
A Classification System and Analysis for Aspect-Oriented
Programs

Martin Rinard, Alexandru Sălcianu, and Suhabe Bugrara
Massachusetts Institute of Technology

Cambridge, MA 02139

ABSTRACT
We present a new classification system for aspect-oriented
programs. This system characterizes the interactions be-
tween aspects and methods and identifies classes of inter-
actions that enable modular reasoning about the crosscut
program. We argue that this system can help developers
structure their understanding of aspect-oriented programs
and promotes their ability to reason productively about the
consequences of crosscutting a program with a given aspect.

We have designed and implemented a program analysis
system that automatically classifies interactions between as-
pects and methods and have applied this analysis to a set
of benchmark programs. We found that our analysis is able
to 1) identify interactions with desirable properties (such
as lack of interference), 2) identify potentially problematic
interactions (such as interference caused by the aspect and
the method both writing the same field), and 3) direct the
developer’s attention to the causes of such interactions.

Categories and Subject Descriptors: D.2.4 [Soft-
ware/Program Verification]: Validation, D.3 [Software]:
Programming Languages

General Terms: Languages, Verification.

Keywords: Aspect oriented programming, program analy-
sis.

1. INTRODUCTION
Aspect-oriented programming languages enable the isola-

tion of crosscutting concerns in aspects, with the advice in
these aspects invoked at the appropriate points in the execu-
tion of the program [15, 21, 19, 2]. This mechanism supports
the development of programs whose structure (a core code
base combined with crosscutting aspects) more closely cor-
responds to their designs (which often separate crosscutting
concerns from the conceptual core of the system).

∗This research was supported in part by DARPA Contract
F33615-00-C-1692, NSF Grants CCR00-86154, CCR00-
63513, and CCR02-09075, and the Singapore-MIT Alliance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’04/FSE-12,Oct. 31–Nov. 6, 2004, Newport Beach, CA, USA.
Copyright 2004 ACM 1-58113-855-5/04/0010 ...$5.00.

The mechanisms in aspect-oriented languages support a
broad range of composition strategies, from the clearly ac-
ceptable (adding logging code to method invocations) to the
questionable (exchanging the values of object fields prior to
the execution of a method that accesses the object). De-
pending on the way it is used, aspect-oriented programming
can either simplify the structure of the program (with a cor-
responding simplification in the reasoning required to under-
stand its structure and behavior) or destroy its conceptual
integrity (making it impossible to reason in a modular way
about the crosscut program). The behavior of the final sys-
tem depends on the interaction between the aspects and the
core program; the fundamental issue is that some kinds of
interactions support modular reasoning while others actively
interfere with it.

This paper presents a new classification system for aspect-
oriented programs. We have three goals:

• Characterization: To precisely identify interaction
patterns that support certain kinds of modular rea-
soning.

• Automatic Recognition: To develop a program anal-
ysis algorithm that is capable of automatically recog-
nizing these interaction patterns.

• Focused Attention: If the interaction pattern does
not fall into a category known to support modular rea-
soning, to focus the attention of the developer on the
particular elements of the interaction that prevent it
from doing so.

We have implemented this analysis to provide developers
with a system that may help them understand the interac-
tions in their aspect-oriented programs. By automatically
recognizing interaction patterns known to support modular
reasoning, our system helps the developer understand the
consequences of crosscutting the program with a given as-
pect and provides a guarantee that this understanding is
justified. If the interaction between the aspect and the pro-
gram does not fit any of these patterns, the system can direct
the developer’s attention to the cause of the mismatch. The
developer can then explore this cause further with the con-
fidence of a guarantee that this cause is the only potential
issue.

1.1 Classification System
Because aspects crosscut programs at the granularity of

advice, our classification system focuses on interactions be-
tween advice and methods. We address two kinds of inter-
actions: direct interactions between an advice and methods

that it crosscuts and indirect interactions between an advice
and methods that may access the same object fields.1

Our classification system for direct interactions focuses on
control flow elements that affect how and when a crosscut
method executes:

• Augmentation: After crosscutting, the entire body
of the method always executes. Advice with function-
ality orthogonal to the functionality of the method (for
example, logging and monitoring advice [17]) is typi-
cally augmentation advice.

• Narrowing: After crosscutting, either the entire body
of the method executes or none of the body executes —
in effect, the advice conditionally executes the method.
Advice that checks safety conditions (such as security
or consistency conditions) before allowing the method
to execute is often narrowing advice.

• Replacement: After crosscutting, the method does
not execute at all — the advice replaces the behav-
ior of the method with completely new behavior. Ad-
vice that uses a static pointcut specification to check
a safety condition (rather than an explicit dynamic
check like narrowing advice) is usually replacement
advice. Because replacement advice completely elim-
inates part of the system, it may also indicate the
presence of modifications that did not fit within the
original design.

• Combination: After crosscutting, the method and
aspect combine in some other way to produce poten-
tially new behavior.

Note that this axis of our system classifies each advice in
isolation — regardless of the methods that it may or may
not crosscut, each advice is either an augmentation advice,
a narrowing advice, a replacement advice, or a combination
advice.

The other axis of our classification system associates a
scope with each advice and method of the core software sys-
tem. Each scope identifies, at the granularity of fields of
classes, the part of the state that comprises the concern of
the advice or method. So, for example, the scope of a collec-
tion of methods that maintain graphical objects for display
(circles, squares, etc.) might be the fields that define the
positions and sizes of the objects on the screen. Each scope
specifies whether advice or methods in the scope may read
or write each field.

To avoid exposing the internal representation of encapsu-
lated data and to model externally visible side effects (such
as printing a check or moving a control surface) scopes may
also include abstract fields. Each abstract field either repre-
sents a collection of encapsulated fields or enables the system
to summarize externally visible actions as reads or writes
to abstract fields. Our classification system uses scopes to
identify the following kinds of interactions:

• Orthogonal: The advice and method access disjoint
fields. In this case we say that the scopes are orthogo-
nal.

1It is also possible for one piece of advice to crosscut other
pieces of advice or to access the same fields as other pieces
of advice. Our implemented system handles these kinds of
advice-on-advice interactions. To simplify the presentation,
however, we frame the discussion in terms of interactions
between advice and methods.

• Independent: Neither the advice nor the method
may write a field that the other may read or write;
in this case we say that the scopes are independent.

• Observation: The advice may read one or more fields
that the method may write but they are otherwise in-
dependent. In this case we say that the advice scope
observes the method scope.

• Actuation: The advice may write one or more fields
that the method may read but they are otherwise in-
dependent. In this case we say that the advice scope
actuates the method scope.

• Interference: The advice and method may write the
same field; in this case we say that the two scopes
interfere.

1.2 Reasoning
Developers of aspect-oriented programs may find them-

selves in a variety of situations: deploying a new aspect into
an existing program, attempting to understand the structure
and operation of a given aspect-oriented program, or devel-
oping a new aspect-oriented design. As we describe below,
our classification system and analysis is designed to support
the reasoning required for developers to perform effectively
in these kinds of situations.

1.2.1 Deploying a New Aspect
A developer contemplating the deployment of a new as-

pect into an existing program must answer the following
question: If I understand the program before I deploy the
aspect, what do I have to do to understand the program
after the aspect crosscuts it? Our system identifies situ-
ations in which the developer can simply reuse his or her
original understanding in a modular way to understand the
crosscut program. It also identifies when the developer must
rethink his or her understanding of the behavior of parts of
the original program in the context of their interaction with
the aspect before he or she can obtain an accurate under-
standing.

