

5 var iq = queue(ins), rq = queue(irf);

Fig. 1. State Variables and Type Declarations in Example

a 3 bit integer value reg which is used to represent architecture register names,
an 8 bit integer val which is used for the values in the register file, and an 8 bit
integer loc, which represents the locations of the instructions in the instruction
memory. To represent a data type with several different formats, introduce a
tagged union type similar to those found in ML [23] and Haskell [16]. Line 2
declares a tagged union type ins which represents instructions. An ins type
instruction can have of one of two data formats: the format <INC reg> has an
INC tag and a register name field of type reg, while JRZ reg loc has the tag
JRZ, a register name field of type reg, and a branch target field of type loc. Line
3 declares the type irf for instructions whose register operands the processor
has already fetched from the register file. This type declaration is also of tagged
union type and reads similarly to the type declaration on line 2.

Line 4 declares the following state variables: a program counter pc of type
loc declared on line 1, an instruction memory im of type array of N instructions
of type ins, and a register file rf of type array of 8 values of type val. The
declarations on line 5 use a predefined data type: a queue is a conceptually
unbounded first-in first-out (FIFO) queue that carries values between modules.
Our language supports the following primitive operations on queues:
• head(q): Retrieves the first element in the queue q.
• tail(q): Returns the rest of q after the first element.
• insert(q,e): Returns the queue after inserting element e at the end of q.
• replace(e1,e2,q): Returns q after replacing all entries e1 by e2. This op-

eration can involve a partial match if e1 contains don’t care fields.
• notin(q,e): Returns true if the element e is not in q; otherwise returns false.

This operation can involve a partial match if e contains don’t care fields.
• q = nil: Resets the queue to be empty.

We implement queues in the hardware as a number of registers equal to the
length of the queue. Line 5 declares a queue iq of instructions of type ins, for
fetched instructions, and a queue rq of instructions of type irf, for instructions
whose register operands have been fetched.

2.2 Modules

Our circuit executes a sequence of instructions. To execute each instruction, the
circuit performs the following steps:
• It reads the instruction from the instruction memory.
• If the instruction is an INC instruction, it reads a value from the register file,

increments it and stores it back into the register file.
• If the instruction is a JRZ instruction with the value in its register argument

zero, it jumps to the location argument and continues execution from there.



Fig. 2. Specification Example

• If the instruction is a JRZ instruction with the value in its register argument
different from zero, it does nothing.
As illustrated in Figure 2, there is one module per pipeline stage: an instruc-

tion fetch module IFM, a register operand fetch module ROFM and a compute
and write back module CWBM. To keep the pipeline full, the circuit uses a spec-
ulative approach that starts the execution of the next instruction before it knows
whether the instruction should execute or not. If the circuit starts executing an
instruction but later determines that the instruction should not execute, it re-
stores the state of the circuit to reflect the values before the instruction started
executing, then restarts the execution. If the speculation was correct, the circuit
performs useful computation for each clock cycle that otherwise would have been
spent stalling. Pipelining combined with speculation can increase the parallelism
in the system and therefore boost the throughput of the circuit.

Modules interact with other modules by reading and writing shared state.
The rules in each module read values from input queues and other state variables,
perform local computations, then write results to output queues and other state
variables. Each rule has an enabling condition and a set of updates to the state,
separated by an arrow. When the rules enabling condition evaluates to true, it
is enabled and can atomically apply its updates to the current state to obtain
the next state. We illustrate this conceptual model of execution by discussing
the operation of the rules in ROFM.

The two rules in the module ROFM remove instructions from iq, fetch the
register operands, and insert them into rq. The first rule processes INC instruc-
tions, and the second one processes JRZ instructions. Both rules use a form of
pattern matching similar to that found in ML and Haskell. The enabling condi-
tion of the first rule is <INC r> = head(iq) and notin(rq, <INC r >).
• Its first clause, <INC r> = head(iq), requires that the instruction at the head

of iq be an increment instruction with register name r. If this is true, the
clause matches and binds the variable r to the register name argument of the
INC instruction, to be used later in the rule when referring to this operand.

• The second clause, notin(rq, <INC r >), uses the binding to test that the
queue rq does not contain an increment instruction whose first argument is r.
The second argument is irrelevant; we denote this using the sign. This clause
implements a test for a read after write hazard (RAW); if there is a pending
instruction waiting to execute that will write the register r, the machine delays



the operand fetch so that it fetches the value after the write (this translates
into stalling). The clause notin(rq, <INC r >) implements this check.

3 Background

Before presenting the formal framework and correctness proofs, we informally
present the key elements of our approach and outline the algorithms in our
compiler.

3.1 Specification Language

Timing issues such as synchronization, concurrency, and execution order are
a primary source of complexity for circuit designers. For performance reasons,
most languages for designing synchronous circuits are based on a synchronous
model of execution. The advantage is that the developer can tightly control the
specification to deliver an efficient circuit. The disadvantage is that the tight
temporal coupling of this model makes local reasoning difficult, undercutting
the advantages of modular design.

Our approach addresses this problem by presenting an asynchronous abstract
model of execution. The designer specifies a circuit as a set of modules connected
by conceptually unbounded FIFO queues; the update rules that model the com-
putations of the modules execute atomically and asynchronously with regard
to each other. This is a standard model of asynchronous execution found in
systems such as Unity [8] and term rewriting systems [2]. Our synthesis algo-
rithm eliminates the potential inefficiency associated with a direct asynchronous
implementation by automatically generating a coordinated global schedule for
all operations in the system. This schedule is used to generate an efficient syn-
chronous implementation in synthesizable Verilog.

