Research in Program Repair and Approximate
Computing: A Retrospective

Martin C. Rinard
MIT EECS & CSAIL
Cambridge, MA
rinard @csail.mit.edu 0000-0001-8095-8523

Abstract—This paper and accompanying talk trace the tra-
jectory of my research in program repair and approximate
computing. The prevailing value system in the field at the time
focused on program correctness as a fundamental goal. This
research, in contrast, was driven by a new perspective that
emphasized acceptable (but not necessarily fully correct) survival
through errors and the automatic identification and exploitation
of performance versus accuracy tradeoff spaces implicitly present
in computations coded to operate at only a single point in this
space.

Because the research challenged the prevailing value system
at the time, it met with some skepticism despite empirical
results highlighting its effectiveness. The following quote from
an anonymous reviewer may give some idea of the reaction:

“The basic idea—to assist incorrect programs in their
efforts to emit incorrect output—is an abomination and
if adopted would likely usher in a new dark age.”

As the research progressed, we gained a deeper understanding
of the reasons behind the surprising — at least to us — phenom-
ena we observed. We were able to formalize this understanding to
generate source code patches and obtain performance, accuracy,
and acceptability guarantees for computations that leveraged our
techniques, bringing the research full circle to once again focus
on reasoning statically about program behavior but with different
reasoning techniques and guarantees.

Finally, I discuss lessons learned and future relevance of
the principles, perspectives, and concepts that this research
pioneered.

Index Terms—Program Repair, Approximate Computing

I. INTRODUCTION

The citation for the 2025 ACM SIGSOFT Outstanding
Research Award reads: “for fundamental contributions in pi-
oneering the new fields of program repair and approximate
computing.” In this paper and accompanying talk I'll tell the
story of this research — how it started, where it went, and
what I ultimately learned from doing it.

The research itself started with a change in perspective.
My research to that point had focused on formal semantics,
program analysis, program verification, and parallel comput-
ing, which saw the computation as a rigid logical artifact
whose semantics should be precisely specified and preserved.
Consistent with the dominant value system in the field at the
time, if an error was detected, the right response was to stop
the computation rather than produce an incorrect output. While
I enjoyed this research when I did it (and am still proud of
this research today), over the years I had become increasingly

aware of limitations of this perspective and was ready for a
something new.

I therefore decided to view computations as flexible biologi-
cal systems and see where that led. An important (some might
say only) prerequisite for success as a biological organism
is to survive. So I focused on techniques that enabled com-
putations to survive, which meant the computation continued
to execute, ideally to produce acceptable (but not necessarily
perfect) results. Inverting the goal, I identified reasons why
the computation would die and (initially) started with two:
memory errors (such as null pointer or out of bounds access
errors) and (with Brian Demsky) data structure consistency
violations (my research group had been working on inferring
and verifying data structure consistency properties so this was
an obvious target). Instead of attempting to correct the defects
that caused the errors, which would have put the research
back into the mainstream at the time, we focused on recovery
techniques for surviving these errors when they occurred:

o Data Structure Repair: This technique started with an
(inferred or specified) data structure consistency speci-
fication and traversed the data structure to find and fix
any data structure consistency violations by enforcing
the specification. One notable aspect was that there was
no guarantee that the data structure would be correct
(because, for example, the error may have destroyed data
that should have been present in the data structure). The
guarantee was instead that the data structure would be
consistent, which we hoped would be enough for the
computation to survive.

Whether this was a good idea or not was an empirical
question — one could imagine situations where it would
work well and situations where it would not work at all.
So we acquired some computations with data structure
corruption errors and tried it. The results were surprising
even to us — the computations exhibited a level of
resilience that we did not anticipate. And the reasons
for this resilience were varied and illuminating. Without
repair, the inconsistency typically caused the computation
to crash or terminate. In some cases the repair simply
filled in missing intermediate data structure nodes, en-
abling subsequent data structure operations to execute
correctly. In other cases the repair produced a consistent,
mostly correct, data structure missing some data, with



the resulting computation providing acceptable service to
users potentially with some anomalies (which was much
better than no service at all).

Failure-Oblivious Computing: This technique targeted
null or out of bounds reads and writes. Dealing with
writes was easy — simply discarding the write enabled
the program to continue. Dealing with reads was more
of a challenge because the program needed a value to
continue. Not having a better idea, we decided to hand
back a manufactured value. We settled on the sequence 0,
1,2,0,1,3,0, 1, 4, ... because we knew (from the value
prediction literature in computer architecture) that 0 and
1 were by far the most common values read in computer
programs and we thought that if 0 or 1 didn’t keep the
computation satisfied it might need some specific value
and this sequence would (eventually) give it that value.
A challenge here was finding the right context for the
technique. We initially started with small computations
with inserted errors and it didn’t work at all. At the time
I was working with a young Cristian Cadar (at the time
an undergraduate at MIT) and although he (like almost
everyone else I spoke with about the technique) thought it
would never work, he suggested we try to use it on com-
putations with buffer overflow security vulnerabilities.
The goal was to neutralize the attack (prevent the attacker
exfiltrating data or taking over the computation) and
keep the computation executing to successfully process
subsequent legitimate inputs or requests.

So we got a C compiler that performed bounds checks,
implemented the technique, acquired programs from the
Unix ecosystem with security vulnerabilities (email pro-
grams, an http server, and a file management tool), and
tried the technique. It worked great — the computations
felt like they were bulletproof as they executed smoothly
through malicious inputs that triggered errors. The stan-
dard Pine mail agent, for example, could be taken down
during initialization when it attempted to load a mail
file containing an email with a carefully crafted From
field. With failure-oblivious computing, Pine survived to
provide full functionality.

As we started looking into the reasons for the overall
success of the technique, it became clear that the pro-
grams could all be seen as generalized servers processing
sequences of requests, with each request triggering off
a subcomputation to handle the request. Because these
subcomputations were loosely coupled, the technique
enabled a subcomputation that encountered an error to
complete without corrupting the basic integrity of the
computation (because of the bounds checks, any writes
that would otherwise have corrupted the computation
were discarded) and the computation went on to suc-
cessfully process subsequent requests. Moreover, errors
often occurred when malformed or malicious requests
exercised missing input sanity checks, minimizing any
concerns about the acceptability of results generated from
subcomputations that processed these requests.

It is difficult to convey just how much skepticism this
direction initially inspired. The programming language com-
munity in particular was deeply committed to correctness as a
fundamental goal and reacted very negatively to the concept of
executing through errors, especially with manufactured values.
The following quote from an anonymous reviewer may give
some idea of the intensity of the initial reaction:

“The basic idea—to assist incorrect programs in
their efforts to emit incorrect output—is an abom-
ination and if adopted would likely usher in a new
dark age.”

The computer systems and software engineering communities
were also skeptical but also more open to the idea — indeed,
I have consistently found that one of the strengths of the
software engineering community is the value it places on
new ideas and concepts and its willingness to consider ideas
that go against the current value system. Because of this
openness, many of the results that I am most proud of have
been published in the software engineering literature.
Despite this skepticism, I persisted. The surprising empirical
success of the techniques, along with the knowledge that large
production software systems were rife with defects yet still
worked well, helped keep me going. But this experience helped
me more fully appreciate just how powerful an entrenched
ideology can be and how resistant fields can be to evidence
that contradicts the value system that the field has bought into.

II. PROGRAM REPAIR

At this point I had made the perspective transition and
validated the new perspective on two classes of errors. Despite
the skeptical initial response and corresponding difficulties
publishing the research, I focused on extending the scope
to systematically target other basic execution integrity errors,
with the ultimate goal of making computations immune to
this otherwise fatal class of errors. Cyclic memory allocation
(with Huu Hai Nguyen) eliminated memory leaks by statically
preallocating a fixed size circular buffer for all objects allo-
cated at potentially leaky allocation sites. This technique was
particularly controversial because, unlike previous techniques,
which did not interfere with error-free computations, cyclic
memory allocation had the potential to introduce new errors
into otherwise error-free computations by overlaying multiple
live objects into a single allocation slot within the circular
buffer. Even in such cases, however, the technique promoted
successful continued execution by preserving the type safety
of objects allocated at that site.

One empirical insight from this research is how archaic, no
longer relevant functionality acquired over the lifetime of a
software system can place the entire computation at risk —
many of the memory leaks we targeted occurred in obscure,
no longer relevant but still network exposed functionality that
could be successfully targeted by outside attackers. This fact
minimized concerns that anomalies caused by overlaying live
objects could impair the useful functionality of the system.
Daniel Dumitran extended this technique to cyclically allocate
other leakable resources such as file descriptors. Detecting



and escaping infinite or long running loops (with Michael
Kling, Sasa Misailovic, and Michael Carbin) ensured that the
continued execution did not become unresponsive.

One particularly notable project was a collaboration led by
Jeff Perkins that included Michael Ernst, Saman Amarasinghe,
and a host of students and postdocs. ClearView worked
with stripped x86 binaries to learn invariants over registers
and memory locations, then generate patches that eliminated
errors by enforcing the learned invariants. This substantial
engineering effort produced a system that worked with a
community of running computations to detect errors, evaluate
multiple candidate patches for these errors in parallel, iden-
tify successful patches, then apply those successful patches
throughout the community without restarting or otherwise
perturbing the running computations. In multiple adversarial
Red Team exercises, ClearView enabled successful continued
execution in the face of otherwise successful security attacks. I
was later told that when the sponsor saw the results, they said it
was the closest thing to a miracle they had ever seen. Although
it was straightforward to translate the generated binary patches
back to source-level patches, the research did not emphasize
that capability.

