Detecting and Eliminating Memory L eaks Using Cyclic Memory
Allocation

Huu Hai Nguyen and Martin Rinard

Department of Electrical Engineering and Computer Science
Computer Science and Artificial Intelligence Laboratory
Singapore-MIT Alliance
Massachusetts Institute of Technology
Cambridge, MA 021139

nguyen@nus.edu.sg,rinard@csail.mit.edu

Abstract

We present and evaluate a new technique for detecting and
eliminating memory leaks in programs with dynamic mem-
ory allocation. This technique observes the execution of the
program on a sequence of training inputs to find m-bounded
allocation sites, which have the property that at any time
during the execution of the program, the program accesses
at most only the last m objects allocated at that site. If the
difference between the number of allocated and deallocated
objects from the site grows above m throughout the com-
putation, there is a memory leak at that site. To eliminate
the leak, the technique transforms the program to use cyclic
memory allocation at that site: it preallocates a buffer con-
taining m objects of the type allocated at that site, with each
allocation returning the next object in the buffer. At the end
of the buffer the allocations wrap back around to the first
object. Cyclic allocation eliminates any memory leak at the
allocation site — the total amount of memory required to
hold all of the objects ever allocated at the site is simply m
times the object size.

We evaluate our technique by applying it to several
widely-used open source programs. Our results show that it
is able to successfully detect and eliminate important mem-
ory leaks in these programs. A potential concern is that the
estimated bounds m may be too small, causing the program

* This research was supported in part by DARPA Cooperative Agreement
FA 8750-04-2-0254, DARPA Contract 33615-00-C-1692, the Singapore-
MIT Alliance, and the NSF Grants CCR-0341620, CCR-0325283, and
CCR-0086154.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ISMM’07, October 21-22, 2007, Montréal, Québec, Canada.
Copyright © 2007 ACM 978-1-59593-893-0/07/0010. . . $5.00

to overlay live objects in memory. Our results indicate that
our bounds estimation technique is quite accurate in practice,
providing incorrect results for only two of the 152 suitable
m-bounded sites that it identifies. To evaluate the potential
impact of overlaying live objects, we artificially reduce the
bounds at m-bounded sites and observe the resulting be-
havior. The resulting overlaying of live objects often does
not affect the functionality of the program at all; even when
it does impair part of the functionality, the program does
not fail and is still able to acceptably deliver the remaining
functionality.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Dynamic Storage Management; D.2.5 [Soft-
ware Engineering]: Testing and Debugging

General Terms Design, Experimentation, Reliability, Se-
curity

Keywords Cyclic Memory Allocation, Failure-Oblivious
Computing, Memory Leaks

1. Introduction

A program that uses explicit allocation and deallocation has
a memory leak when it fails to free objects that it will no
longer access in the future. A program that uses garbage
collection has a memory leak when it retains references to
objects that it will no longer access in the future. Memory
leaks are an issue since they can cause the program to con-
sume increasing amounts of memory as it runs. Eventually
the program may exhaust the available address space and
fail. Memory leaks may therefore be especially problematic
for server programs that must execute for long (and in prin-
ciple unbounded) periods of time.

This paper presents a new technique for detecting and
eliminating memory leaks. This technique applies to allo-
cation sites * that satisfy the following property:

1An dlocation site is a location in the program that allocates memory.
Examples of allocation sites include calls to mal | oc in C programs and
locations that create new objects in Java or C++ programs.

DEFINITION 1 (m-Bounded Access Property). An alloca-
tion siteism-bounded if, at any time during the execution of
the program, the program accesses at most only the last m
objects allocated at that site.

If the difference between the number of allocated and
deallocated objects from an m-bounded site exceeds m, the
program is consuming more memory than it needs to execute
the computation. An increase in the difference over time
indicates the presence of a memory leak. It is possible to
eliminate this leak as follows:

¢ Preallocation: Preallocate a buffer containing m objects
of the type allocated at that site.

¢ Cyclic Allocation: Each allocation returns the next ob-
ject in the buffer, with the allocations cyclically wrapping
around to the first object in the buffer after returning the
last object in the buffer.

e No-op Deallocation: Convert all deallocations of objects
allocated at the site into no-ops.

This cyclic memory management scheme has several ad-
vantages:

¢ No Memory Leaks: It eliminates any memory leak at
allocation sites that use cyclic memory management —
the total amount of memory required to hold all of the
objects ever allocated at the site is simply m times the
object size.

e Simplicity: It is extremely simple to implement and op-
erate. Unlike many previously proposed static analysis
techniques [20, 13, 24, 22, 16, 30, 28, 27, 21], it does not
require the development of a heavyweight static analy-
sis or programmer annotations to detect and/or eliminate
memory leaks.

To use cyclic memory management, the memory manager
must somehow find m-bounded allocation sites and obtain
a bound m for each such site. Our implemented technique
finds m-bounded sites and obtains the bounds m empirically.
Specifically, it runs an instrumented version of the program
on a sequence of sample inputs and records, for each alloca-
tion site and each input, the bound m observed at that site for
that input.? If all runs in which the site is invoked produce
the same value m, we assume that the site is m-bounded.

One potential concern is that the bound m observed while
processing the sample inputs may, in fact, be too small: other
executions may access more objects than the last m objects
allocated at the site. In this case the cyclic allocation may
overlay two different live objects into the same memory,
potentially causing the program to generate unacceptable
results or even fail.

2|n any single execution, every alocation site has a bound m (which may
be, for example, simply the number of objects alocated at that site).

To evaluate our technique, we implemented it and applied
it to several sizable programs drawn from the open-source
software community. We obtained the following results:

e Memory Leak Elimination: Our technique found 152
suitable m-bounded allocation sites and detected a mem-
ory leak at 3 of these sites. Moreover, some of these mem-
ory leaks make the programs vulnerable to denial of ser-
vice attacks — certain carefully crafted requests cause
the program to leak memory every time it processes the
request. By presenting the program with a sequence of
such requests, an attacker could cause the program to ex-
haust its address space and fail. Our technique is able to
identify these sites, apply cyclic memory allocation, and
effectively eliminate the memory leak (and the denial of
service attack).

e Accuracy: We ran the programs on two sets of inputs: a
training set (which is used to estimate the bounds) and a
larger validation set (which is used to determine if any of
the estimated bounds is too small). Our results indicate
that this approach is quite accurate: the validation runs
agree with the training runs on all but two of the 152
suitable m-bounded sites.

¢ Reliability: We performed a long-term test of the reli-
ability of two of our programs (Squid and Pine) by in-
stalling them as part of our standard computing environ-
ment. In several months of usage, we observed no devia-
tions from the correct behavior of the programs.

¢ Impact of Cyclic Memory Allocation: In two of the pro-
grams, the bounds estimates agree with the values ob-
served in the validation runs and the use of cyclic mem-
ory allocation has no effect on the observable behavior
of the program (other than eliminating memory leaks).
For one of the remaining two programs with a bounds
estimation error, the resulting overlaying of live objects
has no effect on the externally observable behavior of the
program during our validation runs. Moreover, an analy-
sis of the potential effect of the overlaying indicates that
it will never impair the overall functionality of the pro-
gram. For the final program, the overlaying disables part
of the functionality but leaves the remaining functionality
intact.

¢ Bounds Reduction Effect: To further explore the poten-
tial impact of an incorrect bounds estimation, we artifi-
cially reduced the estimated bounds at each suitable m-
bounded site with m > 1 and observed the effect that
this artificial reduction had on the program’s behavior. In
some cases the reduction did not affect the observed be-
havior of the program at all; in other cases it impaired
some of the program’s functionality. But the reductions
never caused a program to fail and in fact left the pro-
gram able to execute code that accessed the overlaid ob-
jects to continue on to acceptably deliver the remaining
functionality.

1.1 Usage Scenarios

The great strength of cyclic memory allocation is its ability
to eliminate memory leaks without requiring the modifica-
tion of the application program. Indeed, it is possible to find
the bounds m and eliminate memory leaks in stripped bina-
ries with no access to source code and no programmer in-
tervention whatsoever. Moreover, once one has obtained the
bounds m, it is possible to automatically, seamlessly, and
virtually instantaneously detect and eliminate otherwise fa-
tal memory leaks in running programs. We are aware of no
other technique that can provide this kind of automatic and
immediate response — all previously existing techniques of
which we are aware require some form of intervention to
eliminate the leak by changing the application program. Of
course, the tradeoff is that, if the bounds m are too small,
cyclic memory allocation may overlay live data which may,
in turn, cause the program to behave unacceptably.

