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Abstract
Embedded sensor platforms can dissipate most of their en-
ergy in accessing sensor integrated circuits such as gyro-
scopes. But the algorithms which process the sensor data and
the humans who consume the overall output of the system
may often be able to tolerate some amount of error in the re-
trieved sensor values. Because devices are accessed through
interfaces provided by system software, exploiting the toler-
able error for improvements in energy efficiency requires ap-
propriate system software and hardware support. However,
no such support currently exists.

We present Lax, a device driver abstraction for interacting
with sensors that enables power savings in exchange for oc-
casionally returning erroneous sensor data. Our implementa-
tion on a hardware prototype delivers savings in sensor dy-
namic power dissipation of up to 48% (as compared to pre-
cise device access) while providing sensor access error rates
lower than 5 data acquisition errors per 100 data accesses.
Given the significant proportion of system energy budgets
in wearable platforms that are devoted to sensors, approxi-
mate sensor data acquisition using Lax can deliver signifi-
cant system-level energy savings.

1. Introduction
Research on energy efficiency in microsensor platforms has
focused, among other things, on improving the efficiency of
computation and communication, and meeting the unique
task scheduling and resource availability fluctuation chal-
lenges of these platforms [11, 15, 28]. In state-of-the-art
platforms however, the power dissipation in accessing sen-
sors may equal or surpass that of the compute elements (Fig-
ure 1). The received wisdom holds that reducing the power
dissipation of sensor integrated circuits such as gyroscopes
and temperature sensors requires circuit and fundamental
semiconductor technology advances. We advocate a new and
complementary power-reduction approach which builds on
insights into the role of sensors in systems.

1.1 Focus on the true bottleneck: sensor power
Sensors are becoming the dominant source of power dis-
sipation in environment monitoring, wearable, and health-
tracking systems. Several characteristics make sensors espe-
cially amenable to energy savings through approximation.

Figure 1. Logarithmically-scaled sector plot of relative
power dissipation while active, for several state-of-the-
art sensors [3, 19, 20, 23, 24], a Bluetooth Low Energy
radio [22] in advertising/discoverable mode, and an im-
plementation of the lowest-power ARM architecture vari-
ant currently available (ARM Cortex M0+ [8]) running a
while(1) loop from its on-chip SRAM at 2 MHz and 3.0 V.
All but one of the sensors use more power than the processor.

First, sensors are typically stateless, so that errors in one
sample do not propagate to affect the next sample. Digital
computation, in contrast, is typically stateful, so that errors
in control logic may accumulate over time. Second, sensor
interaction is typically transactional, with the obtained val-
ues having limited temporal influence. Third, because sen-
sors are primarily analog circuits, they are better able to
tolerate approximate computing mechanisms that can lead
to catastrophic failures when applied to digital microproces-
sors [12].

But sensor approximation must be appropriately control-
lable to be successful. Algorithms that consume sensor out-
put must be able to specify when and how much approxi-
mation they can tolerate and the low-level sensor interface
software must deliver approximate sensor accesses that sat-
isfy these specifications.

1.2 Lax
As one approach to this challenge, we are developing Lax,
a device driver abstraction and associated hardware support,
that exploits opportunities to trade sensor accuracy for sig-
nificant energy savings. Lax is based on the insight that in
certain phases of their lifetime, the algorithms which process



sensor data, or the humans who consume the overall output
of embedded sensor systems, may be able to tolerate some
amount of error in retrieved sensor values. Lax provides a
device driver abstraction that enables sensor data consumers
to specify how much sensor error they can tolerate. Armed
with this specification of acceptable error levels, Lax then
controls the sensor’s electrical interface to minimize sensor
energy consumption while still delivering acceptable sensor
accuracy. Our proof-of-concept implementation realizes this
tradeoff via a combination of software and printed circuit
board components (there are no required changes to the sen-
sor integrated circuits).

