Lock Coarsening: Eliminating Lock Overhead in Automatically

Parallelized Object-Based Programs

Pedro Diniz! and Martin Rinard¥

Department of Computer Science
University of California, Santa Barbara
Santa Barbara, CA 93106
{pedro,martin }@cs.ucsb.edu

Abstract. Atomic operations are a key primitive in parallel computing
systems. The standard implementation mechanism for atomic operations
uses mutual exclusion locks. In an object-based programming system the
natural granularity is to give each object its own lock. Each operation
can then make its execution atomic by acquiring and releasing the lock
for the object that it accesses. But this fine lock granularity may have
high synchronization overhead. To achieve good performance it may be
necessary to reduce the overhead by coarsening the granularity at which
the computation locks objects.

In this paper we describe a static analysis technique — lock coarsening —
designed to automatically increase the lock granularity in object-based
programs with atomic operations. We have implemented this technique
in the context of a parallelizing compiler for irregular, object-based pro-
grams. Experiments show these algorithms to be effective in reducing
the lock overhead to negligible levels.

1 Introduction

Atomic operations are an important primitive in the design and implementation
of parallel systems. Operations are typically made atomic by associating mutual
exclusion locks with the data that they access. An atomic operation first acquires
the lock for the data that it manipulates, accesses the data, then releases the
lock.

We have implemented a compiler designed to automatically parallelize object-
based computations that manipulate irregular, pointer-based data structures.
This compiler uses commutativity analysis [9] as its primary analysis paradigm.
For the generated program to execute correctly, each operation in the gener-
ated parallel code must execute atomically. The automatically generated code
therefore contains mutual exclusion locks and constructs that acquire and release
these locks.

We have found that the granularity at which the generated parallel compu-
tation locks objects can have a significant impact on the overall performance.

t Sponsored by the PRAXIS XXI program administrated by Portugal’s JNICT — Junta
Nacional de Investigagdo Cientifica e Tecnolégica, and holds a Fulbright travel grant.
1 Supported in part by an Alfred P. Sloan Research Fellowship.

The natural lock granularity is to give each object its own lock and generate
code in which each operation acquires and releases the lock for the object that
it accesses. Our experimental results indicate, however, that locking objects at
this fine granularity may introduce enough overhead to significantly degrade the
overall performance. To achieve good performance we have found it necessary to
coarsen the lock granularity to reduce the amount of lock overhead.

This paper presents the analysis algorithms and program transformations
that the compiler uses to automatically coarsen the lock granularity. We have im-
plemented these algorithms in the context of a parallelizing compiler for object-
based programs [9]. This paper also presents experimental results that charac-
terize the performance impact of using the lock coarsening algorithms in the
compiler.

The results show the algorithms to be effective in reducing the lock overhead
to negligible levels. They also show that an overly aggressive lock coarsening
algorithm can significantly impair the performance by artificially increasing lock
contention (lock contention occurs when two processors attempt to acquire the
same lock at the same time). A successful compiler must therefore negotiate a
trade off between reducing lock overhead and increasing lock contention.

This paper makes the following contributions:

— It introduces two techniques for reducing lock overhead: data lock coarsening
and computation lock coarsening.

— It presents novel and practical lock coarsening algorithms that a compiler
can use to reduce the lock overhead.

— It presents experimental results that characterize the performance impact
of the lock coarsening algorithms on several automatically parallelized ap-
plications. These performance results show that, for these applications, the
algorithms can effectively reduce the lock overhead to negligible levels.

The rest of this paper is structured as follows. Section 3 presents an example
that illustrates how coarsening the lock granularity can reduce the lock overhead.
Section 4 describes the kinds of programs that the lock coarsening algorithms
are designed to optimize. In Sections 5 and 6 we present the lock coarsening
algorithms and transformations. In Section 7 we present experimental results
that characterize the impact of the lock coarsening algorithms on the overall
performance of two automatically parallelized applications.

2 Basic Issues in Lock Coarsening

The lock coarsening algorithms deal with two basic sources of performance loss:
lock overhead and lock contention.

