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Abstract

This paper introduces an analysis technique, commu-
tativity analysis, for automatically parallelizing computa-
tions that manipulate dynamic, pointer-based data struc-
tures. Commutativity analysis views computations as com-
posed of operations on objects. It then analyzes the pro-
gram to discover when operations commute, i.e. leave the
objects in the same state regardless of the order in which
they execute. If all of the operations required to perform a
given computation commute, the compiler can automatically
generate parallel code. Commutativity analysis eliminates
many of the limitations that have prevented existing compil-
ers, which use data dependence analysis, from successfully
parallelizing pointer-based applications. It enables compil-
ers to parallelize computations that manipulate graphs and
eliminates the need to analyze the data structure construc-
tion code to extract global properties of the data structure
topology. This paper shows how to use symbolic execution
and expression manipulation to statically determine that
operations commute and how to exploit the extracted com-
mutativity information to generate parallel code. It also
presents performance results that demonstrate that commu-
tativity analysis can be used to successfully parallelize the
Barnes-Hut hierarchical N-body solver, an important scien-
tific application that manipulates a complex pointer-based
data structure.

1 Introduction

Current parallelizing compilers preserve the semantics
of the original serial program by preserving the data depen-
dences [1]. These compilers attempt to identify independent
pieces of computation (two pieces of computation are inde-

�This research was supported in part by an Alfred P. Sloan Research
Fellowship. The second author is sponsored by JNICT – Junta Nacional
de Investigação Científica e Tecnológica and by the Fulbright Program.

pendent if neither writes a piece of data that the other ac-
cesses), then generate code that executes independent pieces
concurrently.

A significant limitation of applying data dependence
analysis to computations that manipulate dynamic, pointer-
based computations is the difficulty of performing analysis
that is precise enough to expose the concurrency. To stat-
ically discover independent pieces of code, the compiler
must recognize global topological properties of the manipu-
lated data structures [7]. It must therefore analyze the code
that builds the data structure and propagate the results of this
analysis through the program to the sections that use the data.
The difficulty of extracting and accurately maintaining this
information often prevents the compiler from recognizing
that independent pieces are, in fact, independent. An even
more fundamental limitation is an inherent inability to par-
allelize computations that manipulate graphs. The aliases
present in these data structures preclude the static discov-
ery of independent pieces of code, forcing the compiler to
generate serial code.

Experience with parallel applications provides additional
evidence for the fundamental inadequacy of data depen-
dence analysis. Programmers that parallelize serial appli-
cations by hand do not simply write code that executes in-
dependent pieces of code concurrently. For example, four
(Water, MP3D, LocusRoute and Cholesky) of the six parallel
applications in the SPLASH benchmark suite [13] and three
of the four parallel applications described in [12] violate
the data dependences of the original serial program. They
instead rely on commuting operations (operations that gen-
erate the same result regardless of their execution order) to
preserve the semantics of the original serial program. This
experience strongly suggests that compilers will never be
able to parallelize a substantial range of applications unless
they recognize and exploit commuting operations.

This paper presents an analysis technique, commutativity
analysis, that automatically recognizes and exploits com-
muting operations to generate parallel code. Commutativity
analysis is designed for programs that use an object-based



programming paradigm. This paradigm aggregates individ-
ual words of memory into coarser grain units called objects
and individual statements of the program into coarser grain
units called operations. Commutativity analysis analyzes
the program at this granularity to discover when operations
on objects commute (i.e. generate the same result regard-
less of the order in which they execute). If all of the opera-
tions required to perform a given computation commute, the
compiler can automatically generate parallel code. Com-
mutativity analysis provides the following advantages over
traditional approaches that use data dependence analysis:

� Topology Independence: The presence of aliases in
the manipulated data structures does not impair the
ability of commutativity analysis to parallelize the
computation. Commutativity analysis therefore en-
ables compilers to parallelize computations that ma-
nipulate graphs. It also eliminates the need to perform
complex analysis to discover global properties of the
data structure topology.

