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Abstract

Atomic operations are a key primitive in parallel computing systems. The standard implementa-
tion mechanism for atomic operations uses mutual exclusion locks. In an object-based programming
system, the natural granularity is to give each object its own lock. Each operation can then make
its execution atomic by acquiring and releasing the lock for the object that it accesses. But this
fine lock granularity may have high synchronization overhead because it maximizes the number of
executed acquire and release constructs. To achieve good performance it may be necessary to reduce
the overhead by coarsening the granularity at which the computation locks objects.

In this article we describe a static analysis technique — lock coarsening — designed to auto-
matically increase the lock granularity in object-based programs with atomic operations. We have
implemented this technique in the context of a parallelizing compiler for irregular, object-based
programs and used it to improve the generated parallel code. Experiments with two automatically
parallelized applications show these algorithms to be effective in reducing the lock overhead to neg-
ligible levels. The results also show, however, that an overly aggressive lock coarsening algorithm
may harm the overall parallel performance by serializing sections of the parallel computation. A suc-
cessful compiler must therefore negotiate a trade-off between reducing lock overhead and increasing
the serialization.



1 Introduction

Atomic operations are an important primitive in the design and implementation of parallel systems.
Operations are typically made atomic by associating mutual exclusion locks with the data that they
access. An atomic operation first acquires the lock for the data that it manipulates, accesses the data,
then releases the lock.

We have implemented a compiler designed to automatically parallelize object-based computations
that manipulate irregular, pointer-based data structures. This compiler uses commutativity anal-
ysis [17] as its primary analysis technique. For the generated program to execute correctly, each
operation in the generated parallel code must execute atomically. The automatically generated code
therefore contains mutual exclusion locks and constructs that acquire and release these locks.

We have found that the granularity at which the generated parallel computation locks objects
can have a significant impact on the overall performance. The natural lock granularity is to give
each object its own lock and generate code in which each operation acquires and releases the lock for
the object that it accesses. Our experimental results indicate, however, that locking objects at this
fine granularity may introduce enough overhead to significantly degrade the overall performance. To
achieve good performance we have found it necessary to coarsen the lock granularity to reduce the
amount of lock overhead.

This article presents the analysis algorithms and program transformations that the compiler uses
to automatically coarsen the lock granularity. We have implemented these algorithms in the context
of a parallelizing compiler for object-based programs [17]; they are used to reduce lock overhead
in the generated parallel code. This article also presents experimental results that characterize the
performance impact of using the lock coarsening algorithms in the compiler.

The results show the algorithms to be effective in reducing the lock overhead to negligible levels.
They also show that an overly aggressive lock coarsening algorithm can actually impair the performance
by artificially increasing lock contention (lock contention occurs when two processors attempt to acquire
the same lock at the same time). Lock contention is a potentially serious problem because it can serialize
large sections of the parallel computation. A successful compiler must therefore negotiate a trade-off
between reducing lock overhead and increasing lock contention.

Although we have developed our techniques in the context of a parallelizing compiler for object-
based languages, we expect them to be useful in other contexts. Many explicitly parallel and mul-
tithreaded programming languages (for example, Java [1]) provide atomic operations as part of the
programming model and use atomic operations heavily in standard class libraries. Performance re-
sults show that at least one high-performance Java implementation spends a significant amount of
time executing the locking constructs required to implement atomic operations [5]. Compilers for such
languages should be able to use lock coarsening techniques to reduce the overhead of implementing
the atomic operations. Many database systems use locks to implement atomic transactions; these
systems may be able to use lock coarsening techniques to drive down the lock overhead associated with
implementing atomic transactions.

This article makes the following contributions:

e It introduces two techniques for reducing lock overhead: data lock coarsening and computation
lock coarsening.

e [t presents novel and practical lock coarsening algorithms that a compiler can use to reduce the
lock overhead.

e [t presents experimental results that characterize the performance impact of the lock coarsening
algorithms on two automatically parallelized applications. These performance results show that,
for these applications, the algorithms can effectively reduce the lock overhead to negligible levels.



The rest of this article is structured as follows. In Section 2 we discuss the basic issues associated
with using mutual exclusion locks to implement atomic operations. Section 3 presents an example that
illustrates how coarsening the lock granularity can reduce the lock overhead. Section 4 describes the
kinds of programs that the lock coarsening algorithms are designed to optimize. In Sections 5 and 6
we present the lock coarsening algorithms and transformations. In Section 7 we present experimental
results that characterize the impact of the lock coarsening algorithms on the overall performance of
two automatically parallelized applications.



2 Basic Issues in Lock Coarsening

The lock coarsening algorithms deal with two basic sources of performance loss: lock overhead and
lock contention.

e Lock Overhead: Acquiring or releasing a lock generates overhead; the goal of the algorithms is
to reduce this overhead by applying transformations that make the computation execute fewer
acquire and release constructs.

e Lock Contention: Lock contention occurs whenever one processor attempts to acquire a lock
held by another processor. In this case the first processor must wait until the second processor
releases the lock; the first processor performs no useful computation during time it spends waiting
for the lock to be released. Increased lock contention therefore reduces the amount of available
parallelism.

All of the transformations that the algorithms apply to reduce the lock overhead have the potential
to increase the lock contention. The algorithms must therefore negotiate a trade-off between the lock
overhead and the lock contention.

The algorithms apply two lock coarsening techniques: data lock coarsening and computation lock
coarsening.

e Data Lock Coarsening: Data lock coarsening is a technique in which the compiler associates
one lock with multiple objects that tend to be accessed together. The compiler then transforms
computations that manipulate one or more of the objects. Each transformed computation ac-
quires the lock, performs the manipulations, then releases the lock. The original computation,
of course, acquired and released a lock every time it manipulated any one of the objects.

Data lock coarsening may improve the computation in two ways. First, it may reduce the number
of executed acquire and release constructs — it enables computations to access multiple objects
with the overhead of only a single acquire construct and a single release construct. Second, it
may reduce the number of locks that the computation requires to execute successfully — giving
multiple objects the same lock may reduce the number of allocated locks.