III. APPROXIMATE COMPUTING

This direction emerged as a fortuitous offshoot of my
program repair research. For my PhD research I had developed
a language, Jade, for parallel and distributed computing. Jade
structured the computation as sets of tasks and I had identified
a common pattern in Jade computations, specifically that the fi-
nal result was usually computed by combinining contributions
from many parallel tasks. A standard error recovery technique
would detect tasks that failed for one reason or another, then
reexecute the task. But given how many tasks contributed to
the final result, I wondered just how important the contribution
from any one task could be. Inspired by the success of our
previous program repair techniques, I decided to instead just
discard failed tasks (and their contributions to the final result).
One particularly appealing aspect of this approach was that it
tolerated deterministic software errors, for which reexecution
was pointless because reexecuted tasks would just fail again
and the computation would never make forward progress.

To my surprise, I found that it was often possible to discard
results from half or more of the tasks, failed or not, with
minimal changes to the final computed result!" This fact
opened up a new research direction: improving performance
by discarding tasks. I developed models that made it possi-
ble to improve performance by purposefully navigating the
resulting performance versus accuracy tradeoff and also used
the technique to eliminate poor parallel efficiency caused by
waiting for long running tasks at parallel barriers.

'With the very important caveat that some tasks, for example tasks that
built data structures accessed by the rest of the computation, had to execute
without error for the computation as a whole to succeed. This turned out
to be a recurring pattern in approximate computing. We called regions of
the computation that had to execute without error critical regions and found
combinations of profiling, fault injection, input fuzzing, and influence tracing
to be an effective way to identify these critical regions.

Unfortunately, few computations come with explicit task
boundaries. To make the technique broadly applicable, we
had to find another class of subcomputations to skip. Because
the tasks in Jade programs often just encapsulated multiple
iterations of time consuming loops, an obvious target was loop
iterations in sequential programs. The project involved Stelios
Sidiroglou-Douskos and Sasa Misailovic, who modified the
LLVM compiler to skip iterations of time consuming loops,
using profiling to explore the resulting loop perforation space
to find loops that offered appealing performance versus ac-
curacy tradeoffs. Hank Hoffmann supplied the final missing
piece when he suggested applying the technique to the Parsec
benchmark suite. The technique was useful to Hank because
his research involved applying control theory to manage
resource fluctuations and he needed a way to modulate the
resources required to produce desired results. Because the
technique exposed a controllable performance versus accuracy
tradeoff space implicitly (and often unexpectedly) present in
computations coded to operate at a single point in this space,
it gave him this capability.

IV. LIVING IN THE COMFORT ZONE

Over the course of the research our analysis indicated
that errors were often triggered because an anomalous input
violated some constraint that the code implicitly assumed but
did not check. Typical inputs essentially never triggered such
errors — any such missing checks had been encountered
during testing or normal use and the defect corrected. This
observation led to the concept of a comfort zone — a region
of inputs similar to those the code has seen before and for
which it is almost certain to deliver expected and acceptable
behavior. Applying the basic philosophy of this research
direction, I manually developed rectifiers that processed inputs
to move them into the comfort zone. The results highlighted
the effectiveness of these rectifiers in protecting computations
against inputs that triggered errors while still delivering value
available in such inputs to users.

This initial success motivated input rectification, a technique
that automatically learns constraints characterizing typical in-
puts that the computation processes successfully, then enforces
those constraints on new inputs to eliminate the ability of
the new input to trigger the error. This research, with Fan
Long, Vijay Ganesh, Michael Carbin, and Stelios Sidiroglou-
Douskos, produced rectified inputs that the computation could
safely process instead of discarding. The empirical results
showed that, when applied to image files, the technique
preserved much of the useful information in images that would
have otherwise triggered errors (or been discarded by input
filters). One particularly appealing aspect of this research was
how it generalized a program repair goal of preserving value
present in computations that encounter errors to an input repair
goal of preserving value present in inputs that, without input
rectification, trigger errors.



V. DISPLAYS AND DEVICES

When Phillip Stanley-Marbell joined my research group,
he took the research in a new direction, exploring energy
reducing approximations targeting sensors, embedded systems,
communication, and displays. The resulting approximations
often exploited the fact that the target computations and
hardware platforms often worked with imprecise or noisy
data (both input and output) and were therefore inherently
approximate (even if not explicitly engineered to exploit this
approximation). This research showed that, for these computa-
tions on these platforms, an appropriately managed increase in
the amount of approximation could often generate significant
energy savings while preserving overall end to end utility. A
particularly compelling project targeted displays, leveraging
the flexibility of the human visual system to modify images to
reduce display power dissipation while preserving acceptable
display color accuracy.

In another project, Jurgen Cito and Julia Rubin worked with
Phillip to reduce energy consumption in mobile devices by
identifying and throttling recurrent advertising and analytics
requests — a nice example of how identifying and targeting
redundant activities can reduce resource consumption.

VI. BUILDING ON UNDERSTANDING

While our first results were empirical, we always prioritized
understanding the reasons behind the phenomena we observed.
This understanding first focused on the interaction between the
specific computations we worked with and the techniques we
deployed on those computations. Building on our understand-
ing of these interactions, we were ultimately able to generalize
and formalize that understanding in the form of static analysis
systems and programming language constructs that made it
possible to reason about and obtain guarantees for the behavior
of the resulting computations. We also developed systems for
automatically generating source-level patches that corrected
code defects responsible for triggered errors. Interestingly
enough, these efforts brought the research full circle back to
static analysis and verified guarantees, but with a different
perspective, new properties, and new analysis and verification
techniques.

A. Filtered Iterators

Our analysis of the reasons why our initial program repair
techniques worked so well produced the insight that computa-
tions are often (implicitly) structured as servers that process se-
quences of requests. Even when such computations apparently
process a single unified input (such as an input file or stream
of bytes), the first step is to (potentially recursively) subdivide
the input into separate input units, each of which triggers off
a skippable subcomputation. A capstone result in this line of
research, with Jiasi Shen, produced a programming language
construct, filtered iterators, that made this pattern explicit
in the code. The empirical evaluation demonstrated striking
improvements in the overall robustness, reliability, and even
correctness of computations coded with this construct. One
key finding was that input units that trigger errors are often

malformed and trigger an error because they exercise a missing
input sanity check. In these cases the correct response is often
to discard the input unit, with the filtered iterator construct
therefore producing fully correct behavior. One particularly
appealing aspect is the elimination of explicit error-handling
code — because the programming language implementation
detects and skips subcomputations that encounter execution
integrity errors, there is no need to include checks for these
errors in the code. The resulting code simplification makes
the mainline structure of the computation more apparent and
easily understood.

This research touched on two issues, error detection and
efficient atomic execution, that I feel could easily benefit from
more attention. The filtered iterator research targeted universal
execution integrity errors (out of bounds access, divide by
zero, null pointer access) and supported explicit aborts but did
not address silent data corruption errors. Sara Achour’s Topaz
system used anomaly detection to identify and discard tasks
that produced unacceptably inaccurate results, but I always felt
we could have explored the topic more deeply.

It became evident early on that maintaining the integrity
of the computation was a prerequisite for the success of
both program repair and approximate computing. Since we
were aspiring to execute through errors, a potential threat to
this integrity was errors that damaged this integrity beyond
recovery. Using atomic execution to prevent the effects of
encountered errors from propagating beyond aborted tasks is
one way to prevent this propagation. Jiasi’s filtered iterator
system implemented a straightforward atomic task execution
mechanism, but I always felt that there was a program anal-
ysis opportunity to minimize the state management overhead
required to obtain efficient atomic execution.

B. Reasoning About Approximation

Once we understood the reasons why approximate computa-
tions were successful, we were in a position to develop formal
reasoning systems to provide reliability and accuracy guaran-
tees (here accuracy is the distance between the result that the
computation produces and the corresponding fully accurate
result; reliability is the probability that the computation will
produce an acceptably accurate result). Michael Carbin and
Sasa Misailovic, with contributions from Deokhwan Kim, Sara
Achour, and Zichao Qi, led the development of a relational
program logic and verification system for specifying and veri-
fying reliability and accuracy requirements, with the accuracy
specified relative to an ideal error and noise free computation.
This research targeted an approximate hardware platform with
both reliable and more energy efficient unreliable components.
Because the specifications identify a range of acceptable com-
putations, they enable an optimization algorithm that automat-
ically maps computations and data to reliable and unreliable
hardware components to minimize energy consumption while
still providing the specified accuracy and reliability guarantees.