One principle of our system is that using augmentation
advice to introduce additional behavior in orthogonal, in-
dependent, or observation scopes supports modular reason-
ing because the aspects do not change the behavior of the
program within its original scopes. The developer’s un-
changed understanding of the original program therefore re-
mains completely valid when reasoning about the behavior
of the crosscut program within these original scopes.

Using an aspect to disturb the operation of the program
within its original scopes, on the other hand, complicates
modular reasoning because it may change the encapsulated
behavior of the methods in the program. In this case, the de-
veloper must go back and reason about how these changes
propagate up the method call hierarchy and through the
affected scopes before he or she can understand the cross-
cut program — clearly a much more involved task than un-
derstanding the consequences of deploying an aspect whose
scopes are orthogonal to those of the original program.

Aspects with narrowing advice occupy a middle ground.
Identifying the advice as narrowing advice enables the devel-
oper to focus his or her attention on the narrowing condition.
In many cases this condition is designed to catch violations
of a safety property; if the developer can check that the

condition always holds, his or her original understanding re-
mains valid because the original and crosscut programs have
the same behavior. Even if the condition may be violated,
the developer can use the narrowing condition to focus on
only those parts of the execution that it may affect.

1.2.2 Understanding Aspect-Oriented Programs
A developer attempting to understand an existing aspect-

oriented program must answer the following two questions:
How is the functionality partitioned into advice and meth-
ods, and how do the advice and methods interact to deliver
the overall behavior of the program? Our system uses scopes
to provide structural information about how the function-
ality is partitioned into advice and methods across the pro-
gram. Because scopes summarize the parts of the state that
each element accesses, they enable the developer to quickly
find and focus on those advice and methods that may access
a relevant part of the state. They also allow the developer
to immediately discard those that do not.

Our system is also designed to provide behavioral informa-
tion about how control flows through the advice and meth-
ods. Aspect-oriented programs contain two kinds of con-
trol flow: explicit control flow at method invocation sites,
and implicit control flow at joint points that execute advice.
Our classification system is designed to enable developers to
quickly link together both kinds of control flow to under-
stand how the advice and methods interact to deliver the
overall behavior of the system. Augmentation advice has
a quite simple effect on the control flow — it simply com-
bines the execution of the advice and the crosscut method.
Narrowing advice is a bit more complex because it requires
the developer to reason about the narrowing condition. Re-
placement advice is in some sense the simplest — because
it replaces the crosscut method with the execution of the
advice, the developer does not need to consider the execu-
tion of the method at all. In general, combination advice is
the most complex because it allows arbitrary combinations
of the advice and crosscut method executions.

1.2.3 Structuring Aspect-Oriented Designs
Finally, a developer producing an aspect-oriented design

must answer the following question: How should I best
partition the functionality to group closely coupled inter-
actions within related advice or methods and eliminate (or
at least minimize) undesirable interactions between aspects
and classes? In general, we expect appropriately modu-
larized designs to decompose the functionality into largely
orthogonal, independent, or observation advice and meth-
ods, with most of the advice either augmentation or nar-
rowing advice. Interference or some forms of replacement
or combination advice can be a sign of an inadequately
modularized design and may therefore provide a signal to
the developer to rethink this part of the design (although
modular patterns that involve combination advice or inter-
ference interactions may emerge over time). As this dis-
cussion illustrates, the basic concepts in our classification
system (scopes, advice classifications, and interaction clas-
sifications) provide a framework that designers can use to
conceptualize the issues involved and, ideally, to drive their
designs toward better modularity. Each advice or method
should have a clearly identified concern (as realized in its
scope); different concerns should interact, if at all, only in
structured and modular ways.

1.3 Analysis
Using scopes to reason about an aspect-oriented program

is clearly unsound if the advice and methods do not conform
to their scopes. We therefore use a modified pointer and es-
cape analysis to automatically extract a specification of the
fields that the execution of each advice or method (including
any transitively invoked methods) may access. A compar-
ison of this extracted specification with the scope enables
the analysis to determine if the advice or method performs
only those accesses identified in the scope. The inclusion of
escape information provides two benefits:

• Captured Objects: It enables the analysis to rec-
ognize captured objects whose lifetimes are included
in the lifetime of the advice or method in which they
are allocated. Because these objects are not visible
outside the analyzed advice or method, the analysis
omits any accesses to fields in these objects from the
extracted access specification. The analysis therefore
supports the use of common programming patterns
(such as iterators) that allocate and use temporary
objects. Without this feature, commonly used classes
such as iterators and StringBuffers would generate a
large number of false Interference interactions.

• New Objects: It enables the analysis to distinguish
accesses to new objects from accesses to previously
existing objects, which in turn enables the analysis
to recognize the absence of conflicts between accesses
to an existing object and accesses to a new object.
The analysis therefore supports programming patterns
(such as storing composite return values in new ob-
jects) that allocate and use new objects.

This analysis gives the developer significant flexibility
when obtaining the scopes. It is possible to simply use the
extracted access specification, which completely eliminates
any scope specification overhead. It is also possible to use
the analysis to automatically derive some initial scopes, then
abstract scopes as appropriate to obtain the final scopes. It
is also possible to develop the scopes from scratch (this ap-
proach may be especially appropriate during design when
the source code does not exist).

The analysis uses the scopes to classify indirect data in-
teractions between methods and advice. It also performs
a control-flow analysis of each advice in isolation to clas-
sify each advice as either augmentation advice, narrowing
advice, replacement advice, or combination advice.

1.4 Contributions
This paper makes the following contributions:

• Classification System: It presents a classification
system for aspect-oriented programs. This system char-
acterizes both direct control flow interactions between
advice and crosscut methods and indirect interactions
that take place as the advice and methods access ob-
ject fields.

• Scopes: It introduces the concept of scopes as a con-
crete representation of the concern of an advice or
method. Each scope identifies the correspondence be-
tween the concern and accessed object fields; abstract
fields hide encapsulated implementations and summa-
rize actions with externally visible effects.

• Analysis Algorithm: It presents an implemented
analysis algorithm that the developer can use to either
1) automatically extract scopes for advice and meth-
ods or 2) verify that advice and methods conform to
their scopes.

• Reasoning Support: It discusses the reports that
the analysis generates and shows how the developer
can use these reports to identify interaction patterns
that support modular reasoning. The reports also
identify any interactions that may interfere with mod-
ular reasoning, enabling the developer to focus on these
interactions when reasoning about the crosscut pro-
gram.

• Experience: It presents our experience using our sys-
tem to analyze several aspect-oriented programs. Our
results show that our system can accurately classify
many pieces of advice and methods into categories that
support modular reasoning and precisely identify the
cause of any potentially non-modular interaction.

2. EXAMPLE
We next present an example that illustrates how our anal-

ysis can help developers understand aspect-oriented pro-
grams. Figure 1 presents the code for a Stack of integers.
The Stack class exports the standard push(int) and pop()

methods; it also allows a client to obtain an iterator and
iterate through the items in the stack. Figure 2 presents the
code for the iterator.

