IEICE TRANS. FUNDAMENTALS, VOL.E84-A, NO.11 NOVEMBER 2001

2655

| PAPER Special Section on VLSI Design and CAD Algorithms

High-Level Synthesis of Pipelined Circuits from Modular

Queue-Based Specifications

Maria-Cristina MARINESCU® and Martin RINARD', Nonmembers

SUMMARY This paper describes a novel approach to high-
level synthesis of complex pipelined circuits, including pipelined
circuits with feedback. This approach combines a high-level,
modular specification language with an efficient implementation.
In our system, the designer specifies the circuit as a set of inde-
pendent modules connected by conceptually unbounded queues.
Our synthesis algorithm automatically transforms this modu-
lar, asynchronous specification into a tightly coupled, fully syn-
chronous implementation in synthesizable Verilog.

key words: asynchronous, modular, pipeline, term rewriting
system

1. Introduction

An important conflict in hardware design is providing
a simple, high-level way of specifying a system without
sacrificing the efficiency of the resulting implementa-
tion. An efficient implementation is often synchronous
and is obtained as the result of globally scheduling all
of the operations in the system. In contrast, designers
usually find it easier to specify the system as a collec-
tion of reusable, concise, loosely-coupled components.

This paper describes an approach that meets both
these challenges. The designer specifies the circuit as a
set of independent modules connected by queues. Con-
ceptually, the queues have unbounded length, which de-
couples the modules in the design. Unfortunately, im-
plementing this abstraction directly in hardware using
asynchronous queues may produce a circuit with signifi-
cant handshaking overhead between modules. Our syn-
thesis algorithm therefore automatically transforms the
modular, asynchronous specification into a tightly cou-
pled, fully synchronous implementation in synthesiz-
able Verilog. It is designed to handle complex pipelined
circuits, including pipelined circuits with feedback.

It is important to understand the design advan-
tages of this approach: the asynchrony at the specifi-
cation level enables the designer to compose modules
together into a complete system without the need to
deal with complex global issues such as the coordinated
assignment of operations to clock cycles. He can con-
centrate on developing one module at a time and reason
about the correctness of the specification without rea-

Manuscript received March 2, 2001.
Manuscript revised June 4, 2001.
tThe authors are with the MIT Laboratory for Com-
puter Science, 545 Technology Square, Cambridge, MA
02139, USA.
a) E-mail: cristina@lcs.mit.edu

soning about the concurrent execution of the compos-

ing modules. The approach scales to large circuits and

makes parts or whole specifications readily reusable.

The locality that asynchronicity exposes makes specifi-

cations easy to modify, debug and formally verify.

The key idea behind our synthesis algorithm is to
automatically compose the module specifications to de-
rive, at the granularity of individual clock cycles, a
global schedule for the operations of the entire system,
including the removal and insertion of queue elements.
The resulting implementation executes efficiently in a
completely synchronous, pipelined manner. We have
built a prototype synthesizer that implements our syn-
thesis algorithm and present experimental results from
this synthesizer. We evaluate the efficiency of this im-
plementation by measuring the area and clock cycle
time of the circuits that it generates. For our bench-
mark design, our algorithm generates a circuit with area
and clock cycle time comparable to those of a hand-
written Verilog model that implements the same basic
functionality.

This paper makes the following contributions:

e Approach: It presents a new approach to high-level
synthesis. This approach combines the best of both
worlds: a modular, asynchronous specification lan-
guage and an automatically generated synchronous,
fully pipelined implementation.

e Algorithms: It presents a relazation algorithm for de-
creasing the clock cycle time and a coordinated global
scheduling algorithm for mapping the individual op-
erations of the modules into clock cycles. The latter
is the enabling technology for efficient pipelining, as
it allows the data to move together across the circuit
even when the pipeline buffers are full.

e Experimental Results: It presents experimental re-
sults that demonstrate the effectiveness of the tech-
nique.

The remainder of the paper is organized as fol-
lows. Section 2 illustrates how a system is specified
using rewrite rules. Section 3 presents the synthesis
algorithm. Section 4 discusses extensions to the exist-
ing framework to support more complex or irregular
behaviors in pipelined circuits. Section 5 presents the
reasons why we chose to generate synchronous rather
than asynchronous implementations from our specifica-
tions. Section 6 presents the experimental results. Sec-
tion 7 discusses related work. We conclude in Sect. 8.

IEICE TRANS. FUNDAMENTALS, VOL.E84-A, NO.11 NOVEMBER 2001

2656

INSTRUCTION FETCH MODULE - IFM

iq = insert(iq.im(pc)).
pc=pc+ 1.

iq
H

H
l RESET

f

enabling
condition

updates

<INC r> = head(iq) and

notin(tq,<INC r _>) -> rq
iq = tail(iq). rq = insert(ra,<INC r rf(r)>);

<JRZr I> = head(iq) and

notin(rg,<INC r _>) ->
iq = tail(iq), rq = insert(ra, <JRZ rf(r) 1>);

i RESET

REGISTER OPERAND FETCH MODULE - ROFM .

<INC r v> = head(rq) ->
f = rf(r->v+1), rq = tail(rq);
<JRZV I> = head(rg) and v =0 ->
pc =1 ig=nil, rg=nil;
<JRZv I> =head(rq) and v I=0->
rq = tail(ra);

COMPUTE AND WRITEBACK MODULE - CWBM

Fig.1

2. Specification Example

We illustrate our approach by presenting a short exam-
ple. Our example is a linear pipelined datapath with
associated control functionality. Note that none of the
techniques of our approach is specific to this particular
class of circuits. Specifying the behavior of a system
consists of two steps:

e Module Specification: The designer specifies the be-
havior of each module as a set of update rules. Mod-
ules communicate solely using FIFO queues.

e State Declarations: The designer specifies the state
of the system as a set of typed variable declarations.