We therefore anticipate usage scenarios in which the
consequences of memory leaks are severe enough and the
risks associated with the possibility of unacceptable behav-
ior manageable enough to justify the use of the technique.
We note that the usage context of the program has a sig-
nificant impact on this tradeoff. We outline several usage
scenarios below. All scenarios first perform a set of training
runs to find m-bounded allocation sites as outlined above.

e Preemptive Leak Elimination: In this scenario, the pro-
duction runs use cyclic memory allocation at every al-
location site with a bound m. The primary advantage of
this approach is its simplicity — the application of cyclic
memory allocation is straightforward and the resulting
memory allocation algorithm is clear. A drawback is that
this approach may overlay live objects even when there
is no danger of running out of memory.

e Offline Leak Elimination: In this scenario, the produc-
tion runs initially execute with standard memory man-
agement algorithms. If a run fails because of a mem-
ory leak at an m-bounded allocation site (the produc-
tion runs identify such sites by tracking the difference be-
tween the number of allocated and deallocated objects for
each site), it reexecutes using cyclic memory allocation to
eliminate the leak at that site. For programs that are de-
signed to process an input, produce a result, and then halt,
it is possible to use cyclic memory allocation only for in-
puts that have already caused a production run to fail. For
server programs that are designed to process an (in princi-
ple) unbounded number of dynamically presented inputs
or requests, it may be preferable to use cyclic memory
allocation for all future production runs.

The advantage of this approach is that it minimizes the
possibility of overlaying objects by using cyclic memory
allocation only after the program has demonstrated that it
cannot execute successfully with standard memory allo-

cation algorithms. The disadvantage is that the program
must fail before cyclic allocation eliminates the leak.

Latent Leak Elimination: In this scenario the produc-
tion runs track the difference between the number of al-
located and deallocated objects for each site. If this dif-
ference grows significantly beyond m for an m-bounded
allocation site, future production runs use cyclic alloca-
tion at that site. The goal is to use evidence from success-
ful production runs to find sites with latent memory leaks
— leaks that may cause future runs to fail, but were not
serious enough to cause the completed runs to fail. The
use of cyclic memory allocation at such sites can elimi-
nate such leaks before they can affect future runs.

This approach does not risk overlaying live objects unless
there is at least some evidence that there is a potentially
dangerous leak for cyclic memory allocation to eliminate.
It also has the advantage that it may be able to find
and eliminate leaks before they cause the program to
fail. Note, however, that it is still possible for a leak to
cause a production run to fail if previous production runs
provided no evidence of the presence of the leak.

Online Leak Elimination: In this scenario, the pro-
gram starts out using standard memory management al-
gorithms, then dynamically switches to cyclic memory
allocation when presented with evidence that it may be
leaking memory from a specific allocation site. As it runs,
the program monitors the amount of outstanding memory
for each m-bounded allocation site. When this amount
increases to the point that it may start to threaten the vi-
ability of the program, the program switches to cyclic
memory allocation at that site only. The program contin-
ues to execute seamlessly through the switch — there is
no need to restart the program or interrupt its execution in
any way. After allocating at least m objects in the cyclic
buffer, the program can then reclaim all of the objects
allocated at that site before the switch to cyclic memory
allocation.

By deploying cyclic memory allocation only in response
to evidence of a potentially fatal leak, this approach runs
the risk of overlaying live memory only when there is ev-
idence that the program would otherwise fail. We there-
fore anticipate that this approach will be useful when
continued program execution is an important priority
and obtaining intervention is problematic, either because
of programmer availability issues or response time re-
quirements. Two of our sample programs, for example,
(Xinetd and Squid) process external requests delivered
via the Internet. Both of these programs have memory
leaks that can be exercised by carefully crafted requests;
these leaks make both programs vulnerable to denial of
service attacks. The use of cyclic memory allocation in
response to excess memory usage at specific allocation

sites can eliminate the vulnerability with no service out-
age whatsoever.

Static Memory Usage Bounds: It is often useful to
be able to obtain a guaranteed bound on the maximum
amount of memory that a given program will ever con-
sume. Such bounds can be especially useful for programs
in embedded systems, which must typically execute 1)
within a fixed amount of physical memory determined
when the hardware is manufactured and 2) without any
direct human oversight or control (and therefore with-
out the possibility of human intervention should any-
thing go wrong). The acquisition of a bound m for every
allocation site, in combination with the application of
cyclic memory allocation at every allocation site in the
program, can provide such an upper bound — the total
amount of memory that any execution of the program
will ever require is simply the total amount of memory
required to hold all of the preallocated buffers plus the
amount required for the call stack (which, in the absence
of recursion, is usually straightforward to compute).

We anticipate that the decision to apply cyclic memory
allocation in this way will be driven largely by an analy-
sis of the benefit of eliminating one of the primary failure
modes (running out of memory) as compared to the risk
of introducing unacceptable behavior by overlaying live
objects. Given the severe consequences of system failure
in many embedded systems, we anticipate that developers
of embedded systems may choose to be more aggressive
in their application of cyclic memory allocation than de-
velopers operating in contexts in which the consequences
of failure are less severe. Note that even if the developer
chooses not to use cyclic memory allocation at all sites,
its use at some sites can simplify the overall memory us-
age analysis by enabling the developer to focus only on
the remaining sites that do not use cyclic memory alloca-
tion.

Checked Results: Many programs are used simply as
a tool to generate a given result. A word processor, for
example, may be used simply to produce a document; a
game program may be used simply to provide the experi-
ence of playing the game. In many cases the acceptabil-
ity of the result may be immediately apparent upon in-
spection or via an automated check [8, 6]. In such cases,
cyclic memory allocation may enable the program to pro-
duce a result that can be then checked for acceptabil-
ity. The program would first execute with the standard
memory management algorithms. If it failed with a mem-
ory leak, it would then execute with cyclic memory al-
location, which would ideally allow it to produce a re-
sult which would then be checked for acceptability. Note
that the acceptability check eliminates any risk associated
with the use of cyclic memory allocation — once one has
obtained a result that passes the acceptability check, the

specific mechanism used to generate the result is irrele-
vant.

It is also possible to use cyclic memory allocation to
provide a quick fix for newly discovered memory leaks while
programmers work to change the program to eliminate the
leaks. It is possible to apply this technique at any allocation
site and even in the absence of any a priori indication of
what reasonable values for the bounds m might be — one
can simply use testing to search for bounds that enable
the program to execute acceptably for an appropriate test
suite. And of course, it is possible to use cyclic memory
allocation without risk once programmers or an automated
analysis have verified that the bounds m are adequate for all
executions.

We note that cyclic memory allocation may not be appro-
priate in all circumstances. In particular, if successful human
intervention is readily available within an acceptable period
of time, if it is feasible to recover from the leak by restart-
ing the program (and it is acceptable to lose service during
the restart), or if the consequences of an unacceptable result
are so severe that one would rather have no result at all than
run the risk of silently obtaining an unacceptable result, then
it may be preferable to simply let the program exhaust its
address space and fail.

1.2 Other Resource Leaks

Itis, of course, possible for programs to leak other resources
such as file descriptors or processes. These kinds of leaks can
have equally disabling effects — a program that exhausts its
supply of file descriptors may be unable to write an output
file or create a socket to write a result to a client; a server that
exhausts its supply of processes may be unable to service
an incoming request. It is straightforward to generalize the
memory leak elimination technique in this paper to eliminate
these kinds of resource leaks as well — the program could
respond to its inability to allocate a new file descriptor or
process by simply closing or terminating an outstanding
file descriptor or process, then reallocating the resource to
satisfy the allocation request. Experience using a variant of
least-recently used allocation to manage a fixed-size pool of
file descriptors indicates that it is an effective file descriptor
management technique (at least for the tested applications)
that eliminates any possibility of a file descriptor leak [18].