2.1 A Consistency Checking Aspect
The stack comes with the consistency property that all

items in the stack must be nonnegative. Figure 3 presents
the NonNegative aspect, which contains advice that iter-
ates through all of the items in the stack to check that this
property holds. The pointcut in the advice specifies that it
should run before any Stack method.

Our control flow analysis recognizes the NonNegative ad-
vice as narrowing advice — the consequence of crosscutting
the method with this advice is that the method executes
normally unless the stack fails the consistency check. The
net effect is to narrow the set of input states on which the
method will execute.

To enable the analysis of indirect interactions between the
advice and the methods (these interactions take place when
the advice and a method access the same object field), our
system requires scopes for each advice and method. If de-
sired, the combined pointer and escape analysis presented
in Section 3 can automatically derive these scopes. Figure 4
presents the results of this analysis for our example.2 We
use the notation Cell.Cell(Cell, int) to denote the con-
structor of the Cell class, and similarly for other construc-
tors. Because advice is anonymous, we identify each piece
of advice with its position in the aspect (so NonNegative 1

identifies the first advice in the NonNegative class). Each
potential access is identified by the class and field (so write

Stack.head identifies a write to the head field of a Stack

2We present the scopes for the classes in Figures 1 and 2 and
the aspect in Figure 3. For this example, our implemented
system also produces scopes for hundreds of methods from
the Java standard libraries.

class Cell {
Cell(Cell n, int i) { next = n; data = i; }
int data; Cell next;

}

class Stack {
Stack() { head = null; }
Cell head;
boolean push(int i) {

if (i < 0) return false;
head = new Cell(head, i);
return true;

}
int pop() {

if(head == null)
throw new RuntimeException("empty");

int result = head.data; head = head.next;
return result;

}
Iterator iterator() { return new StackItr(head); }

}

Figure 1: Stack Class

interface Iterator {
public boolean hasNext();
public int next();

}

class StackItr implements Iterator {
private Cell cell;
public StackItr(Cell head) { this.cell = head; }
public boolean hasNext() { return cell != null; }
public int next() {

int result = cell.data; cell = cell.next;
return result;

}
}

Figure 2: Stack Iterator

aspect NonNegative {
before(Stack stack) : call(* Stack.*(..)) &&

target(stack) &&
!within(NonNegative) {

Iterator it = stack.iterator();
while(it.hasNext()) {
int i = it.next();
if(i < 0)

throw new RuntimeException("negative");
}

}
}

Figure 3: Stack Consistency Checking Aspect

object). We use the notation write new Cell.next to in-
dicate that the write is occuring to a Cell object that did
not exist when the advice or method was invoked.

Note that the scope of the advice does not include accesses
to any of the fields of the Iterator object that it uses to it-
erate through the stack. The escape analysis recognizes that
the lifetime of the iterator is contained in the lifetime of the
advice execution. Because the scope is designed to sum-
marize only the externally observable accesses, the analysis
omits all of the accesses to these iterator fields.

The developer may be satisfied with the automatically ex-
tracted scopes presented in Figure 4. Our system does, how-
ever, enable the developer to specify an abstraction function
that the system can apply to convert some (or even all) of

Cell.Cell(Cell, int) : write Cell.next, Cell.data;

Stack.Stack() : write Stack.head;
Stack.pop() :

read Stack.head, Cell.next, Cell.data;
write Stack.head,

new Java.lang.Throwable.detailMessage;
Stack.iterator():

read Stack.head;
write new StackItr.cell;

Stack.push(int) :
read Stack.head;
write Stack.head, new Cell.next, new Cell.data;

StackItr.StackItr(Cell) : write StackItr.cell;
StackItr.hasNext() : read StackItr.cell;
StackItr.next() :

read StackItr.cell, Cell.next, Cell.data;
write StackItr.cell;

NonNegative 1 :
read Stack.head, Cell.next, Cell.data;
write new Java.lang.Throwable.detailMessage;

Figure 4: Automatically Extracted Scopes

field Stack.structure, StackItr.structure,
Java.lang.Throwable.structure;

Cell.next -> Stack.structure;
Cell.data -> Stack.structure;
Stack.head -> Stack.structure;
StackItr.cell -> StackItr.structure;
Java.lang.Throwable.detailMessage ->

Java.lang.Throwable.structure

Figure 5: Abstraction Function for Stack Example

Cell.Cell(Cell, int) : write Stack.structure;

Stack.Stack() : write Stack.structure;
Stack.push(int) :

read Stack.structure;
write Stack.structure;

Stack.pop() :
read Stack.structure;
write Stack.structure,

new Java.lang.Throwable.structure;
Stack.iterator():

read Stack.structure;
write new StackItr.structure;

StackItr.StackItr(Cell) : write StackItr.structure;
StackItr.hasNext() : read StackItr.structure;
StackItr.next() :

read StackItr.structure, Stack.structure;
write StackItr.structure;

NonNegative 1 :
read Stack.structure;
write new Java.lang.Throwable.structure;

Figure 6: Scopes After Abstraction

NonNegative 1 (narrowing)

Crosscuts
Stack.push(int) : observation

read/write : Stack.structure;
read/read : Stack.structure;

Stack.pop() : observation
read/write : Stack.structure;
read/read : Stack.structure;

Stack.iterator() : independent
read/read : Stack.structure;

Interactions
StackItr.next() : independent

read/read : Stack.structure;
Stack.Stack() : observation

read/write : Stack.structure;
Cell.Cell(Cell, int) : observation

read/write : Stack.structure

Figure 7: Analysis Report for NonNegative Aspect

the concrete fields in the scopes into abstract fields. This
mechanism may be useful for hiding the internal implemen-
tation details of various components such as the Stack in our
example. Figure 5 presents one potential abstraction func-
tion in our example. It introduces a new abstract field, the
Stack.structure field (which represents the fields in Stack

data structure) and maps the Stack.head, Cell.next, and
Cell.data fields to this field.

Figure 6 presents the new scopes after abstraction. All of
the internal fields of the Stack data structure (including the
helper class Cell) have been replaced by the single abstract
field Stack.structure, and similarly for other classes with
encapsulated fields.

Given these scopes and the result of the control-flow anal-
ysis, our system produces the report in Figure 7 that charac-
terizes the interactions between the advice and the methods
in the program. This report indicates that:

• Narrowing: The advice in the NonNegative aspect is
narrowing advice.

• Crosscuts: The advice crosscuts the Stack.push(int),
Stack.pop(), and Stack.iterator() methods.

• Observation Interactions: The advice reads fields
that the Stack.Stack(), Stack.push(int),
Stack.pop(), and Cell.Cell(Cell, int) methods
write, but does not write fields that the methods ac-
cess.

• Independent Interactions: The advice reads object
fields that the Stack.iterator() and StackItr.next()

methods also read.

Note that the advice and the Stack.pop() method both
write the Java.lang.Throwable.structure abstract field,
but because the writes access a new object in each case,
there is no interaction.