2.1 Modules

Figure 1 shows the three functional modules in our ex-
ample and the queues that interconnect them. Each
module is implemented by a set of update rules. An up-
date rule has an enabling condition and a set of updates
to the state. When the enabling condition evaluates to
true, the rule is enabled and can execute, in which case
its updates are atomically applied to the current state
to obtain a new state.

Queues provide buffered, first-in, first-out connec-
tions between modules. There are several operations
that modules can perform on a queue q:

e head(q): Retrieves the first element in the queue.

e tail(q): Returns the rest of q after the first ele-
ment.

e insert(q,e): Returns the queue q after inserting
the element e at the end of q.

Specification example.

e notin(qg,e): Returns true if the element e is not in
q; otherwise returns false.
e q = nil: Resets the queue to be empty.

2.2 Execution Model

In our abstract model of execution, all the rules of a
system execute atomically, asynchronously and sequen-
tially with regard to each other.

Conceptually, the execution of the system repeat-
edly chooses an enabled rule and executes it. This is
a standard model of asynchronous execution found, for
example, in systems such as Unity [7] and term rewrit-
ing systems [2]. In our implementation, priority is given
to rules according to the textual ordering in the speci-
fication. Adopting a deterministic semantics simplifies
the abstract execution model. It makes behavior repro-
ductible and therefore specifications easier to debug.

A rule is atomic in the sense that the executions
of any two rules do not interleave at any time. Once
a rule is enabled and ready to execute, all its updates
take effect before any other rule starts executing.

Rules execute independently of each other, pro-
vided that the queues connecting the modules are not
empty. Each rule’s execution depends only on the val-
ues in its input queues and other state variables that
it reads. The fact that the queues are conceptually
unbounded decouples the executions of rules from dif-
ferent modules: the actual computation performed by
one rule is completely isolated from computations per-
formed by other rules. We therefore say that the rules
execute asynchronously.

We call our execution model sequential because

MARINESCU and RINARD: HIGH-LEVEL SYNTHESIS OF PIPELINED CIRCUITS

conceptually, rules are considered for execution one at
a time, regardless of whether data dependencies exist
between them or not. At each step of the system, there
is only one rule that either evaluates its enabling con-
dition or executes, updating the state. The sequential
semantics has the advantage of presenting the designer
with a simpler way of thinking about the system’s exe-
cution. A sequential model of computation makes spec-
ifications easier to write, less prone to mistakes and
easier to understand. The compiler later discovers the
concurrency in the specification and exposes it in the
final implementation.

We want to emphasize that this execution model is
used primarily to facilitate reasoning about the abstract
behavior and correctness of the system. It does not
directly reflect the actions of the generated circuit.

We illustrate the conceptual model of execution in
our system by discussing the operation of the rules in
our example. The condition for the rule in module IFM
is true, which means that the rule is always enabled.
When it executes, it fetches an instruction from the
instruction memory and inserts it into the instruction
queue iq. It also increments the program counter pc
to set up the next fetch.

The two rules in the module ROFM remove in-
structions from iq, fetch the register operands, and in-
sert them into rq. The first rule processes INC instruc-
tions, and the second one processes JRZ instructions.
Both rules use a form of pattern matching similar to
that found in ML [20] and Haskell [16]. The enabling
condition of the first rule is <INC r> = head(iq) and
notin(rq, <INC r _>). If the first clause is true, the
clause matches and binds the variable r to the regis-
ter name argument of the INC instruction, to be used
later in the rule when reffering to this operand. The
second clause, notin(rq, <INC r _>) uses the bind-
ing to check for a read before write hazard. If there is a
pending instruction waiting to execute that will write
the register r, the machine delays the operand fetch so
that it fetches the value after the write (this translates
into stalling). If there is a pending instruction that will
write r, the instruction is in rq. The clause notin(rq,
<INC r _>) checks to make sure that there is no such
instruction in rq. The rule as a whole is enabled and
can execute only if there is no hazard. If enabled, the
rule atomically executes the block in the right-hand-
side of the arrow.

The other rules perform similar actions. The up-
date rf = rf[r->v+1] from the first rule in the com-
pute and writeback module sets element r of the regis-
ter file rf to be v+1. The updates iq = nil/rq = nil
clear the queues igq/rq.

2.3 State

In general, state translates into one of three types: reg-
isters, memories or FIFO queues. Specifying a system

2657

type reg = int(3), val = int(8), loc = int(8);
type ins = <INC reg> | <JRZ reg loc>;

type irf = <INC reg val> | <JRZ val loc>;

var pc : loc, im : ins[N], rf : wval[8];
var iq = queue(ins), rq = queue(irf);

(S GVI R

Fig.2 State variables and type declarations for example in
Fig. 1.

implies declaring all its state variables and their corre-
sponding types.

Lines 4 and 5 in Fig.2 present the state declara-
tions, which consist of the following state variables: a
program counter pc, an instruction memory im, a regis-
ter file rf, and two queues, iq and rq. Lines 1 through
3 contain the type declarations for these variables. The
type declarations include a 3 bit register name type reg,
an 8 bit integer type val, an 8 bit integer type loc
which represents the locations of instructions in the in-
struction memory, an instruction type ins, and a type
irf for instructions whose register operands have been
fetched from the register file. The instruction type is
a tagged union type, similar to those found in ML and
Haskell. To keep the example clear, the instruction set
contains only an INC instruction, which increments the
value in its single register argument, and a JRZ instruc-
tion, which tests the value in its register argument and,
if the value is zero, jumps to the location in its location
argument.

