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ABSTRACT

Generative artificial intelligence systems such as large language
models (LLMs) exhibit powerful capabilities that many see as the
kind of flexible and adaptive intelligence that previously only hu-
mans could exhibit. I address directions and implications of LLMs
for software engineering research.
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1 INTRODUCTION

Software engineering and artificial intelligence have largely com-
prised disjoint subfields of computer science since the inception
of the field in the middle of the 20th century. The focus of soft-
ware engineering research has been, and continues to be, on issues
relevant to software systems that are deployed (or intended to be
deployed). The focus of artificial intelligence research has been on
understanding how to obtain systems that exhibit aspects of human
intelligence, a goal that has been so far from delivering recognizably
intelligent systems that deployability concerns have traditionally
had little or no relevance to the field.!

T acknowledge here that the field of artificial intelligence has produced many useful
deployed systems and techniques. But these systems have traditionally been seen as
spinoffs that do not themselves meaninfully exhibit any aspect of human intelligence.
For much of the history of the field, as soon as a system developed to the point where
it could be deployed, people largely understood the system and its behavior and the
system was no longer considered to exhibit artificial intelligence.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE °24, April 14-20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0217-4/24/04.

https://doi.org/10.1145/3597503.3649399

With the recent advent of generative artificial intelligence in
the form of large language models (LLMs), things have changed.
These systems exhibit capabilities that many recognize as the kind
of flexible and adaptive intelligence that previously only humans
could exhibit. These capabilities include the ability to operate flexi-
bly at different levels of abstraction and formalism in ambiguous
situations with varying amounts of information about both the
situation and the overall goal. This development surprised essen-
tially every expert in the field. Moreover, these capabilities have
proved to be immediately useful across a range of human endeavors.
Artificial intelligence systems are now widely used and promise to
play a central role in many human endeavors moving forward. This
situation places artificial intelligence systems, and more broadly
systems that leverage artificial intelligence within a broader sys-
tem context, squarely within the purview of software engineering.
I’ll consider some recent research that involves modern artificial
intelligence, using these systems as a springboard for a broader
discussion of how the combination of artificial intelligence and
software engineering research may play out over time.

2 LARGE LANGUAGE MODELS AND
TRADITIONAL SOFTWARE ENGINEERING
PROBLEMS

Traditional software systems have been the focus of software engi-
neering for the last several decades. These systems store, retrieve,
transmit, copy, manipulate, and analyze digital data at scale. While
development processes vary, the basic idea is to obtain a system
whose goals and behavior are understood and engineered by human
developers. It is worth noting that this philosophy and approach has
been enormously successful and the resulting systems have had a
transformational effect on our society. Over the last several decades
the field of software engineering has become familiar with the prob-
lems that arise in this context and has delivered (and continues
to deliver) a large body of research motivated by these problems,
with our ability to successfully design and implement this class of
systems proceeding apace. I consider several systems that bring
generative artificial intelligence into this basic framework.

2.1 Program Inference and Regeneration

Program inference and regeneration uses active learning to build a
model of a software system or component, then uses the model to re-

generate a new version of the system or component [Rinard et al.(2018),

Vasilakis et al.(2021), Shen and Rinard(2021)]. The technique has
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enormous promise for a range of software engineering tasks includ-
ing software maintenance and retargeting, functionality extraction
from legacy systems, and the elimination of software supply chain
security vulnerabilities. Our first approach to this problem involved
the deployment of fairly heavyweight programming language tech-
nology — paired combinations of domain specific languages and
corresponding active learning algorithms. While this approach de-
livers guarantees and benefits unavailable with any other currently
available approach, its practical scope has been limited by the fact
that each new domain requires the development of a new domain
specific language and learning algorithm.