We expect that a developer might use this report as fol-
lows. First, he or she would examine the object field in-
teractions and find that the advice has at most observation
interactions with the methods in the program. Therefore,
the only way that the advice can change the operation of
the program within its original set of scopes is to affect
the flow of control. The developer would therefore inspect

the narrowing condition in the advice to understand under
what conditions the advice would prevent a crosscut method
from executing. In this case, it is clear that the advice is
designed to check that all elements in the stack are nonneg-
ative; if the stack never violates this condition, the advice
will not affect the execution of the program. The devel-
oper would then examine the Stack implementation, verify
that the Stack.push(int) method refuses to insert negative
elements into the stack, and conclude that his or her under-
standing of the original program is still valid in the crosscut
program. In our view, the report offers two benefits in this
example:

• Eliminating Potential Issues: It provides a guaran-
tee that certain kinds of interactions (for example, the
advice writing a field that the program subsequently
reads) do not happen. This frees the developer from
having to consider the possibility of these interactions
when reasoning about how the advice may affect the
program.

• Focused Attention: It focuses the attention of the
developer on those parts of the implementation that he
or she must examine to understand the consequences
of deploying the aspect. In this example, the report
focuses the attention of the developer on the narrowing
condition and those parts of the program that may
affect the narrowing condition.

2.2 An Instrumentation Aspect
Figure 8 presents a centralized InstrumentationData class

that contains a count of the number of times the crosscut
program invokes a push method (in any class). The advice
in the Instrumentation aspect increments this count after
every call to a push method.

After automatic scope extraction, our system produces
the report in Figure 9. This report first indicates that the
advice is an augmentation advice that does not affect the
control flow of crosscut methods. It also indicates that
the advice is orthogonal to every method in the program
except the InstrumentationData.print() method (the re-
maining methods include methods from the Stack, Cell,
and StackItr classes from our example). The method reads
the InstrumentationData.count field; the advice writes this
field. We note in passing that there is a write to the ab-
stract field java.lang.System.print in the scope of the
InstrumentationData.print() method. This abstract field
write summarizes the externally visible action of printing.

We expect the developer to use this report as follows.
An examination of the report quickly shows that the aspect
can affect the execution of the original program only within
scopes that include InstrumentationData.count, and the
only potential interaction at that field occurs inside the
InstrumentationData.print() method. An examination of
this method indicates that this is an anticipated and desired
interaction. The conclusion is that crosscutting the program
with the aspect preserves the desired behavior and intro-
duces no unanticipated interactions or control flow changes.
Even though the aspect does not leave the behavior of the
crosscut program intact within its scopes, the developer was
able to use the report to quickly isolate any potential issues
and verify that the interactions were all anticipated and de-
sired.

public class InstrumentationData {
static int count = 0;
public print() {

System.out.println("count = " + count);
}

}

aspect Instrumentation {
after() : call(* *.push(int)) {

InstrumentationData.count++;
}

}

Figure 8: Instrumentation Aspect

Instrumentation 1 (augmentation)

Crosscuts
Stack.push(int) : orthogonal

Interactions
InstrumentationData.print() : actuation

write/read : InstrumentationData.count;
read/read : InstrumentationData.count;

Figure 9: Analysis Report for Instrumentation

2.3 Developer-Provided Scopes
In this example we have focused on the use of automati-

cally extracted scopes with the developer applying abstrac-
tion functions to hide internal implementation details. Our
system also generalizes to support the use of scopes provided
directly by the developer. In general, we expect such scopes
to be much coarser than the automatically extracted scopes
— specifically, we expect the developer to identify a rela-
tively small number of scopes, then use the same scope for
many classes or methods that share the same concern. Our
system also supports multiple scopes for classes or methods
with multiple concerns, enabling the developer to appropri-
ately factor the scope space.

While providing these scopes may require some additional
specification effort, this effort may be justified. First, we
have found scopes to be a useful conceptual tool for reason-
ing about the concerns of the different parts of the program.
Second, they enable the analysis to generate useful reports
for partial programs that are still under construction — the
report generator works with scopes only and does not re-
quire source code.

3. ANALYSIS
We next present the core analyses: the underlying pointer

analysis, the extension of this analysis to record and gener-
ate information about accessed object fields, and the control
flow analysis that recognizes augmentation, narrowing, re-
placement, and combination advice.

3.1 Analyzed Language
Our analysis is designed to work with languages (such as

AspectJ [17]) with aspects that contain (one or more pieces
of) advice. A join point is a point in the execution of the
program (for example, the execution of a method). Each
advice contains a pointcut specification, (which identifies a
set of join points), a piece of code (which executes whenever
control flow reaches one of these join points), and an advice
kind (which specifies whether the code in the advice executes

before, after, or around the join point). Around advice uses
a proceed statement to execute the join point around which
it executes.

Pointcut specifications may include both static parts (for
example, the execution of a specific method or an access to a
specific field) and dynamic parts (for example, an arbitrary
boolean condition involving the parameters from the join
point or a condition that specifies that the join point must
be contained within the control flow of a given method). In
general, resolving the dynamic part of the pointcut specifi-
cation may require information that is available only as the
program runs. Any static analysis that attempts to identify
the set of join points that match a given pointcut specifi-
cation must therefore use some abstraction to approximate
the dynamic part of the pointcut specification.

Our current system is designed for method execution and
method call join points only. Our direct interaction clas-
sification system, however, applies directly to any kind of
join point. It is also possible to generalize our indirect in-
teraction classification system to include other kinds of join
points. For each kind of join point, the resulting classifi-
cation would depend on the memory accesses that the join
point could perform. For example, an appropriate indirect
interaction classification system for field access join points
would be based on the aspect and the join point’s combined
accesses to the field.

3.2 Pointer Analysis
Our analysis is based on an existing interprocedural, flow-

sensitive, context-sensitive, bottom-up combined pointer and
escape analysis [24]. We augmented this analysis to main-
tain additional information about the accesses that each ad-
vice and method performs and use this information to gen-
erate or verify the advice and method scopes.

Heap abstraction: The analysis uses points-to graphs to
model the heap that the analyzed program accesses: the
nodes of these graphs represent heap objects; the edges rep-
resent references in the heap. Conceptually, the analysis
computes one points-to graph for each program point. In
the absence of recursion, the analysis processes each advice
or method once to obtain a general analysis result that can
be specialized for each calling context. In the presence of re-
cursion it uses a fixed point algorithm within each strongly
connected component of the call graph.

The analysis distinguishes several kinds of nodes in the
points-to graph. As in the classic object allocation site
model [6], there is one inside node for each allocation site
in the program; this node represents all objects allocated at
that site. In addition, the analysis uses two new kinds of
nodes: parameter nodes and load nodes. Parameter nodes
represent objects passed as parameters into the analyzed
method. An object escapes if it is reachable from outside
the currently analyzed method (i.e., it is reachable from the
parameters, a static class variable, or an object passed to a
parallel thread). Load nodes represent objects whose refer-
ences are read from fields of escaped objects. If an object
does not escape it is captured.

Parameter and load nodes are essential for achieving a
compositional, context-sensitive analysis. The analysis com-
putes one parameterized result (a points-to graph) for the
end of each method, and later instantiates this result for
the calling context at each call site that may invoke that

method.3 More specifically, at each call site, the interproce-
dural analysis maps the parameter and load nodes from the
invoked method to the corresponding nodes from the calling
context. For example, the analysis maps a parameter node
to all nodes that the corresponding actual argument points
to.

For each method the analysis domain consists of the cur-
rently analyzed method and all of the methods that it may
(transitively) invoke. Inside edges represent references cre-
ated within the analysis domain; outside edges represent ref-
erences read within the domain from escaped objects. The
tuple 〈n1, f, n2〉 denotes an edge from n1 to n2 along field f.