An overly aggressive data lock coarsening algorithm may introduce false contention. False con-
tention occurs when two operations attempt to acquire the same lock even though they access
different objects.

e Computation Lock Coarsening: Consider a computation that repeatedly acquires and re-
leases the same lock. This may happen, for example, if a computation performs multiple op-
erations on the same object or on objects that have all been given the same lock by the data
lock coarsening algorithm. The computation lock coarsening algorithm analyzes the program to
find such computations. It then transforms the computations to acquire the lock, perform the
operations without synchronization, then release the lock. This transformation may significantly
reduce the number of executed acquire and release constructs.

An overly aggressive computation lock coarsening algorithm may introduce false exclusion. False
exclusion may occur when a computation holds a lock for an extended period of time during
which it does not access one of the lock’s objects. If another computation attempts to acquire
the lock (so that it may access one of the lock’s objects), it must wait for the first computation
to release the lock even though the first computation is not actively accessing any of the lock’s
objects. False exclusion may therefore reduce the performance by decreasing the amount of
available concurrency.



There is a potential interaction between lock coarsening and concurrency generation. Each acquire
and release pair defines a mutual exclusion region — the region between the acquire and release
constructs. The lock coarsening transformations replace multiple mutual exclusion regions with a single
coarsened mutual exclusion region. Note that the coarsened mutual exclusion region may contain the
execution of multiple operations. Furthermore, the transformations eliminate all of the synchronization
constructs in these operations.

To ensure that all of the operations within a given coarsened mutual exclusion region execute
atomically with respect to each other, the algorithms require that the entire computation within the
coarsened region execute sequentially. There are two options: refusing to apply the lock coarsening
transformation if the coarsened region would contain a concurrency generation construct, or removing
all of the concurrency generation constructs within the coarsened region. The current transformations
apply the first option.

There may be a concern that the transformations will introduce deadlock. As explained in Sections
5 and 6, the lock coarsening transformations never cause a program to deadlock.



3 Example

In this section we provide an example, inspired by the Barnes-Hut application in Section 7, that
illustrates both kinds of lock coarsening. The example computation manipulates an array of pointers
to nodes. Each node represents its state with a vector and a count. The example also stores a set of
values in a binary search tree. The point of the computation is to scale every node by all of the values
in the tree that fall within a certain range. The computation finds all of the values that fall within the
range by traversing the binary search tree that stores the values.

Figure 1 contains the parallel C++ code for this example. Each class is augmented with a mutual
exclusion lock; the parallel code uses this lock to make operations on objects of that class atomic. If an
operation modifies its receiver object!, it first acquires the receiver’s lock, performs the modification,
then releases the lock.

The computation starts at the nodeSet: : scaleNodeSet method. This method invokes the node: :traverse
method in parallel for each node in the array; the parallel for loop makes the loop iterations execute
concurrently. Note that all of the invocations of the node: : traverse method may not be independent
— if two array elements point to the same node, the corresponding loop iterations will modify the same
node. The operations in the loop iterations must therefore execute atomically for the computation to
execute correctly.

The node: :traverse method traverses the binary search tree to find all of the values in the
range of values from a minimum min value to a maximum max value. Whenever it finds a value
inside the range, it invokes the node::scaleNode method to scale the node by the value. The
node: :scaleNode method scales a node by incrementing the count of applied scale operations, then
invoking the vector: :scaleVector method to scale the vector stored in the node.

3.1 Data Lock Coarsening in the Example

An examination of the parallel code in Figure 1 reveals that the computation acquires and releases
two locks every time it scales a node: the lock in the node object (the node::scaleNode method
acquires and releases this lock) and the lock in the nested vector object inside the node object (the
vector: :scaleVector method acquires and releases this lock).

It is possible to eliminate the acquisition and release of the lock in the nested vector object by
coarsening the lock granularity as follows. Instead of giving each nested vector object its own lock,
the compiler can use the lock in the enclosing node object to make operations on the nested vector
object atomic. Figure 2 contains the transformed code that locks the objects at this granularity. The
compiler generates a new version of the vector::scaleVector method (this new version is called
vector: :syncFree_scaleVector) that does not acquire the lock. It invokes this new version from
within the node: :scaleNode method and transforms the code so that it holds the node’s lock during
the execution of the vector: :syncFree_scaleVector method.

To legally perform this transformation, the compiler must ensure that every thread that executes a
vector operation acquires the corresponding node lock before it executes the operation. An examination
of the code shows that it satisfies this constraint.

This transformation illustrates the utility of data lock coarsening. It reduces the number of ex-
ecuted locking constructs by a factor of two because it eliminates the acquire/release pair in the
vector: :scaleVector method. The compiler can also omit the mutual exclusion lock declaration in
the vector class because none of the methods in the parallel computation acquire or release the lock.

!Programs that use the object-based programming paradigm structure the computation as operations on objects. Each
operation has a single receiver object; as described in Section 4 this object is the object that the operation manipulates.



const int NDIM 3;

class vector { class nodeSet {
lock mutex; int size;
double value[NDIM]; node **elements;
public: public:
void scaleVector(double s){ void scaleNodeSet(tree *t, double min, double max);
mutex.acquire(); }s
for(int i=0; i < NDIM; i++) valuel[i] *= s;
mutex.release(); void node::scaleNode(double s){
} mutex.acquire();
}s count++;
mutex.release();
class tree { value.scaleVector(s);
public: }
double x;
tree *left; void node::traverse(tree *t, double min, double max){
tree *right; if ((min < t->x) && (t->x < max)) scaleNode(t->x);
}s if (min < t->x) traverse(t->left,min,max);
if (t->x < max) traverse(t->right,min,max);
class node { }
lock mutex;
public: void nodeSet::scaleNodeSet(tree *t, double min, double max){
int count; parallel for(int i = 0; i < size; i++){
vector value; elements[i]->traverse(t, min, max);
void scaleNode(double s); }
void traverse(tree *t, double min, double max); }

Figure 1: Parallel Node Scaling Example

void vector::syncFree_scaleVector(double s){
for(int i=0; i < NDIM; i++) value[i] *=s;
}
void node::scaleNode(double s){
mutex.acquire();
count+-+;
vector.syncFree_scaleVector(s);
mutex.release();

