
Automatic Detection and Repair of Errors in Data
Structures

Brian Demsky
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

Martin Rinard
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

ABSTRACT
We present a system that accepts a specification of key data
structure consistency constraints, then dynamically detects
and repairs violations of these constraints, enabling the pro-
gram to continue to execute productively even in the face
of otherwise crippling errors. Our experience using our sys-
tem indicates that the specifications are relatively easy to
develop once one understands the data structures. Further-
more, for our set of benchmark applications, our system can
effectively repair inconsistent data structures and enable the
program to continue to operate successfully.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software Verification;
D.2.5 [Software Engineering]: Testing and Debugging;
D.3.3 [Programming Languages]: Language Constructs
and Features

General Terms
Design, Languages,Reliability

Keywords
Data Structure Repair, Data Structure Invariants

1. INTRODUCTION
To correctly represent the information that a program ma-

nipulates, its data structures must satisfy key consistency
constraints. If a software error or some other anomaly
causes the data structures to become inconsistent, the ba-
sic assumptions under which the software was developed no

∗This research was supported in part by a fellowship from
the Fannie and John Hertz Foundation, DARPA Contract
F33615-00-C-1692, NSF Grant CCR00-86154, and NSF
Grant CCR00-63513.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’03,October 26–30, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-712-5/03/0010 ...$5.00.

longer hold. In this case, the software typically behaves in
an unpredictable manner and may even fail catastrophically.

This paper presents a new approach for attacking the
data structure consistency problem. Instead of attempting
to increase the reliability of the code that manipulates the
data structures, our system accepts a specification of key
data structure consistency constraints. It then dynamically
detects and repairs data structures that violate these con-
straints. Our goal is not necessarily to restore the data struc-
tures to the state in which a (hypothetical) correct program
would have left them (although in some cases our system
may do this). Our goal is instead to deliver repaired data
structures that satisfy the basic consistency assumptions of
the program, enabling the program to continue to operate
successfully within its designed operating envelope.

1.1 Intended Scope
This research places a high priority on continuing to exe-

cute the program even after concrete evidence that the ex-
ecution has sustained at least one error. We recognize that
this approach is clearly not appropriate for all computations
— in many cases, the best response is to simply stop the exe-
cution and await external intervention, or reboot the system
and restart from a clean state.

In some cases, however, continued execution is crucial.
Our society is starting to deploy increasing numbers of safety-
critical systems that interact directly with the physical world.
Moreover, many of these systems rely completely on the ac-
tive participation of the software for their continued safe
execution, even if the only goal of that execution is to bring
the system down safely so that it can be repaired. Embed-
ded software often controls physical systems that operate
for significant periods of time in active or unstable states. If
the software fails, the resulting uncontrolled operation can
cause catastrophic damage that seriously threatens human
lives and property. In this context, even a partially impaired
execution is far preferable to no execution at all.

Another broad class of systems monitors ongoing physical
or information processes and presents summarized results to
human users. The data structures in these systems typically
reflect a sliding window of observations and predictions cen-
tered around the current time. Most data structure prop-
erties are transient, sliding through the system as it con-
tinually rebuilds its data structures to reflect its ongoing
movement through time. In this context, any data struc-
ture anomalies will eventually be flushed out of the system
as long as it continues to operate. Automatic data struc-
ture repair is one mechanism that can enhance the ability
of these systems to execute through errors and eventually

move back to a completely correct execution. Another ra-
tionale for continuing to execute is that the data structure
corruption and repair may only affect a small part of the
data and generated results in the system, with the other
data and results still valid and useful as long as the pro-
gram continues to execute. This is the case in our air-traffic
control application.

Finally, many systems have persistent data structures (for
example, file systems, application data files, or serialized
data structures) whose inconsistencies persist across system
restarts. By restoring key consistency properties, automatic
data structure repair may enable tools or applications to
work with or extract information from partially corrupted
versions of these data structures.

1.2 Basic Technical Approach
Our approach involves two data structure views: a con-

crete view at the level of the bits in memory and an abstract
view at the level of relations between abstract objects. The
abstract view facilitates both the specification of higher level
data structure constraints (especially constraints involving
linked data structures) and the reasoning required to repair
any inconsistencies.

Each specification contains a set of model definition rules
and a set of consistency constraints. Given these rules and
constraints, our tool automatically generates algorithms that
build the model, inspect the model and the data structures
to find violations of the constraints, and repair any such
violations. The repair algorithm operates as follows:

• Inconsistency Detection: It evaluates the constraints
in the context of the current data structures to find
consistency violations.

• Disjunctive Normal Form: It converts each vio-
lated constraint into disjunctive normal form; i.e., a
disjunction of conjunctions of basic propositions. Each
basic proposition has a repair action that will make the
proposition true. For the constraint to hold, all of the
basic propositions in at least one of the conjunctions
must hold.

• Repair: The algorithm repeatedly selects a violated
constraint, chooses one of the conjunctions in that con-
straint’s normal form, then applies repair actions to
all of the basic propositions in that conjunction that
are false. A repair cost heuristic biases the system
toward choosing the repairs that perturb the existing
data structures the least.

Note that the repair actions for one constraint may cause an-
other constraint to become violated. To ensure that the re-
pair process terminates, we preanalyze the set of constraints
to ensure the absence of cyclic repair chains that might re-
sult in infinite repair loops. If a specification contains cyclic
repair chains, the tool attempts to prune conjunctions to
eliminate the cycles.

1.3 Invoking Check and Repair
Our implemented system supports several mechanisms for

invoking the consistency check and repair algorithm. One is-
sue is that many correct data structure updates temporarily
violate the consistency properties, then restore the proper-
ties as they complete. We must ensure that the check and
repair does not interfere with such correct updates.

Our first mechanism is to simply enable the programmer
to identify points in the program where he or she expects
the data structures to be consistent. At each such point, the
repair algorithm executes to find and repair any inconsis-
tencies. An alternate mechanism augments the program to
catch signals from faults such as divide by zero and segmen-
tation fault violations. Because such faults are often caused
by inconsistent data structures, the signal handler invokes
the check and repair algorithm, then resumes the execution
at the nearest consistency point. It is of course possible to
use both of these mechanisms in the same program.

For persistent data structures, we generate a stand-alone
version that reads in the data structure from persistent stor-
age, repairs any consistency violations, then writes the data
structure back out. This version can execute independently
of other applications that access the data structure, or it can
be integrated with these applications to perform the check
and repair immediately after a data structure is written out
or immediately before it is read back in.

1.4 Experience
We have used our tool to repair inconsistencies in four

applications: an air-traffic control system (this system is in
daily use in air-traffic control centers surrounding several
major metropolitan airports), a simplified Linux file sys-
tem, an interactive game, and Microsoft Word files. In this
context, we have applied the tool to correct out of bounds
array indices, repair bitmaps identifying free and allocated
disk blocks, correct reference counts, eliminate inappropri-
ate sharing in linked data structures, correct illegal values
stored in arrays, resolve inconsistencies in correlated values
stored in different data structures, and ensure the correct-
ness of recorded data structure sizes. Our tool is also able
to correct corrupted pointers in linked data structures, re-
pair incomplete data structures by allocating and linking in
new structures, repair back links (such as parent pointers
in trees) in linked data structures, and enforce inequality
constraints between multiple values.

We found that the specifications for our applications are
very small in comparison with the size of the application
and were relatively straightforward to develop once we un-
derstood the underlying data structures. We also found that
the automatically generated repair algorithms were able to
produce data structures that enabled the corresponding pro-
grams to continue to operate successfully. In the absence of
this repair, the programs usually failed. Our results there-
fore indicate that our technique may significantly enhance
the ability of applications to recover from data structure
errors.

1.5 Other Applications of Our Specifications
We have presented our approach as valuable because of its

ability to enable programs to recover and execute through
errors, even though the execution may not correspond di-
rectly to the execution of a fully correct program. However,
there are other advantages that developers may find useful.

First, developers may find the consistency checking func-
tionality of our tool useful in its own right as a debugging
aid to quickly find any inconsistencies generated by an incor-
rect program. For some deployed applications, the correct
behavior is not to attempt to repair data structure incon-
sistencies and continue to execute, but to instead terminate
or suspend as soon as an error is detected. Our consistency

11 5

 -1

Directory Entries FAT Table File Blocks

valid size firstname

abst 1 7 2

valid size firstname

intro 1 9 0

Figure 1: Inconsistent File System

1
 -1

Directory Entries FAT Table File Blocks

valid size firstname

abst 1 7 2

valid size firstname

intro 1 9 0 -1 -2

Figure 2: Repaired File System

checker can be used to implement this fail-stop behavior —
as soon as it detects a data structure inconsistency, it can
be configured to terminate or suspend the execution.

Second, our consistency checking and repair functional-
ity can be used to provide insight into the behavior of the
program. It can be configured to produce a trace of the in-
consistencies it found and repair actions it took to eliminate
the inconsistencies. The resulting logs may help developers
identify errors and help narrow down the source of the errors
in the program.

Finally, specifications of key data structure properties can
also be useful as documentation or as a precise means of
communicating the desired properties within or between teams
developing the software.

1.6 Contributions
This paper makes the following contributions:

• Specification-Based Approach: It introduces the
concept of using specifications for the automatic de-
tection and repair of inconsistent data structures. It
also introduces the concept of using an abstract model
of the data structures to facilitate specification devel-
opment and reasoning in the repair algorithm.

• Specification Language: It presents a new specifi-
cation language that enables the developer to express
key consistency properties of low-level, highly efficient
data structures in a clean, general way.

• Inconsistency Detection and Repair System: It
presents an implemented system and algorithms that,
given a specification, automatically detect and repair
violations of the specification.

• Experience: It presents our experience using our tool
for several applications. This experience indicates that
it is relatively straightforward to develop the consis-
tency conditions and that the use of our tool enhanced
the ability of the applications to continue to operate
in the face of errors.

The remainder of the paper is structured as follows. Sec-
tion 2 presents an example that we use to illustrate our ap-

proach. Section 3 presents the specification language used
to express the consistency constraints. Section 4 presents
the inconsistency detection and repair algorithms. Section 5
presents our experience using automatic data structure re-
pair in several benchmark applications. Section 6 discusses
related work; we conclude in Section 7.

2. EXAMPLE
We next present a simple file system example that illus-

trates how our technique works. The file system consists of
three parts: the directory, the file allocation table (FAT),
and an array of file blocks. Each file consists of a linked
chain of file blocks. The FAT is a fixed-size array of file
block indices that implements the linking structure; specif-
ically, if a block j is in the chain of blocks for a given file,
then FAT[j] is the index of the next block in the chain. The
FAT may also contain two special values: if FAT[j] = −1,
then block j is the last file block in its chain; if FAT[j] = −2,
then block j is not in any chain and is free for allocation.
The directory consists of a fixed number of entries. Each en-
try contains a file name, a flag indicating whether the entry
is active or not, a field indicating the size of the file, and the
index of the first block in the file’s chain of blocks. Figure 1
graphically presents an (inconsistent) file system with two
directory entries and four file blocks. The file system has
two files named abst and intro; abst has size 7 and starts
at file block 2; intro has size 9 and starts at file block 0.