� Focused Analysis: Compilers that use commutativ-
ity analysis only need to analyze the code that they
will parallelize. This property eliminates the need
to extract information about the global data structure
topology and propagate this information across large
sections of the program. It may also enable the au-
tomatic parallelization of computations in areas of
computer science that have traditionally been unable
to benefit from parallelizing compilers. For exam-
ple, commutativity analysis may be appropriate for
parallelizing computations that manipulate the per-
sistent data in object-oriented databases. In this con-
text the code that originally created the data structure
may be unavailable, negating any approach (includ-
ing data-dependence based approaches) whose suc-
cess depends on information about the data structure
topology.

We believe that commutativity analysis will extend the
range of applications that compilers can automatically par-
allelize. It is especially appropriate for computations that
manipulate dynamic, pointer-based data structures because
it simplifies the analysis required to parallelize such appli-
cations and extends the range of parallelizable applications
to include graph computations. The difficulty of paralleliz-
ing dynamic, pointer-based applications by hand also makes
commutativity analysis especially valuable in this context.

This paper makes the following contributions:

� It presents an analysis technique that uses symbolic
execution, expression manipulation and expression
comparison to statically recognize commuting opera-
tions.

� It shows how to exploit static knowledge of commut-
ing operations to generate parallel code.

� It presents a case study of commutativity analysis
applied to a complex application, the Barnes-Hut hi-
erarchical N-body solver. This case study shows that
commutativity analysis can successfully parallelize a
computation that manipulates complex pointer-based
data structures, and that the resulting parallel perfor-
mance is comparable to the performance of a highly
optimized version parallelized by hand.

The rest of the paper is structured as follows. In Section
2 we present an example that illustrates how commuting op-
erations enable the concurrent execution of graph traversals.
In Section 3 we describe the basic approach and state the
conditions that a compiler can use to recognize commuting
operations. In Section 4 we present an analysis algorithm
that a compiler can use to determine if two operations com-
mute. In Section 5 we present experimental results for a
version of the Barnes-Hut hierarchical N-body solver par-
allelized using commutativity analysis. We survey related
work in Section 6 and conclude in Section 7.

2 An Example

In this section we present a simple example that shows
how recognizing commuting operations can enable the au-
tomatic generation of parallel code. The visit method
in Figure 1 serially traverses a graph. When the traversal
completes, each node’s sum instance variable contains the
sum of its original value and the values of the val instance
variables in all of the nodes that directly point to that node.
The example is written in C++.

class graph f
boolean mrk;
int val, sum;
graph *left; graph *right;

g;
graph::visit(int p) f
sum = sum + p;
if (!mrk) f

mrk = TRUE;
if (left != NULL) left->visit(val);
if (right != NULL) right->visit(val);

g
g

Figure 1: Serial Graph Traversal.

The traversal generates one invocation of the visit
method for each edge in the graph. We call each method



class graph f
mutex lock;
boolean mrk;
int val, sum;
graph *left; graph *right;

g;
graph::visit(int s)f

this->parallel visit(s);
wait();

g
graph::parallel visit(int p)f

lock.acquire();
sum = sum + p;
if (!mrk) f
mrk = TRUE;
lock.release();
if(left != NULL)

spawn(left->parallel visit(val));
if(right != NULL)

spawn(right->parallel visit(val));
g else f

lock.release();
g

g

Figure 2: Parallel Graph Traversal.

invocation an operation. The receiver of each visit oper-
ation is the node to traverse. Each visit operation takes
as a parameter p the value of the instance variable val of
the node that points to the receiver. The visit operation
first adds p into the running sum stored in the receiver’s
sum instance variable. It then checks the receiver’s mrk
instance variable to see if the traversal has already visited
the receiver. If not, the operation marks the receiver, then
recursively invokes the visit method for all of the nodes
that the receiver points to.

The way to parallelize the traversal is to execute the two
recursive visit operations concurrently. But this paral-
lelization may violate the data dependences. The serial
computation executes all of the accesses generated by the
left traversal before all of the accesses generated by the right
traversal. If the two traversals visit the same node, in the
parallel execution the right traversal may visit the node be-
fore the left traversal, changing the order of reads and writes
to that node. This violation of the data dependences may
generate cascading changes in the overall execution of the
computation. Because of the marking algorithm, a node
only executes the recursive calls the first time it is visited.
If the right traversal reaches a node before the left traversal,
the parallel execution may also change the order in which
the overall traversal is generated.