Figure 2: Data Lock Coarsening Example



3.2 Computation Lock Coarsening in the Example

The example also contains an opportunity for computation lock coarsening. Consider the subcomputa-
tion generated as a result of executing a node: :traverse method. This subcomputation periodically
executes node: :scaleNode methods, which acquire and release the node’s mutual exclusion lock. All
of these executions acquire and release the same mutual exclusion lock. In fact, all of the operations in
the entire subcomputation that acquire any lock acquire the same lock: the lock in the receiver object
of the original node: :traverse operation. It is therefore possible to coarsen the lock granularity by
acquiring the lock once at the beginning of the subcomputation, then holding it until the subcompu-
tation finishes. This transformation eliminates all of the lock constructs except the initial acquire and
the final release. Figure 3 shows the transformed code.

void node::syncFree_scaleNode (double s){
count++;
vector.syncFree_scaleVector(s);

}

void node::syncFree_traverse(tree *t, double min, double max){
if ((min < t->x) && (t->x < max)) syncFree_scaleNode(t->x);
if (min < t->x)
syncFree_traverse(t->left,min,max);
if (t->x < max)
syncFree_traverse(t->right,min,max) ;
}

void node::traverse(tree *t, double min, double max){
mutex.acquire();
syncFree_traverse(t, min, max);
mutex.release();

}

Figure 3: Computation Lock Coarsening Example

This example also illustrates the potential for false exclusion. Consider the original program in
Figure 1. This program only holds the node’s lock when it is actually updating the node. The
transformed code in Figure 3 holds the lock for the entire traversal. If two traversals on the same
node seldom update the node, they can execute mostly in parallel in the original version of the code.
In the coarsened version they will execute serially. As we will see in Section 7, this kind of false
exclusion serialization may significantly impair the performance of the parallel computation. The
compiler must therefore ensure that its lock coarsening policy does not introduce a significant amount
of false exclusion.



4 Model of Computation

Before presenting the lock coarsening algorithms, we discuss the kinds of programs that they are
designed to optimize. First, the algorithms are designed for pure object-based programs. Such programs
structure the computation as operations on objects. Each object implements its state using a set of
instance variables. Each instance variable can be either a nested object or a primitive type from
the underlying language such as an integer, a double, or a pointer to an object. Each object has a
mutual exclusion lock that exports an acquire construct and a release construct. Once a processor has
successfully executed an acquire construct on a given lock, all other processors that attempt to acquire
that lock block until the first processor executes a release construct. Operations on the object use its
lock to ensure that they execute atomically.

Programmers define operations on objects by writing methods. Each operation corresponds to
a method invocation: to execute an operation, the machine executes the code in the corresponding
method. Each operation has a receiver object and several parameters. When an operation executes, it
can access the parameters, invoke other operations or access the instance variables of the receiver. To
enforce the pure object-based model we impose several restrictions on instance variable access. First,
to access the value of an instance variable of an object obj other than the receiver, the computation
must invoke a method that executes with the object obj as its receiver object and returns the value
of the desired instance variable. Second, an operation cannot directly access an instance variable of
a nested object — it can only access the variable indirectly by invoking an operation that has the
nested object as the receiver. If an instance variable is declared in a parent class from which the
receiver’s class inherits, the operation can not directly access the instance variable — it can only
access the variable indirectly by invoking an operation whose receiver’s class is the parent class. This
model of computation does not allow the concept of C++ friend functions that can access the instance
variables of several different objects from different classes. It does allow multiple inheritance, although
our prototype compiler is designed only for programs with single inheritance. Well structured object-
based programs conform to the pure object-based model of computation; languages such as Smalltalk
enforce it explicitly.

The computation consists of a sequence of alternating serial and parallel phases. Within a parallel
phase, the computation uses constructs such as parallel loops to create operations that execute con-
currently. The only synchronization consists of the mutual exclusion synchronization required to make
the operations atomic and the barrier synchronization at the end of a parallel phase.

If an operation accesses an instance variable that may be modified during the parallel phase, it
uses the lock in the instance variable’s object to make its access atomic. Before the operation executes
its first access to the instance variable, it acquires the object’s lock. It releases the lock after it
completes the last access. Note that this locking strategy makes each object a unit of synchronization.
It is therefore important for the programmer to decompose the data into objects at a fine enough
granularity to expose enough concurrency. If a program updates multiple elements of a large array
in parallel, for example, it is important to make each element of the array a separate object. This
allocation strategy avoids the update serialization that would occur if the programmer encapsulated
the entire array inside one object.

We extend the synchronization and instance variable access model for read-only data as follows. If
no operation in the parallel phase modifies an instance variable, any operation in the phase (including
operations whose receiver is not the object containing the instance variable) can access the variable
without synchronization.

We believe this model of parallel computation is general enough to support the majority of parallel
computations for shared-memory machines. Exceptions include computations (such as wave-front com-
putations [22, 6]) with precedence constraints between different parallel threads, chaotic computations
(such as chaotic relaxation algorithms [19]) that can access out of date copies of data without affect-
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ing the final result, and nondeterministic computations (such as LocusRoute[18]) that can tolerate
infrequent atomicity violations.
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5 Data Lock Coarsening

The data lock coarsening algorithm starts with a computation in which each object has its own mutual
exclusion lock. The basic idea of the data lock coarsening algorithm is to increase the lock granularity
by giving multiple objects the same lock. Before the computation accesses any one of these objects, it
first acquires the lock. Once it has acquired the lock it can access any other object that has the same
lock with no further synchronization.

The data lock coarsening algorithm must first choose which objects should have the same lock. The
current policy attempts to give nested objects the same lock as their enclosing object. The algorithm
must then determine if it can transform the entire parallel computation to lock objects at the new
granularity. The key issues are to determine statically the new lock that each operation must hold,
to make sure that in the generated code each operation actually holds that lock, and to ensure that
no part of the computation locks objects at the old granularity. The algorithm uses two key data
structures: the class nesting graph and the call graph.