To demonstrate the feasibility of Lax, we performed sen-
sor output data collection and power measurements on a
setup comprising a state-of-the-art ARM Cortex-M0+ pro-
cessor and sensors typical of contemporary sensing and
wearable platforms. The setup uses two programmable volt-
age regulators to control the supply and I/O interface volt-
ages of sensors across nine discrete voltage levels. To show
that the circuit-level changes needed to realize our prototype
setup in deployed systems can be implemented with low
overhead, we have designed (but not yet manufactured) a
custom printed circuit board implementation of a demonstra-
tor system. This implementation shows how an entire system
of sensors, processor, radio interface, and all the necessary
components to implement our proposed techniques, can be
implemented in ~625 mm2, with the additions required to
implement Lax occupying only ~15 mm2.

1.3 How Lax works
Lax uses two techniques, a combination of software and
minimal hardware support, to trade efficiency for accuracy:

Ê Device abstractions for approximation. Lax provides a
device driver abstraction, detailed in Section 2, through
which it enables sensor device accessors to specify the
tolerable degree of imprecision and unreliability. Some
sensors [9] already have limited support for modes which
trade resolution for access power; for these, Lax can
exploit the extant hardware facilities.

Ë Sensor supply scaling. Regardless of already existent
hardware support for trading precision, accuracy, or reli-
ability for power consumption, many sensors can be op-
erated outside their specified supply voltages. This en-
ables usable tradeoffs between the reliability of data ac-
quisition, fidelity of data provided, and power dissipa-
tion. We detail our implementation of this hardware sup-
port in Section 3.

1.4 The prospects for Lax
To illustrate the potential power dissipation versus error
tradeoffs of Lax under sensor supply scaling, Figure 2 plots
power dissipation and retrieved sample noise properties as
a function of supply voltage for two state-of-the-art sen-
sors. For both the humidity sensor and accelerometer, power
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Figure 2. Manufacturer-reported power dissipation [1, 23]
for reliable operation at recommended supply voltages
(points), extrapolated to lower voltages using a physics-
based model (line). It falls by 60.6(1−k2) and 62.6(1−k2)
percent respectively (shaded region), for each factor-k re-
duction from the lowest voltage for reliable operation.

dissipation decreases by a factor of ~4× with a halving of
supply voltage. For the accelerometer, the noise in the re-
trieved signal (measured, by convention, in micro-gravities
per square-root-Hertz, µg/

√
Hz) increases by a factor of

~1.5× with a halving of the supply voltage [1], as shown
inset in the figure.

These savings are larger than the hypothetical savings
posited for future approximate processors [7, 10] and can
be achieved without resorting to the complex microarchitec-
tural changes required by proposed mixed-accuracy proces-
sors. Our preliminary measurements, presented in Section 3,
agree with these illustrative extrapolations, and show power
savings of up to 48% while incurring fewer than 5 sensor
access errors per 100 accesses.

1.5 Example: Lax in systems
Using contemporary operating systems, applications cannot
specify how much precision, accuracy, or reliability they
require from a sensor.

Figure 3 shows the block diagram for a pedometer ap-
plication, as might be incorporated into popular wearable
health-tracking platforms. The figure shows the data flow
from an accelerometer sensor through blocks of the signal
processing needed to perform step counting [29]. All the fa-
cilities for Lax can be logically interposed in the interface to
data acquisition, as shown in the figure.

2. The Lax Device Interface
System software interfaces for approximate device access
should enable the specification of three types of tolerance
to deviations from correct behavior:

• Latency tolerances. Different applications may be able
to tolerate differing latencies in retrieving values from a
sensor. This can be exploited by the hardware facilities
described in Section 3 to reduce the energy required per
sensor sample acquisition.
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Figure 4. In this example, software uses Lax primitives to request sensor values (block Í). The amount of inaccu-
racy, imprecision, or unreliability that is tolerable in responses to those requests is either specified using defaults such as
LX_TOLERANCE_NONE, or application-specific tolerances such as PEDOMETER_TOLERANCE_ACCEL. Although not mandatory, if
used, the meaning of these optional constants are specified explicitly in the tolerable error specification (block Ë). The Lax
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Accelerometer
x-component analysis

y-component analysis

z-component analysis

Feature Extraction

Multi-Axis 
Aggregation

Step Model

Activity 
Detection

Other Models
(e.g., sleep quality detector)

Lax

Figure 3. Data flow in a pedometer application. Samples
from the x-, y-, and z-components of acceleration are typi-
cally first low-pass filtered, then fed into an activity detection
algorithm. If the signature matches walking, these accelera-
tion components are fed into a model for predicting steps
from acceleration signatures.