1.3 Unsound Transformations In General

Since its inception, the field of automated program trans-
formation has focused almost exclusively on sound transfor-
mations that do not change the semantics of the program.
But soundness is a harsh restriction that significantly limits
the broad range of potentially viable transformations that re-
searchers could, in principle, investigate. It may therefore be
worthwhile to adopt a more balanced perspective that recog-
nizes the potential benefits that unsound transformations can
deliver. Cyclic memory allocation is a concrete example of

an unsound transformation whose benefits can easily (in at
least some contexts) outweigh the risks associated with its
ability to change some aspect of the program’s behavior. An
increased willingness to consider unsound transformations
might very well enable researchers to discover more useful
transformations that have this desirable property.

1.4 Contributions
This paper makes the following contributions:

e m-Bounded Allocation Sites: It identifies the concept
of an m-bounded allocation site and presents a technique
for identifying memory leaks at these sites.

¢ Empirical Bounds Estimation: It presents a methodol-
ogy for empirically estimating the bounds at each alloca-
tion site. This methodology consists of instrumenting the
program to record the observed bound for an individual
execution, then running the program on a range of train-
ing inputs to find allocation sites for which the sequence
of observed bounds is the same.

e Automatic Memory Leak Elimination: It proposes the
use of cyclic memory allocation for m-bounded alloca-
tion sites as a mechanism for eliminating memory leaks
at those sites.

e Experimental Results: It presents experimental results
that characterize how well the technique works on sev-
eral sizable programs drawn from the open-source soft-
ware community. The results show that our technique can
detect and eliminate memory leaks in these programs and
that the programs can, in many cases, provide much if not
all of the desired functionality even when the bounds are
artificially reduced to half of the observed values. One
intriguing aspect of these results is the level of resilience
that the programs exhibit in the face of overlaid data.

The remainder of the paper is structured as follows. Sec-
tion 2 presents an example that illustrates our approach.
Section 3 describes the implementation in detail. Section 4
presents our experimental evaluation of the technique. Sec-
tion 5 discusses related work. We conclude in Section 6.

2. Example

Figure 1 presents a (simplified) section of code from the
Squid web proxy cache version 2.4.STABLE3 [4]. At line 8
the procedure snnp_par se allocates a buffer buf p to hold
a Communi t y identifier. At lines 18 and 19 the procedure
snnpDecodePacket writes a reference to the allocated
buffer into a structure checkl i st allocated on the stack;
at line 25 it writes a reference to the buffer into its param-
eter r g. The procedure snnmpDecodePacket passes both
checkl i st and r g on to other procedures. This pattern
repeats further down the invoked sequence of procedures.
The procedure snnmpDecodePacket is called by the
procedure snipHandl eUdp, which passes a pointer to it-
self as an argument to CommSet Sel ect , which then stores

u_char *
snnp_parse(struct snnp_session * session,
struct snnp_pdu * pdu,
u_char * data,
int | ength)
{
int CommunitylLen = 128;

CxNooadRWONE

return (bufp);

10: 1}

11: static void

12: snnpDecodePacket (snnp_request _t * rQ)
13: |

14: u_char *Community;

15: acl Check_t checklist;

16: Comunity =

17: snnp_par se(&Sessi on, PDU, buf, len);
18: checkl i st.snmp_conmunity =

19: (char *) Conmunity;

20: if (Comunity)

21: al | ow = acl CheckFast (

22: Config.accessLi st.snnp, &checklist);
23: if ((snnp_coexist_V2toVi(PDU))

24: && (Conmunity) && (allow)) {

25: rg->community = Community;

26: snnpConst ruct Reponse(rq);

27: }

28: }

29: wvoid

30: snnpHandl eUdp(i nt sock, void *not_used)
31 {

32: commBet Sel ect (sock, COWM SELECT_READ,
33: snnpHandl eUdp, NULL, O0);
34: if (len > 0)

35: snnpDecodePacket (snmp_rq) ;

36: }

Figure 1. Memory leak from Squid

a reference to snnpHandl eUdp in a global table of structs
indexed by socket descriptor numbers. The program then
uses the stored reference as a callback.

Any analysis (either manual or automated) of the life-
time of the buf p buffer allocated at line 9 in snnp_par se
would have to track this complex interaction of procedures
and data structures to determine the lifetime of the buffer and
either insert the appropriate call to f r ee or eliminate all the
references to the buffer (if the program is using garbage col-
lection). Any such analysis would, at least, need to perform
an inter-procedural analysis of heap-aliased references in the
presence of procedure pointers. In this case the programmer
either was unable to or failed to perform this analysis. The
program uses explicit allocation and deallocation, but (ap-
parently) never deallocates the buffers allocated at this site
and therefore contains a memory leak [1].

When we run the instrumented version of Squid on a va-
riety of inputs, the results indicate that the allocation site at

bufp = (u_char *)xmall oc(Conmmuni tylLen+1);

line 9 is an m-bounded site with bound m = 1 — in other
words, the program only accesses the last object allocated at
that site. The use of cyclic memory allocation for this site
with a buffer size of one object eliminates the leak and, to
the best of our ability to determine, does not harm the cor-
rectness of the program. In particular, we used this version of
Squid in our standard computational environment as a proxy
cache for several months without a single observed prob-
lem. During this time Squid successfully served more than
100,000 requests.

3. Implementation

Our memory management technique contains three compo-
nents. The first component instruments the program to ob-
serve all memory allocations and accesses when the program
runs. The second analyzes the resulting data to find memory
leaks and m-bounded allocation sites. The third component
replaces, at each m-bounded allocation site, the invocation
of the standard allocation procedure (mal | oc in our cur-
rent implementation) with an invocation of a procedure that
implements cyclic memory management for that site. This
component also replaces the standard deallocation procedure
(f r ee in our current implementation) with a modified ver-
sion that operates correctly in the presence of cyclic memory
management by discarding attempts to explicitly deallocate
objects allocated in cyclic buffers. It also similarly replaces
the standard r eal | oc and cal | oc procedures.

3.1 Instrumentation

The instrumented version of the program records the alloca-
tion site, address range, and sequence number for each al-
located object. The address range consists of the beginning
and ending addresses of the memory that holds the object.
The sequence number is the number of objects allocated at
that site prior to the allocation of the given object. So, the
first object allocated at a given site has sequence number 0,
the second sequence number 1, and so on.

As the program runs, the instrumentation maintains the
following values for each allocation site:

e The number of objects allocated at that site so far in the
computation.

e The number of objects allocated at that site that have been
deallocated so far in the computation.

e An observed bound m, which is a value such that 1)
the computation has, at some point during the execution,
accessed an object allocated at that site m — 1 allocations
before the most recent allocation, and 2) the computation
has never accessed any object allocated at that site more
than m— 1 allocations before the most recently allocation.

The instrumentation uses the Valgrind addr check tool
to obtain the sequence of addresses that the program ac-
cesses as it executes [5]. It processes each accessed memory
address and uses the recorded address range information to

determine the allocation site and sequence number for the
accessed object. It then compares the sequence number of
the accessed object with the number of objects allocated at
the allocation site so far in the computation and, if necessary,
appropriately updates the observed bound m.

3.2 Finding m-Bounded Allocation Sites

Our technique finds m-bounded allocation sites by running
the instrumented version of the program on a sequence of
training inputs of increasing size. When it finishes running
the program on all of the training inputs, it compares the
observed bounds m for each allocation site. If all of these
bounds are the same for all of the inputs, it concludes that
the site is m-bounded with bound m.

3.3 Finding Leaking Allocation Sites

Consider an allocation site with an observed bound m. If the
difference between the number of objects allocated at that
site and the number of deallocated objects allocated at that
site is larger than m, there is a memory leak if the difference
either 1) increases during a single run or 2) increases as the
size of the input increases.

3.4 Cyclic Memory Management Algorithm

We have implemented our cyclic memory management al-
gorithm for programs written in C that explicitly allocate
and deallocate objects (in accordance with the standard C se-
mantics, each object is simply a block of memory). Each m-
bounded allocation site is given a cyclic buffer with enough
space for m objects. The allocation procedure simply incre-
ments through the buffer returning the next object in line,
wrapping back around to the beginning of the buffer after it
has allocated the last object in the buffer.