3. Synthesis Algorithm

The synthesis algorithm takes an asynchronous speci-
fication and converts it into a synchronous implemen-
tation by generating a global schedule for all of the
operations in the rules. This schedule enables the syn-
chronous and concurrent execution of multiple rules per
clock cycle and produces a circuit that, when no haz-
ards are present, reads and writes each queue in the
same cycle. It implements each queue as a finite hard-
ware buffer.

The basic approach is to give each rule an opportu-
nity to execute at each cycle. The challenge is to ensure
that the final result at the end of the cycle correctly
reflects the sequential, atomic execution of all of the
rules that execute in that cycle. The algorithm meets
this challenge by symbolically executing the rules in se-
quence, with each rule operating on the output of the
previous! rule. The derived expression for each state
variable represents its new value at the beginning of
the next clock cycle.

The synthesis algorithm assumes that each oper-
ation is implemented by a dedicated hardware compo-
nent. It is conceivable to modify the algorithm as to
give the designer the option of trading parallelism for
silicon area.

tPrevious and next refer to the textual ordering of the
rules in the original specification.

IEICE TRANS. FUNDAMENTALS, VOL.E84-A, NO.11 NOVEMBER 2001

2658

The algorithm consists of six phases:

e Associating Versions With Each State Variable: Or-
der the rules! for symbolic execution and compute
the version of each state variable that each rule ac-
cesses. The first rule will read version 0 of the vari-
ables and compute version 1. The second rule will
read version 1 and compute version 2 and so on. By
feeding the output of the previous rule into the next
rule, we establish an initial schedule for symbolic ex-
ecution.

e Relaxation: The result of the operation performed
in the previous step suffers from an excessively long
clock cycle, as rule execution is completely sequen-
tialized. The goal of the relaxation is to shorten the
critical path within each clock cycle. Whenever pos-
sible, the algorithm relaxes the calculation of the en-
abling condition for each rule so that it is evaluated in
the initial state (at the beginning of the clock cycle)
rather than in the state created by the previously exe-
cuted rule. To maintain correctness, the updates still
execute sequentially if they operate on the same state
variable. This transformation ensures that each ele-
ment of data traverses at most one module per clock
cycle, producing an acceptable critical path for the
circuit. By increasing the parallelism in this way, we
shorten the clock cycle of the circuit, and, indirectly,
increase its throughput. Relaxation does not insert
or remove delays in/from the circuit.

e Global Scheduling: In the initial specification, queues
have unbounded length. But the hardware imple-
mentation must have a finite, specific number of en-
tries allocated for each queue. Given a designer-
specified length for each queue, the synthesis algo-
rithm must generate an implementation that does
not exceed that length. Our approach is to trust
the designer’s understanding of what the real require-
ments are for the correct and efficient functioning of
the circuit; therefore the selection of the lengths for
all the queues is a designer-driven process. For ex-
ample, in the actual hardware, a given length of 1
for each queue translates into the synthesis of a stan-
dard pipeline. The general case of finding a length for
each queue for which we can guarantee the absence
of deadlock in the system is an undecidable problem
[10].

e Symbolic Execution: Next, the algorithm symboli-
cally executes all of the rules in sequence. An expres-
sion is generated for each state variable that reflects
all of the possible updates of that variable for that
clock cycle. This expression represents the value of
the variable in the next clock cycle. Since only a sub-
set of the rules may fire in a given clock cycle, the
expressions contain conditionals.

e Optimizations: The synthesis algorithm next applies
a spectrum of optimizations geared towards avoiding
unnecessary replication of hardware and eliminating
false paths in the implementation. These optimiza-

let
t1 = <INC r> = head(iq,) and
notin(rq,,<INC r 1>)

t2 = <JRZ r 1> = head(iq,) and
notin(rqg,,<INC r 1>)
t3 = insert(iqq,img[pcyl)
t4 = tail(t3)
ige =

if <JRZ v 1> = head(rq,) and v = O then nil
else if t1 then t4

else if t2 then t4

else if length(iqy) < Nig then t3

else iqg

Fig.3 Result of symbolic execution for iq.

tions currently include common sub-expression elim-
ination and mutual exclusion testing for the expres-
sions derived at symbolic execution. If an expres-
sion contains a value that will never actually occur
in practice because the conditions required to obtain
that value are mutually exclusive, its computation is
eliminated from the expression. The mutual exclu-
sion testing is implemented using resolution [3] and
a set of reduction and simplification rules.

Figure 3 presents the result of the expression
evaluation; note the introduction of the temporary
variables t1, t2, t3, and t4. These variables will
turn directly into combinational logic in the final im-
plementation of the circuit.

e Verilog Generation: In the final phase we generate
synthesizable Verilog for the optimized expressions in
the previous step. Each state variable is implemented
as one or more registers, depending on its type; each
memory variable as a library block. Queues are im-
plemented as hardware registers. The derived expres-
sion for each state variable evaluates to the new value
that gets written back into the state at the beginning
of the next clock cycle.

We next discuss the two more complicated phases
of the algorithm in turn.

3.1 Relaxation

The execution of a rule R can update state variables
tested by a subsequent rule R’. If this is the case, then
R’ has to wait for R to execute and update the state,
before testing its precondition. But if we can prove
that the execution of R will not disable the enabling
condition of R’, we can relax the precondition of R’ to
test the state before R executes. This transformation
exposes parallelism in the specification, reducing the
length of the critical path of the circuit.