LLMs provide an immediate, lightweight alternative approach.
The basic idea is straightforward:

e Component: Give the LLM a component, for example from
a popular software ecosystem such as npm.

o Input Generation: Ask the LLM to generate a set of inputs
for the component.

e Output Generation: Run the component on the inputs to
get corresponding outputs.

e Regeneration: Ask the LLM to generate a program that
implements the input/output examples. Ideally the LLM will
produce a better implementation, for example because any
vulnerabilities in the original component are discarded in the
regenerated version [Vasilakis et al.(2021)] or because the
regenerated version is written in a more desirable language
or can execute in a new environment [Rinard et al.(2018),
Shen and Rinard(2021)].

It is instructive to consider how little effort is required to perform
this set of steps to obtain a regenerated version of a broad range
of components. It is also instructive to apply this idea to range of
components and observe how much more effort can be invested to
maximize the benefits available via this approach. One takeaway
is that current LLMs can produce large amounts of software very
quickly, but getting software you actually want may require more
time and effort. One theme is that the exercise does not resemble
traditional engineering but instead is more like interacting with
a cheerful bureaucracy where you have to know what to ask and
say to get what you want, typically by exploring alternatives until
you succeed (or give up and try other options). And it is never fully
clear what you can hope to get until you get it. Nevertheless, the
ability of LLMs to automatically generate software at scale given
relatively little explicit guidance may fundamentally change the
technical/economic landscape by dramatically reducing the cost
of probable software (especially if the anticipated rapid increases
in the capabilties of LLMs materialize). But improbable (i.e., truly
new) software may be a very different story.

2.2 Acceptable Survivability

One perceived drawback of code generated by LLMs is that it comes
with no guarantees. Here I focus on one important but often un-
derrated and underexplored property, specifically survivability (in
the form of continued meaningful execution in the face of errors
or anomalies) and advocate a survivable by construction approach.
One key insight behind this approach is that most survivable soft-
ware conforms to a reactive model in which (either explicitly or
implicitly) the execution can be decomposed into a sequence of
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computation units, each of which consumes an input unit, executes
a computation that processes the input, then returns back to pro-
cess the next input unit. Such software often exhibits short error
propagation distances — as long as the computation preserves basic
consistency properties, errors in one computation unit typically
do not propagate to successive units as long as the errors are not
fatal [Rinard et al.(2004), Long et al.(2014), Shen and Rinard(2017)].
This property endows large software systems with surprising re-
silience when measures are taken to replace language implementa-
tion mechanisms (such as throwing exceptions for null dereferences
or out of bounds accesses) that preemptively terminate computa-
tions in the face of execution integrity errors with failure oblivious
mechanisms that preserve basic consistency while enabling contin-
ued execution [Rinard et al.(2004)].

Filtered iterators, which atomically discard computation units
that encounter errors (or consistency violations), so that the com-
putation executes as if the corresponding input unit never existed,
provide a model of computation that ensures continued execution
in the face of otherwise fatal errors [Shen and Rinard(2017)]. In
combination with language implementation mechanisms (cyclic
memory allocation [Nguyen and Rinard(2007)] and infinite loop
termination [Kling et al.(2012)]) that finitize each computation unit
(by eliminating all sources of unbounded resource consumption),
filtered iterators can guarantee survival via continued execution.
Embedding LLM generated code inside a filtered iterator or forc-
ing the LLM to generate filtered iterators can ensure survivability.
Filtered iterators are therefore an example of a general class of
behavioral regulation mechanisms that integrate unreliable or un-
predictable components into a larger predictable, reliable system.

It is worth noting that LLMs themselves (like many other ma-
chine learning models) implement an inherently survivable model
of computation. Because the LLM model of computation is so sim-
ple, LLMs are not susceptible to many of the errors that traditional
software may encounter. Mechanisms that bound the computation
(for example, by bounding the number of generated tokens) can
guarantee survivability. In part because of this desirable property,
we may see systems that use behavioral regulation mechanisms to
acceptably embed machine learning models such as LLMs within
larger software contexts, with LLMs implementing core processing
computations [Rinard(2003)].