— Lock Overhead: Acquiring or releasing a lock generates overhead; the goal
of the algorithms is to reduce this overhead by applying transformations that
make the computation execute fewer acquire and release constructs.

— Lock Contention: Lock contention occurs whenever one processor attempts
to acquire a lock held by another processor. In this case the first processor
must wait until the second processor releases the lock; the first processor
performs no useful computation during time it spends waiting for the lock
to be released. Increased lock contention therefore reduces the amount of
available parallelism.

All of the transformations that the algorithms apply to reduce the lock overhead
have the potential to increase the lock contention. The algorithms must therefore
negotiate a tradeoff between the lock overhead and the lock contention.

The algorithms apply two lock coarsening techniques: data lock coarsening
and computation lock coarsening.

— Data Lock Coarsening: Data lock coarsening is a technique in which the
compiler associates one lock with multiple objects that tend to be accessed
together. The compiler then transforms computations that manipulate one
or more of the objects. Each transformed computation acquires the lock,
performs the manipulations, then releases the lock. The original computa-
tion, of course, acquired and released a lock every time it manipulated any
one of the objects.

Data lock coarsening may improve the computation in two ways. First, it
may reduce the number of executed acquire and release constructs — it
enables computations to access multiple objects with the overhead of only a
single acquire construct and a single release construct. Second, it may reduce
the number of locks that the computation requires to execute successfully —
giving multiple objects the same lock may reduce the number of allocated
locks.

An overly aggressive data lock coarsening algorithm may introduce false
contention. False contention occurs when two operations attempt to acquire
the same lock even though they access different objects.

— Computation Lock Coarsening: Consider a computation that repeatedly

acquires and releases the same lock. This may happen, for example, if a
computation performs multiple operations on the same object or on objects
that have all been given the same lock by the data lock coarsening algorithm.
The computation lock coarsening algorithm analyzes the program to find
such computations. It then transforms the computations to acquire the lock,
perform the operations with no additional synchronization, then release the
lock. This transformation may significantly reduce the number of executed
acquire and release constructs.
An overly aggressive computation lock coarsening algorithm may introduce
false exclusion. False exclusion may occur when a computation holds a lock
for an extended period of time during which it does not access one of the
lock’s objects. If another computation attempts to acquire the lock (so that
it may access one of the lock’s objects), it must wait for the first compu-
tation to release the lock even though the first computation is not actively
accessing any of the lock’s objects. False exclusion may therefore reduce the
performance by decreasing the amount of available concurrency.

There is a potential interaction between lock coarsening and concurrency
generation. To ensure that all of the operations within a given coarsened mutual
exclusion region execute atomically with respect to each other, the algorithms
require that the entire computation within the coarsened region execute sequen-
tially. There are two options: refusing to apply the lock coarsening transforma-
tion if the coarsened region would contain a concurrency generation construct,
or removing all of the concurrency generation constructs within the coarsened
region. The current transformations apply the first option.

There may be a concern that the transformations will introduce deadlock. As
explained in Sections 5 and 6, the lock coarsening transformations never cause
a program to deadlock.

3 Example

In this section we provide an example, inspired by the Barnes-Hut application
in Section 7, that illustrates both kinds of lock coarsening. The example compu-
tation manipulates an array of pointers to nodes; each node has a vector and a
count. There is also a set of values stored in a binary search tree. The computa-
tion scales every node by all of the values in the tree that fall within a certain
range. It finds all of these values by traversing the binary search tree.

Figure 1 contains the parallel C++ code for this example. Each class is aug-
mented with a mutual exclusion lock; the parallel code uses this lock to make
operations on objects of that class atomic. If an operation modifies its receiver
object!, it first acquires the receiver’s lock, performs the modification, then re-
leases the lock.

The computation starts at the nodeSet::scaleNodeSet method. This method
invokes the node:traverse method in parallel for each node in the array; the
parallel for loop makes the loop iterations execute concurrently. Note that all
of the invocations of the node::traverse method may not be independent — if
two array elements point to the same node, the corresponding loop iterations
will modify the same node. The operations in the loop iterations must therefore
execute atomically for the computation to execute correctly.