• Loss or throughput tolerances. When the algorithms
consuming sensor data can tolerate occasional wholly-
incorrect or missing samples, knowledge of this tolerance
of unreliability can be used to reduce sample acquisition
energy.

• Value deviation tolerances. When the algorithms con-
suming sensor values can tolerate small deviations from
accuracy or precision in sensor readings, this can yet
again be exploited to reduce sample acquisition energy.

Lax enables driver writers to specify tolerances to these
types of behavioral aberrations. These specifications can
then be exploited in existing system architectures, as illus-
trated in Figure 4.

2.1 Slax: Specifying Lax sensor access
Tolerances should be specified in the context of a given
sensor type and should be statically checked because it is
possible to specify meaningless, unattainable, or mutually-
contradictory tolerance specifications. Lax provides a small
domain-specific language, Slax, for defining tolerances. Slax
captures the latency, loss, and value-deviation tolerances
of sensor data acquisition and is thus complementary to

interface definition languages such as Devil [16], which are
intended to ease the construction of complete device drivers.

The grammar for Slax is shown in Figure 5, and an ex-
ample specification for an accelerometer is given in Fig-
ure 6. A Slax specification comprises one or more sensor

or tolerance blocks. The sensor blocks describe the error
properties of sensors at various operating points, while the
tolerance blocks denote groups of error tolerance settings
that are required together at various points in an application.

In practice, a driver may use a Lax-default or driver-
specified tolerance specification in accessing a given sensor,
as illustrated in block Í of Figure 4. For example, given the
Slax specifications in Figure 6, the following C fragment
would employ the configuration implied by the constants
PLATFORM_ACCEL_A and PEDOMETER_TOLERANCE_ACCEL:
/* Use Lax to achieve lowest power for required accuracy. */
sampleC = lax_sensor_read(PLATFORM_ACCEL_A,

PEDOMETER_TOLERANCE_ACCEL);

The Lax runtime must use the provided tolerance indi-
cator to determine the best device operating point. When
integrated into contemporary operating systems, it would
then set the properties of the device using, e.g., ioctl()
or equivalent system calls (our proof-of-concept implemen-
tation presented in Section 3 runs over bare metal). The
sensor blocks on the other hand must be based on hard-
ware characterizations. They would ideally be provided by a
hardware platform designer or vendor, but could be overrid-
den by a driver writer’s own sensor block. We provide ex-
amples of the necessary characterizations that yield sensor

blocks in Section 3.

2.2 Challenges
Even though the potential benefits of exploiting tolerance
to imprecision, inaccuracy, and unreliability are significant,
there are several challenges to implementing a system that
can effectively trade those tolerances for performance or
energy-efficiency. For example, a simplistic solution to de-
termining a valid operating point from the sensor block
for a given sensor might be straightforward, using, e.g., a



1 unsignedImm ::= "0" | "1..9" {"0..9"} .
2 stringConst ::= "\"" {Unicode Character} "\"" .
3 integerConst ::= ["+" | "-"] unsignedImm .
4 dRealConst ::= ("0" | "1..9" {"0..9"}) "." "0..9" {"0..9"} .
5 eRealConst ::= (dRealConst | integerConst) ("e" | "E") integerConst .
6 realConst ::= dRealConst | eRealConst .
7 rationalConst ::= integerConst "/" integerConst .
8 numConst ::= integerConst | rationalConst | realConst .
9

10 slaxSpec ::= specHead {defn} .
11 specHead ::= "specification" ident ";" .
12 ident ::= {Unicode Character} .
13 defn ::= sensorDefn | toleranceDefn .
14 sensorDefn ::= "sensor" ident ["@"numConst units] "=" "{" {sensorStmt} "}".
15 toleranceDefn ::= "tolerance" ident "=" "{" {toleranceStmt} "}" .
16 sensorStmt ::= "provide" "(" eClass ")" "=" "{" cStmt {";" cStmt} "}" .
17 toleranceStmt ::= "require" "(" eClass ")" "=" "{" cStmt {";" cStmt} "}" .
18 eClass ::= "deviation" | "latency" | "loss" | "throughput" .
19 cStmt ::= cmpOp numConst units ":" likelihoodExpr | alwaysExpr .
20 likelihoodExpr ::= "likelihood" cmpOp numConst "in" numConst "readings" .
21 alwaysExpr ::= "always" cmpOperator numConst .
22 cmpOp ::= ">" | ">=" | "<" | "<=" | "==" .
23 units ::= "s" | "ms" | "us" | "ns" | "W" | "mW" | "uW" | "nW" | "%" .
24