5.1 The Class Nesting Graph

The class nesting graph represents the nesting structure of the classes. The nodes of the graph are the
classes used in the computation. There is a directed edge from a class ¢; to a class ¢s if ¢o inherits from
c1 or if ¢o has a nested object of class ¢;. The class nesting graph is acyclic — a cyclic class nesting
graph would define an object of either infinite or zero size. The algorithm constructs the class nesting
graph by traversing the class declarations. Figure 4 shows the class nesting graph for the example code
in Figure 1.

5.2 The Call Graph

The nodes of the call graph are the methods that the computation may execute. There is a directed
edge from method my to method my in the call graph if m invokes msy. To simplify the construction
of the call graph, the current version of the compiler does not support function pointers or dynamic
method dispatch. Figure 5 shows the call graph for the example code in Figure 1.

5.3 Connecting the Class Nesting Graph and the Call Graph

The compiler connects the nodes in the class nesting graph to the nodes in the call graph as follows:
there is an undirected edge between a class ¢ and a method m if the receiver of m is an object of
class ¢. These edges allow the compiler to quickly compute which methods access objects of a given
class. Figure 6 shows the class nesting graph and the call graph corresponding to the example code in
Figure 1. We have represented the undirected edges between the two graphs by dashed lines.

5.4 Primitives

The lock coarsening algorithms use the following primitives:

Definition 1 Given a class ¢, methods(c) is the set of methods defined in ¢ — i.e. the set of methods
whose receivers are objects of class c¢. The compiler computes methods(c) by following the edges from
c in the class nesting graph to the methods in the call graph.

Definition 2 Given a method m, receiverClass(m) is the class that m is defined in — i.e. the class
of the receiver objects of m. The compiler computes receiverClass(m) by following the edge from m
in the call graph back to the class nesting graph.

Definition 3 m is a c-method if ¢ = receiverClass(m).

12
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Definition 4 Given a method m, directlyInvokedMethods(m) is the set of methods that m may
directly invoke. invokedMethods(m) is the set of methods that may be directly or indirectly invoked as
a result of executing m. Neither set includes m unless m may recursively invoke itself. The compiler
computes directlyInvokedMethods(m) by traversing the call graph.

Definition 5 Given a class ¢, nestedClasses(c) is the set of classes that may be directly or indirectly
nested inside c. nestedClasses(c) does not include c. The compiler computes this set by traversing
the class nesting graph.

Definition 6 m is a nested c-method if receiverClass(m) € nestedClasses(c).

Definition 7 Given a method m, closed(m) is true if the entire computation generated as a result
of executing m accesses only the receiver object of m or nested objects of the receiver object of m. The
compiler computes this function by traversing the call graph.

Definition 8 Given two sets of methods msi and mss, ms; dominates mso if for every method
m € msg, every path from the root of the call graph to m contains a method in ms.

Definition 9 Given a method m, generatesConcurrency(m) is true if m contains any constructs
that generate parallel execution.

5.5 The Data Lock Coarsening Algorithm

The primary responsibility of the data lock coarsening algorithm is to ensure that every time the
computation executes an operation on a nested object, it holds the lock in the nested object’s enclosing
object. The algorithm checks that the computation satisfies this constraint by computing the set of
methods that may have a nested object as the receiver. It then verifies that all of these methods are
invoked only from within methods that have the nested object’s enclosing object as their receiver. In
this case, the algorithm can generate code that holds the enclosing object’s lock for the duration of all
methods that execute on nested objects. Because the lock in the enclosing object ensures the atomic
execution of all methods that execute with nested objects as the receiver, the compiler can eliminate
the lock constructs in these methods.

13



global lockClass;
boolean DataLockCoarseningClass(class ¢){
ms1 = {m : m € methods(c) and closed(m)};
msy = U{invokedMethods(m) : m € msi} — msy;
ms3z = {m : m € ms; and invokedMethods(m) C ms2}
cs = {receiverClass(m): m € msy};
msy = U{methods(c’) : ¢’ € cs};
if(ms; dominates msy) then
for all methods m € ms3 Ums, do
if(generatesConcurrency(m) or (not CoarsenGranularity(m))) return false;
for all methods m € mss do
Make the generated parallel version of m invoke the synchronization-free
version of each method that it invokes. The synchronization-free version
contains no lock constructs and invokes the synchronization-free version
of all methods that it invokes.
Also make the first statement of m acquire its receiver’s lock
and the last statement of m release the lock.
for all methods m € ms, do
lockClass[m| = ¢;
return true;
else return false;

}

void DataLockCoarsening(){
for all methods m do lockClass[m]| = receiverClass(m);
for all classes ¢ in the topological sort order of the Class Nesting Graph do
if(¢ is not marked)
if(DataLockCoarseningClass(c))
for all ¢’ € nestedClasses(c) do mark ¢

Figure 7: Data Lock Coarsening Algorithm
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Figure 7 presents the data lock coarsening algorithm. Figure 8 shows the values that the algorithm
computes when it runs on the node class in the example program.

Given a class ¢, the goal of the algorithm is to use the lock in objects of class ¢ for all objects nested
inside objects of class c¢. The algorithm first computes ms;, which is the set of all closed methods with
receivers of class c¢. Because every method m in msy is closed, it is possible for the compiler to find the
enclosing object of the receiver of every operation that m invokes on nested objects — the enclosing
object is simply the receiver of m. mss is the set of invoked methods that are nested c-methods. If the
algorithm succeeds, the compiler will generate code that eliminates all of the lock constructs in these
methods. mss is the set of c-methods that only invoke nested c-methods. If the algorithm succeeds,
the methods in ms3 and mso together contain all call sites that invoke the nested c-methods in mss.
msy is simply the set of nested c-methods that may have the same receiver as one of the methods in
mss. For the algorithm to succeed, all of the methods in ms4 must be invoked by the execution of
a method in mss — in other words, mss must dominate msy. Before the algorithm applies the lock
coarsening transformation, it checks that none of the methods in mss or msy contain constructs that
generate parallel execution. It also checks that all of the methods in mss or mss meet the conditions
of the false exclusion policy in Section 6. This policy is designed to ensure that the lock coarsening
transformations do not introduce false exclusion.