A key issue our implementation must solve is distinguish-
ing references to objects allocated in cyclic buffers from ref-
erences to objects allocated via the normal allocation and
deallocation mechanism. The implementation performs this
operation every time the program deallocates an object —
it must turn all explicit deallocations of objects allocated at
m-bounded allocation sites into no-ops, while successfully
deallocating objects allocated at other sites. The implemen-
tation distinguishes these two kinds of references by record-
ing the starting and ending addresses of each buffer, then
comparing the reference in question to these addresses to see
if it is within any of the buffers. If so, it is a reference to an
object allocated at an m-bounded allocation site; otherwise
it is not.

3.5 Variable-Sized Allocation Sites

Some allocation sites allocate objects of different sizes at
different times. We extend our technique to work with these
kinds of sites as follows. We first extend our instrumentation
technique to record the maximum size of each object allo-
cated at each allocation site. The initial size of the buffer is
set to m times this maximum size — the initial assumption

is that the sizes observed in the training runs are representa-
tive of the sizes that will be observed during the production
runs.

At the start of each new allocation, the allocator has a cer-
tain amount of memory remaining in the buffer. If the newly
allocated object fits in that remaining amount, the allocator
places it in the remaining amount, with subsequently allo-
cated objects placed after the newly allocated object (if they
fit). If the newly allocated object does not fit in the remain-
ing amount but does fit in the buffer, the allocator places the
allocated object at the start of the buffer. Finally, if the newly
allocated object does not fit in the buffer, the allocator allo-
cates a new buffer of size max(2 * m % r,3 x s), where r is
the size of the newly allocated object and s is the size of the
largest existing buffer for that site.

Note that although this extension may allocate new mem-
ory to hold objects allocated at the site, the total amount of
memory devoted to these objects is a linear function of the
size of the largest single object allocated at the site, not a
function of the number of objects allocated at the site.

3.6 Applying Cyclic Memory Allocation

As discussed above in Section 1.1, there are a range of ways
to use cyclic memory allocation in practice. For evaluation
purposes, however, we developed the concept of a suitable
m-bounded allocation site and applied cyclic memory allo-
cation at all such suitable sites. An m-bounded site is suit-
able if the total number of objects allocated at the site is
either one or at least three times the bound m in all training
runs in which the site is invoked. The rationale is to apply
cyclic memory allocation to allocation sites that produce a
significant number of dead objects in the training runs. An-
other goal is to capture sites that allocate singleton objects
during initialization.

3.7 Failure-Oblivious Computing

Overlaying live objects has the potential to introduce exe-
cution anomalies such as out of bounds memory accesses,
null pointer dereferences, multiple deallocations of the same
object, and infinite loops. In standard program execution en-
vironments, such anomalies can easily cause the program to
fail.

Failure-oblivious computing is a collection of techniques
that are designed to enable programs to execute through such
anomalies to continue to deliver acceptable service to their
users. We have previously applied failure-oblivious comput-
ing to several widely-used open-source servers [26]. Our
results show that failure-oblivious computing 1) eliminates
security vulnerabilities caused by buffer-overflow errors in
these servers and 2) enables these servers to execute suc-
cessfully through attacks that trigger these buffer-overflow
errors. The servers then continue on to correctly service sub-
sequent requests.

We apply failure-oblivious computing to targeted sites in
the code as appropriate to ameliorate (and in many cases

even eliminate) any global effect of any anomalies that over-
laying live objects may introduce. Specifically, we discard
any writes via null or out of bounds pointers and apply a
technique to heuristically exit infinite loops. This last tech-
nique bounds the maximum number of iterations of each
loop at 104, where i is the largest previously observed num-
ber of iterations of the loop (when the loop exits hormally
and not because of the bound on the number of iterations).3
We use training runs to obtain the initial observed values i; if
a loop does not execute during the training runs, we impose
no bound on the number of iterations the first time the loop
executes. Subsequent executions of the loop use the largest
observed number of iterations ¢ from previous executions to
bound the number of iterations to be at most 10%i. Both tech-
niques (discarding out of bounds writes and heuristically ex-
iting infinite loops) preserve the default flow of control in
that execution continues with the next statement after the
write or loop.

4. Evaluation

We evaluate our technique by applying it to several sizable,
widely-used programs selected from the open-source soft-
ware community. These programs include:

e Squid: Squid is an open-source, full-featured Web proxy
cache [4]. It supports a variety of protocols including
HTTP, FTP, and, for management and administration,
SNMP. We performed our evaluation with Squid Version
2.4STABLES3, which consists of 104,573 lines of C code.

® Freeciv: Freeciv is an interactive multi-player game [2].
It has a server program that maintains the state of the
game and a client program that allows players to inter-
act with the game via a graphical user interface. We per-
formed our evaluation with Freeciv version 2.0.0betal,
which consists of 342,542 lines of C code.

® Pine: Pine is a widely used email client [3]. It allows
users to read mail, forward mail, store mail in different
folders, and perform other email-related tasks. We per-
formed our evaluation with Pine version 4.61, which con-
sists of 366,358 lines of C code. We used Pine to access
the Unix mail file and Pine mail files such as folders.
All of these files are stored on the same machine running
Pine.

¢ Xinetd: Xinetd provides access control, logging, protec-
tion against denial of service attacks, and other manage-
ment of incoming connection requests. We performed our
evaluation with Xinetd version 2.3.10, which consists of
23,470 lines of C code.

3|n some very small number of cases (typicaly the main event-processing
loop of the program), the programmer may actually intend aloop to execute
forever. We dlow the programmer to identify such loops and disable the
loop exiting technique for these loops.

Note that all of these programs may execute, in princi-
ple, for an unbounded amount of time. Squid and Xinetd,
in particular, are typically deployed as part of a standard
computing environment with no expectation that they should
ever terminate. Memory leaks are especially problematic for
these kinds of programs since they can affect the ability of
the program to execute successfully for long periods of time.

Our evaluation focuses on two issues: the ability of our
technique to eliminate memory leaks and on the potential
impact of an incorrect estimation of the bounds m at differ-
ent allocation sites. While we did not obtain detailed per-
formance results, our experience using the programs made
it clear that the use of cyclic memory allocation does not
significantly affect the performance of our programs — all
programs exhibited basically the same performance with or
without cyclic memory allocation. We perform the following
experiments for each program:

e Training Runs: We select a sequence of training inputs
of increasing size and run the instrumented version of
the program on these inputs to find suitable m-bounded
allocation sites and to obtain the estimated bounds m for
these sites as described in Section 3.2.

Validation Runs: We select a validation input. This input
is different from and larger than the training inputs and is
intended to exercise strictly more of the functionality of
the program than the training inputs. We run the instru-
mented version of the program (both with and without
cyclic memory allocation applied at suitable m-bounded
sites) on this input. We use the collected results to de-
termine 1) the accuracy of the estimated bounds from
the training runs and 2) the effect of any overlaying of
live objects on the behavior of the program (this overlay-
ing would be caused by observed bounds m that are too
small).

Conflict Runs: For each suitable m-bounded allocation
site with m >1, we construct a version of the program
that uses the bound [m/2] at that site instead of the
bound m. We then run this version of the program on the
validation input. We use the collected results to evaluate
the effect of the resulting overlaying of live objects on the
behavior of the program.

Long-Term Usage: Squid and Pine are part of the stan-
dard computing environment of the first author of this pa-
per. This author replaced the standard versions of these
programs with versions that use cyclic memory alloca-
tion for all suitable m-bounded sites identified during the
training runs. He then used the versions with cyclic mem-
ory management exclusively for several months prior to
the submission of this paper.

Table 1 presents the percentage of executed allocation
sites that the training runs identify as suitable m-bounded
sites, the percentage of memory allocated at these sites (in
both the training and validation runs combined), and the

percentage of invalidated sites (sites for which the observed
bound m was too small) for each of our programs. In gen-
eral, the training runs identify roughly half of the executed
sites as suitable m-bounded sites, there is significant amount
of memory allocated at those sites, and there are almost no
invalidated sites — the training runs deliver observed bounds
that are consistent with the bounds observed in the validation
runs at all but two of the 152 sites with observed bounds m
in the entire set of programs.

