
Living In The Comfort Zone

Martin Rinard
Department of Electrical Engineering and Computer Science

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 021139
rinard@csail.mit.edu

Abstract
A comfort zone is a tested region of a system’s input space
within which it has been observed to behave acceptably. To
keep systems operating within their comfort zones, we ad-
vocate the interposition of rectifiers between systems and
their input sources. Rectifiers are designed to transform in-
puts to ensure that they are within the comfort zone before
they are presented to the system. Rectifiers enforce a highly
constrained input format and, if necessary, discard informa-
tion to force inputs to conform to this format. Potential ben-
efits of this approach include the elimination of errors and
vulnerabilities, the excision of undesirable excess function-
ality from large, complex systems, and a simplification of
the computing environment.

We have developed a rectifier for email messages and
used this rectifier to force messages into a specific con-
strained form. Our results show that this rectifier can suc-
cessfully produce messages that keep the Pine email client
strictly within code previously confirmed (during a small
testing and training session) to function acceptably. Our re-
sults also show that the rectifier completely eliminates a se-
curity vulnerability in the Pine email client. And finally, the
rectifier is able to accomplish these goals while still preserv-
ing an acceptable amount of information from the original
messages.

Categories and Subject Descriptors D.2.1 [Software En-
gineering]: Requirements/Specifications;
D.2.3 [Software Engineering]: Coding Tools and Tech-
niques;
D.2.5 [Software Engineering]: Testing and Debugging;
D.3.3 [Programming Languages]: Language Constructs and
Features

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’07, October 21–25, 2007, Montréal, Québec, Canada.
Copyright c© 2007 ACM 978-1-59593-786-5/07/0010. . . $5.00

General Terms Design, Languages, Reliability, Security

Keywords Comfort Zone, Acceptability Properties, Repair,
Monitoring, Rectification

1. Introduction
By the time a typical software system is deployed, its devel-
opers have tested its behavior on a range of inputs and veri-
fied that the behavior is acceptable. And in fact, the deployed
system usually works well on inputs that are similar to those
in the test suite. To exercise an error or vulnerability, one
must typically find an anomalous input with some unusual
feature that manages to take the system into a poorly tested
region of its execution space. Conceptually, the system has a
comfort zone — a collection of inputs that is similar to those
that it has seen before and for which it is almost certain to
deliver expected and acceptable behavior.

Ideally, one would never run a system on an input outside
its comfort zone. Indeed, the goal of much of the effort that
goes into testing and debugging is to maximize the size of
the comfort zone by 1) exercising as much of the function-
ality of the system as possible and 2) eliminating as many
unacceptable errors within the exercised part of the system
as possible. In this way the developers hope to minimize the
likelihood of the system encountering an input outside its
comfort zone that causes it to behave unacceptably.

Despite the tremendous effort devoted to testing and de-
bugging, however, it is almost always possible to find inputs
that cause the system to behave in unanticipated or unaccept-
able ways. This problem can become a source of frustration
for users who inadvertently stumble across such inputs and
are consequently unable to obtain their desired results. The
problem can be especially severe for systems (such as web
browsers, servers, and email clients) that are placed in the
position of having to process arbitrary inputs from poten-
tially untrusted sources — many successful security attacks
involve unusual inputs that exercise unanticipated function-
ality or outright errors hidden within an otherwise success-
fully operating system [18].

1.1 Our Approach
This paper presents a complementary approach to eliminat-
ing unanticipated and unacceptable system behavior. Instead
of attempting to make the system behave acceptably on all
possible inputs, we instead propose to configure the envi-
ronment surrounding the system with the goal of ensuring
that the system only executes within an appropriately chosen
comfort zone. The basic idea is to interpose a rectifier (a set
of transformations) between the input sources and the soft-
ware system. Together, these transformations are designed to
move all inputs that were originally outside the comfort zone
into the comfort zone. Ideally, this approach would eliminate
the anomalies that come from processing problematic inputs
while preserving the desired behavior of the system.

There are two potential issues associated with this ap-
proach. First, the rectifier may destroy information in the
original input, with this information destruction causing the
system to produce an inappropriate result. Second, the rec-
tifier may fail to completely remove some problematic fea-
tures of the input, leaving the input presented to the system
outside the comfort zone.

We address these issues as follows. In some cases the
problematic features of the input may occur in the way the
information is formatted or presented in the input rather than
in the content of the information itself. In these cases appro-
priately structured transformations may be able to leave the
information completely intact (although the presentation of
the information to the user may change). In other cases the
problematic features may occur in information that is tan-
gential to the primary purpose of the system. In these cases
appropriately structured transformations may be able to pre-
serve the most important information, leaving the system
able to deliver most of its desired functionality. And in all
cases, we propose to generate reports that users can exam-
ine to determine the potential consequences of applying the
transformations.

Rectifiers that may sometimes fail to move an input into
the comfort zone can leave systems vulnerable to errors
or exploits. We propose to ameliorate this problem in two
ways. First, we advocate the use of aggressive rectifiers that
produce a very narrow, tightly constrained class of inputs.
The goal is to enforce broad, sweeping restrictions that rule
out all potentially anomalous inputs. Second, we propose to
check all inputs for membership in the comfort zone as the
program executes. Specifically, we propose to train the sys-
tem on a set of validated inputs and record the blocks of code
that execute during this training process. Any significant de-
viation from from this set of previously executed blocks is
taken as an indication that the input is outside the comfort
zone. The appropriate action to take depends on the context
in which the system is used — we are able to take any action
from terminating the system as soon as it attempts to execute
a new block of code to simply recording the new blocks that
execute as the system processes the input.

We anticipate that both the transformations and the over-
all success of the proposed approach will depend on the spe-
cific system and the context in which the system is deployed.
To explore how well this approach works, we have built a
rectifier for the Pine email client [13] and performed a series
of experiments that explore how well the rectifier works. Our
results show that it is possible, for this application, to build
a rectifier that can effectively move even problematic inputs
(such as attacks that would otherwise exploit security vul-
nerabilities) into the comfort zone of the system for safe pro-
cessing. The transformations are simple to implement and in
most cases preserve virtually all of the important informa-
tion in the original email messages. And when the rectifier
does remove information, it generates informative rectifica-
tion logs that users can quickly examine to determine the
changes that the rectifier made.