Class Nesting Graph Call Graph

Figure 8: Computed Method and Class Sets for the Example Program

The only remaining potential problem is the possibility of false contention. We expect that locking
nested objects at the granularity of the enclosing object will usually not increase the data lock granu-
larity enough to generate a substantial amount of false contention. The data lock coarsening algorithm
therefore always coarsens the granularity if it can legally do so.

The algorithm records the results of the data lock coarsening in the variable lockClass. Given a
method m, lockClass|m] is the class whose lock ensures the atomic execution of m. The computation
lock coarsening algorithm presented below in Section 6 uses lockClass to determine if can legally
apply the computation lock coarsening transformation.

To generate code for the transformed computation, the compiler generates a new synchronization-
free version of all methods whose receivers are nested objects — in other words, all of the methods in
the set msy. The synchronization-free version is the same as the original version except that it omits
any synchronization constructs present in the original version and invokes the synchronization-free
version of all of the methods that it executes. The compiler also modifes all of the call sites of the
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methods in the set mss to ensure that they invoke the synchronization-free version of each invoked
method.

If the data lock coarsening algorithm succeeds, it may be the case that none of the parallel phases
in the transformed program acquires or releases the lock of any object of the same class as one of the
nested objects. In this case, the generated code eliminates the lock from the declaration of the class
and the computation never allocates the lock.

Finally, we briefly note that the data lock coarsening algorithm can never introduce deadlock.
The model of computation in Section 4 ensures that the processor holds no locks when it enters the
transformed version of one of the methods in mss. Because the entire computation of the transformed
method only acquires and releases the lock in its receiver object, there is no possibility of deadlock.

6 Computation Lock Coarsening

Figure 9 presents the computation lock coarsening algorithm. This algorithm traverses the call graph,
attempting to identify methods whose computation repeatedly acquires and releases the same lock.
The ComputationLockCoarseningMethod(m) determines if it should coarsen the granularity at the
execution of m. It first checks that m is closed. It then checks that none of the methods that m’s
computation may execute acquire and release different locks. It also checks to make sure that none of
these methods contain any concurrency generation constructs. If m passes all of these tests, it is legal
for the compiler to apply the computation lock coarsening transformation.

global lockClass;
boolean ComputationLockCoarseningMethod(method m){
if(generatesConcurrency(m))
return false;
if(m is closed)
¢ = receiverClass(m);
for all m' € invokedMethods(m) do
if (LockClass[receiverClass(m)] # c) or (generatesConcurrency(m)) return false;
if(CoarsenGranularity(m))
Make the generated parallel version of m invoke the synchronization-free
version of each method that it invokes. This synchronization-free version
contains no lock constructs and invokes the synchronization-free version
of all methods that it invokes.
Also make the first statement of m acquire its receiver’s lock
and the last statement of m release the lock.
return true;
return false;

}

void ComputationLockCoarsening(method m){
if(m is not marked)
mark m;
if(not ComputationLockCoarseningMethod(m))
for all m' € directlyInvokedMethods(m) do
ComputationLockCoarsening(m/');

Figure 9: Computation Lock Coarsening Algorithm

The remaining question is whether coarsening the granularity will generate an excessive amount of
false exclusion. The compiler currently uses one of three policies to determine if it should apply the
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transformation:
e Original: Never apply the transformation — use the original lock granularity.

e Bounded: Increase the granularity only if the transformation will not cause the computation to
hold a lock for a statically unbounded number of method executions. The compiler implements
this policy by testing for cycles in the call graph of the set of methods that may execute while
the computation holds the lock. It also checks to make sure that none of these methods contain
loops that invoke methods. The idea is to limit the potential severity of any false exclusion by
limiting the amount of time the computation holds any given lock.

e Aggressive: Always increase the granularity if it is legal to do so.

This policy choice is encapsulated inside the CoarsenGranularity(m) algorithm. If the algorithm
determines that it should apply the transformation, the compiler generates code for m that acquires
the lock, invokes the synchronization-free versions of all of the methods that it invokes, then releases
the lock.

The computation lock coarsening algorithm can never introduce deadlock. It simply replaces com-
putations that acquire and release the same lock with computations that acquire and release the lock
only once. If the original version does not deadlock, the transformed version can not deadlock.
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7 Experimental Results

We have implemented the lock coarsening algorithms described in Sections 5 and 6 and integrated them
into a prototype compiler that uses commutativity analysis [17] as its primary analysis paradigm. In
this section we present experimental results that characterize the performance impact of using the lock
coarsening algorithms in a parallelizing compiler. We report performance results for two automatically
parallelized scientific applications: the Barnes-Hut hierarchical N-body solver [2] and the Water [20]
code.

7.1 The Compilation System

Although it is possible to apply the lock coarsening algorithms to any parallel program that conforms
to the model of computation in Section 4, they were developed in the context of a parallelizing compiler
for object-based languages [17]. This compiler uses a new analysis framework called commutativity
analysis to automatically generate parallel code.

Commutativity analysis exploits the structure present in the object-based programming paradigm
to view the computation as composed of a sequence of operations on objects. It then analyzes the
program to determine if operations commute (two operations commute if they generate the same result
regardless of the order in which they execute). If all of the operations in a given computation commute,
the compiler can automatically generate parallel code. Even though the code may violate the data
dependences of the original serial program, it is still guaranteed to generate the same result.

If the compiler determines that it can parallelize a computation, it generates code for the com-
putation as follows. It first identifies the objects that the computation modifies, then augments the
objects’ class declarations so that each object has a mutual exclusion lock. It then inserts acquire and
release constructs into operations that access the objects. These constructs make operations execute
atomically in the context of the parallel computation. At each operation invocation site the compiler
generates code that executes the operation in parallel. A straightforward application of lazy task cre-
ation techniques [15] can increase the granularity of the resulting parallel computation. The compiler
also applies a heuristic designed to eliminate the exploitation of excess concurrency: the generated
code executes each iteration of a parallel loop serially.