In fact, none of these changes affects the overall result of
the computation. It is possible to automatically parallelize
the computation even though the resulting parallel program
may generate computations that differ substantially from the
original serial computation. The key property that enables
the parallelization is that the parallel computation generates
the same set of visit operations as the serial computation
and the generated visit operations can execute in any
order without affecting the overall behavior of the traversal.

Given this commutativity information, the compiler can
automatically generate the parallel visit method in Fig-
ure 2. The top level visit method first invokes the
parallel visit method, then invokes the wait con-
struct, which blocks until all parallel tasks created by
the current task or its descendant tasks finishes. The
parallel visit method executes the recursive calls
concurrently using the spawn construct, which creates a
new task for the execution of each invocation. The com-
piler also augments the graph data structure with a mu-
tual exclusion lock. This lock ensures that each invoca-
tion of parallel visit executes atomically with re-
spect to all other invocations with the same receiver. The
parallel visit method acquires the lock before ac-
cessing the receiver and releases the lock before invok-
ing any methods. Application of lazy task creation tech-
niques [9] can increase the granularity of the resulting par-
allel computation.

3 The Basic Approach

Commutativity analysis is designed for programs written
using a pure object-based paradigm. Such programs struc-
ture the computation as a sequence of operations on objects.
Each operation consists of a receiver object, an operation
name and several parameters. Each operation name iden-
tifies a method that defines the behavior of the operation;
when the operation executes it invokes that method. Each
object implements its state using a set of instance variables.
When a method executes it can recursively invoke other
operations and/or use primitive operators (such as addition
and multiplication) to perform computations involving the
parameters and the instance variables of the receiver.

Commutativity analysis is designed to work with sepa-
rable methods. A method is separable if its execution can
be decomposed into an object section and an invocation
section. The object section performs all accesses to the re-
ceiver. The invocation section invokes other operations and
does not access the receiver. It is of course possible for local
variables to carry values computed in the object section into
the invocation section, and both sections can access the pa-
rameters. Separability imposes no expressibility limitations
— it is possible to convert any method into a collection of
separable methods via the introduction of auxiliary meth-



ods. In [11] we present a formal treatment of commutativity
analysis as applied to separable operations.

The foundation of commutativity analysis is a set of con-
ditions that a compiler can use to test if two operations A
and B commute. The commutativity testing conditions must
consider two execution orders: the execution order A;B in
which A executes first then B executes, and the execution
order B;A in which B executes first then A executes. Two
operations commute if they meet the following conditions:

� Instance Variables: The new value of each instance
variable of the receiver objects of A and B under the
execution order A;B must be the same as the new
value under the execution order B;A.

� Invoked Operations: The multiset of operations di-
rectly invoked by either A or B under the execution
order A;B must be the same as the multiset of op-
erations directly invoked by either A or B under the
execution order B;A.

Both commutativity testing conditions are trivially satisfied
if the two operations have different receivers — the exe-
cutions of the two methods are independent because they
access disjoint pieces of data. We therefore focus on the
case when the two operations have the same receiver.

It is possible to determine if each of the receiver’s instance
variables has the same new value in both execution orders
by analyzing the invoked methods to extract two symbolic
expressions. One of the symbolic expressions denotes the
new value of the instance variable under the execution order
A;B. The other denotes the new value under the execution
order B;A. Given these two expressions, a compiler may be
able to use algebraic reasoning to discover that they denote
the same value. The compiler uses a similar approach to
determine if A and B together invoke the same multiset of
operations in both execution orders.

We illustrate these concepts by applying them to the
graph traversal example in Figure 1. We assume two
invocations r->visit(p1) and r->visit(p2) of the
visit method. r->visit(p1) has parameter p1,
r->visit(p2) has parameterp2 and both operations have
the same receiver r.

We first consider the instance variable sum. Table 1
contains the two expressions denoting the new values of
sum under the two execution orders. In these expressions
sum represents the old value of the sum instance variable
before either method executes. Given these two expressions,
the compiler can use the fact that + is both commutative and
associative to discover that the two expressions denote the
same value.1

1We ignore here potential anomalies caused by the finite representation
of numbers. A compiler switch that disables the exploitation of commuta-
tivity and associativity for operators such as + will allow the programmer

We next consider the new value of the mrk instance
variable. Because its new value depends on the flow of
control through the method, the expressions representing its
new values contain conditionals. A conditional of the form
if(cx;ex1;ex2) denotes the expression ex1 if cx is true
and ex2 if cx is false. Table 1 contains the new values of
the mrk instance variable, which are identical under both
execution orders.