Figure 10 presents the points-to graph from the end of
Stack.push(int) from Figure 1. Solid circles represent inside
nodes; dashed circles represent parameter and load nodes.
Solid arrows represent inside edges; dashed lines represent
outside edges. The parameter this points to the parameter
node P1 that represents the this object. Stack.push(int)
reads the field this.head. The node P1 escapes, because
it is reachable from the caller. During the analysis of this
method, the algorithm does not know what other parts of
the program may write into this.head. The analysis there-
fore uses the load node L1 to represent the object read from
that field. Next, Stack.push(int) allocates a new Cell ob-
ject (represented by the inside node I1), makes it point to
this.head (the inside edge 〈I1, next, L1〉), and sets this.head
to point to I1 (the inside edge 〈P1, head, I1〉).

L1

P1

I1

head

head

next

this

Figure 10: Points-to graph for Stack.push(int).

Intraprocedural analysis: At the start of each method,
each object parameter (i.e., not an int, boolean, ...) pi

points to the corresponding parameter node. Next, our anal-
ysis propagates information along the control flow edges,
using transfer functions that abstractly interpret [9] state-
ments from the analyzed program. At control flow join
points, the analysis merges the incoming points-to graphs:
e.g., the resulting points-to graph contains any edge that
exists in one or more of the incoming points-to graphs. The
analysis iterates over loops until it reaches a fixed point.

Figure 11 presents a graphical representation of several
intraprocedural transfer functions (see [24] for a full de-
scription). As a general rule, we perform strong updates
on variables, i.e., assigning something to a variable removes
its previous values, and weak updates on node fields, i.e., the
analysis of a store statement that creates a new edge from
n1.f leaves the previous edges in place. Because n1 may rep-
resent multiple objects, all of these edges may be required
to correctly represent all of the references that may exist in
the heap.

A copy statement “v1 = v2” makes v1 point to all the
nodes to which v2 points. A new statement “v = new C”

3In this section, we use the term “calling context” to de-
note the points-to graph (i.e., the abstract heap state) at a
specific program point.

2 does not escape

2 2

1

2 2

2 3

1

3

v2v2

v

v1.f = v2

v1

v2

f
v1

v2

f

f

if

f

v1 v1

where is the inside node for this statement

v1

if escapes; is the load

node for this statement

v1 = v2

v1

Statement Before After

v1

vv = new C

v1 = v2.f

v2

f
v2

v2

f
v2

f

f v1

Figure 11: Graphical representation of intraproce-
dural transfer functions. Solid circles represent in-
side nodes, dashed circles represent load and param-
eter nodes, solid arrows represent inside edges, and
dashed arrows represent outside edges. Bold circles
and lines indicate potentially new nodes and edges.

makes v point to the inside node attached to the label lb .
For a store statement “v1.f = v2”, the analysis introduces an
f-labeled inside edge from each node to which v1 points to
each node to which v2 points. The case of a load statement
“v1 = v2.f” is more complex. First, after the load, v1 points
to all the nodes that were pointed by an inside edge from
v2.f. If one of the nodes that v2 points to, say n2, escapes,
a parallel thread or an unanalyzed method may create new
edges from n2.f, edges that point to objects created outside
the analysis domain. The analysis therefore uses the load
node nL

lb for label lb to represent these objects, sets v1 to

point to nL
lb too, and introduces an outside edge from n2

to nL
lb . The interprocedural analysis uses this outside edge

to find nodes from the calling context that may have been
loaded at label lb .

Interprocedural analysis: For each call statement “vR =
v0.s(v1, . . . , vj)”, the analysis uses the points-to graph G
before the call and the points-to graph Gcallee from the end
of the invoked method callee to compute a points-to graph
for the program point after the call. If there are multiple
possible callees (this may happen because of dynamic dis-
patch), the analysis considers all of them and merges the
resulting set of points-to graphs.

The interprocedural analysis operates in two steps. First,
the analysis computes a node mapping that maps the pa-
rameter and load nodes from callee to the nodes they repre-
sent in the caller. Initially, the analysis maps each param-
eter node to the nodes to which the corresponding actual
argument points. It then uses two rules to match outside
edges (from read operations) against inside edges (from cor-
responding write operations) and discover additional node
mappings. The first rule matches outside edges from the
callee against inside edges from the caller. This rule handles
the case where the callee reads data from the calling con-
text. If node n1 maps to node n2, we map each outside edge
〈n1, f, n3〉 from Gcallee against each inside edge 〈n2, f, n4〉
from G, and add a mapping from n3 to n4. The second rule
maps outside and inside edges from the callee. This rule
resolves any aliasing introduced at the calling context. If
nodes n1 and n2 have a common mapping, they may rep-
resent the same location. Therefore, we match each callee
outside edge 〈n1, f, n3〉 from Gcallee against each callee inside
edge 〈n2, f, n4〉 and map n3 to n4.

Next, the analysis uses the node mapping to project Gcallee

and merge it with the points-to graph from before the call.
The full details are presented in [24].

3.3 Effect Analysis
We have updated the pointer analysis from Section 3.2

to maintain a set of read and write effects E(m) for each
analyzed method m. Each time the analysis of a method
m encounters a load/store instruction, it records into E(m)
the relevant field and node(s). For example, the analysis of
the Stack.push(int) method records, among other effects,
a write of the field head of the P1 node in Figure 10 that
represents the receiver object (this).

The analysis propagates effects interprocedurally as fol-
lows: when the analysis of a method m encounters a call
instruction, it uses the interprocedural node mapping to
project the effects of the callee and include these effects
in the set E(m). For example, suppose the analysis of m
encounters a call to the method Stack.push(int) from Fig-
ure 1. If P1 maps to the nodes I8 and I9 (for example), the
write effect on P1.head projects into write effects on I8.head
and I9.head. The analysis adds these two effects to the set
E(m) of method m’s effects.

The analysis does not record effects to captured nodes
since these nodes represent objects that are unreachable and
therefore invisible outside the analyzed method.

Once the combined pointer and effect analysis terminates,
it generates the scope of each analyzed method by project-
ing out the recorded field accesses. Note that the analysis
works with a representation that maintains more informa-
tion than the generated scopes. In particular, the escape in-
formation enables the analysis to recognize (and eliminate)
any accesses to captured nodes. The analysis information
also enables it to recognize accesses that occur only on new
objects (i.e., objects represented by inside nodes).

For each proceed statement, the analysis marks the nodes
that proceed’s arguments point to as escaped and uses a spe-
cial return node to model the possible result of the proceed.
Note that the analysis does not treat proceed as a call to
the original code at the join point: the join point code is
not part of the advice. In particular, the effects of the join
point code are not included in the effects of the advice.

The analysis uses manually generated points-to graphs

and effects for commonly used native methods. It (conser-
vatively) assumes that all other native methods mutate all
nodes reachable from their arguments.