Program | % m-bounded | % memory | % invalidated
Squid 55.7 86.0 29
Freeciv 48.3 84.9 0.0

Pine 60.0 15.0 15
Xinetd 58.8 89.8 0.0

Table 1. Memory Allocation Statistics

We next discuss the interaction of cyclic memory alloca-
tion with each of our benchmark programs. To evaluate the
impact of cyclic memory allocation on any memory leaks,
we compare the amount of memory that the original version
of the program (the one without cyclic memory allocation)
consumes to the amount that the versions with cyclic mem-
ory allocation consume.

4.1 Squid

Our training inputs for Squid consist of a set of HTTP links
that we obtained from Google news, CNN, BBC, MSN, a
set of FTP links from the mirrors for Apache, OpenSSH,
the ftp server at the NUS School of Computing, and a set
of SNMP queries that we generated from a Python script
that we developed for this purpose. The training inputs have
from 122 to 863 links and from 20 to 80 SNMP queries.
The number of attributes queried ranges from 2 to 8. Our
validation input consists of a larger set of links (3041) from
the same sites mentioned above and a larger set of SNMP
queries (110) from our Python script. The validation SNMP
queries contain more variables than the training queries.

Training and Validation Runs: Our training runs detected
34 suitable m-bounded allocation sites out of a total of
61 allocation sites that executed during the training runs;
30.7% of the memory allocated during the training runs was
allocated at suitable m-bounded sites. Table 2 presents a
histogram of the observed bounds m for all of the suitable
m-bounded sites. This table indicates that the vast majority
of the observed bounds are small (a pattern that is common
across all of our programs). The validation run determined
that the bound m was too small for one of the 34 m-bounded
sites.

m 112|314
#sites |30 (2| 1] 1

Table 2. m distribution for Squid

Effect of Overlaying Live Objects

The SNMP module in Squid stores objects in a tree, with
each object named remotely by a path through the tree.
Each node in the tree holds a data value that remote nodes
use to identify and query that node in paths through the
SNMP tree. The objects allocated at the invalidated site hold
the data values in the SNMP tree nodes. Overlaying these
objects makes Squid unable to find SNMP objects whose
corresponding path through the tree contains nodes whose
data value objects have been overwritten by subsequently
allocated data value objects from other nodes. The net effect
is that the SNMP module sometimes fails to locate an object
named in a remote query, returning instead an indication that
the specified SNMP object was not found.

Memory Leaks: Our results show that Squid has a memory
leak in the SNMP module; this memory leak makes Squid
vulnerable to a denial of service attack [1]. Our training
runs indicate that the allocation site involved in the leak is
an m-bounded site with m=1. The use of cyclic allocation
for this site eliminates the leak. Figure 2 presents the effect
of eliminating the leak. This figure plots Squid’s memory
consumption as a function of the number of SNMP requests
that it processes with and without cyclic memory alloca-
tion. As this graph demonstrates, the memory leak causes
the memory consumption of the original version to increase
linearly with the number of SNMP requests — this version
leaks memory every time it processes an SNMP request. In
contrast, the memory consumption line for the version with
cyclic memory allocation is flat, clearly indicating the elim-
ination of the memory leak. Note that it is possible, by send-
ing sufficiently many SNMP requests, to make the memory
consumption of the original version arbitrarily larger than
the memory consumption of the version with cyclic memory
allocation.

Squid memory consumption
9000 T T T T
8000 E
7000 + -
6000 E
5000 E
4000 E
3000 E
2000 E
1000 [E

0 1 1 1 1
0 100 200 300 400 500

Number of SNMP requests
Figure 2. Squid memory consumption

Original —+—
Cyclic allocation ---x---

Memory consumption (KB)

Conflict Runs: For Squid, the training runs find a total
of four suitable m-bounded allocation sites with m greater
than one. One of these sites is the invalidated site discussed

above. Atrtificially reducing the size of the buffer from 14
objects to 7 objects increases the number of queries that the
Squid SNMP module is unable to service, with the remain-
ing functionality otherwise unaffected. We next discuss our
results from the conflict runs for the remaining three sites.
These results provide additional insight into the potential ef-
fect of overlaying live objects in this program.

The first site we consider holds metadata for cached
HTTP objects; the metadata and HTTP objects are stored
separately. When we reduce the bound m at this site from
3 to 2, the MD?5 signature of one of the cached objects is
overwritten by the MD5 signature of another cached object.
When Squid is asked to return the original cached object, it
determines that the MD5 signature is incorrect and refetches
the object. The net effect is that some of the time Squid
fetches an object even though it has the object available lo-
cally; an increased access time is the only potential effect.

The next site we consider holds the command field for the
PDU structure, which controls the action that Squid takes in
response to an SNMP query. When we reduce the bound m
from 2 to 1, the command field of the structure is overwritten
to a value that does not correspond to any valid SNMP query.
The procedure that processes the command determines that
the command is not valid and returns a null response. The
net effect is that Squid is no longer able to respond to any
SNMP query at all. Squid still, however, processes all other
kinds of requests without any problems at all.

The next site we consider holds the values of some SNMP
variables. When we reduce the bound m from 2 to 1, some of
these values are overwritten by other values. The net effect
is that Squid sometimes returns incorrect values in response
to SNMP queries. Squid’s ability to process other requests
remains unimpaired.

Long-Term Usage: During the long-term usage period,
the version of Squid with cyclic memory allocation served
more than 100,000 requests with a variety of content types
(html, images, binaries, ...) and languages (English and Viet-
namese). We observed no problems, errors, or anomalies.

4.2 Freeciv

Freeciv allows both human and Al (computer implemented)
players to compete in a civilization-building game. Our
training inputs for Freeciv consist of from 2 to 30 Al players.
The sizes of the game map range from size 4 to size 15 and
the games run from 100 to 200 game years. Our validation
input consists of 30 Al players and a map size of 20. The
game runs for 400 game years.

Training and Validation Runs: Our training runs detected
42 suitable m-bounded allocation sites out of a total of 87 al-
location sites that executed during the training runs; 81.2%
of the memory allocated during the training runs was allo-
cated at suitable m-bounded sites. Table 3 presents a his-
togram of the observed bounds m for all of the suitable m-

bounded sites. As for the other programs, the vast majority of
the observed bounds are small. All of the observed bounds in
the validation run are consistent with the observed bounds in
the training runs; the use of cyclic memory allocation there-
fore does not change the behavior of the program.

m 112
#sites | 39 | 3

Table 3. m distribution for Freeciv

Memory Leaks: Freeciv has a memory leak associated with
an allocation site repeatedly invoked during the processing
of each Al player. This allocation site allocates an array of
boolean flags that store the presence or absence of threats
from oceans. The training runs determine that this allocation
site is an m-bounded site with m=1. Cyclic memory alloca-
tion eliminates this memory leak.

Conflict Runs: Freeciv has three suitable m-bounded allo-
cation sites with m greater than 1; all of these sites have
m=2. All three of these sites are part of the same data struc-
ture: a priority queue used to organize the computation as-
sociated with path-finding for an Al player. Each priority
queue has a header, which in turn points to an array of cells
and a corresponding array of cell priorities. The training and
validation runs both indicate that, at all three of these sites,
the program accesses at most the last two objects allocated.
Further investigation reveals that (at any given time) there
are at most two live queues: one for cells that have yet to
be explored and one for cells that contain something consid-
ered to be dangerous. During its execution, however, Freeciv
allocates many of these queues.

The first allocation site we consider holds the queue
header. Reducing the bound for this site from 2 to 1 causes
the size field in the queue header to become inconsistent
with the length of the cell and priority arrays. The appli-
cation of failure-oblivious computing enables the program
to execute successfully through the resulting out of bounds
array accesses. Reducing the bounds for the other two sites
causes either the cell arrays or the cell priorities to become
overlaid. In all three cases the program is able to execute
successfully without a problem. While the overlaying may
affect the actions of the Al players, it is difficult to see this
as a serious problem since it does not cause the Al players to
violate the rules of the game or visibly degrade the quality
of their play.

4.3 Pine

Pine is a widely-used email program that allows users to
read, forward, and store email messages in folders. Our train-
ing inputs have between 1 and 4 mail folders containing
between 10 and 97 email messages. The number of attach-
ments ranges from O to 4. Our validation input has 24 mail
folders that contain more than 2,500 mail messages.