Commutativity analysis complements the standard analysis framework, data dependence analysis,
used in traditional parallelizing compilers. Compilers that use data dependence analysis attempt to
find independent computations (two computations are independent if neither writes a variable that the
other accesses). The compiler then generates code that executes the independent pieces concurrently.
If a traditional parallelizing compiler fails to determine that computations are independent, it must
conservatively generate code that executes the computations sequentially. Commutativity analysis ex-
tends this approach. If all operations in a given computation commute, the compiler can automatically
parallelize the computation regardless of any data dependences that may exist between operations.

The compiler itself is structured as a source-to-source translator that takes an unannotated serial
program written in a subset of C++ and generates an explicitly parallel C++ program that performs
the same computation. We use Sage+-+ [4] as a front end. The analysis phase consists of approximately
14,000 lines of C++ code, with approximately 1,800 devoted to interfacing with Sage++.

The code generation phase of the compiler automatically generates lock constructs to ensure that
operations on objects execute atomically. The analysis phase of the compiler yields programs that
conform to the model of computation presented in Section 4. The compiler uses the lock coarsening
algorithms described in Section 5 to reduce the lock overhead. A run-time library provides the basic
concurrency management and synchronization functionality. The library consists of approximately
5,000 lines of C code.

The current version of the compiler imposes several restrictions on the dialect of C++ that it
accepts. The goal of these restrictions is to simplify the implementation of the prototype while providing
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enough expressive power to allow the programmer to develop clean object-based programs. The major
restrictions include:

e The program has no virtual methods and does not use operator or method overloading. The
compiler imposes this restriction to simplify the construction of the call graph.

e The program uses neither multiple inheritance nor templates.

e The program contains no typedef, union, struct or enum types.

e Global variables cannot be primitive data types; they must be class types.
e The program does not use pointers to members or static members.

e The program contains no casts between base types such as int, float and double that are
used to represent numbers. The program may contain casts between pointer types; the compiler
assumes that the casts do not cause the program to violate its type declarations.

e The program contains no default arguments or methods with variable numbers of arguments.

e No operation accesses an instance variable of a nested object of the receiver or an instance variable
declared in a class from which the receiver’s class inherits.

7.2 Methodology

To evaluate the impact of the lock coarsening policy on the overall performance, we implemented the
three lock coarsening policies described in Section 6. We then built three versions of the prototype
compiler. The versions are identical except that each uses a different lock coarsening policy. We then
used the three versions of the compiler to automatically parallelize the benchmark applications. We
obtained three automatically parallelized versions of each application — one from each version of the
compiler. The generated code for each application differs only in the lock coarsening policy used to
reduce the lock overhead. 2 We evaluated the performance of each version by running it on a 32-
processor Stanford DASH machine [12] running a modified version of the IRIX 5.2 operating system.
Because the prototype compiler is a source-to-source translator, we use a standard C++ compiler
to generate object code for the automatically generated parallel programs. We compiled the parallel
programs using the IRIX 5.3 CC compiler at the -O2 optimization level.

7.3 Barnes-Hut

The Barnes-Hut application simulates the trajectories of a set of interacting bodies under Newto-
nian forces [2]. It uses a sophisticated pointer-based data structure: a space subdivision tree that
dramatically improves the efficiency of a key phase in the algorithm. The application consists of ap-
proximately 1500 lines of serial C++ code. The compiler is able to automatically parallelize phases of
the application that together account for over 95% of the execution time.

We start our discussion of the experimental results by reporting the execution time for each version
of the parallel code running on one processor. We also report the execution time for the serial version.
All performance results are reported for a version of the program running with 16384 bodies. To
eliminate cold start effects, the instrumented computation omits the first two iterations. In practice
the computation would perform many iterations and the amortized overhead of the first two iterations
would be negligible.

The sequential source codes and automatically generated parallel codes can be found at
http://www.isi.edu/~pedro/CA/apps/LockCoarsening.
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A comparison of the performance of the serial version with the performance of the parallel versions
provides a measure of the lock overhead. The performance results in Table 1 show that the lock
coarsening algorithm has a significant impact on overall performance. Without optimization, the
original parallel version runs 2.0 times slower than the serial version. The Bounded optimization level
reduces the lock overhead, and the Aggressive optimization level virtually eliminates it.

Version Execution Locking
Time (secs) | Overhead
Serial 143.5 —
Original 287.7 50%
Bounded 208.6 31%
Aggressive 148.6 3%

Table 1: Locking Overhead for the Barnes-Hut for 16384 bodies on a Single Processor

Table 2 presents the number of executed lock acquire and release constructs that each version
performs. It also presents the number of allocated locks. As expected, the decreases in execution
times for the different versions are closely correlated with decreases in the number of executed lock
constructs. The data lock coarsening algorithm also reduces the number of allocated locks by a factor

of five.

Version Number of Executed Number of
Acquire/Release Pairs | Allocated Locks
Original 15,537 x 103 81,920
Bounded 7,777 x 103 16,384
Aggressive 82 x 103 16,384

Table 2: Lock Counts for the Barnes-Hut for 16384 bodies

Table 3 presents the execution times for the different parallel versions running on a variety of
processors; Figure 10 presents the corresponding speedup curves. The speedups are calculated relative
to the serial version of the code, which executes with no lock or parallelization overhead. All versions
scale well, which indicates that the compiler was able to effectively parallelize the application. Although
the absolute performance varies with the lock coarsening policy, the performance of the different parallel
versions scales at approximately the same rate. This indicates that the lock coarsening algorithms
introduced no significant contention.

Version Processors
1 2 4 8 12 16 20 24 28 32
Serial 143.5 — — — — — — — — —
Original 287.7 | 146.3 | 82.2 | 41.0 | 29.2 | 24.2 | 204 | 19.9 | 16.6 | 15.5
Bounded | 208.6 | 108.8 | 56.3 | 31.1 | 21.8 | 17.7 | 15.2 | 13.8 | 12.2 | 11.0
Aggressive | 148.6 | 78.3 | 389 | 21.8 | 16.0 | 13.2 | 11.7 | 104 | 9.6 8.7

Table 3: Execution Times for Barnes-Hut for 16384 bodies (seconds)
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Figure 10: Speedup for Barnes-Hut (16384 bodies)

7.4 ‘Water

Water uses a O(n?) algorithm to simulate a set of n water molecules in the liquid state. The appli-
cation consists of approximately 1850 lines of serial C++ code. The compiler is able to automatically
parallelize phases of the application that together account for over 98% of the execution time.