The node::traverse method traverses the binary search tree to find all of
the values in the range [min,max]. Whenever it finds a value inside the range,
it invokes the node::scaleNode method to scale the node by the value. The
node::scaleNode method scales a node by incrementing the count of applied
scale operations, then invoking the vector::scaleVector method to scale the vec-
tor stored in the node.

3.1 Data Lock Coarsening in the Example

An examination of the parallel code in Figure 1 reveals that the computation
acquires and releases two locks every time it scales a node: the lock in the node

! Programs that use the object-based programming paradigm structure the computa-
tion as operations on objects. Each operation has a single receiver object; as described
in Section 4 this object is the object that the operation manipulates.

const int NDIM 3;
class vector {
lock mutex;
double value[NDIM];
public:
void scaleVector(double s){
mutex.acquire();
for(int i=0; i < NDIM; i++)
value[i] *=s;
mutex.release();
}
b
class tree {
public:
double x;
tree *left;
tree *right;
b
class node {
lock mutex;
public:
int count;
vector value;
void scaleNode(double s);
void traverse(tree *t,
double min, double max);
b
class nodeSet {
int size;
node **elements;
public:
void scaleNodeSet(tree *t,
double min, double max);
};

node::scaleNode(double s){
mutex.acquire();
count++;
mutex.release();
value.scaleVector(s);
}
node::traverse(tree *t,
double min, double max){
if((min < t->x) && (t->x < max))
scaleNode(t->x);
if(min < t->x)
traverse(t—>left,min,max);
if(t->x < max)
traverse(t->right,min,max);
}

nodeSet::scaleNodeSet(tree *t,
double min, double max){
scaleNodeSet(t, min, max);
wait();
}
nodeSet::scaleNodeSet(tree *t,
double min, double max){
parallel for(int i = 0; i < size; i++){
elements[i]->traverse(t, min, max);
}
}

Fig. 1. Parallel Node Scaling Example

object (the node::scaleNode method acquires and releases this lock) and the
lock in the nested vector object inside the node object (the vector::scaleVector
method acquires and releases this lock).

It is possible to eliminate the acquisition and release of the lock in the nested
vector object by coarsening the lock granularity as follows. Instead of giving
each nested vector object its own lock, the compiler can use the lock in the
enclosing node object to make operations on the nested vector object atomic.
Figure 2 contains the transformed code that locks the objects at this granularity.
The compiler generates a new version of the vector::scaleVector method (this
new version is called vector::syncFreescaleVector) that does not acquire the

lock. It invokes this new version from within the node::scaleNode method and
transforms the code so that it holds the node’s lock during the execution of the
vector::syncFree_scaleVector method.

node::syncFree_scaleNode(double s){
count++;
vector.syncFree_scaleVector(s);

}

node::syncFree_traverse(tree *t,
double min, double max){
if(min < t->x) && (t->x < max))

) syncFree_scaleNode(t->x);

B if(min < t->x)
node..scaleNod-e(double st syncFree_traverse(t—->left,min,max);
mutex.acquire(); if(t->x < max)

vector:syncFree_scaleVector(double s){
for(int i=0; i < NDIM; i++)
value[i] *= s;

count—+-+; . .
Free_t t=>right ;
vector.syncFree_scaleVector(s); } syncFree traverse(t->right, min, max);
tex.rel H
}mu ex.release(); node::traverse(tree *t,

double min, double max){
mutex.acquire();
syncFree_traverse(t, min, max);
mutex.release();

}

Fig. 3. Computation Lock Coarsening

Fig. 2. Data Lock Coarsening Example Example

To legally perform this transformation, the compiler must ensure that every
thread that executes a vector operation acquires the corresponding node lock be-
fore it executes the operation. An examination of the code shows that it satisfies
this constraint.

This transformation illustrates the utility of data lock coarsening. It reduces
the number of executed locking constructs by a factor of two because it eliminates
the acquire/release pair in the vector::scaleVector method. The compiler can also
omit the mutual exclusion lock declaration in the vector class because none of
the methods in the parallel computation acquire or release the lock.