Our investigation of the reasons behind the success of task
and loop iteration skipping indicated that they worked because
they targeted forms of redundancy implicitly present in the



computations they successfully optimized. Collaborations with
Sasa Misailovic, Dan Roy, Zeyuan Allen Zhu, and Jonathan
Kelner formalized the reasons for this success and generated
probabilistic accuracy guarantees for approximate computa-
tions that leveraged these and other forms of redundancy.
Although neural networks are inherently approximate, re-
search with Yichen Yang showed that it is possible to leverage
a model of the state space of the world and the observation
process that produces neural network inputs to specify and
verify the correctness of neural networks that perform percep-
tion tasks. Kai Jia developed efficient SAT based reasoning
techniques for verifying the robustness of binarized neural
networks. Leveraging perspectives from previous approximate
computing research, this research worked with definitions
of correctness and robustness appropriate for the underlying
approximate neural network model of computing.

C. Source Level Program Repair

The early program repair research focused on recovering
from encountered errors. Fan Long’s contributions to this ap-
proach set him up to pursue a different goal: generating source
patches that corrected code defects to eliminate errors before
they occurred (this research targeted code defects exposed by
incorrect behavior on one or more test inputs). The research
started with the finding that existing test inputs alone were
inadequate for identifying correct (or even acceptable) patches
— patches that simply deleted code involved in errors were
often able to produce correct behavior on the available test
inputs. This finding changed the methodology in the field —
credible evaluations of automatic patch generation techniques
now focus not just on test input behavior, but also include an
analysis (typically performed by humans) of patch correctness.

Fan’s research used machine learning to identify correct
patches within the often much larger set of plausible patches
(patches which produced correct results for all of the test
inputs). This line of research ultimately produced (with Peter
Amidon) a system that learned patch patterns from successful
human patches. Stelios Sidiroglou-Douskos, with help from
Fan Long and Eric Lahtinen, pioneered a system that trans-
ferred missing input sanity checks from binary donor applica-
tions into source-level patches in recipient applications. These
projects were two more examples of the research coming full
circle, in this case back to the goal of eliminating errors by
correcting coding defects at the source level.

D. Large Language Models and Program Repair

One currently prominent topic is large language models for
automatic patch generation. Based on recent experience, large
language models are powerful pattern matchers but also, as
demonstrated in research with Charles Jin, show intriguing
signs of spontaneously inducing models of the reality reflected
in their training data. Recent research with Rem Yang illus-
trates how this dual capability can place the large language
model in a dilemma when attempting to reason about code.
The idea is to take code that is in distribution, apply mutations
that produce plausibly correct but out of distribution code, then

ask the large language model to reason about the code. In
this situation the large language model sometimes exhibits the
capability to both 1) revert the mutation to reason about the
original in distribution code and 2) reason successfully about
the mutated code as written. Moreover, we have seen chain of
thought dialogue in which the model, when given a mutated
version, states that it thinks there is a defect in the mutated
version and the correct version is the original version; however,
because it was instructed to work with the code exactly as
written, the model states that it is following instructions to
generate the correct result for the mutated version. Notably,
only the most recently released large language models exhibit
this dual capability — earlier models are much more biased
towards reverting the mutation and much less successful at
reasoning about the mutated version (while also being less
successful at reasoning about the original version). This fact
suggests that an ability to reason, at least about the semantics
of code, may only now be emerging in the latest large language
models.

Here is what I think this may mean for automatic patch
generation and software engineering tasks more generally.
I expect large language models to be especially effective
when the code is in distribution and pattern matching can
successfully solve problems. For example, I expect large
language models to perform well in generating patches that
correct missing checks in common programming patterns as
long as the training data contains examples that include these
missing checks. But we have also observed situations in which
the language model may mistakenly think the provided code
is incorrect and generate patches that introduce coding defects
into the correct provided code. We have seen this happen,
for example, when the language model mistakenly thinks the
correct code has an off by one error.

One consequence of these kinds of disparities in the ability
of large language models to operate successfully in distribution
versus out of distribution could easily be selective pressure
that drives the software engineering community towards the
use of coding patterns that appear commonly in the training
data, with a corresponding homogenization of code across the
software ecosystem.

Large language models also dramatically reduce the cost
of obtaining in distribution code. Automatic patch generation
is a technology motivated in part by the need to protect the
investment present in the current code base. By reducing the
cost of new code, large language models could open up a
compelling alternative to automatic patch generation, specifi-
cally wholesale regeneration of new code instead of patching
old code. Jiasi Shen’s program inference research pioneered
this direction for database backed applications and (with Varun
Mangalick) for applications that use key/value storage systems.
Later research expanded the scope of regeneration to target
software supply chain vulnerabilities. In addition to Jiasi, this
later research included contributions from Nikos Vasilakis,
Achilles Benetopoulos, Shivam Handa, Alizee Schoen, Julian
Dai, Evangelous Lamprou, and Grigoris Ntousakis. Replac-
ing legacy code with regenerated code could accelerate the



homogenization of the sofware ecosystem and reduce the cost
of migrating legacy systems. One particularly appealing aspect
of this approach is that it enables the large language model to
generate code that is fully within distribution, where it operates
most successfully. Automatic patch generation, in contrast,
forces the language model to work with code that it may not
have generated and may be less able to work with successfully.

Regenerated code needs some kind of a specification, even
if (or especially if) the specification is partial. Starting with
an existing (potentially defective, insecure, or obsolete) im-
plementation, Jiasi’s research used active learning to uniquely
identify a corresponding (correct, secure, up to date) program
in a domain specific language, then regenerate a new imple-
mentation in a target language or for a target implementation
platform. Large language models open up the possibility of
doing a direct translation from old source code (but run the risk
of transferring defects or vulnerabilities along). The flexibility
of large language models opens up the possibility of working
with code from multiple different systems, code written in
different programming languages, or multimodal specifications
that combine code, natural language, pictures, diagrams, or
any other forms of information. The ability of large language
models to fill in missing pieces can enable them to work
with partial specifications, including partial multimodal spec-
ifications, with the language model completing (or even fully
regenerating) the specifications, code, or both.

VII. FROM APPROXIMATE TO ANALOG

All throughout the approximate computing research, I had
been looking for hardware that could provide a compelling
platform for the approximate optimizations we could support.
Phillip Stanley-Marbell’s embedded devices and battery driven
displays were one example of such a platform but I was
looking for more. I found it when I ran into Rahul Sarpeshkar
at a Divali party at Arvind’s house. I asked him what he did for
research, he said analog computing, and we had the platform.

Sara Achour identified dynamical systems as an appropriate
software abstraction and took on the project of compiling
dynamical systems onto the configurable analog device that
Rahul had at the time. With support from Yannis Tsividis the
project later moved on to target the Sendyne HCDCv2. These
devices presented a challenging but also very fruitful model
of computation that motivated the development of completely
new reasoning capabilities and optimization algorithms. A
major challenge was that the software for such devices is
directly exposed to, and must effectively manage, problematic
physical phenomena such as noise, bandwidth limits, sampling
rate limits, current and/or voltage range limits, quantization
errors, and manufacturing variability that can cause analog
components to deviate significantly from their ideal behavior.
Dealing with all of these issues was a major challenge and
Sara’s thesis presenting techniques to effectively manage all of
these phenomena while still generating efficient computations
was a blockbuster that came in over 500 pages long!

For my PhD thesis I had used experimental hardware (the
Stanford DASH machine) and therefore had some exposure to

the associated frustrations and challenges. I can still remember
the day the DASH machine finally become reliable enough to
finish the Jade computations in my thesis. I stayed late into
the night getting numbers, hardly being able to believe the
machine was finally working. But the analog devices Sara was
working with were next level challenging beyond anything I
had previously worked with and it took a special researcher
to get reliable results.

VIII. WHAT I LEARNED

Computation Characteristics: The most immediate findings
identified and explored previously unsuspected characteristics
that the research surfaced in the computations we worked with:

« Inherent Resilience: One of the most surprising findings
was the implicit resilience inherently present in so many
computations. Once this resilience was unlocked via the
application of the simple recovery strategies that failure-
oblivious computing pioneered, computations became
remarkably robust against attacks or other events that
exercised coding defects.

So why did software (at the time) have the reputation of
being so brittle and why was the emphasis on eliminating
as many coding defects as possible? One explanation may
involve the mindset of successful software developers —
during development, terminating the execution as close
as possible to the defect promotes rapid defect identifica-
tion and correction (a major focus of many developer
activities). Moreover, continuing after encountering an
error (especially with manufactured values) takes the
computation outside of its anticipated execution envelope,
which can make developers nervous about the behavior
that the continued execution may produce.

This mindset, along with the alluring possibility of ob-
taining a defect free artifact that will never fail because
of wear (a major concern for most other engineering
disciplines), can easily produce computations that are
not designed to tolerate errors. Note here the divergence
between the mindsets and interests of developers and
users — users (who typically have no ability to fix
defects) are often better off with the service that even
somewhat degraded continued execution can provide.

o Tradeoff Spaces, Overengineering, and End to End
Optimization: Another surprising finding was the im-
plicit, and in many cases unsuspected, presence of an
underlying performance versus accuracy tradeoff space
in computations coded to operate at a single point in
this tradeoff space. And that this tradeoff space could
be unlocked by simple, automated techniques such as
skipping loop iterations.