Advantages: Using conceptually unbounded queues to connect the modules has
two benefits: (1) it enables the designer to reason about and develop each module
in isolation, then compose the modules together into a complete system without
the need to deal with complex global issues such as the coordinated assignment
of operations to clock cycles, and (2) it enables the designer to reason about
the correctness of the specifications without reasoning about the concurrent
execution of the composed modules. In this sense, queues localize the temporal
aspects of the design.

3.2 Implementation

A novelty of our approach is that it takes a modular specification with asyn-
chronous execution semantics and converts it into a synchronous, parallel im-
plementation. It is the compiler’s job to efficiently bridge the gap between these
models of execution. The key idea of the synthesis algorithm is to automatically
compose the module specifications to derive, at the granularity of individual



clock cycles, a global schedule for the operations of the entire system, includ-
ing the removal and insertion of queue elements. The resulting implementation
executes efficiently in a completely synchronous, pipelined manner [20].

To decrease the clock cycle of the generated circuit, our compiler implements
a technique we call relaxation, which makes it possible to evaluate many or all
of the enabling conditions immediately and in parallel rather than sequentially.
The compiler also implements a set of techniques geared towards optimizing the
generated combinational logic1.

These algorithms are all based on the underlying assumption that each indi-
vidual operation takes less time than the clock cycle time to complete. For the
case in which this assumption does not hold, we have developed an automated
technique that implements functional pipelining for sequential circuits [19]. The
existing synthesis algorithm would need to be extended if certain individual basic
operations are too expensive to implement in combinational logic.

Relaxation: The operation preceding relaxation in our synthesis algorithm
orders all the rules of the specification for symbolic execution. The specification
produced by this operation may suffer from an excessively long clock cycle, as
the execution of the rules modifying shared state is completely sequentialized.
Our implementation executes multiple rules at each clock cycle as follows. For
each set that consists of rules with no data dependencies within the set, the
compiler can execute all the rules in the set in parallel. If a set of rules has data
dependencies, our compiler transforms the rules, when possible, so that their
enabling conditions test the state of the system at the beginning of the clock
cycle rather than the state created by the previously executing rule. For a rule
R that updates state variables tested by a subsequent rule R′, if we can prove
that the execution of R will not disable the enabling condition of R′, we can
modify the precondition of R′ to test the state before R executes. To preserve
correctness, the updates still execute sequentially if they operate on the same
state variable. This transformation ensures that each element of data traverses
at most one module per clock cycle, producing an acceptable critical path for
the circuit. By eliminating unnecessary serialization, we expose the additional
parallelism in the specification and shorten the clock cycle of the circuit, and,
indirectly, increase its throughput. Relaxation does not insert or remove delays
in or from the circuit.

Global Scheduling: In the initial specification, queues have unbounded length.
But the implementation must have a finite, specific number of entries allocated
for each hardware buffer implementing a queue. The designer decides on the
amount of memory elements he or she is willing to spend on each of these buffers,
and the compiler generates an implementation based on this budget that, for any
execution instance of the system, does not exceed that length.
1 These optimizations include common subexpression elimination and mutual exclu-

sion testing. The former avoids unnecessary replication of hardware, while the latter
eliminates false paths in the implementation.



The global scheduling algorithm can handle specifications whose rules can
have both acyclic and cyclic queue insertion and removal dependencies. For cyclic
specifications, the compiler looks at groups of rules that must execute together
to maximize the concurrency and avoid both deadlock and overflow of the queues
in the system; for acyclic specifications, it only needs to consider each rule in
isolation. The scheduler augments each rule that inserts an element into a queue
to ensure that it never causes any of the corresponding finite hardware buffers
to overflow. The basic approach is to assume all queues are within length at
the beginning of the clock cycle and schedule only those rules for firing that
are 1) enabled and 2) whose combined execution leaves the queues within their
length at the end of the clock cycle. As a result, the circuit can perform single or
multiple reads or writes from and into each queue in the same clock cycle, even
if the queues are initially full. The condition is that enough rules will execute
that remove elements from queues, therefore making space for new elements to
be inserted. Queues can get arbitrarily2 large during the clock cycle as long as
they are within the maximum specified length at the end of the cycle.

The generated global schedule enables the synchronous and concurrent execu-
tion of multiple rules per clock cycle. In hardware, global scheduling corresponds
to generating the control signals for the combinational logic, and a given length
of 1 for each queue translates into the synthesis of a standard pipeline. The
global scheduling algorithm is the key to efficient pipelining; it also may reduce
the area of the resulting circuit.

Pipelining: This transformation automatically generates a pipelined specifica-
tion from a non-pipelined or insufficiently pipelined specification. The pipelining
algorithm repeatedly shortens the clock cycle of the circuit by extracting a com-
putation from the critical path and moving it into a new pipeline stage. The new
stage precomputes the result of the selected expression, using a new queue to
pass the result to the module from which the expression was removed. To keep
the pipeline full, the new stage must produce the next value of the expression
before the final values of the variables it accesses become available. The algo-
rithm achieves this goal by speculating on these values, using state retention and
recovery to respond to incorrect speculations.