3.2 Computation Lock Coarsening in the Example

The example also contains an opportunity for computation lock coarsening. Con-
sider the subcomputation generated as a result of executing a node::traverse
method. This subcomputation periodically executes node::scaleNode methods,
which acquire and release the node’s mutual exclusion lock. All of these exe-
cutions acquire and release the same mutual exclusion lock. In fact, all of the
operations in the entire subcomputation that acquire any lock acquire the same

lock: the lock in the receiver object of the original node::traverse operation. It
is therefore possible to coarsen the lock granularity by acquiring the lock once
at the beginning of the subcomputation, then holding it until the subcomputa-
tion finishes. This transformation eliminates all of the lock constructs except the
initial acquire and the final release. Figure 3 shows the transformed code.

This example also illustrates the potential for false exclusion. Consider the
original program in Figure 1. This program only holds the node’s lock when it
is actually updating the node. The transformed code in Figure 3 holds the lock
for the entire traversal. If two traversals on the same node seldom update the
node, they can execute mostly in parallel in the original version of the code.
In the coarsened version they will execute serially. As we will see in Section 7,
this kind of serialization may significantly impair the performance of the parallel
computation. The compiler must therefore ensure that its lock coarsening policy
does not introduce a significant amount of false exclusion.

4 Model of Computation

Before presenting the lock coarsening algorithms, we discuss the kinds of pro-
grams that they are designed to optimize. First, the algorithms are designed
for pure object-based programs. Such programs structure the computation as
operations on objects. Each object implements its state using a set of instance
variables. Each instance variable can be either a nested object or a primitive
type from the underlying language such as an integer, a double, or a pointer
to an object. Each object has a mutual exclusion lock that exports an acquire
construct and a release construct. Once a processor has successfully executed an
acquire construct on a given lock, all other processors that attempt to acquire
that lock block until the first processor executes a release construct. Operations
on the object use its lock to ensure that they execute atomically.

Programmers define operations by writing methods. Each operation corre-
sponds to a method invocation: to execute an operation, the machine executes
the code in the corresponding method. Each operation has a receiver object and
several parameters. When an operation executes it can access the parameters,
invoke other operations or access the instance variables of the receiver. There
are several restrictions on instance variable access. An operation cannot directly
access an instance variable of a nested object — it can only access the variable
indirectly by invoking an operation that has the nested object as the receiver.
If an instance variable is declared in a parent class from which the receiver’s
class inherits, the operation can not directly access the instance variable — it
can only access the variable indirectly by invoking an operation whose receiver’s
class is the parent class.

The computation consists of a sequence of alternating serial and parallel
phases. Within a parallel phase the computation uses constructs such as parallel
loops to create operations that execute concurrently. The only synchronization
consists of the mutual exclusion synchronization required to make the operations
atomic and the barrier synchronization at the end of a parallel phase.

If an operation accesses an instance variable that may be modified during the
parallel phase, it uses the lock in the instance variable’s object to make its access
atomic. Before the operation executes its first access to the instance variable, it
acquires the object’s lock. It releases the lock after it completes the last access.

We extend the model for read-only data as follows. If no operation in the
parallel phase modifies an instance variable, any operation in the phase (includ-
ing operations whose receiver is not the object containing the instance variable)
can directly access the variable without synchronization.

There may be a concern that the model of computation imposes overhead in
the form of excessive method invocations. We have found that inlined methods
and the extension described in the previous paragraph, eliminate virtually all
of this overhead. The serial C++ versions of our two benchmark applications,
for example, perform slightly better than the C versions from the SPLASH
benchmark set [9].

5 Data Lock Coarsening

The data lock coarsening algorithm starts with a computation in which each
object has its own mutual exclusion lock. The basic idea is to increase the lock
granularity by giving multiple objects the same lock. Before the computation
accesses any one of these objects, it first acquires the lock. Once it has acquired
the lock it can access any other object that has the same lock with no further
synchronization.

The algorithm must first choose which objects should have the same lock.
The current policy attempts to give nested objects the same lock as their en-
closing object. The algorithm must then determine if it can transform the entire
parallel computation to lock objects at the new granularity. The key issues are
to determine statically the new lock that each operation must hold, to make
sure that in the generated code each operation actually holds that lock, and to
ensure that no part of the computation locks objects at the old granularity.