25 reservedTokens ::= "%" | "(" | ")" | ":" | ";" | "<" | "=" | ">" | "always"
26 | "deviation" | "in" | "latency" | "likelihood" | "loss"
27 | "ms" | "ns" | "occurs" | "provide" | "readings"
28 | "require" | "s" | "sensor" | "specification"
29 | "throughput" | "tolerance" | "us" | "{" | "}" .

Figure 5. EBNF [27] grammar for Slax, a domain-specific language for
specifying latency, throughput, and value deviation tolerances for sensor
access.

1 specification AccelerometerSensor;
2

3 sensor PLATFORM_ACCELEROMETER_A @ 1.6V = {
4 provide (latency) {
5 > 1 ms : likelihood < 1 in 1E6 readings;
6 }
7 provide (deviation) {
8 > 1% : likelihood < 1 in 1E6 readings;
9 > 10% : likelihood < 1 in 1E9 readings;

10 }
11 provide (loss) {
12 occurs: likelihood < 1 in 1E6 readings;
13 }
14 }

1 specification PedometerApp;
2

3 tolerance PEDOMETER_TOLERANCE_ACCEL = {
4 require (deviation) {
5 > 1% : likelihood < 1 in 1000 readings;
6 }
7 require (latency) {
8 > 1ms : likelihood < 1 in 1000 readings;
9 }

10 require (loss) {
11 occurs : likelihood < 1 in 1000 readings;
12 }
13 }

Figure 6. Example Slax specifications. The
sensor and tolerance blocks capture sensor
provisions and application requirements.

lookup table. On the other hand, efficiently picking the oper-
ating point that satisfies the multiple constraints of deviation,
latency, loss, and throughput tolerances, along with timing
performance, average power, and overall energy usage, will
be challenging. Other challenges include:

• Obtaining Slax tolerance specifications. These could
be written by hand, as in Figure 6, when there are known
sensor data fidelity requirements, or could be synthesized
based on dataflow analyses of applications to determine
their error-propagation properties [2, 14].

• Obtaining Slax sensor specifications. As a first step,
these could be constructed from manufacturer-provided
data (such as in Figure 2), or from offline hardware mea-
surements (Section 3). It would however be more versa-
tile to be able to construct sensor specifications in situ,
but such a facility would require appropriate hardware
support.

• Validity checking of Slax specifications.
• Dynamic adaptation of the chosen operating point

based on instantaneous environment conditions (e.g.,
temperature), based on OS or application feedback, or
based on temporal histories of these.

Although we are implementing Slax using traditional com-
piler techniques, we are also investigating the potential ben-
efits of integration with existing tools that ease DSL con-
struction in systems software contexts, such as FoF [6],
HAIL [21], and Termite-2 [18].

Table 1. Sensor devices evaluated, their power dissipation,
and supply voltage ranges for reliable operation.

Sensor Power Dissipation (µW) Supply Range (V)

Gyroscope
L3G4200D [19] 18300 2.4–3.6

IR Temperature
TMP006B [24] 528 2.5–5.5

3. Hardware Prototype and Evaluation
To verify that the energy savings we’ve argued for Lax
are achievable, we performed data integrity measurements
at different degrees of power savings for two sensors. The
sensors, listed in Table 1, are both targeted at mobile and
wearable computing systems and each dissipate more power
when active than the processor shown in Figure 1. In a typ-
ical system, they will also be sampled whenever the proces-
sor wakes from sleep, making their portion of the system’s
overall energy usage also significant.