Even a file system this simple has many consistency con-
straints. Our implemented system supports a full range of
constraints that involve all of the parts of the file system.
In this section, we focus on the following FAT constraints:

1. Chain Disjointness: Each block should be in at most
one chain.

2. Free Block Consistency: No chain should contain
a block marked as free in the FAT.

Note that these constraints are stated in terms of conceptual
entities such as chains of file blocks rather than directly in
terms of the concrete bits on the disk. To support the ex-
pression of these kinds of constraints at an appropriate level

set blocks of integer : partition used | free;
relation next: used -> used;

Figure 3: Object and Relation Declarations

blocks

used free

next

Figure 4: Graphical Representation of Object and
Relation Declarations

struct Entry {
byte name[Length];
byte valid;
int size;
int first;

}
struct Block { data byte[BlockSize]; }
struct Disk {

Entry table[NumEntries];
int FAT[NumBlocks];
Block block[NumBlocks];

}

Figure 5: Structure Declarations

Disk disk;

for i in 0..NumEntries, disk.table[i].valid &&
disk.table[i].first < NumBlocks =>
disk.table[i].first in used;

for b in used, 0 <= disk.FAT[b] &&
disk.FAT[b] < NumBlocks => disk.FAT[b] in used;

for b in used, 0 <= disk.FAT[b] &&
disk.FAT[b] < NumBlocks =>
<b,disk.FAT[b]> in next;

for b in 0..NumBlocks, !(b in used) => b in free;

Figure 6: Model Definition Declarations and Rules

of abstraction, we allow the developer to specify a transla-
tion from the concrete data structure representation into an
abstract model based on relations between abstract objects.
The developer can then use this model to state the desired
consistency constraints.

2.1 Model Construction
Figure 3 presents the object and relation declarations in

the model for our example. There are three sets of objects:
blocks, used, and free. Together, used and free partition
the set of block indices blocks, which is in turn a subset
of the set of integer objects. The next relation models
chains of used file blocks. Object modeling formalisms such
as UML [26] and Alloy [18] have a graphical representation
for such declarations; Figure 4 presents this representation
for our example. The box labeled blocks represents the
set of blocks, the box labeled used represents the set of
used blocks, and the box labeled free represents the set of
free blocks. The line with an empty arrowhead connecting
the used and free boxes to the blocks box indicates that,
together, used and free partition blocks. The next edge
represents the next relation on used blocks.

blocks

0

1

next

2 next

used

3
free

Figure 7: Inconsistent Model

blocks

0

1

next

2

used

3
free

Figure 8: Repaired Model

Figure 5 presents the structure declarations for the file
system. The Entry declaration identifies the format of each
directory entry. The name field contains the name of the
file, the valid field indicates whether the directory entry
corresponds to a valid file or not, the size field gives the
size of the file, and the first field is the index of the first
disk block (and the index of the first FAT table entry) for
the file. The Disk declaration identifies the disk as an array
of directory entries followed by the FAT array, and then
the file blocks. In our example, NumEntries, NumBlocks,
Length and BlockSize are all constants, but we support
more advanced declarations in which such quantities could
be stored in data structure fields.

Figure 6 presents the model definition rules. Each rule
consists of a quantifier that identifies the scope of the rule,
a guard whose predicate must be true for the rule to apply,
and an inclusion constraint that specifies either an object
that must be in a given set or a tuple that must be in a
given relation. Our tool processes these rules to produce an
algorithm that, starting from the directory entries, uses the
FAT table to trace out the next relation and compute the
sets of used and free blocks.

Note that the rules in Figure 6 use the variable disk to
refer to the disk image. For long-lived data structures con-
tained in disk images or files, such variables are offsets within
the disk image or file. These offsets are defined in a config-
uration file that we omit here for brevity. For in-memory
data structures, the rules use the program variables to refer
to the concrete data structures.

When we apply the model construction rules in Figure 6
to our example file system in Figure 1, we obtain the model
in Figure 7. This model has the following sets and relations:
used = {0, 1, 2}, free = {3}, and next = {〈0, 1〉, 〈2, 1〉}.
The figure uses a Venn diagram to present the assignment
of objects (in this case, 0,1,2, and 3) to sets; it uses arrows
to represent the next relation.

2.2 Consistency Constraints
Internal constraints are stated using the model exclusively

and not the concrete data structures. Figure 9 presents the
single internal constraint in our example. This constraint
states that each used block participates in at most one in-
coming next relation. Note that we use the notation next.b

to indicate b under the inverse of the next relation; i.e., the
set of all i such that 〈i, b〉 in next.

for b in used, size(next.b) <= 1;

Figure 9: Internal Consistency Constraint

In the model in Figure 7, file block 1 is in two chains —
both 〈0, 1〉 and 〈2, 1〉 are in the next relation. This incon-
sistency violates the constraint that size(next.1)<=1. To
repair this inconsistency, the repair algorithm will remove
one of the tuples in the next relation. Figure 8 presents the
repaired model — the repair algorithm has chosen to remove
〈2, 1〉 from the next relation.

External constraints may reference both the model and
the concrete data structures. Figure 10 presents the external
constraints in our example. These constraints capture the
requirements that the sets and relations in the model place
on the values in the concrete data structures. Our tool uses
these constraints to translate the model repairs back into
the concrete data structures. The constraints may also deal
with basic representation constraints such as, in our exam-
ple, the requirement that FAT entries either be -1, -2, or
contain a valid file block index. Repairs that enforce these
constraints may therefore clean up corrupted values in the
data structures.

for b in free, disk.FAT[b] = -2;
for <i,j> in next, disk.FAT[i] = j;
for b in used, size(b.next) = 0 => disk.FAT[b] = -1;

Figure 10: External Consistency Constraints

2.3 Repaired File System
Figure 2 presents the repaired file system from Figure 1.

Note that because our example focuses on consistency con-
straints involving the linking structure implemented in the
FAT table, all of the modifications are confined to this ta-
ble. This repair has eliminated the sharing of file block 1
and truncated the abst file at disk block 2. 1 The repair
shows up in the file system as a change in the FAT entry for
block 2 from 1 to -1. The repair algorithm has also cleaned
up some corrupted values in the FAT table; specifically, it
has changed the FAT entry for block 1 from 5 to -1 (indicat-
ing that block 1 is the last block in its file block chain) and
changed the FAT entry for block 3 from -1 to -2 (indicating
that block 3 is free).

3. SPECIFICATION LANGUAGE
Our specification language consists of several sublanguages:

a structure definition language, a model definition language,
and the languages for internal and external constraints.

1This truncation may leave the size of the file longer than
one block. Some (but not all) file systems assume that the
size must reflect the number of blocks in the file. If required,
it is possible to augment our specification to appropriately
constrain the size of the file.

3.1 Structure Definition Language
The structure definition language allows the developer to

declare the layout of the data structures in memory. Fig-
ure 11 presents the grammar for this language. It allows
the developer to declare fields of a structure that are 8, 16,
and 32 bit integers; structures; pointers to structures; ar-
rays of integers, packed booleans, structures, and pointers
to structures. The array bounds can be either constants
or expressions over program variables. The developer can
declare that region of memory in a structure is reserved, in-
dicating that it is unused. Finally, the structure definition
language supports a form of structure inheritance. A sub-
structure must have the same size and contain all of the same
fields as the superstructure, but it may define new fields in
areas that are unused in the superstructure.

structdefn := struct structurename

(subtypes structurename) {fielddefn∗}
fielddefn := type field; | reserved type; |

type field[E]; |
reserved type[E];

type := boolean | byte | short | int | structurename |
structurename ∗

E := V | number | string | E.field |
E.field[E] | E − E | E + E | E/E | E ∗ E

Figure 11: Structure Definition Language

The structure definition language is similar to that of C.
However, it supports wider range of primitive data types,
provides a form of structure inheritance, and allows the de-
veloper to define inline, variable-length arrays. These exten-
sions enable the developer to precisely specify the format of
the elements in many heavily encoded data structures.

3.2 Model Definition Language
The model definition language allows the developer to

declare the sets and relations in the model and to spec-
ify the rules that define the model. A set declaration of
the form set S of T: partition S1, ...,Sn declares a set S

that contains objects of type T, where T is either a primi-
tive type (with the range optionally constrained to be be-
tween two given values) or a struct type declared in the
structure definition part of the specification. The set S has
n subsets S1, ..., Sn which together partition S. Changing
the partition keyword to subsets removes the requirement
that the subsets S1, ..., Sn partition S but otherwise leaves the
meaning of the declaration unchanged. A relation declara-
tion of the form relation R: S1− >S2 specifies a relation
between the objects in the sets S1 and S2.

The model definition rules define a translation from the
concrete data structures into an abstract model. Each rule
has a quantifier that identifies the scope of the rule, a guard
whose predicate must be true for the rule to apply, and an
inclusion constraint that specifies either an object that must
be in a given set or a tuple that must be in a given relation.
Figure 12 presents the grammar for the model definition
language.

Figure 13 gives the denotational semantics R[C] h l m of
a single rule C. A model m is a mapping from set names
and relation names to the corresponding sets of objects or

C := Q, C | G ⇒ I

Q := for V in S | for 〈V, V〉 in R |
for V = E .. E

G := G and G | G or G |!G | E = E | E < E | true |
(G) | E in S | 〈E, E〉 in R

I := E in S | 〈E, E〉 in R

E := V | number | string | E.field |
E.field[E] | E − E | E + E | E/E | E ∗ E

Figure 12: Model Definition Language

hv ∈ HeapV alue = Bit ∪Byte ∪ Short ∪ Integer ∪ Struct

h ∈ Heap = P(Object× Field×HeapV alue ∪
Object× Field× N×HeapV alue)

v ∈ V alue = Z ∪Boolean ∪ string ∪ Struct

l ∈ Local = V ar ⇀ V alue

s ∈ Store = V alue× V alue ∪ V alue

m ∈ Model = P(V ar × Store)

R : C → Heap → Local → Model → Model

E : E → Heap → Local → Model → V alue

G : G → Heap → Local → Model → Boolean

I : I → Heap → Local → Model → Model

R[for V in S, C] h l m =
⋃

v∈m(S)R[C] h l[V 7→ v] m

R[for 〈V1, V2〉 in R, C] h l m =
⋃
〈v1,v2〉∈m(R)