Finally, because the visit method writes none of the
other instance variables, their new values are the same as
their values before the execution of the two operations. The
two operationsr->visit(p1) and r->visit(p2) there-
fore satisfy the first commutativity testing condition.

We next consider the multiset of invoked operations. Be-
cause an operation may be invoked along one control flow
path but not another, the symbolic operation expressions
used to denote invoked operations may contain condition-
als. A conditional symbolic operation expression of the
form if(cx,o) denotes an operation o that is invoked
only if cx is true. Table 2 contains the symbolic operation
expressions that denote the operations that r->visit(p1)
and r->visit(p2) directly invoke under the two execu-
tion orders. The compiler checks that the two operations
meet the second commutativity testing condition by com-
paring the multiset of the symbolic operation expressions
under the execution orderr->visit(p1);r->visit(p2)
with the multiset of the symbolic operation expressions un-
der the execution order r->visit(p2);r->visit(p1).
In this example r->visit(p1) and r->visit(p2) to-
gether invoke the same multiset of operations in both ex-
ecution orders, and the two operations satisfy the second
commutativity testing condition.

A compiler can use the commutativity testing conditions
described above to determine if it can legally generate par-
allel code for a given method. The compiler first computes
a conservative approximation to the set of methods invoked
as a result of invoking the given method. It then applies
the commutativity testing conditions described above to all
pairs of potentially invoked methods that may have the same
receiver. If all of the pairs commute, the compiler can legally
generate parallel code.

4 Analysis

Programmers define operations by writing methods.
Each operation corresponds to a method invocation: to ex-
ecute an operation, the machine executes the code in the
corresponding method. The commutativity analysis algo-
rithm determines if operations commute by analyzing the
corresponding methods.

to prevent the compiler from performing transformations that may change
the order in which the parallel program combines the summands.



Execution Order New Value of sum New Value of mrk
r->visit(p1); r->visit(p2) (sum + p1) + p2 if(!if(!mrk,TRUE,mrk),TRUE,if(!mrk,TRUE,mrk))
r->visit(p2); r->visit(p1) (sum + p2) + p1 if(!if(!mrk,TRUE,mrk),TRUE,if(!mrk,TRUE,mrk))

Table 1: New Values of sum and mrk Under Different Execution Orders

Execution Order Symbolic Operations Invoked By r->visit(p1) and r->visit(p2)
r->visit(p1); r->visit(p2) if(!mrk,if(left!=NULL,left->visit(val))),

if(!mrk,if(right!=NULL,right->visit(val))),
if(!if(!mrk,TRUE,mrk), if(left!=NULL,left->visit(val))),
if(!if(!mrk,TRUE,mrk), if(right!=NULL,right->visit(val)))

r->visit(p2); r->visit(p1) if(!mrk,if(left!=NULL,left->visit(val))),
if(!mrk,if(right!=NULL,right->visit(val))),
if(!if(!mrk,TRUE,mrk), if(left!=NULL,left->visit(val))),
if(!if(!mrk,TRUE,mrk), if(right!=NULL,right->visit(val)))

Table 2: Symbolic Operations Invoked by r->visit(p1) and r->visit(p2) Under Different Execution Orders

4.1 Overview

Given a piece of code to parallelize, the compiler first tra-
verses the static call graph to compute a conservative approx-
imation to the set of methods invoked as a result of executing
a given method. To apply the commutativity testing condi-
tions the compiler must represent and reason about both the
new values of the receiver’s instance variables and the mul-
tiset of methods invoked when two operations execute. The
compiler represents these new values and invoked methods
using symbolic expressions. To check if two method invo-
cations commute, the compiler first uses symbolic execution
to extract the relevant expressions under the two execution
orders. It then applies the commutativity testing conditions
by simplifying the expressions and comparing correspond-
ing expressions for equality. If all pairs of invoked methods
commute the compiler can generate parallel code.