Table 4 presents the running times on one processor for the different versions of Water. With
no optimization the lock operations impose an overhead of 17% over the original serial version; the
Bounded and Aggressive optimization levels drive the overhead down substantially.

Version Execution Locking
Time (secs) | Overhead
Serial 159.5 —
Original 193.3 17%
Bounded 176.0 9%
Aggressive 168.7 5%

Table 4: Locking Overhead for the Water for 512 molecules on a Single Processor

Table 5 presents the number of executed lock acquire and release constructs that each version
performs. It also presents the number of allocated locks. As for the Barnes-Hut application, the
decreases in execution times for the different versions are closely correlated with decreases in the number
of executed lock constructs. At the Aggressive optimization level, the lock coarsening algorithm also
decreases the number of allocated locks by over a factor of 17.

Surprisingly, the number of allocated locks actually increases slightly at the Bounded optimization
level. Further investigation reveals that this increase is caused by the following phenomenon. In
one parallel phase the lock coarsening algorithm succeeds and generates code that uses a lock in an
enclosing object instead of several locks in nested objects. Because the enclosing object originally
had no lock (none of the parallel regions wrote any of its instance variables), the lock coarsening
algorithm introduces a new lock at the level of the enclosing object. In another parallel phase, the
lock coarsening algorithm for this object does not coarsen the lock granularity. The compiler therefore

21



does not eliminate the locks in the nested objects. The overall effect is an increase in the number of
allocated locks.

Version Number of Executed Number of
Acquire/Release Pairs | Allocated Locks
Original 1,200 x 10° 17,921
Bounded 2,100 x 10? 18,944
Aggressive 1,578 x 103 1,026

Table 5: Lock Counts for Water for 512 molecules

Table 6 presents the execution times for the different parallel versions running on a variety of
processors; Figure 11 presents the corresponding speedup curves. The Original and Bounded versions
initially perform well (the speedup over the sequential C++ version at sixteen processors is approxi-
mately 5.2). But both versions fail to scale beyond eight processors. The Aggressive version fails to
scale well at all — the maximum speedup for this version is only 2.0.

Processors
Version 1 2 4 8 12 16 20 24 28 32
Serial 159.5 — — — — — — — —
Original 193.3 | 105.5 | 54.3 | 36.3 | 33.4 | 30.1 | 31.7 | 33.1 | 34.4 | 39.4
Bounded | 176.0 | 93.5 | 48.3 | 33.4 | 30.6 | 31.5 | 31.4 | 31.3 | 34.7 | 39.5
Aggressive | 168.6 | 121.9 | 97.7 | 84.7 | 81.0 | 81.8 | 84.3 | 84.9 | 83.7 | 85.9

Table 6: Execution Times for Water for 512 molecules (seconds)
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Figure 11: Speedup for Water (512 molecules)
We investigated the source of the lack of scalability by instrumenting the generated parallel code

to measure how much time each processor spends in different parts of the parallel computation. The
instrumentation breaks the execution time down into the following categories:

22



e Parallel Idle: The amount of time the processor spends idle while the computation is in a
parallel section. Increases in the load imbalance show up as increases in this component.

e Serial Idle: The amount of time the processor spends idle when the computation is in a serial
section. Currently every processor except the main processor is idle during the serial sections.
This component therefore tends to increase linearly with the number of processors, since the time
the main processor spends in serial sections tends not to increase dramatically with the number
of processors.

e Blocked: The amount of time the processor spends waiting to acquire a lock that an operation
executing on another processor has already acquired. Increases in contention for objects are
reflected in increases in this component of the time breakdown.

e Parallel Compute: The amount of time the processor spends performing useful computation
during a parallel section of the computation. This component also includes the lock overhead
associated with an operation’s first attempt to acquire a lock, but does not include the time
spent waiting for another processor to release the lock if the lock is not available. Increases in
the lock overhead show up as increases in this component.

e Serial Compute: The amount of time the processor spends performing useful computation in
a serial section of the program. With the current parallelization strategy, the main processor is
the only processor that executes any useful work in a serial part of the computation.

Given the execution time breakdown for each processor, we compute the cumulative time breakdown
by taking the sum over all processors of the execution time breakdown at that processor. Figure 12
presents the cumulative time breakdowns for Water as a function of the number of processors executing
the computation. The height of each bar in the graph represents the total processing time required to
execute the parallel program; the different gray scale shades in each bar represent the different time
breakdown categories. If a program scales perfectly with the number of processors then the height of
the bar will remain constant as the number of processors increases.
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Figure 12: Cumulative Time Breakdowns for Water for 512 molecules

The cumulative time breakdowns clearly show why the Original and Bounded versions fail to scale
beyond eight processors and why the Aggressive version fails to scale at all. The fact that the blocked
component of the time breakdowns grows dramatically while all other components either grow relatively
slowly or remain constant indicates that lock contention is the primary source of the lack of scalability.

For this application, the Bounded policy yields the best results and the corresponding parallel code
attains respectable speedups. Although the Aggressive policy dramatically reduces the number of
executed locking operations, the introduced lock contention almost completely serializes the execution.
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8 Choosing the Correct Policy

The most important remaining open question is how to choose the correct lock granularity for a given
computation. The experimental results presented in Section 7 show that the best lock coarsening policy
differs from program to program. Our compiler currently supports a flag that allows the programmer
to choose which lock coarsening policy to use. We anticipate that programmers may wish to control
the lock coarsening policy at a finer granularity (one example would be to use different policies for
different parallel sections). We therefore anticipate that it would be productive to support annotations
that allow the programmer to control the lock coarsening policy at a finer granularity.