R[C] h l[V1 7→ v1][V2 7→ v2] m
R[for V = E1 .. E2, C] h l m =⋃E[E2] h l m

i=E[E1] h l m
R[C] h l[V 7→ i] m

R[G ⇒ I] h l m = if (G[G] h l m) then (I[I] h l m) else m
G[G1 and G2] h l m = (G[G1] h l m) ∧ (G[G2] h l m)
G[G1 or G2] h l m = (G[G1] h l m) ∨ (G[G2] h l m)
G[!G] h l m = ¬(G[G] h l m)
G[E1 = E2] h l m = (E[E1] h l m) == (E[E2] h l m)
G[E1 < E2] h l m = (E[E1] h l m) < (E[E2] h l m)
G[true] h l m = true
G[E in S] h l m = 〈S, E[E] h l m〉 ∈ m
G[〈E1, E2〉 in R] h l m = 〈R, 〈E[E1] h l m, E[E2] h l m〉〉 ∈ m
I[E in S] h l m = m ∪ 〈S, E[E] h l m〉
I[〈E1, E2〉 in R] h l m = m ∪ 〈R, 〈E[E1] h l m, E[E2] h l m〉〉
E[V] h l m = l(V)
E[number] h l m = number
E[E.field] h l m = b such that 〈(E[E] h l m), field, b〉 ∈ h
E[E1.field[E2]] h l m =

c such that 〈(E[E1] h l m), field, (E[E2] h l m), c〉 ∈ h
E[E1 ⊕ E2] h l m = primop(⊕, (E[E1] h l m), (E[E2] h l m))
E[string] h l m = string

Figure 13: Denotational Semantics for Model Defi-
nition Language

relations between objects. We define m(s) to be the set
{〈v, s〉 | 〈v, s〉 ∈ m}. This mapping is represented using a
set of tuples. The set h models the heap in the running
program using a set of tuples representing the references
in the heap. The set h contains tuples that represent a
mapping of each legal pairing of object and field; or object,
field, and integer index to exactly one HeapV alue. Given
a set of concrete data structures h, a naming environment
l that maps variables to data structures or values, and a
current model m, R[C] h l m is the new model after applying
the rule to m in the context of h and l. Note that l provides
the values of both the program variables that the rules use
to reference the concrete data structures and the variables
bound in the quantifiers.

Each model definition contains a set of model definition
rules C1, ..., Cn. Given a model containing these rules, a set
of concrete data structures h, and a naming environment l
for the program variables , the model is the least fixed point
of the functional λm.(R[C1] h l) . . . (R[Cn] h l m). The
presence of negation in the model definition language com-
plicates the computation of this fixed point. For example,
negation makes it possible for a rule to specify that an object
is in a given set only if another object is not in another set.
We address this complication by requiring the set of model
definition rules to have no cycles that go through rules with
negated inclusion constraints in their guards.

We formalize this constraint using the concept of a rule
dependence graph. There is one node in this graph for each
rule in the set of model definition rules. There is a directed
edge between two rules if the inclusion constraint from the
first rule has a set or relation used in the quantifiers or guard
of the second rule. If the graph contains a cycle involving
a rule with a negated inclusion constraint, the set of model
definition rules is not well founded and we reject it. Given
a well-founded set of constraints, our model construction
algorithm performs one fixed point computation for each
strongly connected component in the rule dependence graph,
with the computations executed in an order compatible with
the dependences between the corresponding groups of rules.

3.3 Pointers
Depending on the declared type in the corresponding struc-

ture declaration, an expression of the form E.f in a model
definition rule may be a primitive value (in which case E.f
denotes the value), a nested struct contained within E (in
which case E.f denotes a reference to the nested struct),
or a pointer (in which case E.f denotes a reference to the
struct to which the pointer refers). So for example, one
would express the standard doubly linked list constraint
(that following the next pointer then the prev pointer leaves
one back at the original list node) as [forall V1 in S1],
[forall V2 in S2], V1.next = V2 ⇒ V2.prev = V1. It is
of course possible for the data structures to contain invalid
pointers. We next describe how we extend the model con-
struction algorithm to deal with invalid pointers.

First, we instrument the memory management system
to produce a trace of operations that allocate and deallo-
cate memory (examples include malloc, free, mmap, and
munmap). We augment this trace with information about
the call stack and segments containing statically allocated
data, then construct a map that identifies valid and invalid
regions of the address space.

We next extend the model construction software to check
that each struct accessed via a pointer is valid before it
inserts the struct into a set or a relation. All valid structs
reside completely in allocated memory. In addition, if two
structs overlap, one must be completely contained within
the other and the declarations of both structs must agree
on the format of the overlapping memory. This approach
ensures that only valid structs appear in the model.

A final complication is that expressions of the form E.f.g
may appear in guards. If E.f is not valid, E.f.g is considered
to be undefined. Expressions involving undefined values also
have undefined values. Comparison (E1 < E2, E1 = E2)
and set inclusion (E in S, 〈E1, E2〉 in R) predicates involv-
ing undefined values have the special value maybe. We use
three-valued logic to evaluate guards involving maybe.

Our model construction algorithm is coded with explicit
pointer checks so that it can traverse arbitrarily corrupted
data structures without generating any illegal accesses. It
also uses a standard fixed point approach to avoid becoming
involved in an infinite data structure traversal loop.

3.4 Internal Constraints
Figure 14 presents the grammar for the internal constraint

language. Each constraint consists of a sequence of quanti-
fiers Q1, ..., Qn followed by body B. The body uses logical
connectives (and, or, not) to combine basic propositions P.

Figure 15 provides the denotational semantics for this lan-
guage. Given a constraint C and a model m, EV[C] ∅ m is
true if the constraint is satisfied in m and false otherwise.
The primary complication in the semantics has to do with
arithmetic and logical expressions involving relations. Con-
sider, for example, an expression of the form V1.R1 +V2.R2.
Strictly speaking, V1.R1 is the set of objects in the image of
V1 under R1, not a single value. Our intention is that devel-
opers use these expressions only when the relational image
contains a single value. Our primitive arithmetic and logical
operations are designed to take as input two singleton sets
and produce the appropriate singleton set as output. When
given a non-singleton set as input, the primitives produce
the undefined value. We treat undefined values in this se-
mantics the same way as we do in Section 3.3: we appropri-
ately extend arithmetic operations to work with undefined
values and logical operations to work with maybe according
to the laws of three-valued logic.

We intend developers to use the internal constraint lan-
guage to express the key consistency constraints. This lan-
guage is oriented toward expressing local consistency prop-
erties rooted at objects within specific sets. It can therefore
be difficult to specify global constraints involving large col-
lections of objects.

It is possible to express ownership properties,2 but ex-
pressing these properties requires the construction of aux-
iliary relations during the model construction phase. The
acyclicity check in our current algorithm (see Section 4.2.5)
currently rules out these kinds of specifications.

2Ownership properties capture encapsulation relationships
between groups of objects [8, 2]. Conceptually, an ownership
property might capture the requirement that all paths in the
heap that lead to a given set of objects must go through an
object that is the conceptual owner of all of the objects in
the set.

C := Q, C | B

Q := for V in S | for V = E .. E

B := B and B | B or B |!B | (B) |
V E = E | V E < E | V E <= E | V E > E |
V E >= E | V in SE | size(SE) = C |
size(SE) >= C | size(SE) <= C

V E := V.R

E := V | number | string | E + E | E − E | E/E |
E ∗ E | E.R | size(SE) | (E)

SE := S | V.R | R.V

Figure 14: Internal Constraint Language

v ∈ V alue = Number ∪Boolean ∪ string ∪Object

l ∈ Local = P(V ar × V alue)

m ∈ Model = P(V ar × Store)

s ∈ Store = V alue× V alue ∪ V alue

EV : C → Local → Model → Boolean

E : E → Local → Model → V alue

C : B → Local → Model → Boolean

V : V E → Local → Model → V alue

SE : SE → Local → Model → P(V alue)

EV[for V in S, C] l m =∧
v∈m(S) EV[C] l[V 7→ v] m

EV[for V = E1..E2, C] l m =∧E[E2]lm
v=E[E1]lm

EV[C] l[V 7→ v] m

EV[B] l m = C[B] l m
C[!B] l m = ¬C[B] l m
C[B1 and B2] l m = C[B1] l m ∧ C[B2] l m
C[B1 or B2] l m = C[B1] l m ∨ C[B2] l m
C[V in SE] l m = l(V) ∈ SE[SE] l m
C[V E = E] l m = (V[V E] l m == E[E] l m)
C[V E < E] l m = (V[V E] l m < E[E] l m)
C[V E <= E] l m = (V[V E] l m ≤ E[E] l m)
C[V E > E] l m = (V[V E] l m > E[E] l m)
C[V E >= E] l m = (V[V E] l m ≥ E[E] l m)
C[size(SE) = C] l m = E[size(SE)] l m == C
C[size(SE) >= C] l m = E[size(SE)] l m ≥ C
C[size(SE) <= C] l m = E[size(SE)] l m ≤ C
V[V.R] l m = y such that 〈l(V), y〉 ∈ m(R)
E[size(SE)] l m =| SE[SE] l m |
E[V] l m = l(V)
E[E.R] l m = y such that ∃z, z ∈ E[E] l m ∧ 〈z, y〉 ∈ m(R)
E[E1 ⊕ E2] l m = primop(⊕, E[E1] l m, E[E2] l m)
SE[S] l m = {s | s ∈ m(S)}
SE[V.R] l m = {y | 〈l(V), y〉 ∈ m(R)}
SE[R.V] l m = {y | 〈y, l(V)〉 ∈ m(R)}

Figure 15: Denotational Semantics for Internal Con-
straint Language

3.5 External Constraint Language
Figure 16 presents the grammar for the external constraint

language. Each constraint has a quantifier that identifies the
scope of the rule, a guard G that must be true for the con-
straint to apply, and a condition C that specifies either a
program variable, a field in a structure, or an array element
that must have a given value. Figure 17 provides the deno-
tational semantics for this language. Given a constraint R, a
heap h, a naming environment l, and a model m, R[R] h l m
is true if the constraint is satisfied for h, l, and m.

4. ERROR DETECTION AND REPAIR
The repair algorithm updates the model and the concrete

data structures so that all of the internal and external con-
straints are satisfied. The repair is organized around a set of
repair actions that update the model and/or the data struc-
tures to coerce propositions to be true. The algorithm has
two phases: during the internal phase, it updates the model
so that it satisfies all of the internal constraints. During the
external phase, it updates the data structures to satisfy all
of the external constraints.

4.1 Error Detection in Internal Phase
The algorithm detects violations of the internal constraints

by evaluating the constraints in the context of the model.
This evaluation iterates over all values of the quantified vari-
ables, evaluating the body of the constraint for each possible
combination of the values. If the body evaluates to false, the
algorithm has detected a violation and has computed a set
of bindings for the quantified variables that make the con-
straint false.

4.2 Error Repair in Internal Phase
The repair algorithm is given a body and variable bind-

ings that falsify the body. The goal is to change the model
to make the body true. The algorithm first converts the
body to disjunctive normal form, so that it consists of a dis-
junction of conjunctions of basic propositions. Each basic
proposition has a repair action that the algorithm can use
to modify the model so that the proposition becomes true.
The repair algorithm chooses one of the conjunctions and
applies repair actions to its basic propositions until the con-
junction becomes true and the constraint is satisfied for that
set of variable bindings.