Figure 3 contains the commutativity analysis algorithm,
which determines if it is possible to generate parallel code
for a method. The algorithm performsO(n2) commutativity
testing operations where n is the number of methods poten-
tially invoked by the method either directly or indirectly.
Figure 3 also contains the commutativity testing algorithm.
This algorithm performs v instance variable expression com-
parisons, where v is the number of instance variables in the
class of the receiver object. The algorithm also comparess1

and s2, which are two multisets of expressions denoting po-
tentially invoked methods. s1 and s2 both containm1 +m2

expressions denoting potentially invoked methods, where
m1 and m2 are the number of methods directly invoked by
op1 and op2, respectively. The comparison of s1 with s2

performsm1 +m2 comparisons of these expressions.

can parallelize(op)
// invoked by(op) traverses the static call graph rooted at op
// to compute a conservative approximation to the set of methods
// directly or indirectly invoked as a result of executing op.
forall hop1; op2i 2 invoked by(op)�invoked by(op)
// recv(op) is the class of the receiver of op
if recv(op1)=recv(op2)
// commute(op1,op2) returns TRUE if all invocations
// of op1 and op2 commute (see algorithm below).
if (not(commute(op1,op2)))
return(FALSE)

return(TRUE)

commute(op1;op2)
// symbolic exec(op1; op2) returns a tuple hi;si.
// Here s is an expression denoting the multiset of methods
// directly invoked as a result of executing first op1 then op2.
// i is a set of bindings that provide, for each instance variable,
// an expression denoting the new value of that instance
// variable after the execution of first op1 then op2.
hi1;s1i = symbolic exec(op1;op2)
hi2;s2i = symbolic exec(op2;op1)
for all v 2 instance variables(recv(op1))
// simplify converts expressions to a simpler form.
// compare compares expressions for equality.
// Section 4.3 discusses these two algorithms.
if(!compare(simplify(i1(v)),simplify(i2(v))))
return(FALSE)

if(!compare(simplify(s1),simplify(s2))
return(FALSE)
return(TRUE)

Figure 3: Commutativity Analysis and Commutativity Test-
ing Algorithms



4.2 Expressions and Symbolic Execution

The analysis represents arithmetic values using expres-
sions such as ex1 + ex2 and �ex. Conditional expres-
sions such as if(cx;ex1;ex2) represent the values of
variables assigned different values on different branches of
conditional statements. Updates such as [ex1!ex2] rep-
resent assignments to array elements. An array expression
ax[ex1!ex2] represents the array whose value at the index
denoted by ex is ex2 if ex1 = ex and ax[ex] otherwise.

The analysis represents invoked methods using se-
quences of method invocation expressions. The expres-
sion ex1->op(ex2) represents an invocation of the method
op with receiver ex1 and parameter ex2. Conditional ex-
pressions of the form if(cx;mx) represent methods only
invoked in one branch of a conditional statement.

The compiler extracts expressions using symbolic execu-
tion. When it symbolically executes a method, the compiler
maintains a set of bindings that provide, for each instance
variable, an expression that denotes the variable’s value at
the current point in the execution. To execute a statement,
the analysis symbolically evaluates the expression on the
right hand side using the current set of bindings, then binds
the computed expression to the variable on the left hand
side of the assignment. To symbolically execute a condi-
tional statement, the analysis evaluates both branches of the
conditional, then combines the results to derive conditional
expressions that denote the values of variables modified in
one or both of the branches.

In general it is impossible to extract closed-form expres-
sions for values computed in loops. We therefore recognize
special cases of loops, in particular loops that do not access
state modified during the course of the analyzed computa-
tion and loops that perform simple vector operations. A
general solution is to replace loops (for analysis purposes
only) with tail-recursive auxiliary methods.

4.3 Expression Simplification and Comparison

The expression comparison algorithm reduces the expres-
sions to a simplified form, then applies a simple recursive
isomorphism test to determine if the two expressions always
denote the same value. The algorithm handles the following
kinds of expressions:

� Scalar Expressions : The simplifier applies several
kinds of simple scalar rules:

– Distribution:
Rules such as ex+if(cx;ex1;ex2) =
if(cx;ex+ex1;ex+ex2) distribute condi-
tionals out of condition, scalar and array ex-
pressions. Rules such as -(ex1+ex2) =
(-ex1+-ex2) simplify arithmetic expressions.