1.2 Usage Scenarios
We have presented input rectification as a way to avoid
unanticipated errors or vulnerabilities in software systems.
It is clear, however, that this technique can be productively
applied to solve a variety of other problems that arise in
using software systems:

• Functionality Elimination: Many large systems con-
tain significantly more functionality than any single user
or organization will ever use. In some cases this excess
functionality may be undesirable — consider, for exam-
ple, a feature in Microsoft Word that executes scripts
when reading in Word files. When Word is used as a
document editor in the Outlook email client to prepare
forwarded messages, this feature causes Word to auto-
matically execute any scripts that may have been present
in the original email sent to the user (a clear security
violation) [7]. Note that script execution is an intended
feature in Word and arguably made sense in the context
in which Word was originally deployed. An appropri-
ately designed rectifier can eliminate this kind of unde-
sirable functionality (for example, by simply eliminating
all scripts from Word documents), making it possible to
safely use the original system in a new context in spite of
the undesirable functionality.
Systems tend to accrete functionality over time, to the
point that too much functionality can become as much
or more of a problem as too little functionality. Identify-
ing a narrow comfort zone and using input rectification to
enforce that comfort zone can make it possible to effec-
tively use a single existing functionality-laden system in
many different contexts and for many different purposes
without incurring the risks and complications associated
with the excess functionality normally present. This can
be a significant improvement over the alternative (devel-
oping multiple systems, each tailored for use in its own
context).

We note that in many cases nobody understands all of
the functionality that a given system may offer. We there-
fore advocate the use of aggressive rectifiers that look for
input patterns that they recognize as safe (and block any-
thing else) rather than less aggressive rectifiers that look
for specific input patterns to block (and pass through any-
thing else).

• Incorrect Inputs: Most systems contain input correct-
ness checks designed to verify that the input is in a form
that the system can successfully process. If an input fails
a correctness check, the system typically refuses to pro-
cess the input. In some cases, however, a user may need
the system to process the information in the input even
if the input itself is malformed (and therefore fails the
correctness check). This can occur if the system that pro-
duced the input has an error or is simply somewhat in-
compatible with the system that should process the input.
In this case an appropriately designed rectifier may be
able to produce an input that the first system will accept
and process.

• Test-Suite Directed Development: Much of the code in
many systems is present only to handle cases that occur
infrequently. This code increases the size, development
cost, and complexity of the final system. A sufficiently
aggressive rectifier may be able to substantially reduce
the number of input cases that the system must process
(and therefore eliminate the need for the code that would
otherwise be required to handle these cases). In fact, it
may be desirable to refuse to code any case until there is
an input in the test suite that exercises that code — af-
ter all, any input that exercises that code will be outside
the comfort zone. The result could be a lazy code devel-
opment process that does not implement any case until
there is an input in the test suite that hits that case. And if
a new input in the test suite does happen to hit an unim-
plemented case, the developer would have two options:
code up the case, or modify the rectifier to eliminate the
features of the input that caused it to hit the unimple-
mented case.

• Reduced Testing Burden: Systems with many features
require lots of testing. Eliminating functionality can
make it possible to reduce the amount of testing required
to develop confidence in the system. For sufficiently nar-
row comfort zones, it may even be possible for users to
perform enough tests to become confident that the sys-
tem will work for them even though their tests do not
come close to exploring the full functionality present in
the system.

• Eliminating Input Correctness Checks: In practice, in-
put correctness checks can be a problematic source of er-
rors. Because the code that implements these checks is
not usually exercised during the normal operation of the
system, it may receive less attention during development

and testing (with the result that it may contain more er-
rors when the system moves into production). Because
the developer can make no assumptions whatsoever about
the input, he or she may overlook cases, leaving the sys-
tem open to exploitation by inputs that target these over-
looked cases.
An appropriately designed rectifier can completely elim-
inate all of these problems by always producing correctly
formed inputs. Moreover, such a rectifier would make it
possible to completely eliminate the error checking code
altogether. The resulting benefits can include a dramatic
simplification of the input processing code and the elim-
ination of errors and vulnerabilities.

• New Input, Old System: New versions of systems often
produce data with enhanced features that old versions
are unable to correctly process. In this case rectifying
data produced by the new version may produce an input
that the old version can successfully process. Possible
motivations for continuing to use the old version include
reluctance to abandon a version that is working well, an
aversion to paying upgrade costs, or errors in the new
version that prevent it from working as well as the old
version.

• Old Input, New System: The dual problem arises when
a new version may be unable to process inputs produced
by the old version. In this case the rectifier may be able
to produce inputs that the new version can successfully
process.

1.3 Why Our Approach Makes Sense
The basic concept behind our approach is to change the en-
vironment to work around limitations or inappropriate fea-
tures of the software system. In theory, this may make little
sense. After all, software should be one of the most flexible
technologies ever developed — the medium itself is extraor-
dinarily malleable, and changes can be implemented and dis-
seminated at little cost. It may seem that, if there is a prob-
lem, it makes more sense to change the software to deal with
the environment rather than the other way around.

In practice, however, most deployed software systems
are extremely difficult to work with. Even if the source
code is available, the sheer size and complexity of most
systems make it virtually impossible for anyone except the
developers and maintainers to update the system. Moreover,
deployed systems vary widely in quality and are often known
to contain errors or security vulnerabilities. Nevertheless,
users are locked in — if an error or vulnerability shows
up that compromises the ability of the system to acceptably
satisfy the needs of some of its users, the users typically have
little choice except to wait for the developers to update the
software and release a new version. This situation can be
especially problematic if it takes a long time to develop and
release the updates or if the software is no longer maintained
(in which case the update may never come through).

