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Abstract
We present Topaz, a new task-based language for compu-
tations that execute on approximate computing platforms
that may occasionally produce arbitrarily inaccurate results.
Topaz maps tasks onto the approximate hardware and inte-
grates the generated results into the main computation. To
prevent unacceptably inaccurate task results from corrupt-
ing the main computation, Topaz deploys a novel outlier de-
tection mechanism that recognizes and precisely reexecutes
outlier tasks. Outlier detection enables Topaz to work effec-
tively with approximate hardware platforms that have com-
plex fault characteristics, including platforms with bit pat-
tern dependent faults (in which the presence of faults may
depend on values stored in adjacent memory cells). Our ex-
perimental results show that, for our set of benchmark appli-
cations, outlier detection enables Topaz to deliver acceptably
accurate results (less than 1% error) on our target approxi-
mate hardware platforms. Depending on the application and
the hardware platform, the overall energy savings range from
5 to 13 percent. Without outlier detection, only one of the
applications produces acceptably accurate results.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Processors – Optimization

General Terms Languages, Reliability, Performance

Keywords Approximate Computing, Control Systems, Dy-
namic Systems

1. Introduction
Errors and approximation are fundamental concerns in com-
puting. Although many applications can easily tolerate rea-
sonable errors and approximations, developers today design
applications with the expectation that they will execute on
precise, error-free computing platforms.

Motivated by the benefits available via relaxing strin-
gent correctness and precision requirements, researchers
have proposed a variety of approximate computing plat-
forms [6, 9, 10, 19, 22, 26, 28, 30, 36, 45, 47]. Many of
these platforms are populated with components that feature
higher error rates and/or less accurate execution in return for
reduced energy consumption and/or increased performance.
Despite the significant amount of research in this area, no
unified model has emerged that can provide predictable re-
liability or approximation guarantees. Moreover, many ap-
proximate components (such as approximate memories and
caches) exhibit complex fault behavior and can easily deliver
arbitrarily unreliable or inaccurate results. To execute suc-
cessfully on such platforms, applications require techniques
that can successfully mitigate large errors that would other-
wise produce unacceptably inaccurate end-to-end results.

1.1 Topaz
We present Topaz, a new language for approximate comput-
ing. Unlike many previous languages and systems, Topaz is
designed to deliver acceptably accurate end-to-end execu-
tion even on approximate computing platforms with com-
plex fault characteristics and arbitrarily inaccurate results.
Topaz structures the computation as (1) a main computation
that executes precisely without error and (2) sets of small,
self-contained, correctable approximate tasks whose results
are integrated into the main computation. Topaz utilizes out-
lier detectors, which recognize and precisely reexecute tasks
with unacceptably accurate results, to enable Topaz pro-
grams to execute successfully even on challenging platforms
with large errors and inaccurate approximations.

We evaluate Topaz on a set of benchmark approximate
applications running on two simulated approximate hard-
ware platforms. The results indicate:

• Critical Regions: The main computations of all of
the applications contain critical regions that must exe-
cute precisely without error (otherwise the application
crashes).
• Outlier Detection: While the outlier detector rejects at

most a few percent of the tasks, including the results
from this small number of rejected tasks into the main
computation produces unacceptably inaccurate end-to-
end results.



• Acceptable Accuracy: Outlier detection plus reexecu-
tion produces end-to-end results that are within a frac-
tion of a percent of the correct results produced by fully
precise execution.
• Energy Efficiency: On our two simulated approximate

hardware platforms, Topaz delivers energy savings of
between 5 and 13 percent (out of a maximum achievable
energy savings of 19.23 percent).

Together, these facts highlight how Topaz, by enabling ap-
proximate applications to execute successfully despite arbi-
trarily inaccurate results, effectively supports current and fu-
ture approximate platforms and maximizes the design space
available to developers of new approximate platforms.