– Simplification: Rules such as --ex = ex
eliminate redundant operations.

– Binary Conversion: Rules such
as ((ex1+ex2)+ex3) = (ex1+ex2+ex3) and
(ex1+(ex2+ex3)) = (ex1+ex2+ex3) convert
binary applications of commutative and asso-
ciative operators such as +, �, && and || into
n-ary applications. The algorithm also sorts the
operands according to an arbitrary, recursively
defined total order on expressions. This sort fa-
cilitates the eventual comparison by making it
easier to identify isomorphic operands of com-
mutative and associative operators.

� Array Expressions: The array expression simplifica-
tion algorithm applies a rule that eliminates redundant
updates and two rules that simplify array accesses:

ax[ex1!ex2] � � � [ex3!ex4] = ax � � � [ex3!ex4]
if ex1 = ex3

ax[ex1!ex2][ex3] = ex2 if ex1 = ex3

ax[ex1!ex2][ex3] = ax[ex3] if ex1 6= ex3

It also attempts to sort the update list,using the indexes
as the sort key and an arbitrary, recursively defined
total order on expressions as the sort order. Sorting
the update list facilitates the eventual comparison by
making it easier to identify isomorphic updates. The
sort algorithm repeatedly identifies a pair of adjacent
unsorted updates and attempts to replace the updates
with an equivalent pair of sorted updates. The algo-
rithm can replace the updates with any two updates
that meet the following conditions:

Observation 1 ax[ex1!ex2][ex3!ex4] =
ax[ex5!ex6][ex7!ex8] if

– ex1 = ex3 implies ex3 = ex7;ex5 =
ex7;ex4 = ex8 and

– ex1 6= ex3 implies either ex3 = ex7;ex1 =
ex5;ex2 = ex6;ex4 = ex8 or
ex3 = ex5;ex1 = ex7;ex2 = ex8;ex4 =
ex6

Because each update is generated by an assignment to
an array element, the algorithm constructs the updates
that correspond to executing the assignments in the
reverse order. It then checks that this new pair of
updates is sorted, and if so uses the conditions in
Observation 1 to check if the new pair is equivalent
to the original pair. The equality checking algorithm
first assumes that ex1 = ex3, then attempts to check
that ex3 = ex7;ex5 = ex7;ex4 = ex8 under this
assumption. Before checking the equality conditions,



the algorithm first applies any of the array expression
simplification rules enabled by the assumption. It
goes through a similar process when it checks the
second condition and assumes that ex1 6= ex3. If
the array assignments commute, the updates meet the
conditions in Observation 1 and the algorithm can
replace the original unsorted pair of updates with the
new sorted pair.

� Conditional Expressions : The simplification algo-
rithm builds a condition table for each expression that
contains conditional subexpressions. This table en-
ables the equality testing algorithm to use a simple
isomorphism test for expressions containing condi-
tionals. Each condition table contains the maximal
condition-free subexpressions of the original expres-
sion. Each subexpression is stored under an index
which consists of a conjunction of basic terms. If
a subexpression is stored under a given index, it de-
notes the value of the original expression when all
of the basic terms in the index are true. The algo-
rithm builds the table by recursively traversing the
outer conditional expressions to identify the minimal
conjunctions of basic terms that select each maxi-
mal conditional-free subexpression as the value of the
original expression. It is possible to further simplify
the table using logic minimization techniques as pro-
posed in [6].

� Invoked Method Expressions : The algorithm sorts
the sequence of invoked method expressions. This
sort facilitates the comparison of sets of invoked
method expressions by making it easier to identify
isomorphic expressions.

To compare two expressions for equality the algorithm
performs a simple recursive isomorphism test. The algo-
rithm checks that the condition tables have the same indexes
and that corresponding subexpressions are isomorphic. In
the worst case the expression manipulation algorithms may
take exponential running time, although in practice we do
not expect this worst-case behavior to prevent the applica-
tion of commutativity analysis.