5.1 The Data Lock Coarsening Algorithm

The primary responsibility of the data lock coarsening algorithm is to ensure
that every time the computation executes an operation on a nested object, it
holds the lock in the nested object’s enclosing object. The algorithm checks that
the computation satisfies this constraint by computing the set of methods that
may have a nested object as the receiver. It then verifies that all of these methods
are invoked only from within methods that have the nested object’s enclosing
object as their receiver. In this case, the algorithm can generate code that holds
the enclosing object’s lock for the duration of all methods that execute on nested
objects. Because the lock in the enclosing object ensures the atomic execution
of allmetfods fhat cxsentcmith agsted obiests s dhe peseiver, the compile o

Hi(&%ass er%en a“r%eéfftﬁ n tﬁjlocklgfass m)| iPHhe class whose]ISO(aigensures

Primitive Operations:

receiverClass(method m) : the class that m is defined in.

methods(class ¢) : set of potentially invoked methods in the computation that
have class c as receiver.

closed(method m) : true if the entire computation generated as a result of
executing m only accesses the receiver object of m or nested objects of the
receiver object of m. The compiler computes this by traversing the call graph.

invokedMethods(method m) : set of methods that may be directly or indirectly
invoked as a result of executing m.

generatesConcurrency (method m) : true if m contains any constructs that
generate parallel execution.

method set m dominates method set ms : true if for every method m € mss,
every path from the root of the call graph to m contains a method in ms;.

CoarsenGranularity(method m) : true if m satisfies the false exclusion policy
in Section 6.

global lockClass;
void DataLockCoarseningClass(class c)
ms; = {m : m € methods(c) and closed(m)};
ms2 = U{invokedMethods (m) : m € msi} — msy;
msz = {m : m € ms; and invokedMethods(m) C ms>}
c¢s = {receiverClass(m): m € msa};
ms4 = U{methods(c') : ¢’ € cs};
if(ms3 dominates ms4) then
for all methods m € ms3 U ms4 do
if(generatesConcurrency(m) or (not CoarsenGranularity(m))) return;
for all methods m € mss do
Make the generated parallel version of m invoke the synchronization-free
version of each method that it invokes. This synchronization-free version
contains no lock constructs and invokes the synchronization-free version
of all methods that it invokes. Also make the first statement of m
acquire its receiver’s lock and the last statement of m release the lock.
for all methods m € ms4 do
lockClass[m] = ¢;

Fig. 4. Data Lock Coarsening Algorithm

the atomic execution of m. The computation lock coarsening algorithm pre-
sented below in Section 6 uses lockClass to determine if can legally apply the
computation lock coarsening transformation.

To generate code for the transformed computation, the compiler generates a
new synchronization-free version of all methods whose receivers are nested ob-
jects — in other words, all of the methods in the set ms4. The synchronization-
free version is the same as the original version except that it omits any synchro-
nization constructs present in the original version and invokes the synchronization-

free version of all of the methods that it executes. The compiler also modifes all
of the call sites of the methods in the set ms3 to ensure that they invoke the
synchronization-free version of each invoked method.

Finally, we briefly note that the data lock coarsening algorithm can never
introduce deadlock. The model of computation in Section 4 ensures that the
processor holds no locks when it enters the transformed version of one of the
methods in ms3. Because the entire computation of the transformed method
only acquires and releases the lock in its receiver object, there is no possibility
of deadlock.

6 Computation Lock Coarsening

Th computation lock coarsening algorithm traverses the call graph, attempt-
ing to identify methods whose computation repeatedly acquires and releases the
same lock. At each node of the program call graph the computation lock coars-
ening algorithm uses the ComputationLockCoarseningMethod(m) algorithm to
determine if it should coarsen the granularity at the execution of the correspond-
ing method m of the call graph node.