There are three kinds of basic propositions in the internal
constraint language: size propositions, inequality proposi-
tions, and inclusion propositions. Each proposition can oc-
cur with or without negation; the actions repair the propo-
sitions as follows:

4.2.1 Size Propositions
Size propositions are of the form size(S) = C, !size(S) =

C, size(S) >= C, or size(S) <= C where C is an integer
constant and S can be one of the sets in the model or a
relation expression of the form R.v or v.R.

If S is a set in the model, the repair action simply adds
or removes items to satisfy the constraint. The action en-
sures that these changes respect any partition constraints
between sets in the model. Note that this basic approach
also works for negated size propositions. If S is a relation
expression, the repair action adds or removes tuples from
the relation to satisfy the constraint.

R := Q, R | G ⇒ C

Q := for V in S | for 〈V, V〉 in R | for V = E .. E

G := G and G | G or G |!G | E = E | E < E | true
C := HE.field = E | HE.field[E] = E | V = E

HE := V | HE.field | HE.field[E]

E := V | number | string | E.R | E − E | E + E |
E ∗ E | E/E | size(SE) | element E of SE

SE := S | V.R | R.V

Figure 16: External Constraint Language

hv ∈ HeapV alue = Bit ∪Byte ∪ Short ∪ Integer ∪ Struct

h ∈ Heap = P(Object× Field×HeapV alue ∪
Object× Field× N×HeapV alue)

v ∈ V alue = Z ∪Boolean ∪ string ∪ Struct

l ∈ Local = V ar ⇀ V alue

s ∈ Store = V alue× V alue ∪ V alue

m ∈ Model = (P)(V ar × Store)

R : R → Heap → Local → Model → Boolean

E : E → Heap → Local → Model → V alue

HE : HE → Heap → Local → Model → Object

G : G → Heap → Local → Model → Boolean

C : C → Heap → Local → Model → Boolean

SE : SE → Local → Model → V alue

R[for V in S, R]h l m =
∧

v∈m(S)R[R]hl[V 7→ v]m

R[for 〈V1, V2〉 in R, R] h l m =
∧
〈v1,v2〉∈m(R)

R[R] h l[V1 7→ v1][V2 7→ v2] m

R[for V = E1 .. E2, R] h l m =
∧E[E2] h l m

v=E[E1] h l m

R[R] h l[V 7→ v] m
R[G ⇒ C] h l m = (¬G[G] h l m) ∨ C[C] h l m)
G[G1 and G2] h l m = (G[G1] h l m) ∧ (G[G2] h l m)
G[G1 or G2] h l m = (G[G1] h l m) ∨ (G[G2] h l m)
G[!G1] h l m = ¬(G[G1] h l m)
G[E1 = E2] h l m = (E[E1] h l m) == (E[E2] h l m)
G[E1 < E2] h l m = (E[E1] h l m) < (E[E2] h l m)
G[true] h l m = true
C[HE.field = E] h l m = 〈HE[HE] h l m, field, E[E] h l m〉 ∈ h
C[HE.field[E1] = E2] h l m =
〈HE[HE] h l m, field, E[E1] h l m, E[E2] h l m〉 ∈ h

C[V = E] h l m = (l(V) == E[E] hl m)
HE[V] h l m = l(V)
HE[HE.field] h l m = b such that 〈HE[HE] h l m, field, b〉 ∈ h
HE[HE.field[E]] h l m =

b such that 〈HE[HE] h l m, field, E[E] h l m, b〉 ∈ h
E[V] h l m = l(V)
E[number] h l m = number
E[V.R] h l m = b such that 〈V, b〉 ∈ m(R)
E[E1 ⊕ E2] h l m = primop(⊕, (E[E1] h l m), (E[E2] h l m))
E[string] h l m = string
E[size(SE)] h l m =| SE[SE] l m |
E[element E of SE] h l m =given some ordering of SE[SE] l m,

pick element number E[E] h l m
SE[S] l m = {s | s ∈ m(S)}
SE[V.R] l m = {y | 〈l(V), y〉 ∈ R}
SE[R.V] l m = {y | 〈y, l(V)〉 ∈ R}

Figure 17: Denotational Semantics for External
Constraint Language

In general, the repair action may need a source of new
items to add to sets to bring them up to the specified size.
Any supersets of the set (as specified using the model defi-
nition language from Section 3.2) are one potential source.
For structs, memory allocation primitives are another po-
tential source. For primitive types, the action can simply
synthesize new values. We allow the developer to specify
which source to use and, in the absence of such guidance,
use heuristics to choose a default source.

Note that the repair may fail if the system is unable to
allocate a new struct (typically because it is out of memory)
or find a new value within the specified range. Note also
that the model definition language allows the developer to
specify partition and subset inclusion constraints between
the different sets in the model. When our implementation
changes items in one set, it appropriately updates other sets
to ensure that the model continues to satisfy these partition
and subset inclusion constraints.

If S is a relation expression of the form R.v or v.R, the
repair action simply adds or removes tuples to satisfy the
constraint. Note that because the items in the tuples must
be part of the corresponding domain and range of the re-
lation, a repair action that adds tuples to the relation may
also need to add items to the domain or range sets of the
relation. Repair actions that add tuples to relations there-
fore face the same issues associated with finding new items
as the repair actions that add items to sets.

4.2.2 Inequality Propositions
Inequality propositions are of the form V.R = E, !V.R =

E, V.R < E, V.R <= E, V.R > E, or V.R >= E. The
repair actions calculate the value of E, then update V.R to
be the closest value that satisfies the proposition.

4.2.3 Inclusion Propositions
Inclusion propositions are of the form V in SE where SE

is a set in the model or a relation expression. The repair
actions simply add or remove the value referenced by the
label V to the set or the appropriate pair to the relation.
This is done in a manner to satisfy the partition and subset
requirements of the model definition.

4.2.4 Choosing The Conjunction to Repair
When faced with a choice of false conjunctions to repair,

the algorithm uses a cost function to choose which to repair.
This cost function assigns a cost to each repair action; the
cost of repairing a conjunction is simply the sum of the repair
costs for all of its unsatisfied basic propositions. This ap-
proach is designed to minimize the number of changes made
to repair the model. We have also tuned the repair costs to
discourage the removal of objects from sets and tuples from
relations. The idea is to preserve as much information from
the original data structures as possible.

4.2.5 Termination
The repair action for one basic proposition may falsify

another basic proposition. This raises the possibility that
the repair algorithm may not terminate because of a cyclic
repair chain. Conceptually, we eliminate this possibility by
preanalyzing the specification to check that it can never gen-
erate any such cyclic chain.

The acyclicity checking algorithm first converts the body
of each constraint into disjunctive normal form. It then con-

structs a constraint dependence graph. There is one node in
the graph for each constraint and one node for each con-
junction in the disjunctive normal form of each constraint.
The graph contains the following edges:

• Constraint to Conjunctions: There is a directed
edge from each constraint to each of its conjunctions.

• Interference: There is an edge from a conjunction to
a constraint if applying an action to satisfy one of the
basic propositions in the conjunction may falsify one
of the basic propositions in one of the conjunctions of
the constraint.

The foundation of this construction is a procedure
that determines if one basic proposition may inter-
fere with another, i.e., if repairing the first proposi-
tion may falsify the second. The interference checking
algorithm first checks if the two propositions involve
disjoint parts of the model; if so, they do not interfere.
If the two propositions may involve the same objects
and/or relations, it reasons about the specific repair
action and the second proposition. If the repair ac-
tion is guaranteed to leave the model in a state that
satisfies the second proposition, there is no interfer-
ence. This is true if the first proposition implies the
second. It may also be true even in some cases when
the second proposition implies the first. For example,
the two constraints size(S) >= C and size(S) = C
do not interfere — the repair action for size(S) >= C
makes size(S) = C.

Given this definition of interference, there is an edge
from a conjunction to a constraint if one of the basic
propositions from the conjunction interferes with one
of the basic propositions from the constraint.

• Quantifier Scope: There is an edge from a conjunc-
tion to a constraint if repairing one of the basic propo-
sitions in the conjunction may add an object to a set
or a tuple to a relation, and this addition may increase
the scope of the quantifier in the constraint.

If the constraint dependence graph is acyclic, it is clear that
the repair algorithm will terminate — once the first (in the
topological sort order) violated constraint is repaired, it will
never be falsified by the repair of any other constraint. Once
the first has been repaired, the next constraint(s), once re-
paired, will never be falsified, and so forth.

The termination checking algorithm first checks to see
if the constraint dependence graph is acyclic. If it is not
acyclic, it prunes conjunctions from this graph in an at-
tempt to make the graph acyclic. Note that it must leave at
least one conjunction in the graph for each constraint. Once
a conjunction is removed from the graph, it is marked as
forbidden to ensure that the repair algorithm never chooses
to repair an inconsistency by satisfying that conjunction.

In general, it may not be possible to produce an acyclic
constraint dependence graph, in which case the termination
checking algorithm rejects the specification. In practice, this
does not seem to be a concern — the constraint dependence
graphs for our benchmark applications are acyclic even with-
out conjunction removal.

4.2.6 Relations in Expressions
It is possible for the specification to use a relation R in

a context that requires the image of any item under the
relation to be a singleton set. Examples of such contexts
include arithmetic expressions of the form E1.R1 + E1.R2

and multiple relation dereferences of the form E.R1.R2. If
the specification includes such singleton contexts, we require
that the specification constrain the image of the relation to
always have size 1.3 Before evaluating any constraint that
uses the relation in a singleton context, the repair algorithm
first processes the constraints that force the image of all
items in the domain of the relation to be a singleton.

4.2.7 Error Detection and Repair in External Phase
The algorithm detects violations of the external constraints

by simply evaluating the constraints. If a constraint is not
satisfied, the algorithm has computed a set of quantifier vari-
able bindings that falsify the constraint. i.e., that identify
a value in the data structure that should be the same as
a value computed using the model. In this case the repair
algorithm simply assigns the data structure value to be the
same as the model value.

The only potential complication is that different constraints
may impose two different values on the same data structure
value. We currently rely on the developer to provide specifi-
cations with at most one constraint for each data structure
value. It is possible to develop algorithms that automati-
cally check that specifications have this property.

4.3 Developer Control of Repairs
The repair algorithm often has multiple options for how to

satisfy a given constraint; these options may translate into
different repaired data structures. We recognize that some
repair actions may produce more desirable data structures
than other repair actions, and that the developer may wish
to influence the repair process. We have therefore provided
the developer with several mechanisms that he or she can
use to control how the repair algorithm chooses to repair an
inconsistent data structure.

4.3.1 Repair Costs
The first mechanism is based on a repair cost associated

with each basic proposition. At each step, the repair al-
gorithm must choose one of several violated constraints to
repair. Each constraint has a set of conjunctions; repairing
any of these conjunctions will ensure that the constraint is
satisfied. The repair of each conjunction, in turn, requires
the execution of a repair action for each of its violated ba-
sic propositions. The repair algorithm sums the costs for
each of the repair actions, then chooses the constraint and
conjunction with the least repair cost.