4.4 Code Generation

If it is possible to parallelize a method the compiler gener-
ates two methods: a parallel method and a wrapper method
that invokes the parallel method then waits until the com-
putation has finished. The parallel method directly invokes
the parallel versions of all of the invoked methods. The
compiler also augments the data structure declaration of the
receiver object with a mutual exclusion lock. If the parallel
method accesses an instance variable of the receiver that

another potentially invoked method may modify, the paral-
lel method uses the lock to ensure that executes atomically.
The generated code acquires the lock before the first access
to the receiver, then releases the lock before the first oper-
ation invocation site. The compiler may generate multiple
lock release sites; only one will be executed per invocation.
Figure 2 contains an example of the generated code.

The compiler also applies an optimization that exposes
parallel loops to the run time system. If a loop contains
nothing but parallel method invocations, the compiler gen-
erates parallel loop code instead of code that serially spawns
the parallel operations in the loop.

5 Experimental Results

We have conducted an experimental feasibility study de-
signed to evaluate how well commutativity analysis works
in practice for a given application. This study evaluates the
ability of commutativity analysis to expose concurrency in
the application, the performance improvements that result
from exploiting this concurrency, and the overhead of the
dynamic lock operations and task management required to
execute the generated parallel code.

We performed this feasibility study on a complete sci-
entific application — the Barnes-Hut hierarchical N-body
solver [2]. The Barnes-Hut is a challenging application be-
cause it manipulates a recursive, pointer-based data structure
– a space subdivision tree. We applied commutativity analy-
sis by hand to this application to generate parallel code.2 We
then executed the generated code on a shared memory mul-
tiprocessor (the Stanford DASH machine [8]), comparing its
performance with that of a highly optimized, explicitly par-
allel version of the same computation from the SPLASH-2
benchmark set. The fact that the two versions exhibit com-
parable performance demonstrates that a compiler can use
commutativity analysis to successfully parallelize this ap-
plication.

5.1 The Barnes-Hut application

The Barnes-Hut algorithm simulates the trajectories of
a set of interacting bodies under Newtonian forces. The
algorithm improves on the all-pairs computation by approx-
imating an interaction between a body and a cluster of dis-
tant bodies with a single interaction between the body and
the combined center of mass of the cluster. We refer to
an interaction between a body and a cluster as a body-cell
interaction, and an interaction between two “close” bodies
as a body-body interaction. The algorithm organizes the
computation using a space subdivision tree, completely re-
constructing the tree at each iteration of the system. Internal

2The sequential source code and the parallel generated code can be
found at http://www.cs.ucsb.edu/�pedro/CA/barnes



nodes of the tree are called cells; each cell represents a
rectangular spatial domain. The immediate descendants of
a given cell evenly subdivide its spatial domain. The tree
leaves store the bodies.

Each iteration of the algorithm performs the following
four steps. It first constructs the space subdivision tree by
inserting the bodies one by one into an initially empty tree.
It then computes, for each cell in the tree, the center of mass
of the bodies in that cell. It next computes, for each body, the
force acting on that body from other bodies in the system.
It finally uses the computed forces to advance each body in
the system. The commutativity analysis algorithm is ca-
pable of exploiting the concurrency in the force calculation
and position/velocity update phases. Because of space con-
straints we outline here the force calculation step only. The
position/velocity update phases are in essence similar and
have been omitted. In [5] we present a full description of the
analyzed code and a discussion of commuting operations.

The force computation step consists of a loop that invokes
the force calculation computation for each body. Each force
computation recursively traverses the space subdivision tree.
At each spatial cell it computes the validity of the center-
of-mass interaction approximation. If the approximation is
valid the algorithm avoids a recursive traversal of the sub-
tree rooted at the cell by computing a body-cell interaction.
If the approximation is not valid the algorithm recursively
traverses all of the cell’s children. If the traversal reaches a
leaf it computes a body-body interaction.

Whenever it computes an interaction, the algorithm up-
dates both the acceleration and the potential field vectors of
the body. For any two interactions these updates commute.
All tree cell interaction operations (which compute body-
cell interactions) and body interaction operations (which
compute body-body interactions) therefore commute. All
the remaining operations in the force computation step only
read variables that none of the operations in the step modify.
They are therefore independent of the operations that update
the body objects. The compiler can therefore generate code
that executes all iterations of the force computation loop in
parallel.