3.4 Control Flow Analysis
The control flow analysis processes the control flow graph

(CFG) of each advice to classify the advice as augmentation,
narrowing, replacement, or combination advice. We discuss
only the case of around advice. Before and after advice are
special cases of around advice: we can desugar each before
advice into an around advice terminated with a proceed

statement and similarly for each after advice.
The CFG of each advice models both normal and excep-

tional control flow. Each CFG path starts in a special entry
node and ends either in a special normal exit node (for exe-
cutions that return normally) or in a special exceptional exit
node (for executions that terminate due to uncaught excep-
tions). Each throw statement generates control flow edges to
the appropriate handlers; if the handlers are not guaranteed
to catch the exception, we also have a control flow edge to
the exceptional exit node. We have similar control flow edges
for each method call that may throw an uncaught exception.
To focus the attention of the developer on the important
part of the program, we consider only the explicitly thrown
exceptions and not the runtime exceptions introduced by
the Java semantics (for example, NullPointerException or
ArithmeticException). Similarly, we assume that library
methods do not throw uncaught exceptions.

We can now give a more technical definition of our clas-
sification. First, we classify as combination advice 1) any
advice with a proceed statement with a different list of ar-
guments than the original join point, and 2) any advice that
returns a value different from the value returned by proceed.
We check these conditions using def-use chains. We classify
the remaining advice based on the properties of the CFG
paths:

• Augmentation Advice: An advice is augmentation
advice if every path in its CFG contains exactly one
proceed statement and terminates in the normal exit
node.4 This property ensures that any execution of
the advice executes the join point exactly once, plus
some additional code from the advice.

• Replacement Advice: An advice is replacement ad-
vice if no path in its CFG contains a proceed state-
ment. This property ensures that the advice com-
pletely replaces the execution of the join point.

• Narrowing Advice: An advice is narrowing advice
if each path in its CFG belongs to one of the following
two categories: 1) it does not contain a proceed state-
ment, or 2) it contains exactly one proceed statement
and terminates in the normal exit node. This property
ensures that the advice either executes the join point
or bypasses it using normal or exceptional control flow.

• Combination Advice: All other advice.

Our control flow analysis performs this classification using
a series of graph reachability tests on the method control
flow graph (CFG). We perform the following tests, in the
order below, and we stop as soon as a test succeeds:
4Advice that throws an exception after executing the origi-
nal join point is classified as combination advice.

1. If no proceed is reachable from the method entry, then
the advice is a replacement advice.

2. If a proceed statement is reachable from (possibly an-
other) proceed statement, then the advice may ex-
ecute a proceed statement more than once. In this
case, the advice is a combination advice.

3. If the exceptional exit node is reachable from any of the
proceed statements, then the advice is a combination
advice.

4. If the normal and exceptional method exit nodes are
unreachable in the CFG without the nodes for the
proceed statements, then any path executes proceed

exactly once. Hence, the advice is an augmentation
advice.

5. Otherwise, the advice is a narrowing advice.

4. REPORT GENERATION
A report generator produces a report for each aspect that

summarizes the interactions between each advice in the as-
pect and the other advice and methods in the program. Fig-
ures 7 and 9 present examples of generated reports. For each
advice in the aspect, the report generator produces the fol-
lowing information:

• Advice Classification: A classification of the advice
as augmentation, narrowing, replacement, or combina-
tion advice.

• Interactions: For each other advice or method, a
classification of the interaction between the advice and
the other advice or method as orthogonal, indepen-
dent, observation, actuation, or interference. Crosscut
methods appear before methods that the advice does
not crosscut.5

The report generator prints a list of all memory con-
flicts between the advice and the method, in the order
of the conflict severity: it reports write/write conflicts,
write/read, read/write, and read/read conflicts in this
order. For each category, it lists the affected fields.

This report is designed to enable the developer to quickly
recognize interactions that support modular reasoning: if
the aspect is an augmentation aspect and all of the inter-
actions are orthogonal, independent, or observation, the as-
pect does not affect the operation of the original program
within its original scopes. The developer’s understanding
of the original program therefore remains completely valid
when reasoning about the crosscut program.

If, on the other hand, the aspect may interfere with the
execution of one or more of the methods, the report iden-
tifies the methods and fields involved in the interference.
The developer can then focus on those methods and fields
when reasoning about the consequences of crosscutting the
program with the aspect.

5We conservatively approximate the pointcut designator of
the advice. Specifically, we assume that the dynamic part
of the pointcut designator always matches. It would be pos-
sible to increase the precision by using more sophisticated
analyses to more precisely resolve dynamic conditions in-
volving the control flow, parameter values, and values of
object fields.

It is possible to configure the report generator to pro-
duce different amounts of information. For example, it is
possible to configure the report generator to suppress in-
teractions involving specific fields. Such configurations are
occasionally useful to help eliminate the explicit presence of
well-understood interactions and focus the attention of the
developer on any remaining interactions.

By default, the current report generator produces shorter
reports that are designed to more efficiently direct the pro-
grammer to any potentially problematic interactions. Specif-
ically, the current report generator does not report indepen-
dent, orthogonal, or observation interactions. It also does
not report fields already reported in a more severe conflict
category (for example, it does not report a write/read con-
flict for a field that already has a write/write conflict for the
same advice-method interaction pair).

The current report generator is designed to help develop-
ers trace potential interactions starting from a given aspect.
It is possible to reformat the same information to help devel-
opers trace interactions in different directions starting from
a given method or field. The reported information could
also serve as the foundation for an interactive system that
would allow the developer to flexibly trace potential inter-
action relationships through aspects, methods, and fields.

5. EXPERIENCE
We implemented our system using a combination of the

AspectJ compiler [11] and the MIT Flex compiler infras-
tructure [1]. Specifically, we use the AspectJ compiler to
generate bytecodes for the aspects, which enables our anal-
ysis (which is implemented in the MIT Flex compiler infras-
tructure) to analyze them. To gain experience with our im-
plemented system, we obtained several aspect-oriented pro-
grams and used our system to analyze them.

5.1 Basic Aspects
Many aspects are designed to add tracing, monitoring,

logging, or consistency checking functionality to crosscut
classes [17, 16]. To test the functionality of our implemen-
tation and evaluate its ability to verify the properties that
we expected the aspect to have, we analyzed three simple
programs (in addition to the two examples from Section 2.)

We developed a simple NullChecker aspect that uses be-
fore advice to check that certain methods are called with
non-null arguments only. Our analysis classified this aspect
as a narrowing aspect with Orthogonal interactions.

The exception logging aspect from Section 5.4.2 of [17]
contains after advice that logs any exception that is thrown
from a method invocation. Our analysis recognized this ad-
vice as augmention advice that writes the abstract field that
represents the input/output state. This advice has Actua-
tion or Interference interactions with advice or methods that
perform input or output operations. As mentioned in Sec-
tion 4, it is possible to configure the report generator to omit
these interactions once the developer understands them.

The tracing aspect from Section 2.4.2 of [17] contains be-
fore advice and after advice that print short messages be-
fore and after each join point. The two pieces of advice
use the aspect field callDepth to maintain an appropriate
indentation length. Our analysis recognized both pieces of
advice as augmentation advice; each advice has an Interfer-
ence interaction (because of the write to callDepth) with
the other advice and with the constructor of the aspect. In

addition, each advice has an Actuation interaction with the
method that does the actual printing because this method
reads callDepth. This printing method is invoked only
from within the tracing aspect and is not part of the core
program.

5.2 Telecom
The core Telecom program (available at www.aspectj.org)

simulates a community of phone users. The Timing aspect
adds functionality to record the phone connection time; the
Billing aspect uses the connection time to bill the origina-
tor of the call.