Figure 5 presents ComputationLockCoarseningMethod(m) algorithm. It first
checks that m is closed. It then checks that none of the methods that m’s com-
putation may execute acquire and release different locks. It also checks to make
sure that none of these methods contain any concurrency generation constructs.
If m passes all of these tests, it is legal for the compiler to apply the computation
lock coarsening transformation.

global lockClass;
void ComputationLockCoarseningMethod(method m)
if(generatesConcurrency(m)) return;
if(m is closed)
¢ = receiverClass(m);
for all m’ € invokedMethods(m) do
if(lockClass[receiverClass(m)] # c) or (generatesConcurrency(m)) return;
if(CoarsenGranularity(m))
Make the generated parallel version of m invoke the synchronization-free
version of each method that it invokes. This synchronization-free version
contains no lock constructs and invokes the synchronization-free version
of all methods that it invokes. Also make the first statement of m
acquire its receiver’s lock and the last statement of m release the lock.

Fig. 5. Computation Lock Coarsening Algorithm

The remaining question is whether coarsening the granularity will generate
an excessive amount of false exclusion. The compiler currently uses one of three
policies to determine if it should apply the transformation:

— Original: Never apply the transformation — use the original granularity.

— Bounded: Increase the granularity only if the transformation will not cause
the computation to hold a lock for a statically unbounded number of method
executions. The compiler implements this policy by testing for cycles in the
call graph of the set of methods that may execute while the computation
holds the lock. It also checks to make sure that none of these methods contain
loops that invoke methods. The idea is to limit the potential severity of any
false exclusion by limiting the amount of time the computation holds any
given lock.

— Aggressive: Always increase the granularity if it is legal to do so.

This policy choice is encapsulated inside the CoarsenGranularity(m) algo-
rithm. If the algorithm determines that it should apply the transformation, the
compiler generates code for m that acquires the lock, invokes the synchronization-
free versions of all of the methods that it invokes, then releases the lock.

The computation lock coarsening algorithm can never introduce deadlock.
It simply replaces computations that acquire and release the same lock with
computations that acquire and release the lock only once. If the original version
does not deadlock, the transformed version can not deadlock.

7 Experimental Results

We have implemented the lock coarsening algorithms described in Sections 5 and
6 and integrated them into a prototype compiler that uses commutativity analy-
sis [9] as its primary analysis paradigm. In this section we present experimental
results that characterize the performance impact of using the lock coarsening
algorithms in a parallelizing compiler. We report performance results for two
automatically parallelized scientific applications: the Barnes-Hut hierarchical N-
body solver and the Water code [11].

7.1 Methodology

To evaluate the impact of the lock coarsening policy on the overall performance,
we implemented the three lock coarsening policies described in Section 6. We
then built three versions of the prototype compiler. The versions are identical
except that each uses a different lock coarsening policy. We then used the three
versions of the compiler to automatically parallelize the benchmark applications.
We obtained three automatically parallelized versions of each application — one
from each version of the compiler. The generated code for each application dif-
fers only in the lock coarsening policy used to reduce the lock overhead. 2 We
evaluated the performance of each version by running it on a 32-processor Stan-
ford DASH machine [6]. Because the prototype compiler is a source-to-source
translator, we use a standard C++ compiler to generate object code for the
automatically generated parallel programs.

2 The sequential source codes and automatically generated parallel codes can be found
at http://www.cs.ucsb.edu/~pedro/CA/apps/LockCoarsening.

7.2 Barnes-Hut

The Barnes-Hut application simulates the trajectories of a set of interacting
bodies under Newtonian forces [1]. It uses a sophisticated pointer-based data
structure: a space subdivision tree that dramatically improves the efficiency of a
key phase in the algorithm. The application consists of approximately 1500 lines
of serial C++ code. The compiler is able to automatically parallelize phases of
the application that together account for over 95% of the execution time.

Figure 6 presents the speedup curves for this application. The speedups are
calculated relative to the serial version of the code, which executes with no
lock or parallelization overhead. All versions scale well, which indicates that the
compiler was able to effectively parallelize the application. Although the abso-
lute performance varies with the lock coarsening policy, the performance of the
different parallel versions scales at approximately the same rate. This indicates
that the lock coarsening algorithms introduced no significant contention.

7.3 Water

Water uses a O(n?) algorithm to simulate a set of n water molecules in the liquid
state. The application consists of approximately 1850 lines of serial C++ code.
The compiler is able to automatically parallelize phases of the application that
together account for over 98% of the execution time.