An intriguing property is that LLM outputs are essentially sam-
ples from a probabilistic model of the data on which they were
trained. A query can be seen as eliciting one or more samples from
the probabilistic model conditioned on the query prompt. One no-
table and useful aspect that LLMs share with other probabilisitic
models is the ability to generate multiple samples. This fact enables
strategies that repeatedly sample to find a response that has de-
sirable properties (for example, automatically generated code that
produces corrent outputs on a given input set or an automatically
generated image that elicits positive emotions in a human observer).
Current LLMs produce samples one token at a time, enabling strate-
gies that efficiently steer the response by resampling tokens that
do not conform to some property that the response must satisfy
(for example, conforming to a syntactic requirement specified by a
grammar).

Here we can see the field transitioning away from an engineer-
ing approach into a hybrid approach that includes components
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whose behavior may be poorly understood or unpredictable. One
major theme is applying techniques that place enough context
around these components to recover guarantees and/or predictabil-
ity for the system as a whole. Here past research on integrating
unreliable components into acceptable software systems may be
particularly relevant [Rinard(2003)]. Keys to success include 1)
asymmetrical engineering: identifying and directing engineering
resources to parts of the system that must execute predictably and
reliably [Carbin and Rinard(2010)] and 2) behavioral regulation: sur-
rounding components with mechanisms (such as filtered iterators
or acceptability-oriented computing [Rinard(2003)]) that regulate
their interaction with the rest of the system to deliver predictable
and reliable behavior (guardrails is often another name for this con-
cept). These techniques, appropriately deployed, can deliver a full
range of acceptability properties and not just continued execution.

2.3 Security and Trust

Because software generated by LLMs comes with no guarantees,
security and trust are likely to play a prominent role. There are
a variety of techniques for addressing potential issues, including
techniques (such as those described in the previous subsection)
that place generated code in a context that enforces acceptability
properties such as security or trust.

Here I highlight a potential threat model, specifically using com-
promised training data to subvert the LLM to generate code con-
taining security vulnerabilities. It is important to realize that the
most likely attack scenario would not involve compromising the
enormous amount of pretraining data, but instead the relatively
much smaller amount of fine tuning data (which is a much more
feasible proposition). Trust is an important but much less precisely
defined property. Obtaining trust is an instance of the much broader
large language model alignment problem, which is still in its very
early stages of exploration and development.

2.4 Probable vs. Improbable Software

LLMs can be seen as powerful probabilistic models of their training
data that generate outputs by sampling from the trained distribution
conditioned on the prompt. As such, they can be deployed to execute
prioritized searches of complex search spaces to (ideally) quickly
target desirable points in the space. Many problems in traditional
software engineering, as in computer science more generally, can
be framed as search problems [Harman and Jones(2001)]. Promi-
nent examples include automatic software repair [Monperrus(2018),
Zhang et al.(2023), Perkins et al.(2009), Le Goues et al.(2012)]
[Nguyen et al.(2013), Long and Rinard(2016)], software fault local-
ization [Wong et al.(2016)], and test input generation

[Wang et al.(2024)]. Given their ability to model data, match pat-
terns at scale, and generate probable responses to complex queries,
the field has already delivered an enormous amount of research
that deploys LLMs to more precisely and efficiently target desirable
points in the search spaces that underly many traditional software
engineering problems. This is a classic case of deploying new tech-
nology to better solve existing problems and, given the remarkable
flexibility and scale of LLMs, I expect this trend to only accelerate
in the near future.
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There is the widespread expectation that we are still in the very
early stages of LLM development and, given the progress to date,
may see very rapid improvements in the capabilities of large lan-
guage models to generate probable software. If so, the cost and
difficulty of obtaining probable software will only decrease. I also
note that any such development may not necessarily always pro-
duce positive outcomes — for example, the ability to cheaply and
efficiently generate enormous amounts of probable software may
increase the ability of attackers to much more rapidly, cheaply, and
efficiently explore the space of potential security exploits.