Our algorithm uses several techniques to improve the quality of the pipelined
circuit. If the amount of state necessary to recover from an incorrect speculation
is excessive, our algorithm can generate stall logic that causes the pipeline stage
to stall until the new values are available. This technique eliminates the need for
retaining recovery state, as the execution of the pipeline stage will never need
to roll back. Our algorithm can also generate circuits that forward the correct
value to preceding pipeline stages. This technique increases the throughput of
the circuit by reducing the amount of time that the circuit spends recovering
2 The maximum number of elements in a queue at any time is the maximum number

of non-mutually exclusive rules that append elements into the queue plus the length
of the buffer implementing the queue. We communicate these values within a clock
cycle via wires.



from incorrect speculations or waiting for correct values to become available. The
pipelining transformation preserves the property that every register and memory
variable in the circuit specification observes the same sequence of values after as
before pipelining.

Our pipelining algorithm reduces the designer time and effort by automating
complex techniques. The less obvious advantage, though equally important, is
that it increases the confidence in the correctness of the resulting implementa-
tion. Pipelining starts from an easy specification with little or no concurrency,
which is easy to verify for correctness; the resulting pipelined version needs to
be highly concurrent, and therefore manually developed versions are a lot harder
to verify.

4 Formalism

The first part of this section describes the general formal framework necessary
for proving the correctness of the relaxation and global scheduling algorithms.
We then define the specification of the system before and after applying each
algorithm, as direct or extended instances of the general framework. The second
part of the section states and gives a short outline of the proofs for theorems
regarding the correctness properties of our algorithms.

4.1 Formal Definitions

We define a system to be a tuple System G = 〈T, ex, f, g〉.
A transition system is a set of transitions T = {ti ≡ li : ci ⇒ ui}.
A transition t ≡ l : c ⇒ u ∈ T has a label l ∈ Label = {1, ..., |T |}, a condition
c ∈ C and an update u ∈ U .
We have an external function ex : t → Bool s.t. ex(t) is true if the transition
t is observable from the exterior and false otherwise. We say that a transition
t ≡ l : c⇒ u is external iff ex(t) is true and internal otherwise.
The set S of states s ∈ S is the set of functions S = V ars → V als, where
V ars is the set of all register, memory state variables and queues (Queues) in
the circuit specification, and V als is the set of all values that the state variables
in V ars can take.
We define two functions f and g as follows:
• We assume a set of conditions C, a set of expressions E and a set of updates
U . The evaluation of some c ∈ C in some state returns a Bool value. The
evaluation of some e ∈ E in some state returns a value in V als. To make
the notation more concise, we extend V als to include Bool. The evaluation
function f : E × S → V als returns the value of expression e ∈ E in s ∈ S.
• An update function g : U × S → S. g(u, s) = s

′
applies the updates in u to

the state s and returns the modified state s
′
.

Each transition system T defines a transition relation R ⊆ S × T × S.

R = {〈s, t, s
′
〉. t ≡ l : c→ u ∈ T ∧ f(c, s) ∧ g(u, s) = s

′
}

Assume there exists an initial state s0 of T . In s0 the following are true:



• ∀vk ∈ V ars − Queues, s0(vk) = initialV alk, where initialV alk ∈ V als are
the initial values of the registers and memories in the circuit.
• All the queues are empty: ∀k s.t. 1 ≤ k ≤ maxQueue, s0(queuek) = {}
An execution fragment is a finite alternating sequence of states and transitions
frag = {s1t1s2t2s3...sn | si ∈ S . ti ∈ T . 〈si, ti, si+1〉 ∈ R}.
An execution is an execution fragment starting in the initial state s0.
A state s is reachable if s is the final state of some finite execution.
An execution sequence is the sequence of states in an execution obtained after
dropping the intermediate transitions:

τ = {s1, s2, ..., sn | s1t1s2t2...sn is an execution}

SPEC: is an instance of System of the form 〈TS , exS , fS , gS〉. TS is a transition
system that represents the nondeterministic specification of the circuit. We skip
over the actual definitions for the set of expressions ES , the set of updates US ,
and the functions fS and gS . For more details see [18].
RELAX: is an instance of System of the form 〈TR, exR, fR, gR〉. TR is a tran-
sition system that represents the circuit implementation obtained as the result
of relaxation.
We define a new external function exR that has the same values as exS(ti) for
each transition ti ∈ TR with the same label as the transition in TS . We defer
the definition of the external function for the newly introduced transitions to
the construction of the new transition system.
The set SR of states sR∈ SR is the set of functions SR = (V ars×V ersions) ∪
{pc} → V als, where V ersions is a set of integers and pc is a variable of type
integer that represents the ordinal number of the transition in the relaxed im-
plementation that is currently under evaluation. pc provides a way to express
the deterministic execution of the transitions in the relaxed circuit, following the
order used by the relaxation transformation.
The set of expressions ER in RELAX is eR ::= c | (v, n, p) | pc | ρ(eR1,...,eRn)
The triple (v, n, p) stands for a variable v ∈ V ars, its version n ∈ V ersions
and position p ∈ Position. Position is a set of integers. Our transition system
contains positions, while the state does not. A position and variable name pair
uniquely denotes a state variable instance within the condition of a transition.
We also define the set of updates UR in RELAX

ur ::= pc++ | pc = 1 | (v1, nr1, p1) = eR1, ..., (vn, nrn, pn) = eRn, pc = pc++
| (v1, nr1, p1) = eR1, ..., (vn, nrn, pn) = eRn, pc = 1