1.2 Potential Benefits
In this paper we focus on energy efficiency. However, en-
ergy efficiency is only one of multiple potential benefits that
approximate computing with Topaz can deliver:

• Successful Execution on Current Hardware: In prac-
tice, hardware faults in current hardware platforms are far
more common than initially thought [21, 38, 43]. Topaz
can enhance the ability of applications to execute suc-
cessfully on current hardware platforms despite the pres-
ence of these errors.
• Reduced Design and Test Effort: Vendors currently ex-

pend significant design and test resources in an attempt to
minimize defects in shipped components. By increasing
error tolerance, Topaz can help vendors reduce the design
and test effort required to obtain acceptable components.
We note that it is possible to apply this approach to both
hardware and software components.
• Increased Yield: Vendors currently discard a substantial

percentage of hardware components because of manufac-
turing defects [24]. Topaz can help increase the effective
yield by enabling vendors to salvage and redeploy defec-
tive components to execute approximate tasks.
• New Hardware Substrates: Revolutionary new hard-

ware substrates (such as carbon nanotubes) feature far su-
perior energy consumption profiles but less reliable fab-
rication characteristics than standard substrates [40]. By
reducing the reliability requirements of components that
execute approximate tasks, Topaz can help enable the de-
ployment of components built from these new substrates.
• New Software Marketing Models: While this paper fo-

cuses on approximate hardware platforms, Topaz also
enables new, more flexible pricing models for software
components. Maximally accurate/reliable versions would
command the highest prices, with less accurate/reliable
versions available at less cost. To avoid the expense of
multiple development efforts, vendors could use purpose-
ful detuning to produce cheaper, less accurate/reliable
versions of a single base software product.

All of these benefits address current issues in hardware and
software design, development, and manufacture. And given
technology trends that emphasize increased functionality
and complexity, smaller feature sizes, and energy efficiency,
these issues will only increase in importance in the future.

1.3 Approximate Checkers and AOVs
The Topaz outlier detectors use approximate checkers to
deliver acceptably accurate computations on approximate
computing platforms with complex approximation and error
characteristics. Previous research focuses on exact check-
ers [3, 6, 20], which must efficiently determine whether a
given result is correct or incorrect. Approximate checkers,
in contrast, only aspire to check if the result is accurate
enough. This additional flexibility makes it possible to de-
velop checkers for a much broader range of computations.

It is possible to perform outlier detection directly on the
raw task results. But to facilitate more efficient and effec-
tive outlier detection, Topaz first works with the task inputs
and results to compute abstract output vectors (AOVs). Each
AOV is a vector of numbers upon which the outlier detector
operates. AOVs typically select relevant results and combine
results (typically via a reduction such as summing the re-
sults) to reduce the dimensionality of the vector on which
the outlier detector operates. Topaz also supports more spe-
cialized AOVs that exploit application semantics to more ap-
propriately abstract the task results for outlier detection.

1.4 Reexecution
When an outlier detector rejects a task, Topaz reexecutes the
task on the precise platform. It then integrates the correct re-
sult from this precise reexecution into the main computation.
This mechanism provides several benefits:

• Corrects Unacceptably Inaccurate Results: When the
approximate hardware produces an unacceptably inaccu-
rate result, the Topaz outlier detector detects and replaces
the incorrect result with the correct result.
• Learns Online: Topaz uses an online algorithm that uti-

lizes the reexecuted tasks to train the outlier detector.
There is no need for offline training.
• Adapts to Change: The outlier detector contains a con-

trol system that allows the outlier detector to adapt to the
characteristics of the tasks as they evolve over time.
• Refreshes Corrupt Data: Topaz refreshes any stable

data on the approximate machine when an error is de-
tected, eliminating any accrued data corruptions (hard-
ware platforms with approximate memories are particu-
larly vulnerable to errors that accrue over time).
• Accepts Reasonable Results: The Topaz outlier detec-

tors work with correct tasks to maintain ranges of data
within which they expect acceptable tasks to fall. Any
false negative tasks (incorrect tasks that the outlier de-
tector accepts) therefore produce results that are close to
the results that correct tasks produce. This strategy inter-



acts well with the characteristics of our set of target ap-
proximate computations, which easily tolerate small de-
viations from correct task results.

The drawback of reexecution, of course, is the energy re-
quired to reexecute the task. Topaz must therefore reexecute
few enough tasks to deliver significant energy savings.