The implications of LLMs for the creation of truly new (and there-
fore presumably improbable) software are unclear, if only because
the field currently has no good understanding of how improbable
truly new software really is. I anticipate a spectrum of possibilities,
from software that mostly combines existing patterns and compo-
nents in new and creative ways (and is therefore mostly probable) to
software that is improbable from the ground up. To my knowledge
the field currently has no good understanding of where along this
spectrum systems are likely to fall, how probable existing software
systems are, how different existing software systems are from each
other, or where any probability/improbability is concentrated in
existing or envisioned software systems. Developing meaningful
metrics and methodologies to understand these distinctions is a
potentially very interesting direction for the field.

3 INVERTING THE SOFTWARE ENGINEERING
PROCESS

Perhaps the most surprising aspect of LLMs is their ability to ab-
sorb information at scale, then engage with that information at
all levels of abstraction to convert the information into flexibly
accessible knowledge. This ability hints at the promise of inverting
the software engineering process by enabling LLMs to perform
(or play major roles in) many activities previously understood to
be the domain of humans alone. At the extreme end of the spec-
trum, instead of developers telling the computer what to do, the
computer tells the developers what system to build (and perhaps
even builds the system itself). I have been exploring this idea in the
context of using LLMs in an undergraduate compiler development
class. Compilers have been extensively studied for decades now,
with much of the resulting knowledge available in papers and text-
books that one would expect to see in the training data for modern
LLMs. Perhaps because of this reason, our very early experience is
promising (although it is far from clear what the final result will

be) [tra([n. d.]a), tra([n. d.]b), tra([n. d.]c)].

3.1 Requirements Gathering

Requirements gathering has traditionally been seen as a human
activity focusing on interacting with stakeholders to understand
their needs. LLMs may transform this activity in at least the follow-
ing ways: 1) guiding the requirements gathering process to ensure
all relevant stakeholders are identified, 2) ensuring that all impor-
tant aspects of the envisioned system are addressed, 3) suggesting
functionality that the system should include, 3) for well under-
stood classes of systems, automatically generating requirements
(as opposed to gathering requirements from human stakeholders),
and 4) writing portions or even all of the requirements documents.
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For many systems we may eventually see requirements gathering
shifting from a human activity to an activity largely driven by inter-
actions with an LLM. Relevant research problems here include un-
derstanding how to best interact with the LLM to elicit meaningful
requirements, how to achieve the best balance between gathering
requirements from humans and LLMs, and which domains are best
suited for this approach.

3.2 Specification and Design

Much like requirements gathering, these activities have tradition-
ally been seen as primarily human activities. Because LLMs can
draw on a huge collection of software specification and design
information, they hold out the promise of similarly automating
aspects of the specification and design process for traditional soft-
ware systems. Because LLMs can interact so flexibly at multiple
levels of abstraction and precision, interacting with them can help
developers conceptualize, explore, and evaluate ideas throughout
the design process (to the extent that developers remain involved
in these processes). Drawing on the enormous amount of design
knowledge present in the training data, we anticipate that LLMs
may prove to be particularly useful in identifying particularly pro-
ductive or problematic aspects of human-generated designs.

4 UNDERSTANDING GENERATIVE
ARTIFICIAL INTELLIGENCE SYSTEMS

The behavior of modern generative artificial intelligence systems
arises because of poorly understood interactions between the struc-
ture, training data, and training process that created the system.
The resulting systems exhibit surprising capabilities (well beyond
what experts thought was possible even several years ago) and un-
predictable, sometimes desirable, sometimes undesirable behavior.
This fact motivates research into understanding the reasons behind
these phenomena.

Here I focus on recent research investigating whether LLMs
develop any meaningful understanding of the domain in which
they operate or whether their behavior is due only to leveraging
statistical correlations at scale [Jin and Rinard(2023)]. To make the
investigation more concrete, the research focuses on the semantics
of programs that control agents in a simulated world. An advantage
of this approach is its foundation in a precise formalized context
devoid of ambiguity.

The experiment trains an LLM to, given an input and output grid
world with a robot, synthesize a robot program that transforms
the input world to the output world. This program is written in a
language that includes operations that move and rotate the robot
and enable the robot to act on the world in various ways. The
question is whether the internal state of the LLM works with any
semantic representation of the robot or world state as it synthesizes
the sequence of operations in the program — essentially, does the
LLM understand any aspect of the robot or world as it generates
the program?