I attribute the presence of this tradeoff space to computa-
tional redundancy, often redundancy present in multiple
contributions that combine to deliver a final result. Ex-
amples of patterns that exhibit this kind of redundancy
include search space enumeration (where the approxima-
tion skips some of the points in the search space), search
metrics (where the search is driven by a metric where the



approximation delivers a less accurate but still serviceable
metric), and iterative improvement (where the approx-
imation executes fewer iterations of the improvement
loop). This redundancy exists because the computations
are arguably overengineered, for example because the
developer is satisficing? instead of optimizing or because
the computation does not need the full accuracy provided
by utilized libaries (which are engineered to operate
successfully across a range of contexts including contexts
that require more accuracy). The success of our ap-
proximate computing research highlights how automated
techniques can optimize end to end across the scope of
the entire computation.

e Critical and Forgiving Regions: At the start of the
research it became immediately clear that computations
had two kinds of regions: critical regions that had to
execute without perturbation for the computation to exe-
cute acceptably (an early prominent example was code
that builds data structures that the remaining compu-
tation uses) and forgiving regions that could tolerate
substantial perturbations without threatening the survival
or acceptable accuracy of the computation. We found
that identifying and targeting forgiving regions was a
prerequisite for the success of approximate computing.

General Research Advice: In retrospect, we did several things
right that should generalize to other research efforts. These
are more about the research process than any specific research
finding.

e Adopt A Guiding Perspective: This research started
with a change in perspective, specifically seeing compu-
tations as flexible biological organisms whose existence
is worth preserving. This new (at the time) perspective
surfaced ideas and techniques not perceivable within the
prevailing perspective. An advantage of this approach is
that it helps guide the research when the best direction
may be uncertain so that you can sustain a long arc
research program that produces a coherent body of work
with a unified message that becomes realized over time.

o Invert the Value System: Fields often become captured
by an entrenched value system. Researchers that inter-
nalize this value system can become blind to directions
that go against this value system. One way to become
creative is to pick an implicit assumption that has become
entrenched in the field (for example, that computations
should execute correctly and stop when they encounter an
error), negate that assumption, and see where it leads. The
resulting perspective shift can often surface directions that
others, trapped in the dominant value system, cannot see.
Should you choose to do this, be prepared for a skeptical
reaction. Fields can become fully committed to an ide-
ological orthodoxy and react strongly against challenges
to that orthodoxy. Moreover, there are often very good
reasons for this orthodoxy, with the rationale supporting

2A portmanteau introduced by Herb Simon meaning “to pursue the mini-
mum satisfactory condition or outcome” (www.merriam-webster.com).

the orthodoxy well developed over time and internalized
by the field. The rationale for new ideas, on the other
hand, is typically not nearly as developed and the initial
rationale may even be just wrong. If you encounter this
situation one encouraging aspect is that you are not alone
— researchers in all areas of science and technology who
have successfully pioneered new ideas consistently report
encountering substantial pushback and initial rejection of
the idea when it first appears.

Mindset Conflict and Adversarial Thinking: New ideas
and directions can be fragile — they often need time,
development, and refinement to realize their potential.
Working on a new idea can be discouraging because it
can be difficult to come up with a rational argument for
why it will eventually succeed. Especially at the early
stages of the research the only way forward is often to
just suspend disbelief and keep going.

On the other hand, to develop the idea you need to be able
to identify and acknowledge the drawbacks, then choose
between several options: 1) fix the drawbacks, 2) wait and
hope a fix becomes apparent as the research progresses,
3) accept the drawbacks as inherent in the idea and move
forward, or 4) consider the drawbacks fatal and abandon
the idea (which is unfortunately the right decision in some
cases).

This situation sets up a conflict between two prereq-
uisites for success: believing in the idea despite all of
the evidence (currently) against it versus acknowledging
and dealing with the drawbacks. Adversarial thinking
(alternating between attacking and defending the idea)
can be a useful mental tool here. Attacks often surface
issues that need to be fixed; defending against the attacks
can often clarify thinking and surface new directions
that strengthen the research. Successfully balancing these
conflicting perspectives, which can be difficult since
they require you to maintain two very different mental
perspectives, is one key to success.

Talk to People: From the very beginning of the research
I spoke to as many people as I could. I found that just
articulating an idea often clarified how I thought about it
and generated new insights and directions. While much of
the reaction (at least at the start) was skeptical, hearing
and responding to different perspectives helped me de-
velop the ideas in positive directions. Sometimes people
provided missing pieces that helped the idea succeed —
Cristian Cadar’s identification of security vulnerabilities
as a good target for failure-oblivious computing and Hank
Hoffmann’s identification of the Parsec benchmarks as a
good target for loop iteration skipping were both critical
to the overall success of those two projects.

Note that you should talk to a much wider circle of
people than your collaborators, colleagues in the field,
or even technical professionals — I often found the
fresh perspective of and basic questions from people not
familiar with the research or even the technical context in
which the research took place to be enormously valuable



in clarifying my understanding of what I was doing and
why. Indeed, I found that propositions people in the field
found very difficult to accept were often seen as common
sense by people outside the field — in some cases because
of their perspective as users of technology rather than
creators of technology, in others because of their expertise
in fields with very different contexts and value systems.

o Pay Attention to Unexpected Findings: The approx-
imate computing research started with an unexpected
finding (that it was possible to acceptably skip large
numbers of tasks in Jade computations) encountered in
a research program directed towards an entirely dif-
ferent goal (simplifying error recovery). The resulting
approximate computing research highlights how paying
attention to and appropriately following up on these kinds
of surprising results can often generate productive new
research directions.

¢ Good Collaborators: Finally, this research was fortunate
in the quality and quantity of collaborators it manged
to attract. These collaborators refined and extended the
ideas, proved them out in multiple contexts, and identified
new and productive directions. Be fortunate in your
choice of collaborators!

IX. MISSED OPPORTUNITIES

In retrospect, there are two directions that I think we would
have done well to pursue but didn’t. The first is generating
source-level patches earlier in the research. These patches
would have translated the dynamic recovery techniques for
detected errors into source-level patches that implemented
the recovery actions for those errors. This would have been
relatively straightforward to do and would have broadened
the scope of the research and eliminated the need for a
nonstandard runtime environment (in retrospect, a barrier to
adoption).

The second direction is applying approximate computing
to neural networks. As the approximate computing research
was winding down, neural networks started their rise to the
central role they now play in computing. Neural networks,
and the results they produce, are fundamentally approximate
to begin with and would have been a compelling target for
optimizations that exploited further approximation opportu-
nities to improve performance, energy efficiency, or other
goals. Indeed, many optimizations that have since been applied
to neural networks target redundancy profitably exploitable
by skipping or otherwise removing computation. Examples
include distillation, pruning, and quantization (some pioneered
by Michael Carbin and Jonathan Frankle after Michael’s
graduation). This fact highlights the generalizable validity of
the basic premise of our approximate computing research.

While there are a variety of reasons we did not pursue these
directions at the time, one reason is the fog of research. Once
the research was in full swing we were in the middle of it
with many promising directions available. In this situation it
can be difficult to fully optimize the directions one chooses to
pursue.

X. THE PRESENT

Developments have validated the basic perspective that
this research advocated. As software has become ever more
integrated into the basic functions of society, continued mean-
ingful execution, even at the cost of some local anomalies
if the alternative is denial of service, has only become more
important. And consistent with our initial findings, preserving
basic data consistency and computation integrity (which our
techniques emphasized) is a prerequisite for this meaningful
continued execution. One basic principle that we advocated
was that aspiring to software perfection could be counter-
productive and acceptability was often a more realistic and
productive goal.

As systems continue to grow in complexity and scale,
something is always going to be wrong somewhere, and
the importance of this principle continues go grow. Current
systems are now request driven and designed to tolerate and
encapsulate errors in request triggered computations, often
by discarding computations that encounter errors. Indeed,
many of the systems upon which our society depends operate
successfully because of the implicit resilience inherent in
systems that work with this basic structure.

Systems that work with noisy data are inherently approx-
imate, which often opens up ways to further exploit this
approximation to promote other goals (such as energy con-
sumption, increased system scope, or better responsiveness).
The two dominant categories of data today, sensor data from
the physical world and unstructured data from the Internet,
are both noisy and systems that process this data (most
recently large language models) are inherently approximate
and often leverage that approximation in service of other
goals. Approximation and approximate computing are now
pervasive across the entire field of computer science, with
many optimizations built on the basic approach of successfully
navigating performance versus accuracy tradeoffs exposed by
skipping partially redundant computations.

XI. THE FUTURE

The software engineering context has changed significantly
since this research was initiated, most prominently with the
advent of code generated by large language models. The
basic model of computation that these large language models
implement is approximate — they are trained on noisy, un-
structured data and produce probabilistically generated results.
Optimizations that target resource consumption, in both train-
ing and inference, heavily exploit the flexibility that approx-
imation brings. New programming models like probabilistic
programming are also inherently approximate. Approximate
computing, including exploiting approximation opportunities
available in redundant computations for resource optimization
and error tolerance, is now central to computing and will only
become more important in the future.