Figure 7 presents the corresponding speedup curves. > The Original and
Bounded versions initially perform well (the speedup over the sequential C++
version at sixteen processors is approximately 5.2). But both versions fail to
scale beyond eight processors. The Aggressive version fails to scale well at all —
the maximum speedup for this version is only 2.0.

A further investigation into the source of the lack of scalability reveals that
the application suffers from high lock contention. For this application, the Bounded
policy yields the best results and the corresponding parallel code attains re-
spectable speedups. Although the Aggressive policy dramatically reduces the
number of executed locking operations, the introduced lock contention almost
completely serializes the execution.

8 Related Work

8.1 Automatically Parallelized Scientific Computations

Previous parallelizing compiler research in the area of synchronization optimiza-
tion has focused almost exclusively on synchronization optimizations for parallel
loops in scientific computations [8]. The natural implementation of a parallel

3 The speedup curves are given relative to the sequential C+4 version. We have also
obtained sequential C and sequential Fortran versions of this application. The run-
ning times for these versions on an input size of 343 molecules are: 65 seconds (For-
tran), 68 seconds (C) and 73 seconds (C++).

16— e Ideal . 16— oo Ideal

—e— Aggressive —a— Bounded
14 1+ N 144+ a
—&— Bounded —e— Origina)
121~ —e— Origind ' 121~ —e— Aggressive .-
g 101- o 101 '
]]
g st g st
& &
61— 61—
41 41—
T, 2T 4 * -
o =11 | | | | | od— 11 1 1 | 1 |
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Number of Processors Number of Processors

Fig. 6. Speedup for Barnes-Hut (16384 Fig.7. Speedup for Water (512
bodies) molecules)

loop requires two synchronization constructs: an initiation construct to start all
processors executing loop iterations, and a barrier construct at the end of the
loop. The majority of synchronization optimization research has concentrated on
removing barriers or converting barrier synchronization constructs to more effi-
cient synchronization constructs such as counters [10]. Several researchers have
also explored optimizations geared towards exploiting more fine grained concur-
rency available within loops [3]. These optimizations automatically insert one-
way synchronization constructs such as post and wait to implement loop-carried
data dependences.

The research presented in this paper investigates synchronization optimiza-
tions for a compiler designed to parallelize object-based programs, not loop nests
that manipulate dense arrays using affine access functions. The problem that our
compiler faces is the efficient implementation of atomic operations, not the effi-
cient implementation of data dependence constraints.

8.2 Database Concurrency Control

A goal of research in the area of database concurrency control is to develop
efficient locking algorithms for atomic transactions. This goal is similar to our
goal of efficiently implementing atomic operations in parallel programs. In fact,
database researchers have identified lock granularity as a key issue in the imple-
mentation of atomic transactions, and found that excessive lock overhead can
be a significant problem if the lock granularity is too fine [2, 4].

The proposed solution to the problem of excessive lock overhead in the con-
text of database concurrency control is to dynamically coarsen the lock granu-
larity using a technique called lock escalation. The idea is that the lock manager
(which is responsible for granting locks to transactions) may coarsen the lock
granularity by dynamically locking a large section of the database on behalf
of a given transaction. If the transaction requests a lock on any object in that

section, the lock manager simply checks that the transaction holds the coarser
granularity lock.

There are several key differences between the lock manager algorithm and the
lock coarsening algorithms presented in this paper. The lock manager algorithm
only attempts to increase the data lock granularity — there is no attempt to
increase the computation lock granularity. This paper presents algorithms that
coarsen both the data and the computation lock granularities.

Several other differences stem from the fact that the lock manager algorithm
takes place dynamically, which means that it can not change the program gener-
ating the lock requests. The programs therefore continue to execute lock acquire
and release constructs at the fine granularity of individual items in the database.
The goal of the lock manager algorithm is to make it possible to implement the
fine grain lock requests more efficiently in cases when the lock manager has
granted the transaction a coarse grain lock on a section of the database, not to
change the granularity of the lock requests themselves.