Training and Validation Runs: Our training runs detected
66 suitable m-bounded allocation sites out of a total of 110
allocation sites that executed during the training runs; 15.0%
of the memory allocated during the training runs was allo-
cated at suitable m-bounded sites. Table 4 presents a his-
togram of the observed bounds m for all of the suitable m-
bounded sites. As for the other programs, the vast major-
ity of the observed bounds are small. The validation run re-
vealed that the observed bound m was too small for 1 of the
66 m-bounded allocation sites. In this case we say that the
validation run invalidated this site. Neither the training nor
validation runs revealed a memory leak in Pine.

m 1138
#sites [64 | 1|1

Table 4. m distribution for Pine

Effect of Overlaying Live Objects: The objects allocated at
the invalidated site implement a circular doubly-linked list of
status messages for Pine to display on the status line. Over-
laying these objects causes Pine to dereference a null pointer.
The application of failure-oblivious computing enables Pine
to execute through these null pointer dereferences with no
visible negative effect on the behavior of the program. An
analysis of the relevant code indicates that overlaying these
objects may have the potential to cause Pine to fail to display
a status message. We did not, however, observe any missing
messages during our training or validation runs.

Conflict Runs: Pine has two suitable m-bounded allocation
sites with m greater than 1. The first site is the invalidated
site discussed above in Section 4.3. The training runs indi-
cate that this site has an observed bound of m=3, but the
validation runs indicate that Pine may access as many as
the last 4 objects allocated at this site. Reducing the bound
m from 3 to 2 causes a write access via a null pointer. As
discussed above in Section 4.3, the application of failure-
oblivious computing enables Pine to execute successfully
through these null pointer dereferences with no changes in
the observable behavior of the program.

The other site has a bound m=8. This site allocates nodes
that store content filters that Pine uses to convert special
characters or format an input stream for display. These nodes
are stored in a singly-linked list. Reducing the bound m from
8 to 4 causes the list to become cyclic. In the absence of
our technique for exiting infinite loops (see Section 3.7), this
cyclicity would cause a loop that processes this list to fail to
exit. The application of our infinite loop exiting technique
causes the execution to proceed beyond this loop, which en-
ables Pine to process most messages without any observ-
able difference. For some messages that contain HTML tags,
however, Pine inserts some additional incorrect characters.
Note that the insertion of these characters does not substan-
tially impair the legibility of the message.

Long-Term Usage: During the long-term usage period, the
version of Pine with cyclic memory allocation processed
over 2,500 mail messages stored in 11 mail folders. It suc-
cessfully processed messages with a variety of formats (text,
html, attachments, single and multiple receivers). It also suc-
cessfully performed the full range of mail commands (read
messages, save attachments, reply to messages, move mes-
sages between folders, delete messages, et cetera). We ob-
served no problems, errors, or anomalies.

4.4 Xinetd

Our training inputs for Xinetd consist of between 10 and 200
requests. Our validation input consists of 500 requests. All
of these requests are generated by a Perl script we developed
for this purpose.

Training and Validation Runs: Our training runs detected
10 suitable m-bounded allocation sites out of a total of
17 allocation sites that executed during the training runs;
89.7% of the memory allocated during the training runs was
allocated at suitable m-bounded sites. Table 5 presents a
histogram of the observed bounds m for all of the suitable
m-bounded sites. All of the observed bounds m are 1. All of
the observed bounds in the validation run are consistent with
the observed bounds in the training runs; the use of cyclic
memory allocation therefore does not change the observable
behavior of the program.

m 1
sites | 10

Table 5. m distribution for Xinetd

Memory Leaks: Xinetd has a leak in the connection-
handling code — whenever Xinetd rejects a connection (it
is always possible for an attacker to generate connection re-
quests that Xinetd rejects), it leaks a connection structure
144 bytes long. Our training runs indicate that the allocation
site involved in the leak is an m-bounded site with m=1.
The use of cyclic allocation for this site eliminates the leak.
Figure 3 presents the effect of eliminating the leak. This fig-
ure plots Xinetd’s memory consumption as a function of the
number of rejected requests with and without cyclic mem-
ory allocation. As this graph demonstrates, the memory leak
causes the memory consumption of the original version to
increase linearly with the number of rejected requests. In
contrast, the memory consumption line for the version with
cyclic memory allocation is flat, clearly indicating the elim-
ination of the memory leak.

Note that because none of the suitable m-bounded allo-
cation sites in Xinetd have m greater than one, we do not
investigate the effect of reducing the bounds.

Xinetd memory consumption
120 T T T T

Original —+—

100 Cyclic allocation ---x---

80

60

40

Memory consumption (KB)

20 | E

0 200 400 600 800 1000
Number of rejected requests

Figure 3. Xinetd memory consumption

4.5 Discussion

Memory leaks are an insidious problem — they are difficult
to find and (as the discussion in Section 2 illustrates) can
be difficult to eliminate even when the programmer is aware
of their presence. Our experience with our four programs
underscores the difficulty of eliminating memory leaks —
despite the fact that all of these programs are widely used,
and in some cases, crucial, parts of open-source computing
environments, three of the four programs contain memory
leaks.

Our results indicate that cyclic memory allocation en-
abled by empirically determined bounds m can play an im-
portant role in eliminating memory leaks. Our results show
that this technique eliminates a memory leak in three of our
four programs. If the bounds m are accurate, there is sim-
ply no reason not to use this technique — it is simple, easy
to implement, and provides a hard bound on the amount of
memory required to store the objects allocated at m-bounded
sites. In this situation there are two key questions: 1) how
accurate are the observed bounds, and 2) what are the con-
sequences if the observed bounds are wrong?

In practice, the accuracy of the bounds is a function of
the input training set. Our results indicate that the observed
bounds in our experiments are reasonably accurate (the val-
idation inputs invalidate only two of the 152 suitable m-
bounded allocation sites). Moreover, the incorrect bounds
at the two invalidated sites are due to (in retrospect) obvi-
ous training set deficiencies. This suggests that information
about m-bounded allocation sites could be used to uncover
previously unsuspected deficiencies in test suites designed
to comprehensively explore the space of relevant program
behaviors. Specifically, one could examine each m-bounded
site and ask if it seems reasonable for the site to have the
same bound in all possible executions. For the two invali-
dated sites in our evaluation, such an investigation immedi-
ately reveals important program behaviors that the training
set failed to exercise.

The conflict runs also provide some insight into the effect
of overlaying live objects. With standard C semantics, over-
laying live objects caused the conflict runs to fail for five

of the nine allocation sites. But the application of failure-
oblivious computing shows that the errors that caused the
programs to fail do not reflect the presence of any fundamen-
tal damage to the program’s ability to execute successfully.
Indeed, failure-oblivious computing enabled all of the con-
flict runs to execute without failure, with the programs re-
maining fully functional for six of the nine allocation sites!
These results indicate that overlaying live objects at the nine
allocation sites in the conflict runs tends to produce localized
errors from which the program can easily recover if one uses
failure-oblivious computing to eliminate the inherent brittle-
ness otherwise present in standard computing environments.

One aspect of our implementation that tends to amelio-
rate the negative effects of overlaying objects is the fact that
different m-bounded allocation sites have different cyclic al-
location buffers. The resulting memory management algo-
rithm will typically preserve basic type safety even when the
system overlays live objects — the objects sharing the mem-
ory will tend to have the same basic data layout and types
and satisfy the same invariants. This property makes the pro-
gram less likely to encounter a completely unexpected col-
lection of data values when it accesses data from an over-
writing object instead of the expected object. This is espe-
cially true for application data, in which the values for each
conceptual data unit tend to be stored in a single object, with
the values in multiple objects largely if not completely in-
dependent. Even if overlaying the objects allocated at those
sites causes the program to lose the data required to imple-
ment the full functionality, it does not harm the ability of the
program to execute code that accesses the overlaid objects.
The program can therefore execute through this code without
failing, preserving its ability to deliver other functionality.

Core data structures, on the other hand, tend to have im-
portant properties that cross object boundaries. Overlaying
objects allocated at these sites tends to cause the program to
violate these properties. In the absence of failure-oblivious
computing, these violations may leave the program vulner-
able to failures or infinite loops. In our experiments, how-
ever, failure-oblivious computing enabled our programs to
execute successfully through these anomalies to deliver their
full functionality to their users in spite of the data structure
inconsistencies. It may also be possible to use data structure
repair [11, 12] to eliminate any residual inconsistencies and
enable the program to continue to execute successfully.