In our example, relaxing the rules pipelines the in-
struction fetch and execution over multiple clock cycles,
thus reducing cycle time.

Relaxation is the process of replacing each version

fOur implementation uses textual ordering of the rules.

MARINESCU and RINARD: HIGH-LEVEL SYNTHESIS OF PIPELINED CIRCUITS

replace (v;,Exp)
if version(v;) = 0
then Exp
else vy = earlier-version(v;)
Py, = rule-that-updates(v;)
if (P, P,) mutual exclusive
then replace(vy ,Exp v /v;]1)
else if Pvy/v;] implies P,
then replace (v ,Explvg/v;1)
else Exp

Fig.4 Relaxation algorithm.

of each state variable with its earliest™ safe version. An
earlier version of v;, named vy, is safe if the following
property holds:

If the rule’s enabling condition, P, is true
with v; replaced by vy, then it is also true with
vj, i.e. Plvg/v;] implies P,.

This is an application of the following more general
rule: Assume a predicate Ple/d] (i.e. the predicate P
with the expression d replaced by another expression
e) implies P. Then for any rule with precondition P,
we can (subject to liveness concerns) use the predicate
Ple/d] instead of P.

This transformation is valid because of two rea-
sons:

e Partial Correctness: If a rule in the transformed num-
bering executes, the rule would also execute in the
original numbering and yield the same result. This
takes care of the safety issue.

e Liveness: Since the rule in the transformed number-
ing tests the initial state, if a rule is enabled in the
original numbering but not in the transformed one,
some rule executes in the transformed numbering.
This ensures liveness.

The algorithm processes the rules in reverse order,
repeatedly attempting to replace the current version
of each variable in the enabling condition of the rule,
with the previous corresponding version, starting from
the immediately preceding rule. Figure 4 shows how to
obtain a new expression from an initial expression Exp,
by replacing v; in Exp with its earliest safe version.
P, stands for the enabling condition of the rule that
contains Exp. A replacement is successful if either of
the following two conditions is true:

e The enabling condition with the earlier version in-
stead of the current one implies the enabling condi-
tion with the current version.

e The condition of the rule that computes the earlier
version and the current enabling condition are mutu-
ally exclusive.

The relaxation algorithm is especially well suited
for use with queues. An element inserted at the tail of
the queue does not affect the element that was at the
head of the queue before the insertion. Rules that test
the first element of a queue remain enabled regardless
of the number of elements inserted at the tail of the
queue, provided that no rule previously removes the

2659

head of the queue. This property allows such a rule to
test the initial version of the queue, rather than versions
produced by earlier rules.

Conceptually, the algorithm could include an ini-
tial phase that can in many cases order the mod-
ules/rules so as to match the flow of data in the pipeline.
Being able to put the rules in this order is sufficient (but
not necessary) to ensure that they all test the initial
version of each queue.

Currently, the framework does not provide a flexi-
ble support for trading concurrency for cycle time. By
default, if two rules simultaneously evaluate their pre-
conditions to true, they are both going to fire in the
current clock cycle, either in parallel if there are no
data dependencies or sequentially if there are.

3.2 Global Scheduling

The scheduler augments each rule that inserts an ele-
ment into a queue to ensure that it never overflows any
of the buffers that implement the queues in hardware.
The basic approach is to assume all queues are within
length at the beginning of the clock cycle and sched-
ule only those rules for firing that are 1) enabled and
2) whose combined execution leaves the queue within
its length at the end of the clock cycle. All the other
rules remain unchanged. As part of this process, queue
insertions are prioritized. In hardware, global schedul-
ing corresponds to generating the control signals for the
combinational logic.

Global scheduling is the enabling technology for ef-
ficient pipelining. The key insight is that, at every clock
cycle, the number of rules that can execute and insert
into a queue q can be bigger than the number of empty
slots in q, without causing q to overflow. The condition
is that enough rules will also execute in that clock cycle
and remove elements from q, leaving it within length
at the end of the clock cycle. Applying this mechanism
boosts the throughput of the circuit.

3.2.1 Basic Concepts

We define a queue path using a rule graph. The nodes
in the graph are the rules. There is a directed edge be-
tween two rules if the first inserts items into a given
queue and the second removes items from the same
queue. By definition, the specification is acyclic if there
are no cycles in the rule graph and cyclic if there are.

By definition, a rule is an appending rule if its set
of updates contains at least one insertion of an element
into some queue.

tEarlier here refers to the ordering established in the
first step of the algorithm.

IEICE TRANS. FUNDAMENTALS, VOL.E84-A, NO.11 NOVEMBER 2001

2660

for each rule R; [in topological sort order]
Q ={q | R, inserts into ¢}
if Q != nil
then for each g€ Q
I={R; | R; inserts into ¢}
D ={Ry | Ry removes from ¢}
Select(Ri,q) =
if (R; is the only rule in I) or
Vil,i2 € I, (i1,i2) mutually exclusive
then ""Vk € index(D).
Room(q) + Leval(R;}) > 0"
else ""Vk € index(D).Vj € index(I).j < i.
Room(q) + Leval(R}) > Eeval(R;-)”
else NOP
Fig.5 Computing the additional constraints for a rule in an
acyclic specification.