We allow the developer to specify the repair cost for each
basic proposition. Developers may use this mechanism to,
for example, bias the repair process toward preserving as
much of the information present in the original inconsistent
data structure as possible. One way to accomplish this goal
is to assign higher costs to actions that remove objects from
sets and pairs from relations and lower costs to actions that
insert objects and pairs. The developer may also choose to
assign lower costs to repair actions that change object fields

3It is also possible to automatically augment the specifica-
tion with these constraints.

or set flags and higher costs to repair actions that change
the referencing relationships.

We have isolated the choice of which violated constraint
to repair inside a separate procedure in our implementation.
It is straightforward to allow the developer to provide us
with a partial implementation of this procedure — each time
there is a choice to be made, our system would invoke the
developer’s implementation, which would return a subset of
the choices that it found acceptable. Our system would then
use the repair costs to choose the least costly alternative
from within that subset. In principle, this mechanism gives
the developer complete control over the choice should he or
she choose to exert this control. It would even be possible to
extend the system to enable the developer to specify that,
in the current state of the computation, there is no need to
repair a given violated constraint.

4.3.2 Set Membership Changes
Some repair actions involve adding an object to a set. To

execute such an action, the system must obtain a source
for the object. The two standard sources are a memory
allocator and another set of objects. The default choice is
to use a memory allocator for structures and another set of
objects for basic types such as integers and booleans. For
each set in the model, we allow the developer to specify the
source of objects for that set. We also allow the developer
to similarly control the source of pairs added to relations.

Note that our specifications also allow partition constraints,
which specify that a collection of subsets must partition an-
other set. Membership changes in one of the sets often entail
membership changes in some other sets. For example, when
a repair action adds a new object to the partitioned set, it
must also add that object to one of the subsets that parti-
tion the original set. In such cases, we allow the developer
to control which sets objects are added to or removed from
to satisfy the partition constraints.

4.3.3 Hand-Coded Repair Routines
In some cases, the developer may wish to completely con-

trol the repair process. It is straightforward to extend our
implementation so that, for each constraint, the developer
can specify a hand-coded repair procedure to invoke when
the constraint is violated. When the hand-coded repair ter-
minates, the system would verify that the constraint is sat-
isfied, then (once again under developer control) optionally
invoke its own standard repair algorithm if the hand-coded
repair failed to satisfy the constraint.

4.3.4 Critical Constraints
In some cases, the developer may wish to identify critical

constraints, or constraints that are so crucial to the con-
tinued successful execution of the program that if they are
violated, the best strategy is to simply terminate or suspend
the execution and await external intervention. We allow the
developer to flag such constraints in the specification. If
the consistency checker finds that a critical constraint is vi-
olated, it suspends the program. It is straightforward to
generalize this technique to allow the developer to specify
an arbitrary sequence of actions to be executed when a crit-
ical constraint is violated. This mechanism would allow the
developer to specify a “safe exit strategy” designed to bring
the system safely down to a quiescent state.

4.4 Limitations
The goal of the repair algorithm is to deliver a model

that satisfies the internal constraints and a combination of
model and data structures that together satisfy the external
constraints. We next summarize the situations in which the
algorithm may fail to realize this goal.

The internal constraint repair algorithm will fail only be-
cause of resource limitations — i.e., if it is unable to find
an item or tuple to add to a set or relation, either because
it is unable to allocate a new struct or because there are
no more distinct items in the set that it is using as a source
of new items. The external constraint repair algorithm will
fail only if the external constraints specify different values
for the same data structure value — in this case, the al-
gorithm will produce a data structure with only one of the
values.

4.4.1 Static Cyclicity Checks
The static cyclicity checks described in Sections 4.2.5 and

3.2 rule out many potential failure modes, in particular, they
eliminate the possibility of unsatisfiable specifications. They
also prevent the expression of several classes of constraints.
As discussed in Section 3.4, they rule out constraints involv-
ing ownership properties. They also rule out collections of
constraints whose repair actions involve both insertions and
removals from the same set or relation. Consider, for ex-
ample, a specification that requires 1) every node in a list
to refer to a non-null element and 2) every such element
to have at most one incoming reference from such a node.
Assume also that the repair action for the first constraint
chooses an arbitrary element and makes the empty list node
refer to that element, while the repair action for the second
constraint simply removes excess incoming references. With
these repair actions, the constraint dependence graph con-
tains a cycle and the static cyclicity checks would reject the
specification.

One way to extend the approach to handle such con-
straints is to synthesize coarser granularity repair actions
that do not cause cascading constraint violations. In the
example above, it is possible to eliminate extra incoming ref-
erences to list elements from list nodes by choosing a node
where such a reference originates, allocating a new element,
then redirecting the node to refer to the new element. This
repair action removes excess incoming references without
causing a node to fail to refer to some element. It there-
fore eliminates the interference between the two constraints,
removing the cyclicity in the constraint dependence graph.

4.4.2 External Constraints
As currently formulated, it is the responsibility of the de-

veloper to ensure that the external consistency constraints
correctly translate the model repairs back into the concrete
data structures. If the developer does not define the exter-
nal consistency constraints correctly, the repair algorithm
may fail to leave the data structures in a consistent state.
In particular, the reapplication of the model definition rules
to the repaired state may fail to produce a consistent model.

It is possible to eliminate the external consistency con-
straints by applying goal-directed reasoning to the model
definition rules to automatically translate the model repairs
back into data structure repairs. This extension would sim-
plify the specifications and eliminate the possibility of in-
correct external constraints failing to correctly translate the
model repairs back into the data structures.

4.4.3 Underlying Computing Infrastructure
To this point, we not addressed failures caused by in-

correct behavior on the part of the underlying computing
infrastructure, for example corruption of the repair algo-
rithm’s data structures. One way to address this issue is to
place these data structures in a separate address space not
accessible to the application. It may also be possible to at-
tack this kind of corruption by (recursively) applying data
structure repair to the repair algorithm’s data structures.

4.5 Enhancements
We next discuss several improvements and enhancements

to our current data structure repair algorithm.

4.5.1 Repair Guarantees
Although the current repair algorithm attempts to mini-

mize the number of actions required to perform the repair
(which should, in turn, leave the repaired state at least
heuristically close to the starting inconsistent state), there
is no guarantee (other than consistent data structures) that
characterizes its behavior. Developers contemplating the
use of data structure repair may find themselves uncomfort-
able with this situation and may wish to obtain a better
understanding of the consequences of using data structure
repair in their system. Additional guarantees may help them
obtain this understanding and increase their confidence in
using this technique.

Information preservation guarantees characterize the ef-
fect of the repair actions on the information stored in the
data structures. For example, an analysis of the repair al-
gorithm for a given specification may be able to provide a
guarantee that the repair actions will never remove an ob-
ject from a set or a pair from a relation. An extension might
guarantee that any removal of a pair from a relation would
be followed by an insertion of a replacement pair with one
or both of the objects in the original pair replaced by copies.
One could even use an algorithm similar to that described in
Section 4.2.5 to prune repair actions that would violate these
guarantees. These kinds of guarantees could (depending on
the meaning of the data structures) assure the developer
that the repairs will never destroy information present in
the inconsistent data structures.

Propagation guarantees characterize how far cascading re-
pair actions may propagate. For example, an analysis of the
repair algorithm for a given specification may be able to
guarantee that the repair actions for an inconsistency in one
part of the data structure will never propagate to change
another part of the data structure. The analysis may also
be able to bound the number of actions required to repair
a given inconsistency; this bound limits how far the effect
of the repair may propagate. Such propagation guarantees
may assure the developer that the application of data struc-
ture repair in one part of the system will not interfere with
the operation of another part of the system. They may also
help the developer understand the potential impact of using
data structure repair to eliminate specific classes of incon-
sistencies that have been observed to occur in practice.

4.5.2 Performance Improvements
Our current implementation uses an interpreter to con-

struct the model, check for consistency violations, and repair
the violations. As mentioned in Section 5, the performance
of this implementation is adequate for our set of benchmark

applications. However, it is possible to deliver an imple-
mentation with substantially better performance. We are
currently exploring three alternatives: model elision, incre-
mental checking, and check on access.

Model elision analyzes the specification to determine when
it is possible to perform the consistency checking directly
on the data structures without explicitly constructing an
intermediate model. This technique would eliminate both
the computation time and the memory overhead associated
with building the model. The elimination of memory over-
head may be especially important for embedded devices with
small memories.

Incremental checking is designed for applications that re-
peatedly execute consistency checks. The idea is to track
writes to the data structures, then use this information to
check only those parts of the data structures whose consis-
tency properties could have changed since the last check.
We anticipate that this optimization could substantially re-
duce the checking overhead in programs with repeated con-
sistency checks.

Our current checking algorithm checks the complete data
structure. It may also be possible to automatically dis-
tribute the checks so that the algorithm performs only the
checks required to ensure the consistency of those parts of
the data structure that the next section of code to execute
accesses. The distributed checks then come to behave more
like manually generated assertions in that each check is tai-
lored for the particular context in which it executes. One
can also view this approach as the dual of incremental check-
ing — incremental checking checks only those parts of the
data structure that the previous section of code changed,
while check on access checks only those parts of the data
structure that the next section of code will read.

Note that all of these optimizations focus on improving
the performance of the consistency checker — our current
expectation is that, for most applications, repair will be re-
quired infrequently enough to make the performance of the
repair algorithm less important. We expect, however, that
model elision could also be used to improve the repair per-
formance should it become desirable to do so.

5. EXPERIENCE
We next discuss our experience using our repair tool to

detect and repair inconsistencies in data structures from sev-
eral applications: an air-traffic control system, a Linux file
system, an interactive game, and Microsoft Office files.

5.1 Methodology
We developed a complete implementation of the data struc-

ture repair tool. The implementation and consists of roughly
13,000 lines of C++ code. The source code for the tool and
sample specifications are available at
http://www.cag.lcs.mit.edu/∼bdemsky/repair.

For each application, we identified important consistency
constraints and developed a specification that captured these
constraints. We also developed a fault insertion strategy
designed to simulate the effect of potential inconsistencies.4

We applied the fault insertion strategy to the data structures

4Fault insertion was originally developed in the context of
software testing to help evaluate the coverage of testing pro-
cesses [30]. It has also been used by other researchers for the
purposes of evaluating standard failure recovery techniques
such as duplication, checkpointing, and fast reboot [3]. The

in the applications, then compared the results of running a
chosen workload with and without inconsistency detection
and repair. We ran the applications on an IBM ThinkPad
X23 with a 866 Mhz Pentium III processor and 384 MB of
RAM. For the air-traffic control system, the Linux file sys-
tem, and the interactive game application, we used RedHat
Linux 7.2. For the Microsoft Office file application, we used
Microsoft Office XP running on the Microsoft Windows XP
operating system.