We introduce a function update: UR × SR → P(V ars) which takes an update
uR ∈ UR and a state sR ∈ SR and returns the set of variables in V ars that
get updated.
We define a numbering function as follows:
RN : (ES ∪ US) × Version → ER ∪ UR
RN (c)(n) = c
RN (v)(n) = (v, n, 0)
RN (ρ(eS1, ..., e

S
n))(n) = ρ(RN (eS1)(n), ..., RN (eSn)(n))

RN (pc + +)(n) = pc + +



RN (pc = 1)(n) = pc = 1
RN ((v1, nr1, p1) = eR1, ..., (vn, nrn, pn) = eRn, pc + +)(k) =

(v1, k + 1, 0) = RN (eS1)(k); ...; (vn, k + 1, 0) = RN (eSn)(k), pc + +
RN ((v1, nr1, p1) = eR1, ..., (vn, nrn, pn) = eRn, pc = 1)(k) =

((v1, k + 1, 0) = RN (eS1)(k); ...; (vn, k + 1, 0) = RN (eSn)(k), pc = 1
We define a variable positioning function as follows:
V P : ER × Position → ER × Position
V P (c, i) = (c, i)
V P ((v, n, 0), i) = ((v, n, i), i+ 1)
V P (pc, i) = (pc, i)
V P (ρ(eR1, ..., e

R
n), i) = let (a1, b1) = V P (eR1, i), (a2, b2) = V P (eR2, b1), . . . ,

(an, bn) = V P (eRn, bn−1) in (ρ(a1, a2, ..., an), bn)
We can now define a relaxation function RE that replaces the current version
of each variable v ∈ V ars in position p ∈ Position with its relaxed version.
We obtain the relaxed version of a variable v ∈ V ars with original version
n ∈ V ersions in position p ∈ Position by invoking a function σ ∈ Σ : V ars ×
V ersions×Position→ V ersions. The original version n is equal to l mod |TS |,
where l is the label of the transition that invokes σ ∈ Σ. From the construction
of the new transition system we will see that the tuple (v, n, p) is unique within
the set of all the external transitions in TR.
RE : ER × Σ → ER

RE(c, σ) = c
RE((v, n, p), σ) = (v, σ(v, n, p), p)
RE(pc, σ) = pc
RE(ρ(eR1, ..., e

R
n), σ) = ρ(RE(eR1, σ), ..., RE(eRn, σ))

We define a new transition system TR = {ti ≡ li : ci ⇒ ui|i ∈ {1, ..., n}} by
modifying the previous transition system TS as follows:
• For each transition t ≡ l : c ⇒ u ∈ TS , construct two transitions in TR, one

external, one not external, as follows:
tl ≡ l : (pc == l) ∧ RE(π1(V P (RN (cS)(l), 1)), σ) ⇒ RN (uS)(l), pc + +;
t|T |+l ≡ |T |+ l : (pc == l) ∧RE(π1(V P (RN (cS)(l), 1)), σ) ⇒ pc + +;
|T |+ l is a fresh label and exR(t|T |+l) = false. We use π1 for the projection of
the first element of a tuple. For a pair (a, b) we have π1(a, b) = a.
• Create a new transition t2∗|T |+1 to express the wrap-around after the relax-

ation algorithm tried all other transitions and either executed them or not.
The new transition is not external.

∀v ∈ V ars t2∗|T |+1 ≡ 2∗|T |+1 : (pc == |T |+1)⇒ s(v, 1) = s(v, s(pc)), pc = 1;

2 ∗ |T |+ 1 is a fresh label and exR(t2∗|T |+1) = false.
Assume there exists an initial state sR0 of TR. In sR0 the following are true:
• ∀vk ∈ V ars − Queues,∀i ∈ {1, ..., |T | + 1}, sR0(vk, i) = initialV alk, where
initialV alk ∈ V als are the initial values of the registers and memories in the
circuit.
• sR0(pc) = 1
• All the queues are empty: ∀k s.t. 1 ≤ k ≤ maxQueue, sR0(queuek) = {}



We skip over the actual definitions for functions fR and gR. For details see [18].
RELAXQ: is a set of two inputs, a system 〈TR, exR, fR, gR〉 of the same type
with RELAX, and a user-defined length maxLength(queuek) for each queue
queuek, k ∈ {1, ...,maxQueue}. The semantics of a transition in this system is
the same as the semantics of a transition in RELAX with one difference. If, for
the given queue lengths, executing the update of the transition would overflow
at least one of the queues, that transition is not enabled for execution, i.e:

[[〈c⇒ u, TR〉]] = {〈s, c⇒ u, gR(u, s)〉 . fR(c, s) and u⇒ overflow(si) is false}

where

∀i ∈ {s(pc) + 1, ..., |T |}, si =
{
gR(ui−1, si−1) if fR(ci−1, si−1)
si−1 otherwise (1)

and overflow(s) is only defined for the states in which s(pc) = |T |+ 1 as:

overflow(s) =

∃queuek ∈ Queues . length(queuek, s) > maxLength(queuek)
if s(pc) = |T |+ 1

undefined otherwise

length : Queues×SR → Int is a function that returns the current length of the
queue in the given state. We also define a function roomR : Queues×SR → Int
that returns the number of empty slots of the given queue in the given state.
A transition system with this semantics defines a transition relation RRq ⊆ SR×
TR × SR . RRq = {〈sR, tR, sR