3.2.2 Acyclic Specifications

Acyclic specifications contain no cyclic queue paths.
For acyclic specifications, the scheduling algorithm en-
sures that the queues do not overflow by computing
an additional constraint as shown in Fig.5. We use R’
for rule R augmented with the corresponding additional
constraints and Room(q) for the number of empty loca-
tions in ¢ at the beginning of the clock cycle. Function
eval(R’) returns 0 if R’ is false and 1 if R’ is true.
index(X) returns the set of indices of all the rules in
X. The constraint counts the number of elements in
each queue at the beginning of each clock cycle. It
also considers queue removals and previous insertions
to augment the enabling condition of each rule so that
it does not execute if it would overflow the queue.

3.2.3 Generalization for Cyclic Specifications

Introducing additional enabling conditions raises the
possibility of deadlock. For acyclic specifications, this
is not an issue because the acyclicity ensures that the
queues will eventually drain, enabling rules that were
originally suspended for lack of space. But this line of
reasoning does not hold for cyclic specifications. The
key insight is that the additional enabling conditions
need not introduce deadlock if there is a way to co-
ordinate the removals and insertions of elements from
all of the queues in the cycle so that the removal of
each element leaves room for the insertion of the ele-
ment behind it. The algorithm for cyclic specifications
therefore analyzes groups of rules together to generate
a global schedule that allows all of the data in a cycle
to move together through the cycle.

We use the example in Fig. 6 to illustrate the oper-
ation of the algorithm for cyclic specifications. To sim-
plify the presentation, we present the rules by them-
selves, omitting the module decomposition. We also
omit the rule(s) that remove from queue z and any
rules that do not affect the contents of queues x and y.

This example is modeled after a random number

state x queue(int) = 2 ;
state y queue(int) = 3 ;
state z queue (int) ;
0: t = head(x) —>
y = insert(y, (t+3)&15), x = tail(x);
1: t = head(y) ->
x = insert(x, (t+5)&15), y = tail(y);
2: t = head(x) and (t&3 = 0) ->
z = insert(z,t), x = tail(x);
3: t = head(y) and (t&3 = 0) ->

z = insert(z,t), y = tail(y);
// implementation constraints
length(x) = 1;
length(y) = 1;

Fig.6 Cyclic example.

generation process that starts with two numbers (2 and
3) and repeatedly adds 3, then 5 to each number, re-
taining the lower 4 bits after each addition. The com-
putation records the values of the numbers when their
bottom 2 bits become 0. In our implementation, each
number is stored in a queue, and the designer spec-
ifies that each queue has a single entry. Because of
the cyclic nature of the specification, the numbers must
move through the queues together — if they attempt to
move separately, there is no room in the queues. The
synthesis algorithm must therefore schedule the rules
involved in the cycle (rules 0 and 1) together to coor-
dinate their queue insertions and removals.

e Idea: The key idea is to find, for each rule that in-
serts an element into a queue ¢, the maximal sets
of rules that have to execute together to preserve the
“non-overflow” invariant of ¢, at the end of each clock
cycle. To do this, the algorithm starts from each rule
and traverses the rule graph on all possible paths,
gathering for each rule that we go through, the con-
ditions that would let that rule fire. We stop if either
a rule is not an appending rule, so will always fire
when its initial enabling condition becomes true, or
if we already traversed that rule on the current path,
so we already considered that the rule fires. Once
we reach such a point there’s no additional informa-
tion on that path in the circuit that was not already
collected at the first traversal. Nothing needs to be
added to yield a correct solution. When all paths
reach such points, the set of all rules that have to
fire together becomes provably maximal.

e Algorithm: The scheduling algorithm processes each
rule in the cyclic specification in turn. Figure 7 shows
the algorithm that produces the additional enabling
condition for a rule R;. CrtPath keeps the currently
explored path, for purposes of termination. This
variable is initially empty for each symbolic execu-
tion of a rule. The symbolic execution of a rule ter-
minates if either one of the two scenarios below is
true:

e Ry is a non-appending rule and in this case
newRy = Ri. We call newR; what we derive
from Ry after enhancing it with the additional con-

MARINESCU and RINARD: HIGH-LEVEL SYNTHESIS OF PIPELINED CIRCUITS

SymbolicExecution (R;,CrtPath)
Q ={¢q | R; inserts into ¢}
if Q !'= nil
then for each q € Q
I={R; | R; inserts into ¢}
D ={Ry | Rj removes from ¢}
S = if (R; is the only rule in I) or
Vil,i2 € I, (41,i2) mutually exclusive
then D
else DUI
for each rule Ry € S
newCrtPath = CrtPath U Ry,
newRy, = if Ry € CrtPath
then true
else SymbolicExecution(Rg,newCrtPath)
newSelect(R;, q) = Select(R;, q)[newRy/R;]
Select(R;, q) = newSelect(R;, q)
newR; = (R; and Select(R;,q))
R; = newR;
else R;
Fig.7 Computing the additional constraints for a rule in a
cyclic specification.

straints.

e Ry is a rule previously examined on the current
path. This means we already assumed Ry fires on
that path, so there’s no need to explore further,
therefore newRy, = true.