5.2 CTAS
The Center-TRACON Automation System (CTAS) is a

set of air-traffic control tools developed at the NASA Ames
research center [1, 27]. The system is designed to help air
traffic controllers visualize and manage the complex air traf-
fic flows at centers surrounding large metropolitan airports.5

In addition to graphically displaying the location of the air-
craft within the center, CTAS also uses sophisticated algo-
rithms to predict aircraft trajectories and schedule aircraft
landings. The goal is to automate much of the aircraft traffic
management, reducing traffic delays and increasing safety.
The current source code consists of over 1 million lines of C
and C++ code. Versions of this source code are deployed
at seven of the 21 centers in the continental United States
(Dallas/Ft. Worth, Los Angeles, Denver, Miami, Minneapo-
lis/St. Paul, Atlanta, and Oakland) and are in daily use at
these centers.

Strictly speaking, CTAS is an advisory system in that the
air-traffic controllers are expected to be able to bring the
aircraft down safely even if the system fails. Nevertheless,
CTAS has several properties that are characteristic of our
set of target applications. Specifically, it is a central part of
a broader system that manages and controls safety-critical
real-world phenomena and, as is typical of these kinds of sys-
tems, it deals with a bounded window of time surrounding
the current time.

The CTAS software maintains data structures that store
aircraft data. Our experiments focus on the flight plan ob-
jects, which store the flight plans for the aircraft currently
within the center. These flight plan objects contain both
an origin and destination airport identifier. The software
uses these identifiers as indices into an array of airport data
structures. Flight plans are transmitted to CTAS as a long
character string. The structure of this string is somewhat
complicated, and parsing the flight plan string to build the
corresponding flight plan data structure is a challenging ac-
tivity.

Our fault insertion methodology attempts to mimic errors
in the flight plan processing routine that produce illegal val-
ues in the flight plan data structures. When the program
uses these illegal values to access the array of airport data,
the array access is out of bounds, which typically leads to
the program failing because of an addressing error. Our

rationale behind fault insertion is that faults, while serious
when they do occur, occur infrequently enough to seriously
complicate the experimental investigation of failure recovery
techniques. Fault insertion makes it practical to evaluate
proposed recovery techniques on a range of faults.
5A center is a geographical region surrounding the major air-
port. In addition to the major airport, each center typically
contains several smaller regional airports. Because these air-
ports share overlapping airspaces, the air traffic flows must
be coordinated for all of the aircraft within the center, re-
gardless of their origin or destination.

specification captures the constraint that the flight plan in-
dices must be within the bounds of the airport data array.
The specification itself consists of 100 lines, of which 83 lines
contain structure definitions. The primary obstacle to devel-
oping this specification was reverse engineering the source
(which consists of over 1 million lines of C and C++ code) to
develop an understanding of the data structures. Once we
understood the data structures, developing the specification
was straightforward.

We used a recorded midday radar feed from the Dallas-
Ft. Worth center as a workload. We identified consistency
points within the application, then configured the system to
catch addressing exceptions, perform the consistency checks
and repair in the fault handler, then restart from the last
consistency point. Each consistency check and repair takes
several milliseconds, which is an acceptable repair time in
that it imposes no performance degradation that is visible
in the graphical user interface that displays the aircraft in-
formation.

Without repair, CTAS fails because of an addressing ex-
ception. With repair, it continues to execute in a largely
acceptable state. Specifically, the effect of the repair is to
potentially change the origin or destination airport of the
aircraft with the faulty flight plan processing. Even with
this change, continued operation is clearly a better alterna-
tive than failing. First, one of the primary purposes of the
system (visualizing aircraft flow) is unaffected by the repair,
and continued execution enables the system to provide this
functionality to the controller even in the presence of flight
plan processing errors. Second, only the origin or destina-
tion airport of the plane whose flight plan triggered the error
is affected. All other aircraft (during the recorded feed, the
system is processing flight plans for several hundred aircraft)
are processed with no errors at all, enabling the system to
deliver useful trajectory prediction and scheduling function-
ality for those aircraft. And finally, once the aircraft in
question leaves the center, its data structures are deallo-
cated from the system, which is then back to a completely
correct state. One improvement that would further improve
the utility of the repaired system is a way to visually identify
aircraft with repaired flight plan information. We are cur-
rently exploring ways to leverage existing GUI functionality
to make this happen.

The standard alternative to repair is to fail and reboot.
This solution is problematic for this application because re-
booting the system can take several minutes as the system
acquires enough flight plans and radar data history to make
reasonable trajectory predictions. And for the particular
error we explored in our experiments, rebooting is futile.
When the system reacquires and attempts to process the
flight plan that caused the preceding failure, it will simply
fail again.

5.3 A Linux File System
Our Linux file system application implements a simplified

version of the Linux ext2 file system [25]. The file system,
like other Unix file systems, contains bitmaps that identify
free and used disk blocks [12]. The file system uses these
disk blocks to support fast disk block and inode allocation
operations. For our experiments we used a file system with
1024 disk blocks.

Our consistency constraints state that the inode bitmap
block, the block bitmap block, the directory block, and the

inode table block exist; that the inode bitmap is consistent
with the use of inodes; that the block bitmap is consistent
with the use of blocks; that blocks are not shared between
files or other disk structures; that the file’s size is consistent
with the number of blocks in a file; that files contain only
valid blocks; that inode reference counts are correct; and
that directory entries refer to valid inodes. The specifica-
tion contains 122 lines, of which 53 lines contain structure
definitions. Because the structure of such file systems is
widely documented in the literature, it was relatively easy
for us to develop the specification. In general, we have found
that developing specifications is a straightforward task once
one understands the relevant data structures.

Our fault insertion mechanism for this application sim-
ulates the effect of a system crash: it shuts down the file
system (potentially in the middle of an operation that re-
quires several disk writes), then discards the cached state.
Our workload opens and writes several files, closes the files,
then reopens the files to verify that the data was written
correctly. To apply our fault insertion strategy to this work-
load, we crash the system part of the way through writing
the files, then rerun the workload. The second run of the
workload overwrites the partially written files and checks
that the final versions are correct.

Possible sources of errors include incorrect bitmap blocks
(caused by discarding correct cached versions) and incom-
plete file system operations that leave the disk image in
an inconsistent state. Specifically, incomplete remove and
hardlink creation operations may leave inodes with incor-
rect reference counts; incomplete open operations that cre-
ate new files may leave directory and inode entries in incor-
rectly initialized states. The repair algorithm first traverses
the blocks and inodes in the file system to construct a model
of the file system. It then uses the model to compute correct
values for the bitmap blocks and reference counts.

In all of our tested cases, the algorithm is able to repair the
file system and the workload correctly runs to completion.
Without repair, files end up sharing inodes and disk blocks
and the file contents are incorrect.

In addition to repairing the errors introduced by our fail-
ure insertion strategy, our tool is also able to allocate and
rebuild the blocks containing the inode and block allocation
bitmaps, allocate a new inode table block, and allocate a
new inode for the root directory. The repair algorithm is
limited in that if the entries describing aspects of basic file
system format (such as the size of the blocks) become cor-
rupted, the tool may fail to correctly repair the file system.

5.4 Freeciv
Freeciv is an interactive, multi-player game available at

www.freeciv.org. The Freeciv server maintains a map of the
game world. Each tile in this map has a terrain value chosen
from a set of legal terrain values. Additionally, cities may
be placed on the tiles. Our consistency constraints are that
tiles have valid terrain values, a given city has exactly one
location, cities are not in the ocean, and that the location
of a city on the map is consistent with the location the city
has recorded internally.

Our fault insertion strategy changes the terrain values in
20 randomly selected tiles in the map before the game starts.
There are two possible errors: illegal terrain values or cities
located on an ocean tile instead of a land tile. Our repair
algorithm repairs these kinds of errors by assigning a legal

terrain value to any tile with an illegal value and by moving
cities from tiles with illegal terrain types or oceans to tiles
with a land type terrain. The specification consists of 218
lines, of which 173 lines contain structure definitions. The
primary obstacle to developing this specification was reverse
engineering the Freeciv source (which consists of 73,000 lines
of C code) to develop an understanding of the data struc-
tures. Once we understood the data structures, developing
the specification was straightforward.

Freeciv comes with a built-in test mode in which several
automated players play against each other. Our workload
simply runs the program in this built-in test mode. We
used the built-in test mode to play 25 games. In each game
we set a different seed for the random number generator,
resulting in different but repeatable games. The map was
configured to contain 4,000 tiles. In all of these games, our
repair tool was able to repair the introduced inconsistencies
and the game was able to execute without failing (although
the game played out differently because of changed terrain
values). Without repair, the game always crashed with a
segmentation fault caused by indexing an array with an il-
legal terrain value.

In addition to incorrect terrain values, the algorithm is
able to repair inconsistencies in the location of cities in the
game. If necessary, it removes extra city references to ensure
that each city is referenced by only one tile and changes the
internally recorded location of each city to ensure that it is
consistent with the city’s location on the map. The repair
algorithm is limited in that if the entries describing several
basic aspects of the data layout (such as the size of the map)
become corrupted, the system is not able to repair the map.
Additionally, there are consistency conditions involving pre-
calculated values, unit locations, and the map that are not
well documented and not covered by the specification. As a
result, there is some chance that the game may crash even
after repair.

5.5 Microsoft Office File Format
Microsoft Office files consist of several virtual streams,

each of which contains data for some part of the document.
Each file also contains a FAT, which identifies the location of
each stream within the file. Each virtual stream consists of a
chain of blocks in the file. The file allocation table consists
of an array of integers, with one integer per block in the
file. For each block in the file, these integers indicate which
block is next in the chain or whether the block is unused,
terminates the chain, or stores part of the FAT.

Based on information available at
http://snake.cs.tu-berlin.de:8081/∼schwartz/pmh/, we de-
veloped a specification that captures the following consis-
tency constraints: that blocks are not shared between chains,
that the file has the correct number of FAT blocks for the
its size, that FAT blocks are marked as such in the FAT,
that the FAT contains valid block numbers, and that chains
are appropriately terminated. The specification consists of
94 lines, of which 71 lines contain structure definitions. The
availability of documentation made it straightforward to de-
velop the specification.

Our fault insertion strategy injects one of four kinds of
errors into the FAT: it can crosslink the ends of FAT chains
(this causes blocks to be shared between streams), terminate
FAT chains using an illegal block number, mark FAT blocks
as unused, and mark the terminating block of a FAT chain as

unused. The repair algorithm repairs crosslinked chains by
terminating the chains immediately prior to the crosslinking.
It repairs FAT chains that contain illegal block numbers by
terminating the chain at the illegal block number. It also
overwrites FAT values to ensure that FAT blocks are marked
as used for the FAT, and removes unused FAT blocks from
FAT chains.

Our workload consisted of several consistent Microsoft
Word files. For each file, we used our fault insertion strategy
to create four damaged files, one for each kind of error. We
then attempted to load the files into Microsoft Word.