′

〉 . tR ≡ lr : cR → uR ∈ TR ∧ fR(cR, sR) ∧
gR(uR, sR) = sR

′

∧ uR ⇒ overflow(sRi) is false}, where sRi is defined as in (1).
FINIT: is an instance of System of the form 〈TF , exF , fF , gF 〉. TF is a transi-
tion system that represents the circuit implementation after global scheduling.
We define two functions, tail : t×Queues→ Bool and append : t×Queues→
Bool that take a transition and a queue and return true iff the transition contains
a tail or, correspondingly, an append operation on the queue given as parameter.
We also define a function roomF : Queues×SF → Int that returns the number
of empty slots of the given queue in the given state.
We call a transition t ≡ l : c ⇒ u ∈ TF appending if ∃queuek ∈ Queues .
append(t, queuek) = true.
We define a new transition system TF = {ti ≡ li : ci ⇒ ui|i ∈ {1, ..., n}}
by modifying the previous transition system TR such that for every appending
transition t ≡ l : c ⇒ u ∈ TR, we construct a transition in TF of the form

t ≡ l : c ∧ finalLengthOK(sF , TF , currentPath) ⇒ u

where currentPath starts as [](nil).
Let a function eval : Bool → {0, 1} return 1 for true and 0 for false. For some
appending transition tF ≡ lF : cF ⇒ uF ∈ RF from state sF , we define:



finalLengthOKqueue(sF , TF , queuek, currentPath) =∑
i

eval(tail(ti, queuek)
∧

(fF (cF i ∧ finalLengthOK(sF i, TF , newPath), sF i) ∨ (ti ∈ currentPath)))
+ room(queuek, sF ) > 0, ∀i ∈ {lF + 1, ..., |T |} . tail(ti, queuek) = true,

where sF lF = sF and sF i =

{
gF (uF i−1, s

F
i−1) if fF (cF

′

i−1, s
F
i−1)

sF i−1 otherwise

newPath =
{

currentPath if ti ∈ currentPath
currentPath ∨ ti otherwise

finalLengthOK(sF , TF , currentPath) =∧
finalLengthOKqueue(sF , TF , queuek, currentPath),

∀queuek ∈ Queues . append(tF , queuek) = true

Here currentPath holds the set of currently explored transitions for each starting
transition in the system. This set is necessary for cyclic specifications.
The semantics of a transition in TF is the following. If, for the given queue
lengths, executing the update of the transition does not ensure that all the
queues are within their maximum lengths when sF (pc) = |T |+ 1, then TF goes
into an ERROR state sERROR.
We will show that the condition finalLengthOK(sF , TF , currentPath) makes
sure that FINIT never goes into an ERROR state provided that the designer
specifies appropriate lengths for all the queues.
Assume there exists an initial state sF0 of TF . In sF0 the following are true:
• ∀vk ∈ V ars − Queues,∀i ∈ {1, ..., |T | + 1}, sF0(vk, i) = initialV alk, where
initialV alk ∈ V als are the initial values of the registers and memories in the
circuit.

• sF0(pc) = 1
• All the queues are empty: ∀k s.t. 1 ≤ k ≤ maxQueue, sF0(queuek) = {}

4.2 Correctness

We prove two properties for each algorithm: (1) simulation: the transformed
and the original circuit are in a simulation relation, and (2) non-termination:
the transformed circuit preserves the non-termination property of the original
circuit. Relaxation takes as input a system of type SPEC, and outputs a system
of type RELAX. Global scheduling takes a set of two inputs of the form described
in RELAXQ, and outputs a system of type FINIT.
1. Relaxation - Simulation
We want to prove that the behavior of the resulting specification after relaxation
never does anything that the specification before relaxation could not do. This



means that we want to prove that for any execution in RELAX, we can find an
execution in SPEC with the same execution sequence.
We first define the abstraction function AF that maps each state of RELAX to
a state of SPEC: AF (sR)→ {∀v ∈ V ars | sS(v) = sR(v, sR(pc))}.
Theorem 1: (Simulation) ∀sR ∈ SR,∀sS ∈ SS ,∀tR,∀sR

′

∈ SR . sS = AF (sR)

if 〈sR, tR, sR
′

〉 ∈ RR then

(∃tS ,∃sS
′

∈ SS .〈sS , tS , sS
′

〉 ∈ RS and sS
′

= AF (sR
′

)) or sS = AF (sR
′

)

Fig. 3. Commutative Diagram for Simulation

The proof goes by induction on the length of the execution sequence. The induc-
tion step is a case analysis on the form of the transition tR. It uses the definitions
of the functions fR, gR, AF and the following property:

∀sR ∈ SR, ∀i . ConsistentExecutionTrace(sR,TR) and
fR(RE(π1(V P (RN (cSi)(li), 1)), σ), sR) ∧ (pc ≥ li)
→ fR(π1(V P (RN (cS)(li), 1)), sR)

where ConsistentExecutionTrace(sR,TR) is an invariant that ensures that the
execution trace TRis valid.
The intuition is that we can follow the constructive steps of the relaxation algo-
rithm to prove that, if the enabling condition of some relaxed transition evaluates
to true, than the enabling condition of the original transition also evaluates to
true. Therefore, the transformed specification never takes any step that that the
original specification cannot take.
2. Relaxation - Non-termination
We want to prove that relaxation cannot stop the progress in the execution of the
system. Non-termination says that if from any state s of SPEC there exists an
execution step that can be taken, there exists an execution step in RELAX that
can be taken from some state in RELAX reachable only by internal transitions
from any state that maps to s using AF.