Our proposed technique, using rectification to move in-
puts into the comfort zone of the system, can enable users to
make productive use of flawed systems by adapting the en-
vironment to eliminate problems that would otherwise make
the system difficult or even impossible to work with. As the
world becomes ever more full of large and imperfect sys-
tems, we believe that these kinds of techniques will play an
increasingly important role in keeping our software infras-
tructure functioning acceptably.

1.4 Large Systems
The primary focus of this paper is on using rectifiers at
system boundaries to move external inputs into the comfort
zone of a single system. But is of course also possible to
use rectifiers within a large system to mediate interactions
between the components of the system. In this scenario, each
rectifier would interpose itself at some abstraction layer, then
rectify information passing through that abstraction layer.

A key question is the abstraction layer and the interposi-
tion mechanism. If the components interact by reading and
writing files, the rectifier can simply read the original input
file, then write the rectified input file. The component then
reads the rectified input file instead of the original input file.
If components interact via network connections, the recti-
fier can be structured as an intermediate process that splits
the original direct connection into two connections, one of
which carries the unrectified input into the rectifier, the other
of which carries the rectified input out of the rectifier to the
component that reads it.

Other interactions can require more involved interposi-
tion mechanisms. If components interact via procedure or
system calls, for example, there are a variety of mechanisms
that one can use to intercept the calls, especially in the pres-
ence of interface structuring techniques such as the Windows
Import Address Table [11].

Rectification within a system may be especially appro-
priate if the system contains poorly understood or overly
general components whose original interfaces support much
more functionality than the system needs. It may also be a
useful way to eliminate poorly documented or poorly under-
stood parts of a component’s interface.

1.5 Simplicity in a Complex World
Our existing computing environment is the result of decades
of system evolution. The retention of features from the past
combined with the systematic and purposeful addition of
new features has produced an environment of unprecedented
complexity. Indeed, this complexity has reached the point
where it can hamper the ability of users to work productively
within the environment. Complex environments also support
complex ecosystems; our computing environment is unfortu-
nately now so complex that it supports a thriving community
of abusers who participate in the environment primarily to
exploit other users.

We believe that our approach can help simplify this com-
plex environment. Tightly focused comfort zones can elim-
inate many of the features that make modern environments
so complex. We have so far focused on how this kind of sim-
plicity can help protect users against errors and vulnerabili-
ties. But this simplicity can also reduce the cognitive load of
using the system and eliminate many of the distracting and
extraneous details that prevent users from focusing fully on
the task at hand. In the end, this may be the most important
potential benefit that our approach may have to offer.

One of the most important impediments to achieving sim-
plicity is the well-known fact that most users will almost
always choose the system that promises the most features,
even if they will never use most of the features and even if
the excess features make the system more difficult to use.
Indeed, this phenomenon may be largely responsible for
motivating organizations to relentless add new features as
their systems evolve over successive releases. Ideally, our
approach may be able to help users obtain the best of both
worlds — the burst of elation that comes from acquiring a
system that has every feature one could ever possibly desire
combined with the quiet satisfaction of using a simple sys-
tem that enables one to work smoothly and efficiently with
little excess stress and clutter.

1.6 Paper Structure
The remainder of the paper is structured as follows. In Sec-
tion 2 we present the concepts of our approach in more de-
tail. In Section 3 we discuss our experience developing a
rectifier for the Pine email client and using the rectifier to
place email messages within the Pine comfort zone. Sec-
tion 4 presents experimental results that characterize the ef-
fect of using this rectifier on a corpus of email messages. We
discuss related work in Section 5 and conclude in Section 6.

2. Conceptual Framework
We make the definition of a comfort zone precise as follows.
A comfort zone is a property of a system and a training suite.
The exercised region of the program consists of all blocks of
code that execute when the system processes inputs in the
training suite. The comfort zone is then the set of all inputs
that cause the system to remain within the exercised region
when it processes the input.

Note that it is usually important to verify that the system
behaves in an expected, acceptable way for all of the inputs
in the training suite (otherwise the comfort zone will include
inputs that can cause the system to behave in unexpected or
unacceptable ways, which is usually not the intended effect).
Also note that the same system may have different comfort
zones for different training suites — indeed, as we discuss
in Section 1.2, different comfort zones may be appropriate
in different contexts.

2.1 Feature Selection
As stated, the definition of comfort zone can be difficult to
work with — determining whether a given input is in the
comfort zone or not requires reasoning about the behavior of
the program on that input. We therefore advocate designing
rectifiers with the aid of a set of features. Each feature is
simply a property of the input. When designing a rectifier for
text inputs, for example, one might choose features such as
the presence or absence of certain characters in the inputs,
the lengths of various fields or lines, or the overall size of
the input. The features should be chosen to enable comfort
zone membership recognition — it should be possible to
determine, with high likelihood, if a given input is in the
comfort zone by simply looking at the input features rather
than at the input itself.

2.2 Constraints
Given a set of features, the next step is to select a set of con-
straints that involve the features. For example, a constraint
might require certain characters to be absent or present in
the input. Or a constraint could require the length of a given
line to be less than a certain number of characters. The con-
straints should be chosen so that if an input satisfies the con-
straints, it is highly likely to be within the comfort zone.

2.3 Constraint Enforcement
The next step is to develop transformations that, together,
enforce all of the constraints. There is typically one trans-
formation for each constraint; the specific algorithm that
the transformation employs typically depends on the con-
straint. If a constraint states that certain characters must not
be present in the input, for example, the corresponding trans-
formation could simply delete all such characters from the
input. Or if a constraint requires all lines to be less than a
certain number of characters long, the transformation could
either truncate overly long lines or insert line breaks to bring
all lines within the stated limit.

One obvious goal is that the transformations should at-
tempt to preserve as much information from the original in-
put as possible. In particular, it would be desirable for the
transformations to leave inputs intact if they do not violate
any of the constraints. We anticipate that the precise transfor-
mation algorithms will vary depending on the kind of con-
straints they are intended to enforce and the context in which
they will be used.

Finally, the transformations should generate a record of
the changes they make. The rectifier will later combine these
records to make a rectification report for each input. Users
can access this report to obtain an understanding of the effect
of applying the transformation.