Word was able to successfully load all of the repaired files,
although in some cases the combination of fault insertion
followed by repair removed blocks from streams and changed
the document. Word was also able to successfully load files
in which FAT blocks were incorrectly marked as unused, but
failed to load files with the three other kinds of damage. It
instead responded with the error message “The document
name or path is not valid.”

In addition to the repairs described above, the repair algo-
rithm is able to allocate new FAT sectors as needed. Because
our specification only covers FAT consistency constraints,
there is no guarantee that the file satisfies any other con-
sistency constraint. In particular, we suspect that the in-
dividual streams may have internal consistency constraints,
although we did not observe any violation of these (hypo-
thetical) constraints in our experiments.

5.6 Discussion
We found it relatively straightforward to develop the spec-

ifications for all of our applications once we had an under-
standing of the data structures. In particular, we developed
the specifications for all of our applications except CTAS in
the course of single week. During this week, we spent sig-
nificant amounts of time understanding the Freeciv source
code and debugging our implementation. We also developed
the CTAS specifications in less than a week, with much of
the time devoted to reverse engineering the code (with the
help of the NASA engineers in the CTAS group). The speci-
fications are very small relative to the size of the application
(although bear in mind that our current set of specifications
do not necessarily capture all of the important consistency
properties). In general, we expect 1) the specifications to be
small in comparison with the application and 2) the over-
head of the specification development to be very small in
comparison with the effort required to develop the applica-
tion. We believe that the benefits of automatic inconsistency
detection and repair, in combination with the other bene-
fits of developing precise data structure specifications, are,
in most cases, well worth the effort required to develop the
specification.

The CTAS system illustrates some of the reasons why
continued execution can be the best choice for some appli-
cations. The absence of repair makes the entire computa-
tion vulnerable to errors, even if the error would have no
effect on much of the data and functionality of the system.
Repair enables the program to continue to execute and gen-
erate useful results from the correct parts of the data and
the unaffected parts of the computation. The file system
and Word file applications also have this characteristic —
even a small consistency violation can make it impossible to
access the rest of the (undamaged) data stored in the data
structure. Repair makes it possible to access this data. And

in some cases (as in the air-traffic control application and
our file system workload) repair followed by continued ex-
ecution eventually flushes any anomalies out of the system
to restore the data structures to a completely correct state.

In this paper, we have treated inconsistency detection as
just a necessary prerequisite for repair. But we believe that
the inconsistency detector could be very useful on its own as
a debugging aid. We know of many projects that manually
develop data structure consistency detectors and use these
detectors as a crucial part of the debugging infrastructure.
Our specification-based approach should make it substan-
tially easier to obtain these inconsistency detectors.

5.7 Performance
Tables 1 through 4 present some performance results for

our system. Table 1 presents, for each application, the num-
ber of model definition rule applications in the model con-
struction phase and the total sizes of the sets and relations
in the resulting models. Table 2 presents the execution times
required to construct these models. Table 3 presents the the
total number of internal constraint rule evaluations and the
execution times required to perform the internal consistency
checks for each application. Table 4 presents the number of
evaluated external consistency rules and the execution time
required to enforce the external consistency constraints. All
execution times are measured in milliseconds. Note that for
CTAS, the consistency check is done on a per-flight basis
and the reported numbers are for check and repair applied
to a single flight, not all of the flights in the system.

As these performance numbers show, the majority of the
time is spent in the model construction phase, suggesting
that the model elision optimization discussed in Section 4.5.2
could substantially improve the performance. We note that
our current implementation uses an interpreter to perform
the consistency check and repair. Our initial investigations
show that, even without model elision, it should be possible
to reduce the consistency checking overhead by at least two
orders of magnitude.

The performance of our current consistency check and
repair algorithm is more than adequate for all of our cur-
rent implementations. We anticipate, however, that the
overhead may become more problematic for systems with
larger amounts of state. The optimizations discussed in Sec-
tion 4.5.2 should substantially reduce the overhead and in-
crease the range of systems in which our technique can be
productively applied.

6. RELATED WORK
Software reliability has been an important area for many

years. Most research has focused on preventing or elimi-
nating software errors, with the approaches ranging from
enhanced software testing and validation to full program
verification. Software error detection has become an espe-
cially active area in recent years [9, 10, 16, 7]. In contrast,
our research goal is to enable software to survive errors by
restoring data structure consistency. The remainder of this
section focuses on other error recovery techniques.

6.1 Manual Detection and Repair Systems
Researchers have manually developed several systems that

find and repair data structure inconsistencies. File systems
have many characteristics that motivate the development of
such programs (they are persistent, store important data,

Application Number of
model

definition rule
applications

Total
size of
sets

(objects)

Total
size of

relations
(tuples)

CTAS 20 8 2
File system 11720 3128 1954
Freeciv 63072 7537 15990
Word 139740 64 17

Table 1: Number of model rule applications and size
of model

Application Time to construct model (ms)
CTAS 4.2
File system 1,188.9
Freeciv 5,609.1
Word 7,189.5

Table 2: Time to construct model

Application Internal
constraint
evaluations

Time to check
internal

constraints (ms)
CTAS 4 .09
File system 2384 16.6
Freeciv 16004 175.3
Word 28 0.2

Table 3: Number of checks and time to check and
repair internal constraints

Application External
constraint
evaluations

Time to enforce
external

constraints (ms)
CTAS 4 0.2
File system 3164 59.5
Freeciv 12001 171.4
Word 39 1.2

Table 4: Number of checks and time to enforce ex-
ternal constraints

and acquire disabling inconsistencies in practice). Develop-
ers have responded with utilities such as Unix fsck and the
Norton Utilities that attempt to fix inconsistent file systems.

The Lucent 5ESS telephone switch and IBM MVS oper-
ating systems are two examples of critical systems that use
inconsistency detection and repair to recover from software
failures [17, 22]. The software in both of these systems con-
tains a set of manually coded procedures that periodically
inspect their data structures to find and repair inconsisten-
cies. The reported results indicate an order of magnitude
increase in the reliability of the system [13]. Researchers
have also developed a domain-specific language for specify-
ing these procedures for the 5ESS system [15]. The goal is to
enhance the reliability and reduce the development time of
the inconsistency detection and repair software. The 5ESS
system has also served as the platform for PRL5, a declara-
tive constraint specification language [21], and its compiler,

which generates code to automatically check the consistency
of a relational database used to store some it its informa-
tion [14]. The compiler can also generate, for each operation,
the weakest precondition required to ensure that the oper-
ation preserves the consistency constraints. Although the
generated code does not perform any repairs, the consistency
checking alone is valuable enough to justify its presence.

These successful, widely used systems illustrate the util-
ity of performing inconsistency detection and repair. We see
our use of declarative specifications coupled with automati-
cally generated detection and repair code as representing a
significant advance over current practice, which relies on the
manual development of the detection and repair code. Our
approach enables the developer to focus on the important
data structure constraints rather than on the operational
details of developing algorithms that detect and correct vi-
olations of these constraints. We believe our specification-
oriented approach will make it much easier to develop re-
liable inconsistency detection and repair software. It also
places the field on a firmer foundation, since it is based on
a set of properties that the repair algorithm is designed to
deliver rather than on a set of hand-coded repair routines
whose effect may be more difficult to determine.

6.2 Integrity Maintenance in Databases
Database researchers have developed integrity manage-

ment systems that enforce database consistency constraints.
One goal is to enable the system to incorporate the effects
of a transaction that leaves the database in an inconsistent
state — instead of aborting the transaction, the integrity
management system repairs the state from the end of the
transaction to eliminate any inconsistencies. These systems
typically operate at the level of the tuples and relations in
the database, not the lower-level data structures that the
database uses to implement this abstraction.

One approach is to provide a system that assists the devel-
oper in creating a set of production rules that maintain the
integrity of a database [6]. Each production rule consists
of a triggering component and a repair action to execute
when the rule is triggered. The system automatically gen-
erates the triggering components of the production rules,
using a triggering graph to check if repairs will terminate.
The system relies on the developer to provide the actual re-
pair actions; if the developer incorrectly specifies a repair
action, the system may fail to maintain the integrity of the
database.

This approach has been extended to enable the system
to automatically generate both the triggering components
and the repair actions [5]; the resulting system can auto-
matically generate repairs that insert or remove tuples to or
from a relation. The specification language can express sim-
ilar properties as our internal constraint language, but the
termination analysis is less precise. For some constraints the
system may generate production rules that fail to terminate.
For example, the system cannot automatically generate ter-
minating repairs for a system of constraints that require a
relation to be a function, then further constrain this func-
tion. Because of differences in the repair algorithms, our
system is able to enforce these kinds of constraints.

Researchers have also developed a database repair sys-
tem that enforces Horn clause constraints and schema con-
straints (which can constrain a relation to be a function) [29].
The system includes an interactive tool, which can help

developers understand the consequences of repairing con-
straint violations. Our system supports a broader class of
constraints — logical formulas instead of Horn clauses. It
also supports constraints which relate the value of a field to
an expression involving the size of a set or the size of an
image of an object under a relation. Finally, it uses parti-
tion information to improve the precision of the termination
analysis, enabling the verification of termination for a wider
class of constraint systems.

It is also possible to apply constraint enforcement to struc-
tured documents [23]. This system accepts a set of consis-
tency properties expressed in first-order logic, generates a
set of repair actions for each constraint, and then interac-
tively queries the user to select a specific repair action for
violated constraints. Because the system performs no ter-
mination analysis, it is possible for infinite repair cycles to
occur.

6.3 Assertions and Exception Handlers
Many programming languages support assertions as a way

for developers to manually code consistency checks and ex-
ception handlers as a way to provide code to execute when
these checks fail. One way of viewing our research is that it
provides an automatically generated consistency check and
exception handler that together find and eliminate any con-
sistency violations. One advantage of our approach is its
complete coverage — it always checks all of the constraints
over all of the data structures, ensuring that it catches any
inconsistencies before they propagate (manually developed
assertions typically test only locally checkable properties on
an easily accessible region of the data structure). The declar-
ative nature of our specifications also reduces coding effort
and makes it easier to determine that the code checks the
correct set of constraints.

We also note that it can be extremely difficult to manu-
ally develop assertions and exception handlers that always
operate safely in the presence of arbitrarily corrupted data
structures. Automatic generation makes it easier to ensure
that the code performs all of the checks required to operate
without inadvertent failure.

6.4 Self-Stabilizing Algorithms
Researchers in the area of self-stabilizing algorithms have

developed specific distributed algorithms that eventually con-
verge to a stable state in spite of perturbations [11]. Our
research goal differs in that 1) we aim to provide a general-
purpose, specification-based inconsistency detection and re-
pair technology for arbitrary data structures (as opposed to
designing individual algorithms with desirable constraints),
and 2) we are willing to accept potentially degraded behav-
ior as the price of obtaining this generality. In some cases,
however, our data structure repair algorithm may make the
global program behave in a self-stabilizing way. In particu-
lar, if the effect of the repair is eventually flushed out of the
system (as in the CTAS application), the data structures
eventually converge back to a state that has no trace of the
error or the repair.