We have also explored an alternative approach, dynamic feedback, in which the compiler can au-
tomatically generate code that chooses the correct policy at run-time in a dynamic fashion. In this
approach, the compiler generates code that periodically samples the performance of the available
policies for a given computation and selects the code version with the best performance [8]. The ex-
perimental results show that dynamic feedback enables the generated code to exhibit performance that
is comparable to that of code that has been manually tuned to use the best lock coarsening policy.
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9 Related Work

In this section we survey related work in the area of object-oriented computing, parallel computing,
and database concurrency control.

9.1 Access Region Expansion

Plevyak, Zhang and Chien have developed a static synchronization optimization technique, access re-
gion expansion, for concurrent object-oriented programs [16]. Each access region is a piece of code that
has exclusive or non-exclusive access to an object. Access regions are implemented using communica-
tion, locality testing and locking primitives. Access region expansion statically expands and coalesces
access regions to reduce the frequency with which the program enters and exits access regions. The
goal is to reduce the overall communication, locality testing and locking overhead generated by the
entering and exiting of access regions.

Because access region expansion is designed to reduce the overhead in sequential executions of such
programs, it does not address the trade-off between lock overhead and waiting overhead. Unlike the
data lock coarsening transformation, access region expansion does not change the granularity at which
the computation locks the data. Access region expansion may, however, merge adjacent access regions
for different objects into one new access region. The new access region acquires the locks for all the
objects, performs the corresponding operations, then releases the locks.

9.2 Automatically Parallelized Scientific Computations

Previous parallelizing compiler research in the area of synchronization optimization has focused al-
most exclusively on synchronization optimizations for parallel loops in scientific computations [14].
The natural implementation of a parallel loop requires two synchronization constructs: an initiation
construct to start all processors executing loop iterations, and a barrier construct at the end of the
loop. The majority of synchronization optimization research has concentrated on removing barriers
or converting barrier synchronization constructs to more efficient synchronization constructs such as
counters [21]. Several researchers have also explored optimizations geared towards exploiting more
fine grained concurrency available within loops [7]. These optimizations automatically insert one-way
synchronization constructs such as post and wait to implement loop-carried data dependences.

The research presented in this article investigates synchronization optimizations for a compiler
designed to parallelize object-based programs, not loop nests that manipulate dense arrays using
affine access functions. The problem that our compiler faces is the efficient implementation of atomic
operations, not the efficient implementation of data dependence constraints.

9.3 Database Concurrency Control

A goal of research in the area of database concurrency control is to develop efficient locking algorithms
for atomic transactions. This goal is similar to our goal of efficiently implementing atomic operations
in parallel programs. In fact, database researchers have identified lock granularity as a key issue in
the implementation of atomic transactions, and found that excessive lock overhead can be a significant
problem if the lock granularity is too fine [3, 10].

The proposed solution to the problem of excessive lock overhead in the context of database concur-
rency control is to dynamically coarsen the lock granularity using a technique called lock escalation.
The idea is that the lock manager (which is responsible for granting locks to transactions) may coarsen
the lock granularity by dynamically locking a large section of the database on behalf of a given trans-
action. If the transaction requests a lock on any object in that section, the lock manager simply checks
that the transaction holds the coarser granularity lock.
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There are several key differences between the lock manager algorithm and the lock coarsening
algorithms presented in this article. The lock manager algorithm only attempts to increase the data
lock granularity — there is no attempt to increase the computation lock granularity. This article
presents algorithms that coarsen both the data and the computation lock granularities.

Several other differences stem from the fact that the lock manager algorithm takes place dynam-
ically, which means that it can not change the program generating the lock requests. The programs
therefore continue to execute lock acquire and release constructs at the fine granularity of individual
items in the database. The goal of the lock manager algorithm is to make it possible to implement the
fine grain lock requests more efficiently in cases when the lock manager has granted the transaction
a coarse grain lock on a section of the database, not to change the granularity of the lock requests
themselves.

Because the transactions always generate lock requests at the granularity of items in the database,
the lock manager must deal with the possibility that a transaction may attempt to lock an individual
item even though it does not hold a lock on the section of the database that includes the item. The
locking algorithm must therefore keep track of correspondence between different locks that control
access to the same objects. Tracking this correspondence complicates the locking algorithm, which
makes each individual lock acquire and release less efficient in cases when the lock manager has not
already granted the transaction a coarse grain lock.

The lock coarsening algorithms presented in this article, on the other hand, transform the program
so that it always generates lock requests at the coarser granularity. The fine grain lock acquire and
release operations are completely eliminated and generate no overhead whatsoever. Furthermore, com-
putations that access the same object always execute acquire and release constructs on the same lock.
This property makes it possible for the implementation to use an extremely efficient lock implemen-
tation. Modern processors have synchronization instructions that make it possible to implement the
required lock acquire and release constructs with an overhead of only several machine instructions [11].

9.4 Efficient Synchronization Algorithms

Other researchers have addressed the issue of synchronization overhead reduction. This work has
concentrated on the development of more efficient implementations of synchronization primitives using
various protocols and waiting mechanisms [9, 13].

The research presented in this article is orthogonal to and synergistic with this work. Lock coars-
ening reduces the lock overhead by reducing the frequency with which the generated parallel code
acquires and releases locks, not by providing a more efficient implementation of the locking constructs.
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10 Conclusions

This article addresses a fundamental issue in the implementation of atomic operations: the granularity
at which the computation locks the data that atomic operations access. We have found that using
the natural lock granularity for object-based programs (giving each object its own lock and having
each operation lock the object that it accesses) may significantly degrade the performance. We have
presented algorithms that can effectively reduce the lock overhead by automatically increasingly the
granularity at which the computation locks data. We have implemented these algorithms and integrated
them into a parallelizing compiler for object-based languages. We present experimental results that
characterize the performance impact of using the lock coarsening algorithms in this context. These
results show that the algorithms can effectively reduce the lock overhead to negligible levels, and that
an overly aggressive lock coarsening algorithm may harm the overall parallel performance by serializing
sections of the parallel computation. A successful compiler must therefore negotiate a trade-off between
reducing lock overhead and increasing the serialization.
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