Let R0 = {〈s1, s2〉|〈s1, t, s2〉 ∈ RR and exR(t) = false}

Theorem 2: (Non-termination) (∀sS ∈ SS ,∀sR ∈ SR) such that
(ConsistentExecutionTrace(sR, TR) and AF (sR) = sS ,

if ∃tS . 〈sS , tS , sS
′

〉 ∈ RS then ∃tR ∃sR∗ .

〈sR, sR∗〉 ∈ R3∗|T |+1
0 and 〈sR∗, tR, sR

′

〉 ∈ RR and exR(tR) = true)



Lemma 1:
For any k ≥ 0 and some state sR ∈ SR s.t. AF (sR) = sS and l =sR(pc),

there exists a sequence of states sR0,...,sRk in RELAX starting from sR0 = sR

s.t. the following hold: 〈sRk−1
, sR

k〉 ∈ R1
0, 〈sR, sRk〉 ∈ Rk0 , sS = AF (sRk), and

∀v sRk(v, l + d(k, l)) = sR(v, l), where k is the number of transition executions
in RELAX and

d(k, l) =
{
k if k ≤ |T |+ 1− l
k − (|T |+ 1) otherwise

The proof for Lemma 1 goes by induction on the number of transition executions
in RELAX. For k in Lemma 1 s.t. k = |T | + minI − l + 1, where minI is
the smallest integer label of all the transitions in SPEC that can execute from
sS , we can prove the non-termination theorem by contradiction. The intuition
behind the non-termination proof is that since a rule R in the transformed
numbering tests a state previous to the current state, if R is enabled in the
original numbering but not in the transformed one, some rule does execute in
the transformed numbering and modifies the state originally tested by R.
3. Global Scheduling - Simulation
To prove that for any execution in FINIT, we can find an execution in RELAXQ
with the same execution sequence, we first define an abstraction function AFF

that maps each state of FINIT to a state of RELAXQ.

FUNC AFF (sF )→ {∀v ∈ V ars|sF (v, n) = sR(v, n)}

Theorem 3: (Simulation) ∀sF ∈ SF , ∀sR ∈ SR, ∀tF , ∀sF
′

∈ SF ,
if sR = AF (sF ) and 〈sF , tF , sF

′

〉 ∈ RF , then
∃tR, ∃sR

′

∈ SR . sR
′

= AF (sF
′

) and 〈sR, tR, sR
′

〉 ∈ RRq.
The proof proceeds by induction on the length of the execution sequence. The
induction step is a case analysis on the form of the transition tF and it is similar
(and less difficult) then the simulation proof for the relaxation algorithm. The
idea is that if a transition in the transformed system executes, then it would have
also executed in the original system. This is true because the enabling condition is
strictly stronger after than before applying the scheduling transformation. Global
scheduling will disable those rules whose execution would result in overflowing at
least one queue in the system, but will never enable a rule that was not enabled
when the queues were unbounded.
4. Global Scheduling - Non-termination
We want to prove that if from any state s of RELAXQ there exists an external
execution step that can be taken, then there exists an external execution step in
FINIT that can be taken from any state that maps to s using AF s.t. the system
does not go into an ERROR state. We also want to prove that FINIT goes into
an ERROR state iff the only transition from the state s would overflow at least
one of the queues. In other words, given enough buffer space such that executing
the original specification on this budget does not exceed the given queue lengths,
global scheduling does not introduce deadlock.