4. Extensions

Starting from the framework that we presented in this
paper, it is relatively easy to incorporate support for
specifying behaviors like bypassing, out-of-order (spec-
ulative) execution, exceptions in pipelined processors
— to name only a few. The extensions mostly include

a few new primitives; meta-programming support for

replicating rules also helps. Specifying a bypass calls

for a primitive replace(el,e2,q) that returns q after
replacing all its entries matching el by e2. Out-of-
order execution needs a bit more support:

e A primitive notinbefore(n,q,e) that returns true
if there is not an element e in q with the instruction
number less than n; otherwise returns false. The in-
struction number is conceptually a counter that gets
incremented every time a new instruction is fetched
from the instruction memory and can be attached
to the instruction at that time. This information is
necessary when checking for hazards with previous
instructions and flushing instructions following spec-
ulatively incorrect issued instructions.

e A primitive concat (ql,q2) that returns the concate-
nated queue, but leaves q1 and q2 unmodified. This
primitive may be used if, for example, the designer
decides to have a separate queue for stalled instruc-
tions at each stage in which hazards are checked for.
Hazard checking is done for all active (speculative or
not) and stalled instructions.

e We need a way to express the following action: “try
to issue the next instruction in the queue as long as

2661

the architecture supports more concurrent instruc-
tion execution.” This abstraction is also used when
modelling superscalar processors. While it is feasible
to have a rule for each queue element testing whether
that instruction can execute or it needs to stall, hav-
ing some meta-programming support for replicating
rules would make the specifications more elegant.
Enhancing our language to provide that support is
a relatively easy job.

Exceptions are of two kinds: synchronous and
asynchronous. We can recognize a synchronous excep-
tion by checking for the specific exceptional condition in
the corresponding rule. For asynchronous exceptions,
we can have a last rule in the specification that, at
the end of each clock cycle, checks whether any asyn-
chronous exception was raised during that cycle. We
can model exceptions for speculative out of order ex-
ecution in a pipelined processor as follows. When a
rule recognizes an exception, it records the exception
in a reorder buffer and saves the program counter of
the faulting instruction producing the exception. If a
speculation is incorrect, the rule that treats this case
flushes all the instructions after the speculated instruc-
tion, including all the exceptions. When an exception
reaches the head of the reorder buffer, the correspond-
ing rule executes the exception handler and restarts the
instruction stream by restoring the program counter to
its saved value.

5. Discussion: Asynchronous Implementation

Aiming for an asynchronous logic implementation of
our specifications may be an interesting target because
of the potentially important advantages over their syn-
chronous counterparts: no clock skew worries, lower
power consumption, average-case rather than worst-
case performance, better technology migration poten-
tial. We chose not to generate asynchronous implemen-
tations because of the following reasons:

e Synchronous circuit design is more widely used than
asynchronous design. We want our designs to be able
to interoperate with other parts of a system, which
are more probably implemented as synchronous logic.
We also want to make it possible to use existing
methodologies to further optimize the resulting cir-
cuit. Most of the current methodologies are not able
to support asynchronous designs.

e Asynchronous design raises challenging problems
that do not appear in synchronous design. One of
the most important ones is the completion detection
problem. Signaling the completion of a pipeline stage
or operation of a functional unit requires extra time,
thus increasing the theoretically average-case delay.
Promising results in throughput and latency of asyn-
chronous designs have been obtained for very fine
pipelines by [19]. However, pipelining their appli-
cation was done manually and choosing the set of

IEICE TRANS. FUNDAMENTALS, VOL.E84-A, NO.11 NOVEMBER 2001

2662

transformations for this purpose was rather an ad-
hoc process. There is no strong evidence that ob-
taining a specification suitable for implementation is
a process that can be reproduced/guided automat-
ically. In [19], Martin et al. derive the number of
pipeline stages per piece of data in transfer that is
necessary to obtain optimal throughput. To obtain
maximal throughput, data has to be spaced through
the pipeline. Modifying the number of stages to
match the optimal number can be done in a few ways,
including explicitly introducing buffer stages, which
increases the circuit area. We want to be able to im-
plement our FIFO queue abstraction as the smallest
number of registers such that we do not introduce
deadlock while the algorithm schedules the opera-
tions for maximum throughput. A small fixed length
for the FIFO queues may very well not be the desired
optimal length in an asynchronous implementation.

Another reason that made us decide to generate syn-
chronous hardware is that asynchronous circuits need
non-multiplexed multi-ported memories, which get
quickly more expensive in both area and propaga-
tion delay with the number of ports. Since there
is no clock to synchronize with, multiplexing ports
is usually done by implementing some kind of a syn-
chronization protocol for the memory accesses, which
defeats the point of an asynchronous implementation.

6. Experimental Results

We have implemented a prototype synthesis system
based on the algorithms presented in this paper. The
algorithm generates synthesizable Verilog implementa-
tions at the RTL level. We wrote the specification of
a 32-bit datapath, RISC-style, linearly pipelined pro-
cessor with a complete instruction setf, ran it through
our synthesis algorithm, then synthesized the resulting
Verilog model using the Synopsis Design Compiler to
an industry standard 0.25 micron standard cell process.
To serve as a reference point, we also synthesized, in
the same environment, the Santa Clara University SCU
RTL 98 DSP, a hand-written, standard 32-bit fixed
point DSP that implements the same basic function-
ality. Table 1 shows area and clock cycle numbers for
the two applications. Notice that the synthesized area
is roughly the same, while clock-cycle-wise, our proces-
sor is within 3 percent of the hand coded version. The
noncombinational portion of the area, namely the regis-
ter area, is only 5.4 percent bigger for the automatically
generated Pipelined RISC Processor than for the hand

Table 1 Comparative clock cycle and area estimates.
Architecture Cycle (MHz) | Area |Register Area
Pipelined RISC 88.89 23195.25 1883.25
SCU RTL 98 DSP 90.91 22999.50 1786.75

coded DSP. The RISC implementation features the fol-
lowing functional units: 1 adder/ 1 subtractor 32-bit
wide, 1 multiplier 32-bit wide, 1 variable shifter 32-bit
wide, 3 increment/ 2 decrement units 32-bit wide, 4
comparators 32-bit wide.