Interestingly enough, in some of the cases in which
bounds reduction has no effect on the observable behav-
ior, the program is actually set up to tolerate inconsistent
values in objects. In one program (Squid) the program antic-
ipates the possibility of inconsistent data and contains code
to handle that case. In the other program (Freeciv) the pro-
gram is able to successfully execute with a range of data
values. These two examples suggest that many programs
may already have some built-in capacity to fully tolerate
inconsistent or unexpected data.

Finally, we note that some programs tend to have multi-
purpose allocation sites, each of which allocates objects for a
different conceptual purpose in the program. This can occur,
for example, if the program uses several instances of a given
data structure in different parts of the program. In this case
a single allocation site inside the data structure implemen-
tation may allocate memory for different data structure in-
stances in unrelated parts of the program. If the different data
structure instances have different bounds m, our current im-
plementation may miss an opportunity to apply cyclic mem-
ory allocation. This phenomenon can also cause our current
implementation, in the absence of test suites that adequately
explore the behavior of the different parts of the system, to
incorrectly conclude that the bounds observed for some in-
stances of the data structure reflect the (unexplored in the test
suite) usage patterns of other instances. One obvious way to
ameliorate this problem is to use the calling context to obtain
different logical allocation sites for the different instances.

5. Rdated Work

We discuss related work in dynamic memory leak detection,
static memory leak detection, and static memory leak elimi-
nation.

5.1 Dynamic Memory Leak Detection

Purify, Insure++, and other dynamic analysis tools [23, 19]
provide dynamic memory leak detectors for programs with
explicit memory management. The basic approach is to track
object reachability to provide a list of unreachable objects
that the program failed to deallocate. It is then the respon-
sibility of the programmer to analyze the program, find the
root cause of the leak, and modify the program to eliminate
the leak. Note that these techniques are not designed to find
memory leaks that involve reachable objects that the pro-
gram will never access in the future.

Our approach, in contrast, automatically applies a trans-
formation that eliminates the leak. The potential benefits in-
clude the elimination of the need for a programmer to ana-
lyze the program to find the leak, the elimination of the pro-
gramming effort required to fix the leak, and the elimination
of the possibility of an incorrect fix introducing additional
errors into the program source. Because our approach is
based on how the program accesses data (rather than reacha-
bility properties), it can detect and eliminate leaks even when
the leaked objects remain reachable.

Jump and McKinley present a system that helps program-
mers find memory leaks by identifying data structures that
grow systematically during the execution of the system [25].
Chilimbi and Hauswirth [14] present a dynamic approach
that tracks allocations and frees, then periodically samples
the memory accesses of the program to find “stale” objects
which have not been freed and have not been accessed re-
cently. It then identifies such objects as comprising potential
memory leaks. It is the programmer’s responsibility to de-

termine if the identified objects, in fact, comprise a memory
leak and, if so, to modify the program to eliminate the leak.

Note that it is possible to extend Chilimbi and Hauswirth’s
approach to automatically eliminate leaks — simply deal-
locate the stale objects which their technique identifies as
comprising potential memory leaks. With an appropriately
tuned sampling and leak identification policy and the ap-
plication of techniques such as failure-oblivious computing
that ameliorate the negative effects of internal errors, it may
be possible to drive the false positive rate down to a level
where, for applications that place a premium on continued
execution, the rewards of eliminating the memory leak could
outweigh the risks of premature deallocation.

5.2 Static Memory Leak Detection

Hackett and Rugina [22], Heine and Lam [24], Chou [16],
Bush, Pincus, and Sielaff [13], Evans [20], and Xie and
Aiken [30] have all developed static analyses that discover
memory leaks in programs with explicit memory manage-
ment. All of the analyses check that the program correctly
frees allocated objects before the object becomes unreach-
able. The analyses differ in the techniques they use to track
the referencing relationships in the program: Evans’ analysis
tracks annotations that identify unique references to objects,
Bush, Pincus and Sielaff’s analysis symbolically simulates
candidate execution traces, Hiene and Lam’s analysis tracks
synthesized ownership properties, Hackett and Rugina use
an efficient shape analysis, Chou’s analysis uses symbolic
reference counting, and Xie and Aiken’s analysis directly
models references between objects to reason about how ob-
jects escape procedure call contexts. These analyses are de-
signed for programs that use explicit memory management
— a garbage collector would correctly reclaim all of the un-
reachable leaking objects that they identify.

In comparison with dynamic techniques (such as those
discussed above and the technique that we present in this pa-
per), the great advantage of static techniques is the elimina-
tion of the need to exercise the program on an input that ex-
poses the leak. It is even possible to analyze incomplete pro-
grams or fragments of complete programs. Disadvantages
include the need to implement a heavyweight static analysis,
the possibility that the analysis will not scale, and the possi-
bility that the inevitable analysis imprecisions may introduce
false positives or false negatives. Some analyses also require
the programmer to provide additional annotations [20, 30].
Because each static analysis is designed to recognize leaks
that arise because of an interaction between a specific kind of
reachability property and the memory management actions
of the program, such analyses will fail to recognize leaks that
involve reachable objects or objects with reachability prop-
erties that the analysis is not designed to analyze.

There is a tension between leak detection and leak elimi-
nation, especially when the leak elimination technique is po-
tentially unsound (as ours is). During development there is
usually an ample supply of programmers who understand the

program and are readily able to modify it. Unless the leak
elimination requires the development of new data structures
to more precisely track object liveness, the costs of modi-
fying the program to eliminate the leak may be quite low.
After the program is deployed, however, the costs of modi-
fying the program typically rise dramatically as the supply of
programmers who understand the program dwindles. In this
case automatic memory leak elimination via cyclic memory
allocation can be much more effective than attempting to
modify the program to eliminate the leak — it eliminates the
need to invest programmer time and effort to understand and
modify the program and eliminates the risk of inadvertently
introducing new errors.

Another factor is the quality of the information that the
leak detector provides. Both Hackett and Rugina’s analysis
and Hiene and Lam’s analysis are sound and (because they
are designed to recognize specific programming patterns that
leak memory) are able to identify the location in the program
that discards the last reference to the leaked object. In this
case the modification to eliminate the leak is straightforward
(and in fact, could be applied automatically). Unsound tech-
niques or techniques that provide less of an indication why
the leak occurred require much more programmer effort and
the modification runs a much larger risk of introducing new
errors.

5.3 Static Memory Leak Elimination

Shaham, Kolodner, and Sagiv present a static analysis de-
signed to recognize and eliminate memory leaks that oc-
cur in data structures that maintain arrays of references to
objects [28]. The basic idea is to find array elements that
will always be overwritten before they are next read, then
set such references to NULL, thereby potentially making
the referenced object unreachable and enabling the garbage
collector to reclaim the object. Shaham, Yahav, Kolodner,
and Sagiv use a shape analysis to eliminate memory leaks
in garbage-collected Java programs. The basic idea is to find
and eliminate eliminate references that the program will no
longer use [27].

Gheorghioiu, Salcianu, and Rinard present a static analy-
sis for finding allocation sites that have the property that at
most one object allocated at that site is live during any point
in the computation [21]. The compiler then applies a trans-
formation that preallocates a single block of memory to hold
all objects allocated at that site. Potential implications of the
technique include the elimination of any memory leaks at
such sites, simpler memory management, and a reduction in
the difficulty of computing the amount of memory required
to run the program.

Interestingly enough, these analyses all consider the fu-
ture referencing behavior of the program to find objects that
the program will no longer access regardless of whether they
are reachable or not. These analyses are therefore (in prin-
ciple) capable of eliminating leaks regardless of whether the
program uses explicit memory management or garbage col-

lection. This is in contrast with the static memory leak de-
tection algorithms discussed above in Section 5.2. Because
these analyses all find objects that become unreachable be-
fore they are deallocated, they are not appropriate for pro-
grams that use garbage collection.