Theorem 4: (Non-termination) ∀sR ∈ SR, ∀sF ∈ SF ,

if ∃tR . AF (sF ) = sR and 〈sR, tR, sR
′

〉 ∈ RRq and exR(tR) = true then

∃tF , ∃sF
′

∈ SF .〈sF , tF , sF
′

〉 ∈ RF and exF (tF ) and sF
′

6= sERROR.
Also, ∀sR ∈ SR,∀sF ∈ SF ,∀tR,

if AF (sF ) = sR and 〈sR, tR, sR
′

〉 ∈ RR and exR(tR)) then
〈sR, tR, sR

′

〉 6∈ RRq iff finalLengthOK(sF , TF , currentPath) = false.
Our global scheduling algorithm generates a correct transformed specification
that correctly deadlocks if the designer specifies lengths for the queues that are
not large enough for the particular application. It is the designer’s responsabil-
ity to know what queue length values are enough for the given circuit not to
deadlock, we prove that, given such lengths, our scheduling algorithm does not
introduce deadlock in the system.
The proof for (4.2) proceeds by contradiction to show that if an external transi-
tion t takes place in RELAXQ, we can infer that roomF (q, s) > 0, and therefore
there is space in q for a transition t′ in FINIT to execute. To prove (4.2), we
start from the current states in RELAXQ and FINIT, in which we know that
all corresponding queues have the same number of elements. We then only have
to prove that corresponding rules in these two systems, following transitions t in
RELAXQ and t′ in FINIT, either both execute or neither does. This is sufficient
because it proves strict equality between the lengths of corresponding queues in
RELAXQ and FINIT, at the end of the cycle. Let r and r′ be the correspond-
ing rules immediately following t in RELAXQ and t′ in FINIT. If r and r′ are
not appending rules, they both execute if their enabling conditions — which are
identical — evaluate to true. Otherwise, none of them executes. If r and r′ are
appending rules, we reduced proving (4.2) for t and t′ to proving (4.2) for r and
r′. Because the number of rules following t and t′, correspondingly, is finite, we
will eventually reach the last rules in the two systems, where (4.2) holds, since
there are no more following rules.
5. Global Scheduling - Correctness for Groups of Transitions
For cyclic specifications, the algorithm considers the coordinated execution of
groups of transitions, rather than transitions in isolation. We call a phase a
sequence of external transition executions, such that each transition executes
at most once. The simulation theorem states that for any phase in FINIT, we
can find a phase in RELAXQ with the same execution sequence. The proof is
virtually identical to the simulation proof for one transition, and is based on the
fact that the enabling condition of each of the transitions is strictly stronger in
FINIT than in RELAXQ.
We can formulate a new non-termination theorem for groups of transitions which
states that, if from any state s of RELAXQ there exists a phase that takes the
system into a new state in which none of the queues overflows its designer-
specified length, then from any state in FINIT, s′, that maps to s using AF ,
there exists a phase in FINIT which does not take the new system into an
ERROR state. The proof goes by contradiction and works on a phase instead
of a single transition at a time. The idea is to infer that the transition from s′



in the FINIT phase corresponding to the executing RELAXQ phase would have
its enabling condition satisfied, and therefore execute.

5 Experimental Results

We have implemented a synthesis and pipelining system based on the algorithms
presented in Sections 3.2 and 4. Our experiments are designed to investigate two
aspects of using our system: (1) how natural and concise it is for the designer to
write circuit specifications in our language, and (2) how well the resulting imple-
mentations perform. To evaluate our system, we developed a set of benchmarks in
our specification language and used our system to produce synthesizable Verilog
implementations at the RTL level. We then synthesized the resulting implemen-
tations using the Synopsys Design Compiler to an industry standard .25 micron
standard cell process. We obtained manually written Verilog descriptions of the
same or functionally equivalent circuits as the ones in our benchmark set, and
we synthesized them in the same environment as the automatically generated
versions. This is our reference point for performance evaluation.

Our benchmark set contains a processor and a few standard DSP applica-
tions: a bubblesort network, a butterfly network like the ones used in bitonic
sort and FFTs, and a cascaded FIR filter. The processor is a 32-bit datapath,
RISC-style, linearly pipelined processor with a complete instruction set. We ob-
tained manually written versions of bubblesort and butterfly sort networks from
the RAW benchmark suite at MIT. We were unable to obtain a free manually
developed FIR application to match against our automatically generated FIR
circuit. We obtained the processor benchmark off the web, from Santa Clara Uni-
versity; this is a standard 32-bit fixed point DSP that implements the same basic
functionality as our processor. Figure 4 and Figure 5 show cycle time (MHz),
total circuit area and and register area numbers for our four benchmarks and
the corresponding manually written Verilog versions.

Benchmark Cycle Area Register Area

Bubble Sort 324.67 1803.75 1371
Butterfly 204.08 1881.125 969
FIR filter 103.41 7384 3529
Pipelined Processor 88.89 28845 7533

Fig. 4. Clock Cycle and Area Estimates for Automatically Generated Versions

Benchmark Cycle Area Register Area

Bubble Sort 308.64 1475.75 1192
Butterfly 120.34 2041.125 1348
FIR filter — — —
SCU RTL 98 DSP 90.91 28359.75 7147

Fig. 5. Clock Cycle and Area Estimates for Manually Written Versions



5.1 Design Effort Evaluation

It took us less than 5 hours to develop the specification for the processor, and
about 10 minutes for each of the other benchmarks. We believe this is signifi-
cantly faster than developing the corresponding models by hand. Our processor
specification contains 13 type and state declarations and 29 rule definitions for
module specifications. The SCU RTL 98 DSP application, on the other hand,
consists of approximately 885 lines of Verilog code. Our automatically gener-
ated implementation consists of about 1200 lines of synthesizable Verilog. The
bubblesort benchmark has 2 multiple state declarations and 12 very simple rule
definitions. The butterfly network has 3 multiple state declarations and 13 simple
rule definitions. The FIR filter benchmark has 5 multiple state declarations and
4 rule definitions. The manually written specifications have 200 lines of Verilog
code for bubblesort and 378 for butterfly.

The specification-to-Verilog synthesis time is roughly proportional to the
complexity of the generated control. For all applications except the pipelined
processor, our system required less than one minute to generate the Verilog out-
put. For the processor, it took roughly half an hour. The synthesis times for
the corresponding automatically generated Verilog versions, and manually writ-
ten versions is comparable, and last roughly from 1 to 4 minutes for bubblesort
and butterfly, while the automated version for the FIR filter takes about 15.00
minutes to synthesize. Our automatically generated RISC processor benchmark
takes about 3:17 hours to synthesize; the functionally equivalent, manually de-
veloped SCU RTL 98 DSP application takes about 27.00 minutes to synthesize.