2.4 Rectification
The next step is to bundle all of the transformations together
to obtain a rectifier. The rectifier applies the transformations
in turn to each input to ensure that the input satisfies all of

the constraints. It also combines the modification records to
generate the rectification report. The rectifier is then inserted
between the input generators and the system so that it recti-
fies all inputs before the input processes them.

2.5 Monitoring
We expect that in most cases the constraints will mostly, but
not completely, characterize the comfort zone. We therefore
monitor the execution of the system as it processes each in-
put to find any violations of the exercised region. The re-
sponse to such violations varies depending on the context.
In some cases it may make sense to query the user to see if
the behavior of the program was acceptable in spite of the
violation. If so, it may make sense to add the newly exe-
cuted blocks of code to the executed region. In other cases
users may be willing to live with small violations of the exe-
cuted region (as measured by the number of newly executed
blocks). In yet other cases it may make sense to terminate
the program before it can execute any block outside the exe-
cuted region. Our implemented system supports all of these
options.

2.6 Practical Considerations
In principle, it should be possible to use any effective profil-
ing and monitoring system to find and enforce the comfort
zone. In practice there are a variety of issues that can compli-
cate these two tasks. These issues may include the difficulty
of monitoring code in dynamically-linked libraries, poor per-
formance of the monitoring system, and failure to handle all
of the features present in large systems. Fortunately, there
are a number of robust code instrumentation systems avail-
able that can effectively address these issues[17, 6, 8].

We used the DynamoRIO [17, 2] system for our experi-
ments. Instead of executing the binary directly on the pro-
cessor, DynamoRIO executes all code out of a cache of re-
cently executed code blocks. When DynamoRIO encounters
a branch to a block of code that is not in the cache, it fetches
the block from the address space of the executing program
and presents it to the monitoring system. The monitoring
system can then take a variety of actions, including chang-
ing the instructions in the code block before the code block
is inserted into the cache and executes.

The DynamoRIO implementation has been engineered
over the course of several years, to the point that it is now a
robust system that fully supports Windows x86 executables.
It imposes relatively little overhead and monitors all of the
code at the application level including dynamically linked
libraries.

As the system processes the inputs in the training suite,
our comfort zone discovery system records all of the ex-
ecuted code blocks. Together, these code blocks comprise
the executed region that defines the comfort zone of the sys-
tem. During production, our monitoring system checks every
block inserted into the code cache to verify that it is part of
the executed region. If it is not, our system can either ter-

minate the system before the new block executes or simply
record the new block and let the application continue. Dy-
namoRIO supports all of these actions.

2.7 Empirical Preconditions
One of the concepts implicit in our our approach is that
each implemented system has an empirical precondition that
its inputs must satisfy for the system to execute correctly.
Unlike standard preconditions, which are typically identi-
fied during the design phase to provide the developer with
a specification of the properties that he or she can assume
that inputs will satisfy, the empirical precondition is defined
by the behavior of the system. Specifically, an input satis-
fies the empirical precondition if the program produces the
correct (or, in some contexts, an acceptable) output when it
processes the input.

Note that the presence of errors in the system can cause
the empirical precondition to be stronger than the standard
precondition — that is, there are inputs that the implemented
system 1) was designed to process correctly, but 2) fails to
process correctly in practice because of errors in the imple-
mentation.1 It is usually the case (in part because of such
errors) that nobody can completely predict the entire behav-
ioral range of a large software system. This fact means that
the empirical precondition is almost always only partially
known to the users and developers of the program. It is also
only partially known to the developer of the rectifier. The
question then becomes how does one obtain an effective rec-
tifier with only partial knowledge of the empirical precondi-
tion?

Our conceptual framework provides one answer to this
question. Specifically, use features and constraints to obtain
a (hopefully) conservative approximation to the (only par-
tially known) empirical precondition. The structure present
in this approach helps the developer of the rectifier identify
properties that characterize the kinds of common, expected
inputs that the system will have repeatedly encountered (and
therefore have been made to successfully process) in the
past. Together, these properties constitute a rectifier precon-
dition that the rectifier forces all inputs to satisfy. Given that
the rectifier developer has only partial knowledge of the em-
pirical precondition, the goal is usually to obtain a conser-
vative rectifier precondition that is, in practice, stronger than

1 Of course, it is also possible for the implemented system to exceed its
specification and process some inputs correctly even though these inputs do
not satisfy the standard precondition. This can happen if the implementor
decided to build a more general system than required, if the system is built
out of more general components than are absolutely necessary to provide
the desired functionality, if the presence of ambiguities or errors in the spec-
ification caused the developer to conservatively work from a weaker stan-
dard precondition, if the developer misunderstood the requirements, or if the
program simply happens to produce a correct output (for whatever reason)
for some inputs that do not satisfy the standard precondition. In general, we
would expect the empirical precondition and the standard precondition to be
incomparable. That is, we would expect some inputs to satisfy the standard
precondition but not the empirical precondition and vice-versa.

the empirical precondition. A strong rectifier precondition
minimizes the undesirable possibility of the system encoun-
tering an input that satisfies the rectifier precondition but not
the empirical precondition.

3. Pine Email Client
To illustrate how to apply our approach in practice, we
present our experience applying our approach to the Pine [13]
email client. Our goal is to use Pine as a simple email reader
for text messages. We explicitly wish to eliminate function-
ality associated with processing more complex types of mes-
sages (such as messages with attachments of various types).
Pine provides a variety of views for email messages. Our
goal is to support list views (a view that lists the messages in
a folder, with one line for each message) and message views
(a view that displays the contents of a single message on the
screen).

3.1 Pine Comfort Zone
The first step is to obtain a training suite of representative
messages that we can use to establish a comfort zone for
Pine. Our training suite consists of 450 email messages sent
to the author between July 1997 and February 1998. We
configure Pine to process each message in the training suite
in both the list and message views. We then record, for
each view, all of the blocks of code that Pine executes as
it processes each message.