One complication is that any such semantic state may be present
but encoded so that it is not immediately apparent. One solution is
to train a probe to extract the state if present. It turns out that 1) it is
indeed possible to train a probe to extract semantically meaningful
aspects of the robot state such as the facing direction of the robot,
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2) it is also possible to probe for these aspects of the robot state
after one or two (as yet ungenerated) operations into the future,
raising the possibility that the LLM may be predicting future states
to guide the synthesis, 3) during training the ability of the probe to
extract these aspects of the robot state exhibits a phase transition
from not being able to extract the state to being able to do so, and
4) the phase transition is correlated with a corresponding phase
transition in the ability of the LLM to synthesize a robot program
that correctly transforms the input grid world to the output grid
world.

A final question is whether the probe is simply learning to pro-
cess syntactic information about the program generated to date
(for example, the probe may be learning to execute a record of the
program generated to date) so that the semantics is in the probe
and not in the LLM. An experiment that attempts to train a probe
to map the same LLM states to different robot states based on an
alternate semantics of the robot operations fails to produce a probe
as accurate as the probe that works with the original semantics
on which the LLM was trained, supporting the hypothesis that the
LLM state includes some semantic state (and not just some surface
syntactic representation without meaning).

Given the scale and complexity of modern generative artificial
intelligence systems, and the prominent role that such systems are
likely to play in our future society, I expect to see research that is
designed to better understand these systems, including how they
operate and the reasons for their behavior, to play a prominent role
in the field moving forward.

5 NEW SOFTWARE WITH LARGE LANGUAGE
MODELS

New technologies are often first deployed in existing contexts to
better solve existing problems. But if the technology is sufficiently
transformational, the ultimate role it plays is almost always very
different from its initial motivation and deployment. Generative
artificial intelligence appears to offer capabilities that are qualita-
tively different from previous software systems, most prominently
the ability to operate flexibly and seamlessly at an abstract con-
ceptual level, at a detailed formal level, and all levels in between.
Particularly impressive is the ability to coherently integrate in-
formation from very different domains (try asking an LLM what
the relationship is between software development and surfing in
Portugal).

Current LLMs are trained on enormous amounts of data (by
some accounts a substantial fraction of all of the human produced
text currently extant) and feature an enormous number of training
parameters. The resulting complexity of these models places them
outside traditional approaches for understanding and predicting
system behavior (here I refer to understanding the design, docu-
mentation, and source code of a software system). Instead of being
implemented to satisfy a set of requirements or meet a specification,
the behavior of the system emerges through the training process.
A resulting new strength is the ability to operate in situations with
ambiguous, vague goals pursued in the presence of incomplete and
varying amounts of information. Presented with such situations,
LLMs have the ability to internally generate a precise goal, fill in
missing information, and produce a fully realized response.
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But many generative artificial intelligence uses (and arguably
the most potentially transformative uses) involve situations where
an unambiguous specification is not a goal and it is not realistically
possible to ever state a complete range of correctness or accept-
ability properties. Such use cases often involve subjective human
interactions, with desirable/acceptable behavior varying across
people, organizations, and cultures. There is also the hope that
generative artificial intelligence systems will eventually become
creative entities that generate new knowledge, new problems and
solutions, and ultimately new culture. Ensuring that the resulting
behavior is consistent with the goals of the people, organizations,
and societies using the system is the artificial intelligence alignment
problem. This is an emerging area of research that will only grow
in importance over time.

Judging by the published software engineering literature to date,
the field remains largely focused on applying this new technology
to traditional software engineering problems and has yet to start
exploring the truly revolutionary potential that this technology may
offer. To fully realize this opportunity, the software engineering
community will need to pivot to embrace more ambiguous and
subjective system goals than have been the traditional focus of
the field (while also developing techniques to ensure conformance
to objective requirements and specifications when available and
appropriate).
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