We operated each at a range of voltages below their nom-
inal operating points and characterized the types of errors
encountered. The possible errors under these conditions are
of two types: Ê sample loss, or erasures (in the information-
theoretic [5] sense), where communication with a sensor
fails; Ë value deviations, where values are retrieved from
a sensor, but they are different from those that would have
been retrieved when operating the sensor at its nominal oper-
ating voltage. Where appropriate, we modified the low-level
interface code for accessing the sensors to recover gracefully
from access failures (e.g., replacing assertions with more
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Figure 8. Programmable voltage regulators typically only
output a discrete set of voltages. In some cases, they can be
mimicked using a software-controlled pulse train and a filter.

graceful return status codes); this worked well for our bare-
metal embedded implementation. When Lax is integrated
into a sophisticated operating system, such changes might
still suffice, or may be augmented with, e.g., techniques such
as microreboots [4] or tools such as Carburizer [13].

3.1 Measurement setup
Figure 7 illustrates the measurement setup. We use an ARM
Cortex-M0+ processor [8] evaluation board to interface with
the sensors, which are mounted on separate breakout boards.
The processor also controls a pair of programmable voltage
regulators [25, 26] which enable the sensors to be operated at
nine discrete voltages between 1.2 V and 2.5 V, with the op-
erating voltage dynamically switchable under software con-
trol. These regulators have small circuit board footprint and
low overheads, with quiescent currents in the nano-Amperes.
Alternatively, the configuration shown in Figure 8 could be
used to achieve even finer-grained control of sensor power
supplies, with lower circuit overhead and possibly better effi-
ciency in powering the sensor device than the programmable
voltage regulator, but at the cost of additional software on the
control processor.

Although our preliminary measurements use off-the-shelf
evaluation boards for all the components, we have also de-
signed (but not yet manufactured) a custom hardware plat-
form integrating all the hardware components necessary to
support Lax. We did this to validate that the necessary hard-
ware support can be implemented in minimal printed circuit
board area (less than 15 mm2).

3.2 Preliminary results and relation to Slax
Figure 9 shows the reduction in dynamic power dissipa-
tion from operating sensors below their nominal voltages,
along with the measured sensor data acquisition error rates
(i.e., erasures). The measurements were performed at sensor
I2C [17] interface data rates of 1 kb/s. The savings in dy-
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Figure 9. Power savings per access versus acquisition er-
ror rate for a state-of-the-art infrared sensor [24] (left) and
gyroscope [19] (right).

namic power dissipation for both sensors are significant: up
to 48% for the IR temperature sensor, and up to 42% for the
gyroscope. In both cases, savings of up to 16% are possi-
ble with no data acquisition errors, and error rates increase
with increasing savings. The error rate at the configuration
of maximum power reduction is less than 5 errors per 100
accesses for the IR temperature sensor, but as high as 1 out
of every 2 accesses for the gyroscope at maximum savings.

The data in the figure are precisely the information
required to construct a provide(loss){...} block of a
sensor statement in Slax, as occurs, e.g., in the example
Slax specification in Figure 6. Similarly, analysis of sensor
values relative to a ground truth would enable synthesis of a
provide(deviation){...} block, while data acquisition at
different data rates will yield the necessary information for
provide(latency){...} and provide(throughput){...}

specifications.
Most sensors with digital interfaces can be queried for

multiple distinct pieces of information, such as the sen-
sor’s configuration, silicon junction temperature (for soft-
ware compensation algorithms), and so on. Each type of in-
formation is typically accessed via a different register inter-
nal to the sensor, and the various types of information are
not equally important. The error rates observed in Figure 9
vary with which of the sensor’s registers are accessed. Slax
sensor specifications built from such characterization data
can capture this variation through the use of separate sensor
blocks for each register, or by incorporating the observed
variation in the likelihood expressions.

4. Summary and Future Prospects
The energy efficiency of many embedded sensor applica-
tions can be improved by driving the electrical interfaces
of sensors in a manner that makes them use significantly
less power, but at the cost of unreliable data acquisition. Lax
lets systems programmers exploit this insight in a controlled
manner. Could even more aggressive energy-versus-fidelity
tradeoffs be had with sensors? We think so, and are inves-
tigating techniques for encoding the data transferred from
sensors to tradeoff the power dissipation of data transfers for
reductions in sensor data fidelity.
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