It took us less than five hours to develop the spec-
ification for the processor, which we believe is signifi-
cantly faster than developing the DSP model by hand.
Our specification contains 15 lines for state declara-
tions and 21 lines of rule definitions for module spec-
ifications. The SCU RTL 98 DSP application, on the
other hand, consists of approximately 885 lines of Ver-
ilog code. Our automatically generated implementation
consists of about 1200 lines of synthesizable Verilog.

We have also tried our synthesis algorithm on sev-
eral non-processor benchmarks. Table 2 shows cycle
time and area numbers for a specification describing
bubblesort for eight 8-bit numbers, a butterfly network
similar to the ones used in bitonic sorting networks and
in FFTs, and a cascaded FIR with 16 coefficients.

The running time of our system is roughly pro-
portional to the complexity of the generated control.
For all applications except the pipelined processor, our
system required less than one minute to generate the
Verilog output. For the processor, it took roughly half
an hour. We tested the generated Verilog for each ap-
plication, including the pipelined processor, using the
Cadence NCVerilog simulator.

7. Related Work

HDLs like VHDL or Verilog use a model of concur-
rency in which processes communicate using signals. A
signal is a direct physical connection with no buffer-
ing and with dynamic synchronization overhead. De-
signed for formal verification and synthesis of commu-
nication protocols, SUAVE [1] improves the commu-
nication features of VHDL by providing bounded or
unbounded message buffers. The synchronous commu-
nication model is similar to those of CSP [14] and Oc-
cam [6]. Our approach is different in that it displays
an asynchronous communication model at design level,
while generating a synchronous implementation.
Another approach uses software languages such as
C and C++. The Olympus/Hercules system is de-
signed to support mainly ASIC synthesis from Hard-

Table 2 Clock cycle and area estimates for a few basic data
processing elements.

Benchmark | Cycle (MHz) | Area

Bubblesort 107.06 5434

FFT 104.42 5411

FIR 105.01 3757

fThe instruction set contains load, store, jump, ALU,
multiply and variable shift operations.

MARINESCU and RINARD: HIGH-LEVEL SYNTHESIS OF PIPELINED CIRCUITS

wareC [17], a C-like syntax behavioral language. Hard-
wareC supports concurrency by providing synchronous
queues with blocking send and receive constructs. In
Scenic 9], the semantics of concurrency is similar to
that of CSP and processes communicate via signals. In
both approaches, the synchronous communication se-
mantics force the designer think about the global tim-
ing when describing the system.

Systems based on hierarchical PBSs [22] (Produc-
tion Based Specification) specify the control implicitly
via the production hierarchy. The simplicity of PBS
comes from the local nature of each production, allow-
ing the designer not worry about the explicit construc-
tion of the global flow. PBS is closer to our descrip-
tion language in the sense that both describe external
behavior rather than particular implementations of a
system. Moreover, the actions for a given behavior are
described locally, even if possibly simultaneous actions
can be described elsewhere. On the other hand, the
framework is synchronous.

Systems like Ptolemy [5], GRAPE [18], SPW from
Cadence or COSSAP from Synopsys start from block
diagram languages based on a dataflow semantics and
are targeted to DSP design, mostly for minimizing
memory usage and buffer memory. In SDF (Syn-
chronous Data Flow), a static schedule for the block
diagram is found that fires each actor in the dataflow
graph at least once and does not change the net num-
ber of tokens queued on each edge. In our approach,
not every update rule has to fire every clock cycle, the
number of elements in the queues may vary in time and
the desired lengths for the queues are specified by the
designer. Unlike DDF (Dynamic Data Flow), which im-
plements a run-time scheduler, our approach provides
a statically scheduled model.

In synchronous languages like Esterel [4], Lustre
[12], Signal [11] and Statecharts [13], the programmer
thinks about a program as reacting instantaneously to
external events. Processes are tightly coupled and de-
terministic, communication being realized by instanta-
neous broadcasting.

Classic work on pipelining optimization by Patel
[21], Davidson, Shar and Thomas [8] starts from a given
reservation table for the task flows in a system and de-
velops methodologies for increasing the throughput of a
pipeline. In our approach there is no initial knowledge
of what gets assigned to each pipeline stage at each
clock cycle; there is no notion of synchronicity.

Several specification and verification systems have
taken an approach similar to ours, based on describ-
ing the behavior of a system by a state transition sys-
tem [7], [14]. Closely related to our research, Hoe and
Arvind [15] develop a method for hardware description
and synthesis based on an operation-centric approach.

2663

8. Conclusions

This paper presents a new approach for hardware syn-
thesis. The designer uses a design language based on
connecting modules with asynchronous queues. The
synthesis algorithm eliminates the inefficiency associ-
ated with a direct asynchronous implementation by au-
tomatically generating a coordinated global schedule
for all operations in the system. This schedule is used
to generate an efficient and fully pipelined synchronous
implementation.

The primary advantages of this approach include
good support for concurrency, modularity, debugging,
and reuse in the design language. The use of update
rules provides support for formal verification and con-
currency, and enables concise, behavioral descriptions.
This gives the resulting implementation a better chance
to correctly reflect the designer’s intent. The synthe-
sis algorithm is the key to enabling the designer to
use a convenient design language while obtaining an
efficient hardware implementation of the design. The
global scheduling and relaxation algorithms maximize
the throughput. Relaxation also reduces the clock cycle
time by parallelizing the evaluation of the enabling con-
ditions of the rules. Global scheduling eliminates the
need for handshaking hardware, while applying opti-
mizations at a global level optimizes the combinational
logic. Our experimental results provide encouraging
evidence that the approach can deliver efficient imple-
mentations of high-level specifications. The approach
also greatly improves on design time and has reasonable
run-times of the synthesis algorithm. Our approach is
well-suited to systems that are naturally described as
a composition of interacting sub-systems. The class of
pipelined circuits is one such system, as FIFO queues
are a natural way to isolate pipe stages.