At the same time, traditional computing systems that work
with digital data will remain an important foundation of our
baseline computing infrastructure. These systems are driven
by cascading sequences of requests at scale. While I expect



code generated by large language models and the use of
safer programming languages to eliminate many of the basic
execution integrity errors that our early research targeted,
things will continue to go wrong in various ways, with
resilience in the form of continued execution in the face of
these largely unanticipated events only growing in importance.
Whether the code is generated by large language models,
human developers, or some combination, I therefore expect
acceptability based error tolerance techniques to continue to
play a major role in ensuring the overall success of our
computing infrastructure now and in the future.

Reduced Cost of In Distribution Software: Large language
models will significantly reduce the cost of obtaining in dis-
tribution software at scale. Reductions in the cost of resources
have often driven transformational societal change, even if
there is a delay in understanding how to utilize the resource.
Software has traditionally been a relatively expensive resource
that required specialized expertise to obtain. Libraries have
captured developer effort and expertise in reusable form for
decades; I expect language models to provide a much more
fluid, flexible automated mechanism for accessing and building
on encapsulated expertise. One consequence may be a reduced
commitment to an existing code base, with maintenance re-
placed by regeneration (and a concomitant reduction in the
value of technologies such as automated patch generation
that are designed to preserve and extend the value present
in a given code base). As part of this process we may see
software designs, programming languages, and coding patterns
converge to a consensus around those most in distribution for
large language models. For an early example of the incentives
that will drive this convergence, we have seen large language
models tasked with correcting errors incorrectly introduce
errors into correct but out of distribution code, disincentivizing
the use of out of distribution code. This consensus will emerge
organically via the interaction between exising training sets
and new code (from either human developers or large language
models) entering subsequent training sets.

More generally, large language models may reduce the cost
of reducing domain expertise to code, changing the balance
between the value of domain expertise and software develop-
ment expertise. In my experience one of the most valuable
talents that software developers bring to the development of
software that is deeply embedded in a domain is the ability to
generalize from specific problems in the domain to concepts
and processes that generalize across the entire domain. Domain
experts often think primarily in terms of the problem in front
of them, while software that operates within the domain must
work more generally across the domain. If language models
can generalize, with the generalization process potentially
drawing on their background knowledge, this may reduce the
cost of going from specific problems in the domain to general
concepts and processes across the domain.

One of the more potentially impactful aspects of language
models is their ability to capture the full range of knowl-
edge and expertise present in their training data, then make
this knowledge and expertise flexibly available. The ability

to automatically generate unlimited amounts of code with
automated feedback immediately available makes software
a particularly appealing target because it enables essentially
unlimited training data and learning.

Requirements, Specifications, and Designs: In addition to
capturing code, large language models capture associated
information about requirements, specifications, and designs.
Because aspects of these elements appear repeatedly across
multiple software systems, we may be looking at a future
in which language models play a major role in defining
requirements, generating specifications, and providing designs
that implement these specifications in addition to providing
code. Because of the remarkable fluency that large language
models exhibit with this kind of information, we can ex-
pect to see language models deliver polished artifacts in all
of these areas. This opens up the possibility of generating
verifiable connections between requirements, specifications,
designs, and software, which could help promote cohesion
across the software system and address current concerns about
the correctness of software obtained from language models.

XII. FURTHER READING

For more on the following topics, see the referenced web
pages, whch contain summaries of the research and links to
relevant papers:

o Broad Research Overview:

https://people.csail.mit.edu/rinard/research/

o Acceptability-Oriented Computing:
https://people.csail.mit.edu/rinard/research/
AcceptabilityOrientedComputing/

« Approximate Computing:
https://people.csail.mit.edu/rinard/research/
ApproximateComputing/

o Automatic Patch Generation:
https://people.csail.mit.edu/rinard/research/
AutomaticPatchGeneration/

e Code Transfer:
https://people.csail.mit.edu/rinard/research/CodeTransfer/

o Data Structure Consistency:
https://people.csail.mit.edu/rinard/research/
DataStructureConsistency/

« List of Papers:
https://people.csail.mit.edu/rinard/paper/

XIII. SELECTED PAPERS

Automatic Patch Generation: The following three papers

present automatic patch generation techniques. The first two

generate source level patches; the third generates binary
patches that can be applied to running programs without
restarts or service interruptions.

Fan Long, Peter Amidon, and Martin C. Rinard (2017). “Au-
tomatic inference of code transforms for patch generation”.
In: Proceedings of the 2017 11th Joint Meeting on Founda-
tions of Software Engineering, ESEC/FSE 2017, Paderborn,
Germany, September 4-8, 2017. ACM, pp. 727-739. URL:
https://doi.org/10.1145/3106237.3106253.



Fan Long and Martin C. Rinard (2016b). “Automatic patch
generation by learning correct code”. In: Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2016, St.
Petersburg, FL, USA, January 20 - 22, 2016. ACM, pp. 298—
312. URL: https://doi.org/10.1145/2837614.2837617.

Jeff H. Perkins, Sunghun Kim, Samuel Larsen, Saman P.
Amarasinghe, Jonathan Bachrach, Michael Carbin, Carlos
Pacheco, Frank Sherwood, Stelios Sidiroglou, Gregory T.
Sullivan, Weng-Fai Wong, Yoav Zibin, Michael D. Ernst,
and Martin C. Rinard (2009). “Automatically patching errors
in deployed software”. In: Proceedings of the 22nd ACM
Symposium on Operating Systems Principles 2009, SOSP
2009, Big Sky, Montana, USA, October 11-14, 2009. ACM,
pp- 87-102. URL: https://doi.org/10.1145/1629575.1629585.

Data Structure Repair: The following paper is the capstone
paper in the data structure repair line of research.

Brian Demsky and Martin C. Rinard (2006). “Goal-Directed
Reasoning for Specification-Based Data Structure Repair”.
In: IEEE Trans. Software Eng. 32.12, pp. 931-951. URL:
https://doi.org/10.1109/TSE.2006.122.

Approximate Computing: The following two papers present
loop perforation (skipping loop iterations) as an optimization
and as a performance profiling technique for finding approxi-
mate regions of the program that deliver large performance
improvements at the cost of small losses in accuracy. The
third paper presents task skipping as an error tolerance and
approximate optimization technique.

Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoff-
mann, and Martin C. Rinard (2011). “Managing per-
formance vs. accuracy trade-offs with loop perforation”.
In: SIGSOFT/FSE’11 19th ACM SIGSOFT Symposium on
the Foundations of Software Engineering (FSE-19) and
ESEC’11: 13th European Software Engineering Conference
(ESEC-13), Szeged, Hungary, September 5-9, 2011. ACM,
pp.- 124-134. URL: https://doi.org/10.1145/2025113.
2025133.

Sasa Misailovic, Stelios Sidiroglou, Henry Hoffmann, and
Martin C. Rinard (2010). “Quality of service profiling”. In:
Proceedings of the 32nd ACM/IEEE International Confer-
ence on Software Engineering - Volume 1, ICSE 2010, Cape
Town, South Africa, 1-8 May 2010. ACM, pp. 25-34. URL:
https://doi.org/10.1145/1806799.1806808.

Martin C. Rinard (2006a). “Probabilistic accuracy bounds
for fault-tolerant computations that discard tasks”. In: Pro-
ceedings of the 20th Annual International Conference on
Supercomputing, ICS 2006, Cairns, Queensland, Australia,
June 28 - July 01, 2006. ACM, pp. 324-334. URL: https:
//doi.org/10.1145/1183401.1183447.

Error Recovery and Error Tolerance: The following pa-
pers present input rectification, which automatically enforces
learned or manually implemented input constraints to move in-
puts that would otherwise trigger errors into the comfort zone
of the computation (familiar inputs for which the computation
is almost certain to deliver acceptabile behavior), and failure-

oblivious computing, which discards out of bounds writes

and manufactures values for out of bounds reads, enabling

computations to execute through otherwise fatal errors to
successfully process subsequent inputs and requests.

Fan Long, Vijay Ganesh, Michael Carbin, Stelios Sidiroglou,
and Martin C. Rinard (2012). “Automatic input rectifica-
tion”. In: 34th International Conference on Software Engi-
neering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland.
IEEE Computer Society, pp. 80-90. URL: https://doi.org/
10.1109/ICSE.2012.6227204.

Martin C. Rinard (2007b). “Living in the comfort zone”. In:
Proceedings of the 22nd Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2007, October 21-25, 2007, Mon-
treal, Quebec, Canada. ACM, pp. 611-622. URL: https:
//doi.org/10.1145/1297027.1297072.

Martin C. Rinard, Cristian Cadar, Daniel Dumitran, Daniel M.
Roy, Tudor Leu, and William S. Beebee (2004). “Enhancing
Server Availability and Security Through Failure-Oblivious
Computing”. In: 6th Symposium on Operating System De-
sign and Implementation (OSDI 2004), San Francisco, Cal-
ifornia, USA, December 6-8, 2004. USENIX Association,
pp- 303-316. URL: http://www.usenix.org/events/osdi04/
tech/rinard.html.

Color Approximation for Energy Efficient Displays: The
following paper presents a technique for manipulating dis-
played images to optimize energy consumption while mini-
mizing the impact on human perception.

Phillip Stanley-Marbell, Virginia Estellers, and Martin C.
Rinard (2016). “Crayon: saving power through shape and
color approximation on next-generation displays”. In: Pro-
ceedings of the Eleventh European Conference on Computer
Systems, EuroSys 2016, London, United Kingdom, April 18-
21, 2016. ACM, 11:1-11:17. URL: https://doi.org/10.1145/
2901318.2901347.