5.2 Performance Evaluation
For the bubblesort network, our compiler generates a circuit that is about 5
percent faster, and about 22 percent larger than the equivalent manually writ-
ten version. The number of registers generated in the automatically synthesized
version is about 15 percent larger than the equivalent number of registers in the
manually written application. The extra register area comes from the counters
and valid bits associated with each of the pipeline queues. Since the length of
each such queue is given by the designer, the number of extra registers for the
automatically generated application does not vary with the number of elements
sorted by the bubblesort network. This means that the larger the number of
elements sorted, the closer the gap in the total register area between the auto-
matically generated and equivalent manually-written versions.

For our second benchmark, we took a manually written version of a bitonic
sort network, and we introduced pipeline registers in the same places as in our
high-level specification used as source for the automatically generated bitonic
sort circuit. After synthesis, the manually written bitonic sort network applica-
tion yields a circuit that is about 8.5 percent larger, and about 69.59 percent
slower, than our automatically generated implementation. The circuit obtained
after introducing the pipeline registers into the manually written application is
only about 8.2 percent faster than the original manually written application.
We stress here that we did not specify the same logic for this application in our
language, as the one that is coded in the manually written version; rather, we



designed and specified the bitonic sort network our own way, keeping the same
number of numbers to be sorted, and the same width for the data paths.

In the case of our last, and biggest application, the RISC-style, linear pipelined
processor, notice that the synthesized area is roughly the same, while the clock
cycle of our processor is within 3 percent of the manually coded version.

6 Related Work
High-level synthesis approaches are based on a variety of languages such as con-
current languages, hardware description languages, software languages, data flow
languages, and others. We can further distinguish different approaches within
these categories. Concurrent languages consist of synchronous languages, proto-
col specification languages, and others like CSP, Occam, ADA, CCS, Unity, CRP,
POLIS. Synchronous languages include Esterel [5], Lustre, Argos, Signal, RSML
and Statecharts. Protocol specification languages include SDL, Lotos [26] and
Estelle.

Software approaches are generally of one of three types: the library exten-
sion, the language extension, or the new language approach. The library exten-
sion approach includes systems like Scenic, work by Young et al. [27], SystemC,
Lava and Hawk. The language extension approach includes Transmogrifier-C,
Programmable Active Memory (PAM), Reactive-C, SpecCharts, ECL, SpecC,
Data Parallel C. The new language approach includes the Olympus/Hercules
system based on HardwareC, Superlog, V++, OpenJ, Rapide. There are also
other systems like Compilogic, SpC, ADAS, RAW, and Fiper and Piper which
use a specification language which is a subset of Standard Prolog. In industry,
the hardware design languages that are heavily used are VHDL and Verilog.

Systems like Ptolemy, GRAPE, Warp at CMU, SPW from Cadence or COS-
SAP from Synopsys start from block diagram languages based on a dataflow
semantics and are targeted to DSP design. Several specification and verification
systems have taken an approach similar to ours, based on describing the behavior
of a system by a state transition system [8, 14]. Closely related to our research,
Hoe and Arvind develop a method for hardware description and synthesis based
on an operation-centric approach. The hierarchical Production Based Specifica-
tions (PBS) model has similarities with our approach in that it enables temporal
modularity when designing a circuit.

Traditionally, the correctness of a design was tested by simulation. Bryant’s [7]
introduction of reduced, ordered BDDs for circuit verification renewed interest
in symbolic execution. Success in verification can be attributed to the develop-
ment of formal methods like theorem provers and model checkers. Model checkers
include EMC [9], Caesar [25], SMV [22], RuleBase [4], Spin [15], Murphi [10].
Theorem provers usually work using either the Boyer-Moore [6] system or the
HOL [13] system. Other well-known theorem provers include LP [12], Nuprl [11],
PVS [24], VERIFY [3], Esterel [5]. FoCs [1] (Formal Checkers) takes properties
in CTL logic and automatically generates VHDL checkers from them, then in-
tegrates them into the simulation environment.

What is different about our approach is that we start from an initial specifica-
tion in a high-level language, and generate a circuit implementation by applying



algorithms that are formally correct. This ensures that, given a correct specifi-
cation, the resulting implementation is also correct; no need for verification. In
this way, our approach is closer to the formal synthesis work by Manohar [17]
and Martin [21].

7 Conclusions

This paper presents the formal framework for our novel approach for specifying
and automatically implementing efficient systems such as digital circuits and
network protocols. Our goal is to reduce the design time, effort, and expertise
required to build correct and efficient systems and to eliminate the need for the
designer to deal directly with complex issues like global synchronization and
explicit concurrency. Our approach uses a compiler to automatically transform
modular, asynchronous specifications into efficient, tightly-coupled, synchronous
implementations. Our results show that our specifications are roughly an order
of magnitude shorter than corresponding synchronous specifications that deal
directly with global timing issues, and that our compiler is capable of producing
implementations that are of comparable efficiency.

We provide a formal definition of our target class of systems and the al-
gorithms that our compiler uses to implement these systems. We also sketch
correctness proofs for two of our three primary compiler algorithms. This formal
foundation gives the designer the guarantee that, if a correct compiler starts
from a correct initial specification, the resulting implementation is also correct.
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