The reports show that although the Timing and Billing

aspects read fields that the Telecom program writes, they
do not write any of these fields. They therefore have at
most Observation interactions with the methods in the Tele-
com program, leaving its behavior intact within its original
scopes. There is, however, an Actuation interaction between
the Timing and Billing advice — the Timing advice writes
a field that the Billing advice reads. Further investiga-
tion reveals that this interaction is anticipated and desirable
because this field carries information about the connection
time from the Timing aspect to the Billing aspect.

5.3 Aspects for Business Rule Implementation
The example from Section 12.5 of [17] uses aspects to im-

plement business rules in a banking system.
MinimumBalanceRuleAspect has an advice that crosscuts
each debit operation and throws an exception if the op-
eration would decrease the account balance below a cer-
tain threshold value. Our analysis identified this advice as
narrowing advice that has at most Observation interactions
with methods in the original banking system.
OverdraftProtectionRuleAspect has an advice that cross-
cuts each check clearance operation and, if necessary, trans-
fers money from an overdraft account into the checking ac-
count before executing the check clearance. An appropriate
exception is thrown if the overdraft account has insufficient
funds. The analysis identified this advice as narrowing ad-
vice that has an Actuation or Interference interaction with
methods that may read or write the account balance field.
The analysis also detected that the other aspects from the
example (three logging examples) contain only augmenta-
tion advice. These pieces of advice have Interference or Ac-
tuation interactions with methods and advice that contain
input or output operations and at most Observation inter-
actions with the remaining methods in the core program.

5.4 Spacewar
We also obtained the Spacewar program from

www.aspectj.org. This program comes with several syn-
chronization aspects that allow the programmer to declare
groups of mutually exclusive methods. The aspects then
crosscut the program to add the synchronization required
to enforce the mutual exclusion. The GameSynchronization

and RegistrySynchronization aspects apply this basic
strategy to two different groups of methods. Both of these
aspects use encapsulated Vectors and Hashtables to record
groups of mutually exclusive methods. In our original anal-
ysis, these encapsulated data structures generated false In-
terference interactions with other aspects and methods of
the program that access other Vectors or Hashtables. We
therefore extended our analysis to automatically recognize

encapsulated objects (in some cases using information about
the standard Java collection classes). This extension enabled
the analysis to lift reads and writes on encapsulated objects
into corresponding reads and writes on the encapsulating
object. After this extension, the generated reports indicate
that the synchronization advice has only Orthogonal or Ob-
servation interactions with all of the methods in the original
program, providing the developer with a guarantee that the
aspects add new functionality that does not interfere with
the existing Spacewar functionality.

Our system also successfully analyzed the other aspects.
The EnsureShipIsAlive aspect contains narrowing advice
that prevents console commands from operating on destroyed
ships. The RegistrationProtection aspect contains re-
placement advice that prevents calls to the registration sub-
system from taking place anywhere except from within the
methods that construct or terminate the registered object.

The remaining three aspects in the program contain a to-
tal of seven pieces of augmentation advice. These pieces
of advice are responsible for the look and feel of the pro-
gram: they set up the display and (re)paint the game ob-
jects. There are Observation, Actuation, and Interference
interactions between these pieces of advice and the java.awt
library methods that maintain the graphical state.

Spacewar is our largest program, with approximately 2000
lines of Java code in the core program (Telecom is second
largest, with approximately 700 lines of Java code in the
core). In addition to this code, our analysis processes a
significant fraction of the Java standard libraries.

5.5 Discussion
In general, we found that our analysis was quite effective

at verifying the lack of interference between the core pro-
gram and tracing and logging aspects. For layered aspects
such as our suite of Telecom aspects, our system was able
to verify the lack of interference between different layered
pieces of advice (in addition to verifying the lack of interfer-
ence between the advice and methods in the core program).

Our experience with the banking system aspects (see Sec-
tion 5.3) suggests that it might be worthwhile to incorporate
a purity analysis into our system. This extension would pro-
vide another useful concept for developers — Pure advice
would have no externally visible side effects at all. It would
therefore have only Orthogonal, Independent, or Observa-
tion interactions with other advice or methods and exist
only for its effect on the flow of control or the call/return
interface. Our current pointer and effect analysis can al-
ready check advice or method purity [25].

In general, the aspect-oriented programs that we were able
to obtain were smaller than the more traditional Java pro-
grams that we are used to working with. One can view this
fact as either evidence of the ability of aspects to deliver
a lot of functionality with little code or as an inevitable re-
sult of the relatively recent widespread availability of aspect-
oriented languages. In any case, our past results (and those
of others) indicate that our analysis should scale to larger
programs [29, 5, 7, 4, 24]. Like all automated analysis tools,
we expect the value of our tool to increase in proportion to
the complexity of the programs on which it is deployed.

Some traditional reasoning approaches rely on tracing ex-
plicit control flow paths through the program. The implicit
control flow paths in aspect-oriented programs complicate
this kind of reasoning — they introduce the possibility that

the code that the developer sees when he or she traces an
explicit control flow path may not be all (or even any) of
the code that will actually execute when the program runs.
One appropriate response to this situation is to embrace,
when justified, the new modularity mechanisms that aspect-
oriented programming provides and to use systems such as
ours to help developers reason effectively about the result-
ing aspect-oriented programs. Our experience supports this
point of view: our analysis and classification system helped
us to understand and appreciate the functionality decompo-
sition and resulting modularity properties of our programs.

6. RELATED WORK
Researchers have explored a variety of language features

and mechanisms that allow the developer to separate the
code for different concerns into separate syntactic units, then
compose these units (either statically or dynamically) to ob-
tain the final behavior [20, 15, 14, 13, 21, 22, 19, 3, 2]. The
primary goal is to provide the mechanisms required to mod-
ularize a program with crosscutting concerns. Our research
assumes that these kinds of mechanisms are useful and will
become widely used in practice; our contribution is a clas-
sification system and analysis that developers can use to
reason about the resulting crosscut programs. Although we
have designed our system to work with AspectJ, we believe
the basic principles and analysis ideas will apply whenever
the language supports crosscutting concerns that may access
shared object fields or affect the control flow.

We believe that most aspect-oriented programmers have
an intuitive feel for aspects that enable modular reasoning
and make value judgements that distinguish these aspects
from more invasive aspects [12, 17]. Based on their expe-
rience using aspect-oriented programming, researchers have
proposed design rules that limit the potential interactions
between the aspect and the crosscut method [12]. The pro-
posed control flow restrictions are essentially equivalent to
requiring the aspect to be an augmentation aspect.

Researchers have proposed the isolation of crosscutting
concerns to support the modular verification of temporal
properties of state machines [18, 10]. Our research differs
in its focus on standard programming languages and in its
emphasis on indirect interactions (both intended and unex-
pected) that occur because of accesses to object fields.

Developers can use aspect-oriented programming to add
new methods to classes and to modify the class hierarchy.
Composition systems such as Hyper/J [28] allow developers
to compose class hierarchies. Both approaches can change
the explicit control flow in the program (because they may
change the methods invoked at dynamic dispatch sites). Re-
searchers have developed analyses to identify such potential
changes [27, 26]. These analyses are orthogonal to ours:
our analysis focuses on implicit control-flow interactions that
take place when an advice crosscuts a method and on indi-
rect interactions that take place when advice and methods
access the same object fields.