Compiling to Reconfigurable Analog Devices: The fol-

lowing paper presents the Legno compiler, which compiles

dynamical systems onto a physical (as opposed to simulated)
reconfigurable analog device.

Sara Achour and Martin C. Rinard (2020). “Noise-Aware
Dynamical System Compilation for Analog Devices with
Legno”. In: ASPLOS ’20: Architectural Support for Pro-
gramming Languages and Operating Systems, Lausanne,
Switzerland, March 16-20, 2020. ACM, pp. 149—-166. URL:
https://doi.org/10.1145/3373376.3378449.

XIV. PAPERS By TopPIC

Automatic Patch Generation

Fan Long, Peter Amidon, and Martin C. Rinard (2017). “Au-
tomatic inference of code transforms for patch generation”.
In: Proceedings of the 2017 11th Joint Meeting on Founda-
tions of Software Engineering, ESEC/FSE 2017, Paderborn,
Germany, September 4-8, 2017. ACM, pp. 727-739. URL:
https://doi.org/10.1145/3106237.3106253.



Fan Long and Martin C. Rinard (2016a). “An analysis of the
search spaces for generate and validate patch generation
systems”. In: Proceedings of the 38th International Con-
ference on Software Engineering, ICSE 2016, Austin, TX,
USA, May 14-22, 2016. ACM, pp. 702-713. URL: https:
//doi.org/10.1145/2884781.2884872.

Fan Long and Martin C. Rinard (2016b). “Automatic patch
generation by learning correct code”. In: Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2016, St.
Petersburg, FL, USA, January 20 - 22, 2016. ACM, pp. 298—
312. URL: https://doi.org/10.1145/2837614.2837617.

José Pablo Cambronero, Jiasi Shen, Jiirgen Cito, Elena L.
Glassman, and Martin C. Rinard (2019). “Characteriz-
ing Developer Use of Automatically Generated Patches”.
In: 2019 IEEE Symposium on Visual Languages and
Human-Centric Computing, VL/HCC 2019, Memphis, Ten-
nessee, USA, October 14-18, 2019. IEEE Computer Society,
pp. 181-185. URL: https://doi.org/10.1109/VLHCC.2019.
8818884.

Stelios Sidiroglou-Douskos, Eric Lahtinen, Fan Long, and
Martin C. Rinard (2015). “Automatic error elimination by
horizontal code transfer across multiple applications”. In:
Proceedings of the 36th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, Portland,
OR, USA, June 15-17, 2015. ACM, pp. 43-54. URL: https:
//doi.org/10.1145/2737924.2737988.

Fan Long and Martin C. Rinard (2015). “Staged program
repair with condition synthesis”. In: Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4,
2015. ACM, pp. 166-178. URL: https://doi.org/10.1145/
2786805.2786811.

Zichao Qi, Fan Long, Sara Achour, and Martin C. Rinard
(2015). “An analysis of patch plausibility and correctness
for generate-and-validate patch generation systems”. In:
Proceedings of the 2015 International Symposium on Soft-
ware Testing and Analysis, ISSTA 2015, Baltimore, MD,
USA, July 12-17, 2015. ACM, pp. 24-36. URL: https://
doi.org/10.1145/2771783.2771791.

Jeff H. Perkins, Sunghun Kim, Samuel Larsen, Saman P.
Amarasinghe, Jonathan Bachrach, Michael Carbin, Carlos
Pacheco, Frank Sherwood, Stelios Sidiroglou, Gregory T.
Sullivan, Weng-Fai Wong, Yoav Zibin, Michael D. Ernst,
and Martin C. Rinard (2009). “Automatically patching errors
in deployed software”. In: Proceedings of the 22nd ACM
Symposium on Operating Systems Principles 2009, SOSP
2009, Big Sky, Montana, USA, October 11-14, 2009. ACM,
pp- 87—102. URL: https://doi.org/10.1145/1629575.1629585.

Data Structure Repair

Brian Demsky and Martin C. Rinard (2006). “Goal-Directed
Reasoning for Specification-Based Data Structure Repair”.
In: IEEE Trans. Software Eng. 32.12, pp. 931-951. URL:
https://doi.org/10.1109/TSE.2006.122.

Brian Demsky, Michael D. Ernst, Philip J. Guo, Stephen
McCamant, Jeff H. Perkins, and Martin C. Rinard (2006).
“Inference and enforcement of data structure consistency
specifications”. In: Proceedings of the ACM/SIGSOFT In-
ternational Symposium on Software Testing and Analysis,
ISSTA 2006, Portland, Maine, USA, July 17-20, 2006. ACM,
pp. 233-244. URL: https://doi.org/10.1145/1146238.
1146266.

Brian Demsky and Martin C. Rinard (2005). “Data structure
repair using goal-directed reasoning”. In: 27th International
Conference on Software Engineering (ICSE 2005), 15-21
May 2005, St. Louis, Missouri, USA. ACM, pp. 176-185.
URL: https://doi.org/10.1145/1062455.1062499.

Brian Demsky and Martin C. Rinard (2003a). “Static Spec-
ification Analysis for Termination of Specification-Based
Data Structure Repair”. In: 14th International Symposium
on Software Reliability Engineering (ISSRE 2003), 17-20
November 2003, Denver, CO, USA. IEEE Computer Society,
pp. 71-84. URL: https://doi.org/10.1109/ISSRE.2003.
1251032.

Brian Demsky and Martin C. Rinard (2003b). “Automatic
detection and repair of errors in data structures”. In: Pro-
ceedings of the 2003 ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages and Applica-
tions, OOPSLA 2003, October 26-30, 2003, Anaheim, CA,
USA. ACM, pp. 78-95. URL: https://doi.org/10.1145/
949305.949314.

Approximate Computing

Michael Carbin, Sasa Misailovic, and Martin C. Rinard (2016).
“Verifying quantitative reliability for programs that execute
on unreliable hardware”. In: Commun. ACM 59.8, pp. 83—
91. URL: https://doi.org/10.1145/2958738.

Sara Achour and Martin C. Rinard (2015). “Approximate
computation with outlier detection in Topaz”. In: Proceed-
ings of the 2015 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2015, part of SPLASH 2015, Pitts-
burgh, PA, USA, October 25-30, 2015. ACM, pp. 711-730.
URL: https://doi.org/10.1145/2814270.2814314.

Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and
Martin C. Rinard (2014). “Chisel: reliability- and accuracy-
aware optimization of approximate computational kernels”.
In: Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages & Ap-
plications, OOPSLA 2014, part of SPLASH 2014, Portland,
OR, USA, October 20-24, 2014. ACM, pp. 309-328. URL:
https://doi.org/10.1145/2660193.2660231.

Sasa Misailovic, Deokhwan Kim, and Martin C. Rinard
(2013). “Parallelizing Sequential Programs with Statistical
Accuracy Tests”. In: ACM Trans. Embed. Comput. Syst.
12.2s, 88:1-88:26. URL: https://doi.org/10.1145/2465787.
2465790.

Martin C. Rinard (2013). “Parallel Synchronization-Free Ap-
proximate Data Structure Construction”. In: 5th USENIX
Workshop on Hot Topics in Parallelism, HotPar’l3, San



Jose, CA, USA, June 24-25, 2013. USENIX Association.
URL: https : // www . usenix . org / conference / hotparl3 /
workshop-program/presentation/rinard.

Michael Carbin, Sasa Misailovic, and Martin C. Rinard (2013).
“Verifying quantitative reliability for programs that execute
on unreliable hardware”. In: Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA
2013, part of SPLASH 2013, Indianapolis, IN, USA, Octo-
ber 26-31, 2013. ACM, pp. 33-52. URL: https://doi.org/10.
1145/2509136.2509546.

Michael Carbin, Deokhwan Kim, Sasa Misailovic, and Mar-
tin C. Rinard (2013). “Verified integrity properties for safe
approximate program transformations”. In: Proceedings of
the ACM SIGPLAN 2013 Workshop on Partial Evaluation
and Program Manipulation, PEPM 2013, Rome, Italy, Jan-
uary 21-22, 2013. ACM, pp. 63—66. URL: https://doi.org/
10.1145/2426890.2426901.

Michael Carbin, Deokhwan Kim, Sasa Misailovic, and Mar-
tin C. Rinard (2012). “Proving acceptability properties of
relaxed nondeterministic approximate programs”. In: ACM
SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’12, Beijing, China - June 11 -
16, 2012. ACM, pp. 169-180. URL: https://doi.org/10.1145/
2254064.2254086.

Zeyuan Allen Zhu, Sasa Misailovic, Jonathan A. Kelner,
and Martin C. Rinard (2012). “Randomized accuracy-aware
program transformations for efficient approximate com-
putations”. In: Proceedings of the 39th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2012, Philadelphia, Pennsylvania, USA, Jan-
uary 22-28, 2012. ACM, pp. 441-454. URL: https://doi.org/
10.1145/2103656.2103710.