Researchers have used escape analysis to enable stack al-
location for objects that do not escape a given procedure call
context [29, 7, 15]. Because these analyses were developed
for programs that use garbage collection, they would typi-
cally not eliminate any memory leaks — the stack-allocated
objects would become unreachable and reclaimed when the
enclosing procedure call context exits even if they were
allocated in the heap. But it should be possible to apply
these analyses to programs with explicit memory allocation,
in which case the transformation could eliminate memory
leaks. In particular, stack allocation would eliminate mem-
ory leaks if the untransformed original program failed to ex-
plicitly deallocate the stack-allocated objects.

An advantage of all of these analyses is their soundness
— the analysis considers all possible executions and does
not apply the transformation unless the program will never
allocate more than one live object from the site. Drawbacks
include the need to develop a sophisticated static program
analysis, the need to target specific usage patterns that leak
memory, and the possibility that the analysis may not scale
or may (because of the inevitable imprecisions in any static
analysis) fail to find an important leak. For example, the
Gheorghioiu, Salcianu, and Rinard analysis will eliminate
a memory leak at a given allocation site only if at most
one object allocated at the site is live at any point during
the computation and if the program never stores a reference
to an object allocated at that site into the heap. In practice,
these restrictions severely limit its utility as a memory leak
eliminator. In particular, this analysis would eliminate none
of the leaks described in this paper. Our dissatisfaction with
the limitations of these kinds of analyses, in part, led us to
develop the approach we present in this paper.

5.4 Conservative Garbage Collection

Conservative garbage collection [10] can eliminate memory
leaks in programs written in languages with explicit mem-
ory deallocation. In comparison with cyclic memory allo-
cation, conservative collectors have the advantage that they
are designed to reclaim only unreachable memory, which en-
sures that they cannot cause the allocator to overlay live data
(assuming that the collector correctly locates all object ref-
erences). A disadvantage of conservative collectors is that,
like standard garbage collectors, they are unable to eliminate
memory leaks in which the program retains (or appears to
retain [9]) references to objects that it will not access in the
future. Other potential issues include time and space over-
heads [17, 31].

It is possible to combine conservative garbage collection
and cyclic memory allocation to eliminate memory leaks in
languages with explicit deallocation. Specifically, one could

use the conservative collector to reclaim unreachable mem-
ory, then dynamically switch to cyclic allocation at specific
sites only in the presence of evidence that the program may
be leaking memory at that site. Given the perceived safety
of conservative collection, such an approach could further
minimize the risk of overlaying live objects while still elim-
inating the possibility of severe memory leaks at sites with a
bound m.

6. Conclusion

Memory leaks are an important source of program failures,
especially for programs such as servers that must execute
for long periods of time. Our cyclic memory allocation tech-
nique observes the execution of the program to find m-
bounded allocation sites, which have the useful property that
the program accesses at most only the last m objects allo-
cated at that site. It then exploits this property to preallocate
a buffer of m objects and cyclically allocate objects out of
this buffer. This technique caps the total amount of memory
required to store objects allocated at that site at m times the
size of the objects allocated at that site. Our results show
that this technique can eliminate important memory leaks in
long-running server programs.

One potential concern is the possibility of overlaying live
objects in the same memory. Our results suggest that the risk
of overlaying live objects is small, that the consequences
of overlaying live objects are not severe (and that failure-
oblivious computing can significantly ameliorate any nega-
tive consequences), and that the reward (eliminating impor-
tant memory leaks) can be significant.

7. Acknowledgements

We would like to thank the anonymous reviewers for their
useful feedback on the content and ideas in this paper.

References

[1] CVE-2002-0069.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-
0069.

[2] Freeciv website. http://www.freeciv.org/.
[3] Pine website. http://www.washington.edu/pine/.

[4] Squid Web Proxy Cache website. http://www.squid-
cache.org/.

[5] Valgrind website. http://www.valgrind.org/.

[6] K. Arkoudas and M. Rinard. Deductive runtime certification.
In Proceedings of the 2004 Workshop on Runtime Verification
(RV 2004), Barcelona, Spain, April 2004.

[7] B. Blanchet. Escape analysis for object oriented languages.
application to Java. In Proceedings of the 14th Annual
Conference on Object-Oriented Programming Systems,
Languages and Applications, Denver, CO, November 1999.

[8] Manuel Blum and Sampath Kannan. Designing Programs
That Check Their Work. In STOC, pages 86-97, 1989.

[9] H. Boehm. Space efficient conservative garbage collection.
In Proceedings of the ACM SIGPLAN 1993 Conference on
Programming Language Design and Implementation, June
1993.

[10] H. Boehm and M. Weiser. Garbage collection in an unco-
operative environment. Software Practice and Experience,
18(9), September 1988.

[11] Brian Demsky and Martin Rinard. Automatic Detection and
Repair of Errors in Data Structures. In Proceedings of the
2003 ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA
’03), October 2003.

[12] Brian Demsky and Martin Rinard. Data Structure Repair
Using Goal-Directed Reasoning. In Proceedings of the 2005
International Conference on Software Engineering, May
2005.

[13] W. Bush, J. Pincus, and D. Sielaff. A static analyzer for
finding dynamic programming errors. Software — Practice
& Experience, 30(7), June 2000.

[14] T. Chilimbi and M. Hauswirth. Low-overhead memory leak
detection using adaptive statistical profiling. In Proceedings
of the 11th International Conference on Architectural
Support for Programming Languages and Operating Systems,
October 2004.

[15] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midkiff.
Escape analysis for Java. In Proceedings of the 14th Annual
Conference on Object-Oriented Programming Systems,
Languages and Applications, Denver, CO, November 1999.

[16] A. Chou. Static Analysis for Bug Finding in Systems Software.
PhD thesis, Stanford University, 2003.

[17] D. Detlefs, A. Dosser, and B. Zorn. Memory Allocation
Costs in Large C and C++ Programs. Technical Report CU-
CS-665-93, University of Colorado, Boulder, August 1993.

[18] Octavian-Daniel Dumitran. Fixing file descriptor leaks.
Master’s thesis, Massachusetts Institute of Technology, June
2007.

[19] Cal Erikson. Memory leak detection in c++. Linux Journal,
(110), June 2003.

[20] D. Evans. Static detection of dynamic memory errors. In
Proceedings of the ACM SIGPLAN 1996 Conference on
Programming Language Design and Implementation, June
1996.

[21] Ovidiu Gheorghioiu, Alexandru Salcianu, and Martin Rinard.
Interprocedural compatability analysis for static object
preallocation. In Proceedings of the 30th Annual ACM
Symposium on Principles of Programming Languages,
January 2003.

[22] B. Hackett and R. Rugina. Region-based shape analysis with
tracked locations. In Proceedings of the ACM SIGPLAN
Symposium on Principles of Programming Languages
(POPL’05), January 2005.

[23] R. Hastings and B. Joyce. Purify: Fast detection of memory
leaks and access errors. In Proceedings of the Winter USENIX
Conference, December 1992.

[24] D. Heine and M. Lam. A practical flow-sensitive and context-
sensitive C and C++ memory leak detector. In Proceedings
of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation, June 2003.

[25] Maria Jump and Kathryn S. McKinley. Cork: dynamic
memory leak detection for garbage-collected languages. In
POPL, pages 31-38, 2007.

[26] Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M.
Roy, Tudor Leu, and William S. Beebee, Jr. Enhancing
Server Availability and Security Through Failure-Oblivious
Computing. In Proceedings of the 6th Symposium on
Operating Systems Design and Implementation, December
2004.

[27] Ran Shaham, Eran Yahav, Elliot K. Kolodner, and Mooly
Sagiv. Establishing Local Temporal Heap Safety Properties
with Applications to Compile-Time Memory Management.
In The 10th Annual International Static Analysis Symposium
(SAS ’03), June 2003.

[28] R. Shaham, E. Kolodner, and M. Sagiv. Automatic removal
of array memory leaks in java. In Proceedings of the
International Conference on Compiler Construction (CC
’00), March-April 2000.

[29] J. Whaley and M. Rinard. Compositional pointer and escape
analysis for Java programs. In Proceedings of the 14th Annual
Conference on Object-Oriented Programming Systems,
Languages and Applications, Denver, CO, November 1999.

[30] Y. Xie and A. Aiken. Context- and path-sensitive memory
leak detection. In Proceedings of ESEC/FSE 2005, Septem-
ber 2005.

[31] B. Zorn. The measured cost of conservative garbage
collection. Software Practice and Experience, 23(7), July
1993.