The goal is to use our training suite to obtain complete
statement coverage for an acceptable comfort zone (in other
words, our goal is to execute every instruction required to
successfully process simple text email messages). We note
in passing that obtaining complete statement coverage for
any sizable software system is considered to be a difficult
task and that a training set of our size would usually be woe-
fully inadequate for this task. The difference is that we have
no intention of supporting the full functionality of the sys-
tem. Indeed, our goal is instead to use the rectifier to narrow
down the required functionality as much as possible. Our ex-
perimental results show that this approach can make it pos-
sible to obtain full code coverage of an acceptable part of
the system with a relatively small training suite — indeed, a
training suite so small that almost any organization consid-
ering using Pine as an email reader can easily obtain such a
training suite and verify that Pine acceptably processes the
messages in the suite.

3.2 Pine Rectifier
The Pine rectifier is designed to take arbitrary email mes-
sages and transform them into a simple text message format.
Pine (like many email clients) is designed to process mes-
sages stored in mbox format. In this format each message
starts with a line of the form From and ends with a blank line.
The message itself may have a header with various fields
such as From:, To:, etc. A blank line separates the header

from the message body. Here is a sample message stored in
mbox format [20]. Note that the From: field is distinct from
the From line that indicates the start of the email message.

From "Rectifier" Wed Dec 20 20:31:22 2006

To: me@mit.edu

From: someone@csail.mit.edu

Subject: Example

Date: Thu, 28 Aug 1997 15:15:27 -0400

This is an example of a simple text message.

Our Pine rectifier is designed to produce messages that
closely follow the format of this example.

3.2.1 Message Features
Our rectifier works with the following set of features:

• From Line: The contents of the From line.
• Header Fields: The set of fields in the header, as identi-

fied by the names of the fields as found in the header (for
example, From:, To:, etc.).

• Header Field Contents: The contents of the To:, From:,
Subject:, and Date: header fields.

• Line Lengths: The lengths of the lines in the message.
• Body Lines: The number of lines in the body of the

message.
• Characters: The characters that appear in the body of

the message.

3.2.2 Constraints
The rectifier enforces the following set of constraints:

• From Line: The From line must be:
From "Rectifier" Wed Dec 20 20:31:22 2006.

• Header Fields: The message contains a To:, a From:, a
Subject:, and a Date: field, in that order. It contains no
other fields.

• To: Field: The To: field consists of a single line con-
taining a sequence of comma-separated email addresses.
Each email address must be in a form similar to the ad-
dress me@mit.edu. Specifically, each email address must
match the following Perl[10] match expression:
/(\w[-.\w]+\@[-.\w]+\.\w{2,3})\W/

• From: Field: The From: field consists of a single email
address in the same form as the email addresses in the
To: field.

• Subject: Field: The Subject: field may contain only
“reasonable” characters. Specifically, the subject field
may contain only the characters identified by the follow-
ing Perl character expression:
\n !”#&’()*+,\-.\/0-9:;<>?@A-Za-z[] ~

• Date Field: The Date: field consists of a single line in a
form similar to Thu, 28 Aug 1997 15:15:27 -0400.
Specifically, the date consists of a three-character day,
a one or two digit day of the month, a three-character
month, a four-digit year, a time specifier consisting of
three two-digit time components separated by colons, and
a five-character time zone specifier.

• Line Lengths: No line in the message exceeds 80 char-
acters in length.

• Body Lines: The body of the message contains no more
than 10,000 lines.

• Characters: The message body contains only “reason-
able” characters. Specifically, the message body may
contain only the characters identified by the following
Perl character expression:
\n\t !”#$%&’()*+,\-.\/0-9:;<=>?@A-Z[\\]ˆ ‘a-z{|}~

3.2.3 Constraint Enforcement
The rectifier processes each message to enforce the con-
straints as follows. It is structured as a pipeline of two trans-
formers, the attachment transformer and the content trans-
former. The attachment transformer processes the message
to eliminate all attachments. It expands all plain text attach-
ments into the body of the message and deletes all other
attachments, leaving behind a line in the body of the mes-
sage indicating that the attachment was deleted. Both the at-
tachment transformer and the content transformer are imple-
mented in Perl. The attachment transformer consists of 94
lines of Perl code; the content transformer consists of 151
lines of Perl code. We note that these transformers are small
enough for even organizations with few resources to develop
and/or inspect to gain trust in the rectifier.

As the content transformer processes the message header,
it looks for the To:, From:, Subject:, and Date: fields.
When it encounters the line containing the To: field, it looks
for consecutive, non-overlapping substrings within the line
that match the email address pattern described above in Sec-
tion 3.2.2. It then stores a comma-separated list of these sub-
strings, omitting any substrings that would cause the pro-
duced To: field to exceed 80 characters in length. Similarly,
when it encounters the line containing the From: field, it
looks for the first substring within the line that matches the
email address pattern described above in Section 3.2.2. It
then stores the substring.

When the content transformer encounters the Date: field,
it looks for a substring that matches the date pattern de-
scribed above in Section 3.2.2. It then stores the substring.
Finally, when it encounters the line containing the Subject:
field, it removes any “unreasonable” characters (as defined
above in Section 3.2.2) and, if necessary, truncates the line
at 80 characters. It then stores the line away.

When the content transformer reaches the end of the mes-
sage header, it prints out, in order, the From line described
above in Section 3.2.2, a To: field containing the stored list

of email addresses, a From: field containing the stored email
addresses, a Subject: field containing the stored subject
string, and a Date: field containing the stored date. If the
rectifier fails to find a field as it processes the header, or if
a field fails to contain any of the substrings that the trans-
former looks for, the transformer simply prints out a de-
fault field that satisfies the field constraints. Note that this
approach results in the deletion of any line in the header that
is not in one of the fields that the transformer looks for.

As the content transformer processes the body of the mes-
sage, it removes any “unreasonable” characters (as defined
above in Section 3.2.2). It also inserts line breaks as neces-
sary to keep all of the lines in the body less than 80 charac-
ters in length. Finally, it keeps track of the number of lines in
the body, truncating the message when the number of lines
reaches 10,000.