Sasa Misailovic, Stelios Sidiroglou, and Martin C. Rinard
(2012). “Dancing with uncertainty”. In: Proceedings of the
2012 ACM workshop on Relaxing synchronization for mul-
ticore and manycore scalability, RACES@SPLASH 2012,
Tucson, Arizona, USA, October 21, 2012. ACM, pp. 51-60.
URL: https://doi.org/10.1145/2414729.2414738.

Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa
Misailovic, Anant Agarwal, and Martin C. Rinard (2011).
“Dynamic knobs for responsive power-aware computing”.
In: Proceedings of the 16th International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2011, Newport Beach, CA,
USA, March 5-11, 2011. ACM, pp. 199-212. URL: https:
//doi.org/10.1145/1950365.1950390.

Sasa Misailovic, Daniel M. Roy, and Martin C. Rinard
(2011). “Probabilistically Accurate Program Transforma-
tions”. In: Static Analysis - 18th International Symposium,
SAS 2011, Venice, Italy, September 14-16, 2011. Pro-
ceedings. Vol. 6887. Lecture Notes in Computer Science.
Springer, pp. 316-333. URL: http://hdl.handle.net/1721.1/
73897.

Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoff-
mann, and Martin C. Rinard (2011). “Managing per-

formance vs. accuracy trade-offs with loop perforation”.
In: SIGSOFT/FSE’11 19th ACM SIGSOFT Symposium on
the Foundations of Software Engineering (FSE-19) and
ESEC’11: 13th European Software Engineering Conference
(ESEC-13), Szeged, Hungary, September 5-9, 2011. ACM,
pp.- 124-134. URL: https://doi.org/10.1145/2025113.
2025133.

Sasa Misailovic, Stelios Sidiroglou, Henry Hoffmann, and
Martin C. Rinard (2010). “Quality of service profiling”. In:
Proceedings of the 32nd ACM/IEEE International Confer-
ence on Software Engineering - Volume 1, ICSE 2010, Cape
Town, South Africa, 1-8 May 2010. ACM, pp. 25-34. URL:
https://doi.org/10.1145/1806799.1806808.

Martin C. Rinard, Henry Hoffmann, Sasa Misailovic, and
Stelios Sidiroglou (2010). “Patterns and statistical anal-
ysis for understanding reduced resource computing”. In:
Proceedings of the 25th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA 2010, October 17-21,
2010, Reno/Tahoe, Nevada, USA. ACM, pp. 806-821. URL:
https://doi.org/10.1145/1869459.1869525.

Martin C. Rinard (2007a). “Using early phase termination
to eliminate load imbalances at barrier synchronization
points”. In: Proceedings of the 22nd Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA 2007, October
21-25, 2007, Montreal, Quebec, Canada. ACM, pp. 369—
386. URL: https://doi.org/10.1145/1297027.1297055.

Martin C. Rinard (2006a). “Probabilistic accuracy bounds
for fault-tolerant computations that discard tasks”. In: Pro-
ceedings of the 20th Annual International Conference on
Supercomputing, ICS 2006, Cairns, Queensland, Australia,
June 28 - July 01, 2006. ACM, pp. 324-334. URL: https:
//doi.org/10.1145/1183401.1183447.

Error Recovery and Error Tolerance

Fan Long, Stelios Sidiroglou-Douskos, and Martin C. Rinard
(2014). “Automatic runtime error repair and containment via
recovery shepherding”. In: ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI
'14, Edinburgh, United Kingdom - June 09 - 11, 2014.
ACM, pp. 227-238. URL: https://doi.org/10.1145/2594291.
2594337.

Fan Long, Vijay Ganesh, Michael Carbin, Stelios Sidiroglou,
and Martin C. Rinard (2012). “Automatic input rectifica-
tion”. In: 34th International Conference on Software Engi-
neering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland.
IEEE Computer Society, pp. 80-90. URL: https://doi.org/
10.1109/ICSE.2012.6227204.

Martin C. Rinard (2007b). “Living in the comfort zone”. In:
Proceedings of the 22nd Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2007, October 21-25, 2007, Mon-
treal, Quebec, Canada. ACM, pp. 611-622. URL: https:
//doi.org/10.1145/1297027.1297072.



Michael Kling, Sasa Misailovic, Michael Carbin, and Mar-
tin C. Rinard (2012). “Bolt: on-demand infinite loop escape
in unmodified binaries”. In: Proceedings of the 27th An-
nual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA
2012, part of SPLASH 2012, Tucson, AZ, USA, October 21-
25, 2012. ACM, pp. 431-450. URL: https://doi.org/10.1145/
2384616.2384648.

Michael Carbin, Sasa Misailovic, Michael Kling, and Mar-
tin C. Rinard (2011). “Detecting and Escaping Infinite
Loops with Jolt”. In: ECOOP 2011 - Object-Oriented
Programming - 25th European Conference, Lancaster, UK,
July 25-29, 2011 Proceedings. Vol. 6813. Lecture Notes
in Computer Science. Springer, pp. 609-633. URL: http:
//hdl.handle.net/1721.1/73898.

Martin C. Rinard (2012). “Obtaining and reasoning about good
enough software”. In: The 49th Annual Design Automation
Conference 2012, DAC 12, San Francisco, CA, USA, June
3-7, 2012. ACM, pp. 930-935. URL: https://doi.org/10.
1145/2228360.2228526.

Michael Carbin and Martin C. Rinard (2010). “Automatically
identifying critical input regions and code in applications”.
In: Proceedings of the Nineteenth International Symposium
on Software Testing and Analysis, ISSTA 2010, Trento, Italy,
July 12-16, 2010. ACM, pp. 37-48. URL: https://doi.org/
10.1145/1831708.1831713.

Huu Hai Nguyen and Martin C. Rinard (2007). “Detecting
and eliminating memory leaks using cyclic memory alloca-
tion”. In: Proceedings of the 6th International Symposium
on Memory Management, ISMM 2007, Montreal, Quebec,
Canada, October 21-22, 2007. ACM, pp. 15-30. URL: https:
//doi.org/10.1145/1296907.1296912.

Martin C. Rinard (2006b). “Automated Techniques for Surviv-
ing (Otherwise) Fatal Software Errors”. In: Proceedings of
the Workshop on Verification and Debugging, V&D@FLoC
2006, Seattle, WA, USA, August 21, 2006. Vol. 174. Elec-
tronic Notes in Theoretical Computer Science 4. Elsevier,
pp. 113-116. URL: https://doi.org/10.1016/j.entcs.2006.12.
033.

Martin C. Rinard, Cristian Cadar, and Huu Hai Nguyen (2005).
“Exploring the acceptability envelope”. In: Companion to
the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2005, October 16-20, 2005, San Diego, CA,
USA. ACM, pp. 21-30. URL: https://doi.org/10.1145/
1094855.1094866.

Martin C. Rinard, Cristian Cadar, Daniel Dumitran, Daniel
M. Roy, and Tudor Leu (2004). “A Dynamic Technique
for Eliminating Buffer Overflow Vulnerabilities (and Other
Memory Errors)”. In: 20th Annual Computer Security Ap-
plications Conference (ACSAC 2004), 6-10 December 2004,
Tucson, AZ, USA. IEEE Computer Society, pp. 82-90. URL:
https://doi.org/10.1109/CSAC.2004.2.

Martin C. Rinard, Cristian Cadar, Daniel Dumitran, Daniel M.
Roy, Tudor Leu, and William S. Beebee (2004). “Enhancing
Server Availability and Security Through Failure-Oblivious

Computing”. In: 6th Symposium on Operating System De-
sign and Implementation (OSDI 2004), San Francisco, Cal-
ifornia, USA, December 6-8, 2004. USENIX Association,
pp- 303-316. URL: http://www.usenix.org/events/osdi04/
tech/rinard.html.

Displays and Devices

Phillip Stanley-Marbell and Martin C. Rinard (2017). “Error-
Efficient Computing Systems”. In: Found. Trends Electron.
Des. Autom. 11.4, pp. 362-461. URL: https://doi.org/10.
1561/1000000049.

Phillip Stanley-Marbell and Martin C. Rinard (2018).
“Perceived-Color Approximation Transforms for Programs
that Draw”. In: IEEE Micro 38.4, pp. 20-29. URL: https:
//doi.org/10.1109/MM.2018.043191122.

Phillip Stanley-Marbell and Martin C. Rinard (2020). “Warp:
A Hardware Platform for Efficient Multimodal Sensing With
Adaptive Approximation”. In: IEEE Micro 40.1, pp. 57-66.
URL: https://doi.org/10.1109/MM.2019.2951004.

José Pablo Cambronero, Phillip Stanley-Marbell, and Mar-
tin C. Rinard (2018). “Incremental Color Quantization for
Color-Vision-Deficient Observers Using Mobile Gaming
Data”. In: CoRR abs/1803.08420. URL: http://arxiv.org/
abs/1803.08420.

Phillip Stanley-Marbell and Martin C. Rinard (2016). “Re-
ducing serial I/O power in error-tolerant applications by
efficient lossy encoding”. In: Proceedings of the 53rd An-
nual Design Automation Conference, DAC 2016, Austin, TX,
USA, June 5-9, 2016. ACM, 62:1-62:6. URL: https://doi.
org/10.1145/2897937.2898079.