5.2 Results

Starting with an object-based version of the code, we
generated parallel code for the force calculation and po-
sition/velocity phases. We also implemented a run-time
library that provided the basic synchronization and concur-
rency management functionality. We expect the compiler
to generate the same code and use the same library. We
ran this version on the Stanford DASH machine. We com-
pare its performance with that of the barnes code, a highly
tuned hand-parallelized code from the SPLASH-2 bench-
mark set [16]. Tables 4 and 5 present the timing results.

Number Processors
of Bodies 1 2 4 8 16

1024 7.94 4.05 2.19 1.38 0.92
2048 20.46 10.70 5.72 3.37 2.18
4096 51.23 26.82 14.20 8.09 5.16
8192 131.2 64.10 33.88 15.59 11.56

16384 301.4 146.9 77.56 45.60 26.13

Figure 4: Execution times for commutativity analysis ver-
sion (seconds).

Number Processors
of Bodies 1 2 4 8 16

1024 9.15 4.58 2.46 2.39 2.07
2048 22.36 11.78 6.04 3.65 4.08
4096 55.51 27.40 14.95 8.06 5.90
8192 127.1 65.67 35.79 19.73 11.60

16384 277.1 140.5 76.70 39.63 22.69

Figure 5: Execution times for barnes from the SPLASH-2
benchmark set (seconds).

The performance of the commutativity analysis ver-
sion is comparable to the performance of the highly tuned
SPLASH-2 code. Both computations scale reasonably well
as the number of processors increases. This is a very en-
couraging result considering the amount of effort and so-
phistication of the optimizations in the barnes code.

6. Related Work

Compiler research on automatically parallelizing serial
codes that manipulate dynamic, pointer-based data struc-
tures has focused on techniques that precisely represent the
run-time topology of the heap [7, 10]. Ideally the compiler
can use this representation to discover independent pieces
of code. Unlike commutativity analysis, these techniques
must analyze the code that builds the data structure and must
propagate the results of this analysis through the program
to the parallel sections that use the data structure. There
are both advantages and disadvantages of data dependence
analysis when compared with commutativity analysis. If the
compiler can use data dependence analysis to discover inde-
pendent pieces of code, it can parallelize the code without
having to extract any further properties. For commutativ-
ity analysis to generate parallel code, all operations in the
computation must commute. The advantages of commu-
tativity analysis are its ability to parallelize computations
that manipulate graphs, the fact that it eliminates the need
to perform complex analysis to extract global properties of
the data structure, the fact that it eliminates the need to
propagate extracted properties of the data structure topol-
ogy across large sections of the program and the fact that



it can parallelize code that manipulates pointer-based data
even in the absence of the code that originally constructed
the data structure.

Several existing compilers can recognize when a loop per-
forms a reduction of many values into a single value [6, 4].
These compilers recognize when the reduction primitive
(typically addition) is associative. They then exploit this
algebraic property to eliminate the data dependence asso-
ciated with the serial accumulation of values into the re-
sult. The generated program computes the reduction in
parallel. These techniques exploit an associative prop-
erty of language primitives in a specific context (parallel
loops). Commutativity analysis is designed to recognize
when programmer-defined operations commute and to ex-
ploit this property in the context of arbitrary computations
on arbitrary programmer-defined objects.

Other researchers have recognized the value of includ-
ing support for commuting operations in parallel computing
systems [3, 15, 14]. These systems focus on exploiting com-
muting operations and rely on some external mechanism,
typically the programmer, to specify when the operations
actually commute. The goal of the presented research is to
automatically recognize and exploit commuting operations.

7. Conclusion

Existing parallelizing compilers all preserve the data de-
pendences of the original serial program. We believe that
this strategy is too conservative: compilers must recognize
and exploit commuting operations if they are to effectively
parallelize a range of applications. This paper presents an
algorithm that can statically recognize and exploit commut-
ing operations to automatically generate parallel code. We
state a general set of conditions that is sufficient to guaran-
tee commutativity. We present a static analysis algorithm
that uses symbolic execution and expression manipulation
to determine if operations commute and show how a paral-
lelizing compiler can exploit commuting operations to gen-
erate parallel code. Finally, we present an experiment that
demonstrates that at least one application, the Barnes-Hut
hierarchical N-body solver, exhibits good parallel perfor-
mance under this approach.
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