3.2.4 Report Generation
For each message, the attachment transformer produces a
report indicating how many attachments it found, how many
attachments it deleted, and (implicitly) how many plain
text attachments it expanded into the body of the message.
The content transformer produces a report indicating which
header lines it removed, which header lines it changed, how
many body characters it removed, how many newlines it in-
serted into the body, and how many lines it dropped if it
truncated the body. The user can examine this report and
if desired, use an appropriate tool (such as a text editor or
the Unix cat command) to examine the original message
(the transformers preserve this message) for more details.
The user can also use a separate tool to extract any attach-
ments or even (if he or she is feeling lucky and is sufficiently
motivated) use an email reader to view the original message.

4. Experimental Results
To evaluate the effectiveness of our rectifier in moving mes-
sages into the comfort zone while preserving an acceptable
amount of information from the original messages, we ap-
plied our rectifier to several test collections of messages. We
used Pine on our training suite of 450 messages to estab-
lish a comfort zone for both list views and message views.
We then applied Pine to the messages in our test collections
both before and after rectification, testing both the list view
and the message view for each message. We ran Pine under
the control of our monitoring system, counting the number
of executed blocks not in the exercised region (instead of
terminating Pine as soon as it attempted to execute the first
such block). Here are the test collections we used:

• Normal: A set of 40 “normal” messages sent to the au-
thor in January and February of 1998. These messages
were the next 40 messages received after the 450 mes-
sages in the training suite.

• Unusual: A set of 40 “unusual” messages received by the
author between January and April of 2002. We selected

this set by first running Pine on 6497 messages received
between 1997 to 2001 (without rectification), recording
the executed blocks of code, then selecting messages
from among 2167 messages received between January
and April of 2002 that caused Pine to execute new blocks
of code. The goal was to obtain a set of outlier messages
that exercise rarely executed blocks of code.

• Exploit: A message that exploits a vulnerability in cer-
tain versions of Pine. Pine version 4.44 has a string over-
flow vulnerability associated with a failure to allocate
enough memory to hold a parsed string corresponding to
certain From: fields in the list view [12]. We obtained
Pine version 4.64, reinserted the vulnerability from ver-
sion 4.44 (this vulnerability was removed between ver-
sion 4.44 and version 4.64), and used this version of Pine
in all of our experiments.
We obtained a message that exploited this vulnerability
and verified that it caused Pine to crash when it attempted
to create a list view including this message. We verified
that if someone sends this message to a user running
a version of Pine with the vulnerability, it will cause
Pine to crash as soon as the user attempts to view the
list of new messages. While we did not verify that it is
possible to exploit this vulnerability to execute arbitrary
injected code, it is typically possible to exploit this kind
of vulnerability for this purpose.

4.1 Normal Message Set
None of the unrectified versions of the normal messages are
in Pine’s comfort zone. The new block counts for the list
view range from a high of 130 new blocks to a low of 68
new blocks with a median of 93 new blocks. The new block
counts for the message view range from a high of 1233 (this
is a significant outlier; the next highest new block count is
212) to a low of 68 with a median of 100 new blocks. We
attribute this result to the fact that the content transformer
discards information from the header of every message in
the normal message set. Common kinds of discarded infor-
mation include the name of the sender (headers often con-
tain this information in addition to the email address of the
sender) and various header lines that summarize various as-
pects of the message content and history (for example, if the
message was sent as a reply to some other message). The
rectifier had made almost no changes to the message bod-
ies — with one exception, it left all of the message bodies
unchanged. For that message body it expanded a text attach-
ment and removed an HTML attachment.

After rectification, all of the normal messages are in the
comfort zone for both views — Pine can successfully pro-
cess all of the messages without executing any new blocks
at all.

4.2 Unusual Message Set
None of the unrectified versions of the unusual messages
are in Pine’s comfort zone. The new block counts for the
list view range from a high of 296 new blocks to a low
of 108 new blocks with a median of 142 new blocks. The
new block counts for the message view range from a high of
338 to a low of 129 with a median of 176 new blocks. Note
that the new block counts are generally higher than for the
normal message set, with the exception of the outlier high
new block count of 1233 for the normal message view. Upon
inspection, it is clear that the unusual messages tend to have
unusual features such as strange characters in the message
headers, HTML message bodies, complicated attachments,
and long provenance information. The unusual nature of the
messages is reflected in the increased new block counts in
comparison with the messages in the normal message set.

After rectification, all but one of the 40 messages is in the
comfort zone for the list view (this message causes Pine to
execute 7 new blocks); all but three messages are in the com-
fort zone for the message view (these messages cause Pine
to execute 15, 15, and 7 new blocks). The two messages that
cause the Pine message view to execute 15 new blocks ap-
pear to be two versions of the same message. This message
has a fairly unusual HTML body. The single message that
caused both the list view and the message view to execute 7
new blocks also has an unusual HTML body. Potential op-
tions for moving these messages into the comfort zone in-
clude adding more messages with HTML bodies to the test
collection of messages or developing a rectifier that elimi-
nates all but the most basic HTML commands. We would
recommend the second option since it reduces the size of
the exercised region while preserving much of the important
information in the original messages.

4.3 Exploit Message Set
The unrectified exploit message causes Pine to execute 441
new code blocks. After rectification the message is in Pine’s
comfort zone. The key change is the replacement of the
From: field in the original message header (which does not
comprise a standard email address) with the default From:
field. The rectifier left the message body unchanged (the
message body is not involved in the exploit and exhibits no
unusual features). We note that the version of DynamoRIO
that we are using will successfully intercept and prevent
remote code injection attacks [17, 2]. We also note that
any monitor that terminates the execution as soon as the
application attempts to execute a new code block will also
intercept and prevent such attacks.

An examination of the code that the exploit triggers
shows that the rectifier will never produce an input that
would trigger the exploit — to trigger the exploit, the From:
field of the message must contain backslash characters. The
rectifier will never produce a From: field that has such char-
acters.