The research most closely related to ours classifies aspects
into spectators and assistants [8]. A spectator does not affect
the control flow into or out of a crosscut method and writes
only private data that is unavailable to crosscut methods.
Spectators correspond to augmentation aspects in our clas-
sification system with the additional requirement that they
write private data only. This restriction ensures that they
have only orthogonal, independent, or observation interac-

tions with crosscut methods. In this classification system, all
other aspects are assistants. Because assistants can change
the behavior of the crosscut module, the proposal is that
the crosscut module must explicitly accept the assistance
by referencing the crosscutting aspect by name.

Both this research and our research identify a set of pre-
cise criteria that classify aspects into categories and relate
these categories to the ability of the developer to reason
about the resulting crosscut program. Our research differs
in that it has a more sophisticated classification scheme and
an implemented analysis that automatically applies the clas-
sification scheme. In addition, we accept the possibility that
some legitimate aspect-oriented programs may not fit into
any of the categories in our system that are known to sup-
port modular reasoning. We have therefore designed our
classification scheme and analysis reports to provide guid-
ance that helps the developer reason effectively about the
interactions in these programs.

7. CONCLUSION
Aspect-oriented languages support new and powerful pro-

gram structuring techniques that promise significant mod-
ularity benefits if used appropriately. But if used unwisely,
aspect-oriented constructs can interfere with the abstrac-
tions in the program and substantially complicate the ability
of the developer to reason about its behavior.

This paper makes the case for attacking this problem with
a classification scheme backed by a program analysis that
automatically classifies aspects and interactions between as-
pects and methods. This combination enables the developer
to quickly recognize interaction patterns that support mod-
ular reasoning and to focus in on the causes of potentially
nonmodular interactions. We believe the eventual result will
prove to be a significant improvement in our ability to de-
velop and reason about aspect-oriented programs, with a
corresponding increase in the delivered utility of this promis-
ing program structuring technique.

Acknowledgments
The authors would like to acknowledge the participants of
the New Directions in Software Technology (NDIST03) work-
shop for the interactions that inspired this research. The au-
thors would also like to thank Patrick Lam for his help with
the Soot compiler infrastructure [23] and C. Scott Ananian
for his help with the Flex compiler infrastructure [1].

8. REFERENCES
[1] C. S. Ananian. MIT FLEX compiler infrastructure for Java.

Available from http://www.flex-compiler.lcs.mit.edu.

[2] D. Batory and S. O’Malley. The design and implementation of
hierarchical software systems with reusable components. ACM
Transactions on Software Engineering and Methodology, 1(4),
Oct. 1992.

[3] L. Bergmans and M. Aksit. Composing crosscutting concerns
using composition filters. Communications of the ACM, Oct.
2001.

[4] B. Blanchet. Escape analysis for object oriented languages.
Application to Java. In Proceedings of the 14th Annual
Conference on Object-Oriented Programming Systems,
Languages and Applications, Denver, CO, Nov. 1999.

[5] J. Bogda and U. Hoelzle. Removing unnecessary
synchronization in java. In Proceedings of the 14th Annual
Conference on Object-Oriented Programming Systems,
Languages and Applications, Denver, CO, Nov. 1999.

[6] D. Chase, M. Wegman, and F. Zadek. Analysis of pointers and
structures. In Proceedings of the SIGPLAN ’90 Conference on

Program Language Design and Implementation, pages
296–310, White Plains, NY, June 1990. ACM, New York.

[7] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midkiff.
Escape analysis for Java. In Proceedings of the 14th Annual
Conference on Object-Oriented Programming Systems,
Languages and Applications, Denver, CO, Nov. 1999.

[8] C. Clifton and G. Leavens. Observers and assistants: A
proposal for modular aspect-oriented reasoning. Technical
Report TR 02-04, Department of Computer Science, Iowa State
University, Mar. 2002.

[9] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. In Proc. 4th POPL, 1977.

[10] K. Fisler and S. Krishnamurthi. Modular verification of
collaboration-based software designs. In Proceedings of the
Joint European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software
Engineering, Vienna, Austria, Sept. 2001.

[11] G. Kiczales etal. AspectJ compiler. Available from
http://eclipse.org/aspectj.

[12] M. Kersten and G. Murphy. Atlas: a case study in building a
web-based learning environment using aspect-oriented
programming. In Proceedings of the 1999 Conference on
Object-Oriented Programming Systems, Languages and
Applications, Denver, CO, Nov. 1999.

[13] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. Griswold. Getting started with AspectJ. Communications
of the ACM, 15(12), Oct. 2001.

[14] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. Griswold. An overview of AspectJ. In Proceedings of the
2001 European Conference on Object-Oriented Programming,
Budapest, Hungary, June 2001.

[15] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J. Loingtier, and J. Irwin. Aspect-oriented programming. In
Proceedings of the 1997 European Conference on
Object-Oriented Programming, Jyvaskyla, Finland, June 1997.

[16] I. Kiselev. Aspect-Oriented Programming with AspectJ. Sams
Publishing, 2002.

[17] R. Laddad. ApectJ in Action. Manning Publications Company,
Greenwich, CT, 2003.

[18] H. Li, S. Krishnamurthi, and K. Fisler. Verifying
Cross-Cutting Features as Open Systems. Manning
Publications Company, Greenwich, CT, 2003.

[19] K. Lieberherr, D. Lorenz, and M. Mezini. Programming with
aspectual components. Technical Report NU-CCS-99-01,
College of Computer Science, Northeastern University, Mar.
1999.

[20] D. Moon. Object-oriented programming with flavors. In
Proceedings of the 1986 Conference on Object-Oriented
Programming Systems, Languages and Applications, Portland,
OR, Nov. 1986.

[21] H. Ossher and P. Tarr. Multi-dimensional separation of
concerns in hyperspace. Technical Report RC
21452(96717)16APR99, IBM T.J. Watson Research Center,
1999.

[22] H. Ossher and P. Tarr. Using multidimensional separation of
concerns to (re)shape evolving software. Communications of
the ACM, Oct. 2001.

[23] Sable compiler group at McGill. Soot: a Java optimization
framework. Available from http://www.sable.mcgill.ca/soot.

[24] A. Salcianu. Pointer analysis and its applications to Java
programs. Master’s thesis, MIT Laboratory for Computer
Science, 2001.

[25] A. Salcianu and M. Rinard. A combined pointer and purity
analysis for Java programs. Technical Report
MIT-CSAIL-TR-949, MIT CSAIL, 2004.

[26] G. Snelting and F. Tip. Semantics-based composition of class
hierarchies. In Proceedings of the 2002 European Conference
on Object-Oriented Programming, 2002.

[27] M. Stoerzer and J. Krinke. Interference analysis for AspectJ. In
Workshop on Foundations of Aspect-Oriented Languages,
2003.

[28] P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. S. Jr. N
degrees of separation: Multi-dimensional separation of
concerns. In International Conference on Software
Engineering, 1999.

[29] J. Whaley and M. Rinard. Compositional pointer and escape
analysis for Java programs. In Proceedings of the 14th Annual
Conference on Object-Oriented Programming Systems,
Languages and Applications, Denver, CO, Nov. 1999.