Because the transactions always generate lock requests at the granularity of
items in the database, the lock manager must deal with the possibility that a
transaction may attempt to lock an individual item even though it does not
hold a lock on the section of the database that includes the item. The locking
algorithm must therefore keep track of correspondence between different locks
that control access to the same objects. Tracking this correspondence complicates
the locking algorithm, which makes each individual lock acquire and release less
efficient in cases when the lock manager has not already granted the transaction
a coarse grain lock.

The lock coarsening algorithms presented in this paper, on the other hand,
transform the program so that it always generates lock requests at the coarser
granularity. The fine grain lock acquire and release operations are completely
eliminated and generate no overhead whatsoever. Furthermore, computations
that access the same object always execute acquire and release constructs on
the same lock. This property makes it possible for the implementation to use an
extremely efficient lock implementation. Modern processors have synchronization
instructions that make it possible to implement the required lock acquire and
release constructs efficiently [5].

8.3 Efficient Synchronization Algorithms

Other researchers have addressed the issue of synchronization overhead reduc-
tion. This work has concentrated on the development of more efficient imple-
mentations of synchronization primitives using various protocols and waiting
mechanisms [7]. The research presented in this paper is orthogonal to and syn-
ergistic with this work. Lock coarsening reduces the lock overhead by reducing
the frequency with which the generated parallel code acquires and releases locks,
and not by providing a more efficient implementation of the locking constructs.

9 Conclusions

This paper addresses a fundamental issue in the implementation of atomic op-
erations: the granularity at which the computation locks the data that atomic
operations access. We have found that using the natural lock granularity for
object-based programs (giving each object its own lock and having each opera-
tion lock the object that it accesses) may significantly degrade the performance.
We have presented algorithms that can effectively reduce the lock overhead by
automatically increasingly the granularity at which the computation locks data.
We have implemented these algorithms and integrated them into a parallelizing
compiler for object-based languages. We present experimental results that char-
acterize the performance impact of using the lock coarsening algorithms in this
context. These results show that the algorithms can effectively reduce the lock
overhead to negligible levels.

References

1. J. Barnes and P. Hut. A hierarchical O(NlogN) force-calculation algorithm. Na-
ture, pages 446-449, December 1976.

2. P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery
in Database Systems. Addison-Wesley, 1987.

3. R. Cytron. Doacross: Beyond vectorization for multiprocessors. In Proceedings of
the 1986 International Conference on Parallel Processing, St. Charles, IL, August
1986.

4. U. Herrmann, P. Dadam, K. Kuspert, E. Roman, and G Schlageter. A lock tech-
nique for disjoint and non-disjoint complex objects. In Proceedings of the Interna-
tional Conference on Extending Database Technology (EDBT’90), pages 219-235,
Venice, Italy, March 1990.

5. G. Kane and J. Heinrich. MIPS Risc Architecture. Prentice-Hall, 1992.

6. D. Lenoski. The Design and Analysis of DASH: A Scalable Directory-Based Mul-
tiprocessor. PhD thesis, Stanford, CA, February 1992.

7. B-H. Lim and A. Agarwal. Reactive synchronization algorithms for multiproces-
sors. In Proceedings of the Sixzth International Conference on Architectural Support
for Programming Languages and Operating Systems, San Jose, CA, October 1994.

8. S. Midkiff and D. Padua. Compiler algorithms for synchronization. IEEE Trans-
actions on Computers, 36(12):1485-1495, December 1987.

9. M. Rinard and P. Diniz. Commutativity analysis: A new analysis framework
for parallelizing compilers. In Proceedings of the SIGPLAN ’96 Conference on
Program Language Design and Implementation, Philadelphia, PA, May 1996.
(http://www.cs.ucsb.edu/~martin/pldi96.ps).

10. C. Tseng. Compiler optimizations for eliminating barrier synchronization. In Pro-
ceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 144-155, Santa Barbara, CA, July 1995.

11. S. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The SPLASH-2 programs:
Characterization and methodological considerations. In Proceedings of the 22th In-
ternational Symposium on Computer Architecture, Santa Margherita Ligure, Italy,
June 1995.

This article was processed using the IATEX macro package with LLNCS style