6.5 Traditional Error Recovery
Error recovery has been an important topic ever since the

inception of computer science as a field. One standard ap-
proach avoids transient errors by simply rebooting the sys-
tem; this is perhaps the most widely practiced form of error

recovery. Checkpointing enables a system to roll back to a
previous state when it fails. Transactions support consistent
atomic operations by discarding partial updates if the trans-
action fails before committing [13]. Database systems use a
combination of logging and replay to avoid the state loss
normally associated with rolling back to a previous check-
point. In effect, the log serves as a redundant, very sim-
ple data structure that can be used to rebuild the more so-
phisticated internal database data structures whenever they
become inconsistent. There has recently been renewed in-
terest in applying many of these classical techniques in new
computational environments such as Internet services [24].
One of the techniques that arises in this context, recursive
restartability, composes large systems out of many smaller
modules that are individually rebootable [4]. The goal is to
build systems in which faults can be isolated at the module
level by rebooting.

Our approach differs from these classical approaches in
that it is designed to repair inconsistent data structures in
place and continue executing rather than roll back to a pre-
vious state. This approach avoids several problems asso-
ciated with checkpointing. One potential problem is that
the checkpointed state may contain latent inconsistencies
that become visible only long after they are introduced. As
long as these inconsistencies are present in the checkpointed
state, the execution will remain vulnerable to errors trig-
gered by the inconsistency. Another potential problem is
that the current operation may trigger the same error even
after replacing the current state with a previous checkpoint.
Note that it is possible to apply our techniques to improve
checkpoint-based approaches, either by checking for consis-
tency before checkpointing the current state, or by repairing
inconsistent checkpoints.

Our approach can enable systems to recover even from
persistent errors such as file system corruption. Unlike ap-
proaches based on checkpointing and replay, it may preserve
much of the volatile state and avoids the need for logging
and replay. It can also keep a system going without the need
to take it out of service while it is rebooting. Finally, our
approach differs in that we do not attempt to recover to a
state that a (hypothetical) correct program would produce.
Instead, our goal is to recover to a state consistent enough
to permit the continued operation of the program within
its design envelope. In many cases, the system will, over
the course of time, flush the effects of errors out of its data
structures and return to a completely correct state.

6.6 Specification Languages
The core of our specification language is the internal con-

straint language. The basic concepts in this language (ob-
jects and relations) are the same as in object modeling lan-
guages such as UML [26] and Alloy [18], and the constraint
language itself has many of the same concepts and constructs
as the constraint languages for these object modeling lan-
guages, which are specifically designed, in part, to be easy
for developers to use. In addition to these ease of use consid-
erations, the relative simplicity of the basic object modeling
approach facilitates the automatic repair process. Because
all structural properties are expressed in terms of cardinal-
ity constraints involving sets of objects and relations, it is
possible to repair violations of these constraints by simply
removing or inserting objects or pairs of objects into sets or
relations.

Standard object modeling approaches have traditionally
been used to help developers express and explore high-level
design properties. Our approach, in contrast, also had to
establish a precise connection between the low-level, heavily
encoded data structures that appear in many programs and
the high-level properties captured in the internal constraint
language. Our model construction and external constraint
languages provide a formal and quite flexible connection be-
tween these data structures and the model. These languages
may therefore serve as an important component of future
design conformance systems, which check that a program
conforms to its high-level design [19].

Note also that factoring the consistency check and repair
process into model construction followed by model check
and repair isolates the treatment of the low-level details of
the data structure within the model construction and ex-
ternal constraint enforcement phases. This isolation enables
the application of our general-purpose consistency checking
and repair algorithms to the full range of efficient, low-level,
heavily encoded data structures.

6.7 Typestate Systems
In typestate systems, the type of each object can change

over time to reflect changes in its properties [28, 20]. One
key issue in typestate systems is understanding which object
attributes should contribute the typestate and how changes
in these attributes should affect the typestate. In this con-
text, we can view each set in our model as corresponding
to a conceptual typestate that objects may traverse during
their lifetimes in the computation. The inclusion of an ob-
ject in a set during the model construction identifies that set
as one of the object’s current typestates. This approach sug-
gests that values in the fields of the object and its referencing
and reachability relationships with other objects should con-
tribute to its typestate. This level of expressibility is crucial
both for design conformance (because many design proper-
ties involve changing object typestates) and for ensuring the
utility of our consistency checking and repair tool (because
appropriate consistency properties are different for objects
in different typestates). Using a coarser abstraction such as
the class of the object, which does not change over time to
reflect conceptual state changes, would preclude the expres-
sion and enforcement of many important consistency prop-
erties. Our classification approach therefore suggests that
it might be beneficial for future static typestate systems
to capture information about referencing and reachability
properties of the objects.

7. CONCLUSION
Data structure inconsistencies are an important source of

software errors. Our implemented system attacks this prob-
lem by accepting a data structure consistency specification,
then automatically detecting and repairing data structures
that violate this specification. Our experience indicates that
our system is able to deliver repaired data structures that
enable the corresponding programs to continue to execute
successfully within their designed operating envelope. With-
out repair, the programs usually fail.

As the field of computer science continues to mature, there
is an increasing need to deliver systems that can contin-
uously operate for very long, even unbounded, periods of
time. Repair is a central aspect of almost all long-lived sys-
tems in other fields, and we believe that the development

of effective repair technology is a necessary prerequisite for
the construction of robust, long-lived computer systems. We
therefore see our research as taking an important step to-
ward the effective construction of robust, self-healing sys-
tems that can successfully recover from the damage that
they will inevitably experience during their long lifetimes.

8. REFERENCES
[1] Center-tracon automation system.

http://www.ctas.arc.nasa.gov/ .

[2] C. Boyapati, R. Lee, and M. Rinard. Ownership types
for safe programming: Preventing data races and
deadlocks. In ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), November 2002.

[3] P. Broadwell, N. Sastry, and J. Traupman. FIG: A
prototype tool for online verification of recovery
mechanisms. In Workshop on Self-Healing, Adaptive
and self-MANaged Systems, June 2002.

[4] G. Candea and A. Fox. Recursive restartability:
Turning the reboot sledgehammer into a scalpel. In
Proceedings of the 8th Workshop on Hot Topics in
Operating Systems (HotOS-VIII), pages 110–115,
Schloss Elmau, Germany, May 2001.

[5] S. Ceri, P. Fraternali, S. Paraboschi, and L. Tanca.
Automatic generation of production rules for integrity
maintenance. ACM Transactions on Database
Systems, 19(3), September 1994.

[6] S. Ceri and J. Widom. Deriving production rules for
constraint maintenance. In Proceedings of 1990 VLDB
Conference, pages 566–577.

[7] J.-D. Choi and et al. Efficient and precise datarace
detection for multithreaded object-oriented programs.
In Proceedings of the SIGPLAN ’02 Conference on
Program Language Design and Implementation, 2002.

[8] D. G. Clarke, J. M. Potter, and J. Noble. Ownership
types for flexible alias protection. In Proceedings of the
13th Annual Conference on Object-Oriented
Programming Systems, Languages and Applications,
1998.

[9] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu,
Robby, S. Laubach, and H. Zheng. Bandera :
Extracting finite-state models from java source code.
In Proceedings of the 22nd International Conference
on Software Engineering, 2000.

[10] M. Das, S. Lerner, and M. Seigle. Esp: Path-sensitive
program verification in polynomial time. In
Proceedings of the SIGPLAN ’02 Conference on
Program Language Design and Implementation, 2002.

[11] E. W. Dijkstra. Self-stabilization in spite of
distributed control. In Communications of the ACM
17(11):643–644, 1974.

[12] B. Goodheart and J. Cox. The Magic Garden
Explained:The Internals of Unix System V Release 4:
An Open Systems Design. Prentice Hall, 1994.

[13] J. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann, 1993.

[14] T. Griffin, H. Trickey, and C. Tuckey. Generating
update constraints from prl5.0 specifications. In
Preliminary report presented at ATT Database Day,
September 1992.

[15] N. Gupta, L. Jagadeesan, E. Koutsofios, and D. Weiss.
Auditdraw: Generating audits the FAST way. In
Proceedings of the 3rd IEEE International Symposium
on Requirements Engineering, 1997.

[16] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system
and language for building system-specific, static
analyses. In Proceedings of the SIGPLAN ’02
Conference on Program Language Design and
Implementation, 2002.

[17] G. Haugk, F. Lax, R. Royer, and J. Williams. The
5ESS(TM) switching system: Maintenance
capabilities. AT&T Technical Journal, 64(6 part
2):1385–1416, July-August 1985.

[18] D. Jackson. Alloy: A lightweight object modelling
notation. Technical Report 797, Laboratory for
Computer Science, Massachusetts Institute of
Technology, 2000.

[19] D. Jackson and M. C. Rinard. Software analysis: A
roadmap. In Proceedings of 22nd International
Conference On Software Engineering (ICSE’00) -
Future of SE Track, June 2000.

[20] V. Kuncak, P. Lam, and M. Rinard. Role analysis. In
Proceedings of the 29th Annual ACM Symposium on
the Principles of Programming Languages, 2002.

[21] D. A. Ladd and J. C. Ramming. Two application
languages in software production. In Proceedings of
the 1994 USENIX Symposium on Very High Level
Language(VHLL), October 1994.

[22] S. Mourad and D. Andrews. On the reliability of the
IBM MVS/XA operating system. IEEE Transactions
on Software Engineering, September 1987.

[23] C. Nentwich, W. Emmerich, and A. Finkelstein.
Consistency management with repair actions. In
Proceedings of the 25th International Conference on
Software Engineering, May 2003.

[24] D. A. Patterson and et al. Recovery-oriented
computing (ROC): Motivation, definition, techniques,
and case studies. Technical Report
UCB//CSD-02-1175, UC Berkeley Computer Science,
March 15, 2002.

[25] D. Poirier. Second extended file system.
http://www.nongnu.org/ext2-doc/ , Aug 2002.

[26] Rational Inc. The unified modeling language.
http://www.rational.com/uml.

[27] B. D. Sanford, K. Harwood, S. Nowlin, H. Bergeron,
H. Heinrichs, G. Wells, and M. Hart. Center/tracon
automation system: Development and evaluation in
the field. In 38th Annual Air Traffic Control
Association Conference Proceedings, October 1993.

[28] R. E. Strom and S. Yemini. Typestate: A
programming language concept for enhancing software
reliability. IEEE Transactions on Software
Engineering, January 1986.

[29] S. D. Urban and L. M. Delcambre. Constraint
analysis: A design process for specifying operations on
objects. IEEE Transactions on Knowledge and Data
Engineering, 2(4), December 1990.

[30] J. M. Voas and G. McGraw. Software Fault Injection.
Wiley, 1998.