References

[1] P. Ashenden, R. Esser, and P. Wilsey, “Communication
and synchronization using bounded channels in SUAVE,”
Proc. 1999 International Hardware Description Languages
Conference and Exhibit (HDLCON99), 1999.

[2] F. Baader and T. Nipkow, Term rewriting and all that,
Cambridge University Press, 1998.

[3] M. Ballantyne, “Automatic deduction,” Technical Report
STAN-CS-82-937, Dept. of Computer Science, Stanford
Univ., Stanford, Calif., Oct. 1982.

[4] F.Boussinot and R. de Simone, “The ESTEREL language,”
Proc. IEEE, vol.79, no.9, pp.1293-1304, Sept. 1991.

[5] J. Buck, S. Ha, E.A. Lee, and D.G. Messerschmitt,
“Ptolemy: A framework for simulating and prototyping het-
erogeneous systems,” Int. J. Computer Simulation, 1995.

[6] A. Burns, Programming in Occam 2, Addison-Wesley,
Reading, Mass., 1988.

[7] K.M. Chandy and J. Misra, Parallel program design: A
foundation, Addison-Wesley, Reading, Mass., 1988.

[8] E.S. Davidson, L.E. Shar, A.T. Thomas, and J.H.
Patel, “Effective control for pipelined computers,” Proc.

2664

18]

(19]

20]
21]

(22]

IEICE TRANS. FUNDAMENTALS, VOL.E84-A, NO.11 NOVEMBER 2001

1975 Spring COMPCON.

A. Ghosh, J. Kunkel, and S. Liao, “Hardware synthesis
from C/C++,” Design, Automation and Test in Europe
Conference and Exhibition, 1999.

M.G. Gouda, E.G. Manning, and Y.T. Yu, “On the progress
of communication between two finite state machines,” Inf.
Control, vol.63, pp.200-216, 1984.

P. Le Guernic, M. Le Borgne, T. Gauthier, and C. Le Maire,
“Programming real time applications with signal,” Another
Look at Real Time Programming, Proc. IEEE, Special Is-
sue, Sept. 1991.

N. Halbwachs, P. Caspi, and D. Pilaud, “The synchronous
dataflow programming language Lustre,” Another Look at
Real Time Programming, Proc. IEEE, Special Issue, Sept.
1991.

D. Harel, “Statecharts: A visual approach to complex sys-
tems,” Science of Computer Programming, vol.8, pp.231—
274, 1987.

C.A.R. Hoare, Communicating Sequential Processes,
Prentice-Hall, Englewood Cliffs, N.J., 1985.

J. Hoe and Arvind, “Hardware synthesis from term rewrit-
ing systems,” VLSI: Systems on a chip, Lisbon, Portugal,
Dec. 1999.

P. Hudak, S. Peyton-Jones, P. Wadler, B. Boutel, J.
Fairbairn, J. Fasel, M. Guzman, K. Hammond, J. Hughes,
T. Johnsson, D. Kieburtz, R. Nikhil, W. Partain, and J.
Peterson, “Report on the programming language Haskell: A
non-strict, purely functional language (version 1.2),” SIG-
PLAN Notices, vol.27, no.5, May 1992.

D. Ku and G. De Micheli, “HardwareC: A language for
hardware design,” Technical Report SCSL/CSL/TR-90-
419, Computer Systems Laboratory, Stanford Univ., Stan-
ford, Calif., Aug. 1990.

R. Lauwereins, P. Wauters, M. Ade, and J.A. Peperstraete,
“Geometric parallelism and cyclo-static data flow in grape-
ii,” Proc. IEEE Workshop on Rapid System Prototyping,
Grenoble, France, June 1994.

A.J. Martin, A. Lines, R. Manohar, M. Nystrm, P. Penzes,
R. Southworth, U. Cummings, and T.K. Lee, “The design of
an asynchronous MIPS R3000 microprocessor,” Proc. 17th
Conference on Advanced Research in VLSI, IEEE Com-
puter Society Press, pp.164-181, 1997.

R. Milner, M. Tofte, and R. Harper, The Definition of Stan-
dard ML, The MIT Press, Cambridge, MA, 1990.

J. Patel, “Pipelines with internal buffers,” Proc. Fifth An-
nual Symposium on Computer Architecture, ISCATS.

A. Seawright and F. Brewer, “Synthesis from production-
based specifications,” Proc. 29th Design Automation Con-
ference, 1992.

Maria-Cristina Marinescu is a
Ph.D. candidate at the University of Cal-
ifornia at Santa Barbara and a visiting
scholar at the MIT Laboratory for Com-
puter Science. Her research interests in-
clude architectural synthesis, compilation
techniques and program analysis.

Martin Rinard is an Associate Pro-
fessor in the MIT Department of Elec-
trical Engineering and Computer Science
and a member of the MIT Laboratory for
Computer Science. He received his Ph.D.
in 1994 from Stanford University for re-
search on the design and implementation
of parallel and distributed programming
languages. His current research interests
focus on program analysis, with an em-
phasis on software engineering and prob-
lems in parallel, embedded, and distributed computing. Prof.
Rinard was selected as a Sloan Foundation Research Fellow in
1995, and received a National Science Foundation Early Career
Development Award in 1997.