4.4 Discussion
From our perspective, our rectifier is fairly aggressive, at
least as applied to the header of the message. As it enforces
its tightly constrained header format, it will modify virtually
all messages encountered in practice. Nevertheless, it still
manages to maintain the most important information in the
header — the sender’s email address (required to reply to
messages), the email address to which the message was sent,
and the date and subject. It is of course possible to develop
a rectifier that preserves more of the structure of the header.
The trade-off is that such a rectifier would produce a wider
range of headers, which would, in turn, require a larger
training suite to obtain an acceptable comfort zone. Our
inclination is to minimize the size of the required comfort
zone and the size of the corresponding training suite by
making the rectifier as aggressive as possible.

The starting point of our research is that one can almost
always find inputs that existing systems fail to process ac-
ceptably. But for our proposed approach to work, the recti-
fier itself must be able to correctly process every conceiv-
able input. One may legitimately wonder why it is feasible
to construct rectifiers that accomplish this goal when it is
apparently so difficult to construct systems that do so.

There are several reasons why we believe it is feasible to
build successful rectifiers. First, the rectifier is under no obli-
gation to preserve all of the information in the input. Unlike
the system, which has usually been designed to provide as
many features as possible and therefore aspires to support
a broad range of inputs, the rectifier can focus on extract-
ing only those pieces of information that it needs to gener-
ate its tightly focused set of inputs. Second, the rectifier is
a stand-alone system with a clear, narrow goal. Unlike the
developers of the system, the developer of the rectifier can
focus on this goal in isolation, free of the distractions and
requirements of operating within a larger development en-
vironment. Also unlike the developers of the system, who
must typically use a general-purpose language that has been
designed to support a wide range of programs, the developer
of the rectifier can use a language and development style tai-
lored to support the specific kinds of tasks that the rectifier
must perform. We elaborate on these points further below.

One of the keys to building successful rectifiers is to iden-
tify a tightly constrained input format (substantially more
constrained than most current systems are designed to pro-
cess) for the rectifier to produce. Ideally this input format
would take the form of a template with slots for items from
the original input. Once this rigid format is in place, the rec-
tifier can use pattern matching to carefully chose pieces of
the original input to place into the slots in the template. Ev-
erything else in the original input is simply discarded.

Our content transformer uses this approach to generate
a highly constrained class of headers. Because it uses only
the most basic functionality, users can have a high degree
of confidence that the email client will be able to process

the generated headers without problems. Of course, there is
a trade-off — most email clients are designed to support
a much broader class of headers. With our approach the
functionality associated with this broader class is, by design,
unavailable.

Pine is, like many existing systems, coded in the C pro-
gramming language. C is notoriously ill-suited for the kinds
of text processing tasks that the rectifier must perform. And,
in fact, the version of Pine that we used in our experiments
exhibits a classic string overflow error in which the devel-
oper failed to allocate a string large enough to hold all po-
tential inputs. Our rectifier, on the other hand, is written in
a scripting language (Perl) specifically suited for string pro-
cessing. Because many of Perl’s constructs support the kinds
of string-processing tasks that the transformers must per-
form, it is relatively easy to develop the transformers and,
we believe, the transformers tend to have fewer errors than
they would if they were developed in a language with less
support for this specific task. Moreover, the Perl language
model completely eliminates some common kinds of errors
(such as string overflow errors) that can easily occur when
coding up these kinds of tasks in C. Our experience devel-
oping the Pine rectifier supports these points — we found
Perl to be well-suited to the task of quickly writing a small
(less than 250 lines of code) rectifier. We believe that coding
up the rectifier in C would have required substantially more
time and effort.

5. Related Work
Email is one of the most prominent interfaces between users
and the external world and one of the most widely used at-
tack carriers. The ubiquity of email and its abuse have in-
spired the development of a range of email filtering tech-
nologies, the most widely used of which are spam filters and
virus filters. The goal of both of these filtering technologies
is to intercept and eliminate problematic email messages be-
fore they are presented to the email client.

Standard spam filtering techniques use feature extraction
and machine learning to automatically recognize messages
that are likely to be spam[1]. Virus filters often use virus sig-
natures to recognize message that may contain viruses [9].
The drawback of this approach is that new viruses may avoid
the virus signature databases, which only contain signatures
of known viruses. Another approach is to simply remove at-
tachments of file types (such as .scr or .js) that have been
known to carry viruses. Yet another approach is to have the
email client associate document types (such as Microsoft
Office documents) that have been used in the past to carry
viruses with non-standard programs that may be less vul-
nerable to the viruses. So, for example, one might associate
Word files with WordPad instead of Word because WordPad
does not execute macros in Word files (which may contain
viruses that are activated when the macro is executed). We
note that this last example shows how excess functionality
can become a serious liability for users of the system.

Unlike spam and virus filters, our goal is not to eliminate
problematic messages before they reach the email client. In-
stead, our goal is to use rectification to make every message
innocuous so that it can be safely presented to the email
client. By monitoring the email client as it processes mes-
sages, we can automatically detect comfort zone violations
and, if desired, abort the computation before any undesirable
functionality can be triggered. Despite these differences,
there are also some conceptual similarities between the ap-
proaches. One could view the application of monitoring to
confine the system to its exercised region as an automated
way of obtaining a new system without the harmful excess
functionality present in the original system. This could be
viewed as similar in spirit to associating certain kinds of doc-
ument types with alternate programs in the email client, but
with the advantage that it does not require the availability of
a separate system.

The pervasive presence of Internet attacks has motivated
the development of a variety of tools to filter out such at-
tacks. Firewalls, for example, are often configured to discard
packets incoming on ports that attacks have successfully tar-
geted in the past [19]. Conceptually, one can view blocking
certain ports as a coarse-grain form of rectification that is
designed to completely eliminate access to the services typ-
ically present on those ports. Our approach is designed to
operate at a much finer granularity to enable access to a sim-
ple part of a complex monolithic application implemented
as a single binary. Firewalls can also blacklist IP or MAC
addresses. While it would be possible to develop rectifiers
that perform similar actions based on the identity of the in-
put source, our basic philosophy is to, whenever possible,
present the transformed input to the target system. We there-
fore see rectification as discussed in this paper as orthogonal
and complementary to techniques that discard inputs based
on the identity of the input source.