Phillip Stanley-Marbell, Virginia Estellers, and Martin C.
Rinard (2016). “Crayon: saving power through shape and
color approximation on next-generation displays”. In: Pro-
ceedings of the Eleventh European Conference on Computer
Systems, EuroSys 2016, London, United Kingdom, April 18-
21, 2016. ACM, 11:1-11:17. URL: https://doi.org/10.1145/
2901318.2901347.

Phillip Stanley-Marbell, Pier Andrea Francese, and Martin C.
Rinard (2016). “Encoder logic for reducing serial I/O power
in sensors and sensor hubs”. In: 2016 IEEE Hot Chips
28 Symposium (HCS), Cupertino, CA, USA, August 21-
23, 2016. IEEE, pp. 1-2. URL: https://doi.org/10.1109/
HOTCHIPS.2016.7936231.

Phillip Stanley-Marbell and Martin C. Rinard (2015a). “Ef-
ficiency Limits for Value-Deviation-Bounded Approximate
Communication”. In: IEEE Embed. Syst. Lett. 7.4, pp. 109—
112. URL: https://doi.org/10.1109/LES.2015.2475216.

Jirgen Cito, Julia Rubin, Phillip Stanley-Marbell, and Mar-
tin C. Rinard (2016). “Battery-aware transformations in
mobile applications”. In: Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineer-
ing, ASE 2016, Singapore, September 3-7, 2016. ACM,
pp. 702-707. URL: https://doi.org/10.1145/2970276 .
2970324.

Julia Rubin, Michael I. Gordon, Nguyen Nguyen, and Martin
C. Rinard (2015). “Covert Communication in Mobile Appli-



cations (T)”. In: 30th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2015, Lincoln,
NE, USA, November 9-13, 2015. IEEE Computer Society,
pp. 647-657. URL: https://doi.org/10.1109/ASE.2015.66.

Phillip Stanley-Marbell and Martin C. Rinard (2015b). “Lax:
Driver Interfaces for Approximate Sensor Device Access”.
In: 15th Workshop on Hot Topics in Operating Systems,
HotOS XV, Kartause Ittingen, Switzerland, May 18-20,
2015. USENIX Association. URL: https://www . usenix .
org/conference/hotos15/workshop - program/ presentation /
stanley-marbell.

Program Inference and Regeneration

Jiasi Shen and Martin C. Rinard (2021). “Active Learning
for Inference and Regeneration of Applications that Access
Databases”. In: ACM Trans. Program. Lang. Syst. 42.4,
18:1-18:119. URL: https://doi.org/10.1145/3430952.

Jiasi Shen and Martin C. Rinard (2019). “Using active learning
to synthesize models of applications that access databases”.
In: Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI
2019, Phoenix, AZ, USA, June 22-26, 2019. ACM, pp. 269—
285. URL: https://doi.org/10.1145/3314221.3314591.

Martin C. Rinard, Jiasi Shen, and Varun Mangalick (2018).
“Active learning for inference and regeneration of computer
programs that store and retrieve data”. In: Proceedings of
the 2018 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming
and Software, Onward! 2018, Boston, MA, USA, November
7-8, 2018. ACM, pp. 12-28. URL: https://doi.org/10.1145/
3276954.3276959.

Nikos Vasilakis, Achilles Benetopoulos, Shivam Handa, Alizee
Schoen, Jiasi Shen, and Martin C. Rinard (2021). “Supply-
Chain Vulnerability Elimination via Active Learning and
Regeneration”. In: CCS °21: 2021 ACM SIGSAC Confer-
ence on Computer and Communications Security, Virtual
Event, Republic of Korea, November 15 - 19, 2021. ACM,
pp. 1755-1770. URL: https://doi.org/10.1145/3460120.
3484736.

José Pablo Cambronero, Thurston H. Y. Dang, Nikos Vasilakis,
Jiasi Shen, Jerry Wu, and Martin C. Rinard (2019). “Active
learning for software engineering”. In: Proceedings of the
2019 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming
and Software, Onward! 2019, Athens, Greece, October 23-
24, 2019. ACM, pp. 62-78. URL: https://doi.org/10.1145/
3359591.3359732.

Compiling to Reconfigurable Analog Devices

Sara Achour and Martin C. Rinard (2020). “Noise-Aware
Dynamical System Compilation for Analog Devices with
Legno”. In: ASPLOS °20: Architectural Support for Pro-
gramming Languages and Operating Systems, Lausanne,
Switzerland, March 16-20, 2020. ACM, pp. 149-166. URL:
https://doi.org/10.1145/3373376.3378449.

Sara Achour and Martin C. Rinard (2018). “Time Dilation and
Contraction for Programmable Analog Devices with Jaunt”.
In: Proceedings of the Twenty-Third International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2018, Williamsburg, VA,
USA, March 24-28, 2018. ACM, pp. 229-242. URL: https:
//doi.org/10.1145/3173162.3173179.

Sara Achour, Rahul Sarpeshkar, and Martin C. Rinard (2016).
“Configuration synthesis for programmable analog devices
with Arco”. In: Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation, PLDI 2016, Santa Barbara, CA, USA, June 13-
17, 2016. ACM, pp. 177-193. URL: https://doi.org/10.1145/
2908080.2908116.

Emergent Meaning in Large Language Models

Charles Jin and Martin C. Rinard (2024a). “Latent Causal
Probing: A Formal Perspective on Probing with Causal
Models of Data”. In: CoRR abs/2407.13765. URL: https:
//arxiv.org/abs/2407.13765.

Charles Jin and Martin C. Rinard (2024b). “Emergent Rep-
resentations of Program Semantics in Language Models
Trained on Programs”. In: Forty-first International Confer-
ence on Machine Learning, ICML 2024, Vienna, Austria,
July 21-27, 2024. OpenReview.net. URL: https://openreview.
net/forum?id=8PTx4CpNoT.

Verifying Neural Networks

Kai Jia and Martin C. Rinard (2020). “Efficient Exact Ver-
ification of Binarized Neural Networks”. In: Advances
in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual. URL:
https : / / proceedings . neurips . cc / paper / 2020 / hash /
1385974ed5904a438616ff7bdb3f7439- Abstract.html.

Yichen Yang and Martin C. Rinard (2019). “Correctness Ver-
ification of Neural Networks”. In: CoRR abs/1906.01030.
URL: http://arxiv.org/abs/1906.01030.

Kai Jia and Martin C. Rinard (2021). “Verifying Low-
Dimensional Input Neural Networks via Input Quantiza-
tion”. In: Static Analysis - 28th International Symposium,
SAS 2021, Chicago, IL, USA, October 17-19, 2021, Pro-
ceedings. Vol. 12913. Lecture Notes in Computer Science.
Springer, pp. 206-214. URL: https://arxiv.org/abs/2108.
07961.

ACKNOWLEDGMENTS

I dedicate this paper and accompanying talk to Jeff
Perkins and Stelios Sidiroglou-Douskos, research scientists
who played a major role in the approximate computing
and program repair research that this award recognizes.
I acknowledge contributions from the following collabora-
tors on the approximate computing and program repair
research discussed in this paper: Sara Achour, Anant
Agarwal, Saman Amarasinghe, Peter Amidon, Jonathan
Bachrach, William S. Beebee, Jr., Achilles Benetopou-
los, Jose Cambronero, Cristian Cadar, Michael Carbin,



Jurgen Cito, Julian Dai, Thurston Dang, Brian Dem-
sky, Daniel Dumitran, Anthony Eden, Michael Ernst,
Virginia Estellers, P.A. Francese, Vijay Ganesh, Elena
Glassman, Michael I. Gordon, Philip Guo, Kai Jia, Charles
Jin, Shivam Handa, Henry Hoffmann, Jonathan A. Kel-
ner, Youry Khmelevsky, Deokhwan Kim, Sunghun Kim,
Michael Kling, Evangelous Lamprou, Eric Lahtinen, Sam
Larsen, Tudor Leu, Fan Long, Varun Mangalick, Stephen
McCamant, Sasa Misailovic, Huu Hai Nguyen, Nguyen
Nguyen, Grigoris Ntousakis, Carlos Pacheco, Jeff Perkins,
Zichao Qi, Dan Roy, Julia Rubin, Rahul Sarpeshkar, Alizee
Schoen, Frank Sherwood, Jiasi Shen, Stelios Sidiroglou-
Douskos, Phillip Stanley-Marbell, Greg Sullivan, Yannis
Tsividis, Nikos Vasilakis, Weng-Fai Wong, Jerry Wu, Rem
Yang, Yichen Yang, Karen Zee, Zeyuan Allen Zhu, and
Yoav Zibin.

I acknowledge valuable feedback on drafts of this
paper from Saman Amarasinghe, Ann McLaughlin, Logan
Engstrom, Sasa Misailovic, Cristian Cadar, Srini Devadas,
Joel Emer, and Rem Yang. Idan Orzach provided invalu-
able assistance with LaTex.

I also acknowledge related work in program repair and
approximate computing performed by others, including
research that substantially extends the reach and sophisti-
cation of these techniques. Because this paper is intended
to tell the story of the research that took place in my
research group, I omit a treatment of related work in
these (now very large and successful) research areas.

The research discussed in this retrospective was sup-
ported by a variety of sponsors as acknowledged in the
papers listed in Section XIV.