Web browsers can often be configured to block or disable
certain potentially problematic features such as pop-ups and
cookies [5]. Rectifiers can provide similar functionality by
eliminating these features as they arrive in the input.

We understand that input format mismatches and other
input anomalies occur frequently when people use comput-
ers, and that various input conversion programs are often
used to make it possible to successfully process otherwise
problematic inputs. Our goal is much broader. Specifically,
we aim to significantly limit the functionality that the in-
puts exercise and are willing, within reason, to discard in-
formation to accomplish this goal. Moreover, we advocate
the pervasive and aggressive use of rectification as a means
to simplify the overall computing environment. The benefits
of our approach include the ability to use existing complex,
functionality-laden systems in simple ways without risking
exposure to errors or vulnerabilities that lie outside the ex-
ercised region and a reduced cognitive load on the users and
maintainers of the computing environment.

Input rectification can be seen as a form of acceptability-
oriented computing [14, 15]. Specifically, the set of con-
straints that the rectifier enforces can be seen as a set of
acceptability properties that every input must satisfy to be
acceptable. Input rectification is also similar in spirit to data
structure repair [4] in that it enforces a set of properties
whose violation might otherwise cause problems for the sys-
tem. One difference is that the goal of data structure repair
is to keep a system executing acceptably even though it en-
counters errors that corrupt its data structures. The goal of
input rectification, on the other hand, is to move inputs into
the system’s sweet spot to avoid encountering errors in the
first place.

Common Lisp and ZetaLisp lambda-lists enable a func-
tion to treat its argument list as data [16]. My understanding
is that this feature was used to develop functions that exam-
ined and, if necessary, changed argument lists to values that
invoked functions could successfully handle.

6. Conclusion
The complexity of the systems in our current computing en-
vironment leads inevitably to errors, security vulnerabilities,
and a large cognitive burden on users. Despite these prob-
lems, users are locked in — it is usually close to unthinkable
to attempt to build a simpler environment (or even signif-
icant components of a simpler environment) from scratch.
But hidden within almost every large, complex system is a
well-tested core that almost always performs acceptably. The
identification and enforcement of appropriate comfort zones
can extract these cores and eliminate the excess function-
ality (along with the associated errors and vulnerabilities)
currently present in virtually every deployed system.

As always, simplicity requires renunciation. The in-
evitable price for this reduction in complexity is the elim-
ination of information that would otherwise exercise the dis-
carded functionality. Based on our experience with the Pine
email rectifier, we expect that it will be possible, in many
cases, to obtain a simple rectifier that successfully moves
inputs into the comfort zone while preserving the most im-
portant information. The pervasive adoption of such recti-
fiers may dramatically simplify our computing environment
and eliminate frustrating or even dangerous problems while
preserving the key benefits that it delivers to its users.

7. Acknowledgements
I would like to thank Sam Larsen for his invaluable help with
DynamoRIO. The implemented comfort zone discovery and
monitoring system uses a (slightly modified) hash table im-
plementation developed by Christopher Clark [3].

References
[1] Apache SpamAssassin Project.

http://www.spamassassin.apache.com.

[2] Derek Bruening. Efficient, Transparent, and Comprehensive
Runtime Code Manipulation. PhD thesis, Massachusets
Institute of Technology, September 2004.

[3] Christoper Clark. Hash table implementation.
http://www.cl.cam.ac.uk/˜cwc22/hashtable/.

[4] Brian Demsky and Martin Rinard. Data structure repair
using goal-directed reasoning. In Proceedings of the 2005
International Conference on Software Engineering , St. Louis,
MO, May 2005.

[5] Firefox Options Page.
http://www.mozilla.org/support/firefox/options.

[6] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil,
Artur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa
Reddi, and Kim Hazelwood. Pin: Building Customized
Program Analysis Tools with Dynamic Instrumentation.
In Proceedings of the ACM SIGPLAN 2005 Conference on
Programming Language Design and Implementation (PLDI),
Chicago, IL, June 2005.

[7] Microsoft word scripting vulnerability.
http://www.microsoft.com/technet/security/Bulletin/MS02-021.mspx.

[8] Nicholas Nethercote and Julian Seward. Valgrind: A Frame-
work for Heavyweight Dynamic Binary Instrumentation. In
Proceedings of the ACM SIGPLAN 2007 Conference on Pro-
gramming Language Design and Implementation (PLDI), San
Diego, CA, June 2007.

[9] Norton AntiVirus, marketed by Symantec.
http://www.symantec.com.

[10] Perl website. http://www.perl.com.

[11] Matt Pietrek. Windows 95 Programming Secrets. John Wiley
& Sons, November 1995.

[12] Pine exploit. www.securityfocus.com/bid/6120/discussion.

[13] Pine website. www.washington.edu/pine/.

[14] Martin Rinard. Acceptability-oriented computing. In 2003
ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages, and Applications Companion
(OOPSLA ’03 Companion), Anaheim, CA, October 2003.

[15] Martin Rinard, Cristian Cadar, and Huu Hai Nguyen.
Exploring the acceptability envelope. In 2005 ACM
SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications Companion (OOPSLA
’05 Companion) , San Diego, CA, October 2005.

[16] G. Steele and R. Gabriel. The evolution of lisp. In Proceedings
of the Second ACM SIGPLAN Conference on the History of
Programming Languages, Cambridge, MA, April 1993.

[17] Gregory Sullivan, Derek Bruening, Iris Baron, Timothy Gar-
nett, and Saman Amarasinghe. Dynamic native optimization
of interpreters. In Proceedings of the ACM Workshop on In-
terpreters, Virtual Machines, and Emulators (IVME-03), San
Diego, CA, June 2003.

[18] Wikipedia Buffer Overflow Article.
http://en.wikipedia.org/wiki/Buffer overflow.

[19] Wikipedia Firewall Article.
http://en.wikipedia.org/wiki/Firewall (networking).

[20] Wikipedia Mbox Article.
http://en.wikipedia.org/wiki/Mbox.