1.5 Topaz Task Design Rationale
Topaz tasks enable Topaz to work with a wide range of
approximate computing platforms, including approximate
computing platforms that can occasionally produce wildly
inaccurate results. Long-lived computations tend to interact
poorly with such platforms — the chance of encountering a
fatal error or wildly inaccurate intermediate result that unac-
ceptably corrupts the final result can become unacceptably
high. Topaz enables developers to identify small idempotent
computations whose results can be checked for acceptability
and, if necessary, reexecuted. Topaz therefore promotes the
effective decomposition of the computation into small cor-
rectable pieces that can be combined to obtain an acceptably
accurate final result [42].

Topaz tasks also enable Topaz to work effectively on
hardware platforms in which errors accumulate over time
(platforms with approximate caches and memories, for ex-
ample, often have this error pattern). Each Topaz task iden-
tifies stable inputs (which have the same value for multi-
ple tasks) and transient inputs (which have different values
for different tasks). The Topaz implementation transmits the
stable data only once for multiple tasks. Because Topaz re-
freshes the stable data when it detects three consecutive in-
correct tasks, it can detect and correct any stable data cor-
ruption errors soon after they begin to accumulate.

Topaz tasks also enable Topaz computations to interop-
erate well with approximate components that may sporad-
ically fail or require periodic microreboots. Because Topaz
tasks implement small standalone pieces of computation that
can typically complete before a failure or microreboot inter-
rupts their execution, they can effectively exploit unreliable
computing platforms with these kinds of components.

1.6 Contributions
This paper makes the following contributions:

• Topaz: It presents Topaz, a task-based language for ap-
proximate computation. Topaz supports a reliable main
computation and approximate tasks that can execute on
approximate computing platforms.
The Topaz language design exposes a key computational
pattern (small, self-contained, correctable tasks) that en-
ables the successful utilization of approximate computing
platforms that may produce arbitrarily inaccurate results.
• Adaptive Outlier Detection: Approximate computa-

tions must deliver acceptably accurate results. The Topaz
implementation uses outlier detection to ensure that un-
acceptably inaccurate task results are not integrated into
the main computation.

• Abstract Output Vectors (AOVs): It presents AOVs,
which produce abstract versions of task results appropri-
ate for efficient and effective outlier detection.
• Precise Outlier Task Reexecution: Topaz reliably re-

executes outlier tasks and integrates the resulting correct
results into the computation. This strategy delivers a rela-
tively low reexecution rate while detecting and correcting
results that might otherwise unacceptably affect the final
result.
• Experimental Evaluation: We evaluate Topaz on a set

of benchmark Topaz programs executing on two approx-
imate computing platforms. The results show that outlier
detection and reexecution enables Topaz to deliver ac-
ceptably accurate end-to-end results (less than 1% error)
and energy savings of between 5 and 13 percent depend-
ing on the benchmark and the hardware platform.

Topaz provides a new, task-based model of approximate
computation that can successfully exploit approximate com-
putational platforms that may deliver arbitrarily inaccurate
results. Our experimental evaluation provides facts that jus-
tify the Topaz language design and characterizes the ability
of Topaz to deliver acceptably accurate, energy-efficient ap-
proximate computations.

2. Example
We next present an example that illustrates (1) how to ex-
press a computation in Topaz and (2) the resulting Topaz
execution on an approximate computing platform.

// computes the weights for each valid pose.

taskset calcweights(i=0; i < particles.size(); i+=1){

compute in (

float tpartP_SIZE = (float*) particlesi,

const float tmodelM_SIZE = (float*) mdl_prim,

const char timgI_SIZE = (char *) img_prim,

const int nCams = mModel->NCameras(),

const int nBits = mModel->getBytesPerPixel(),

const int width = mModel->getWidth(),

const int height =mModel->getHeight()

) out (float tweight) {

tweight = CalcWeight(tpart,

tmodel, timg, nCams, width, height, nBits);

} transform out (bweight, bp1, bp2, bp3) {

bweight = tweight;

bp1=tpart3; bp2=tpart4; bp3=tpart5;

} combine {

mWeightsi = tweight;

}

}

Figure 1: Example Topaz Program

2.1 Example Topaz Program
Bodytrack is a machine vision application from the Par-
sec benchmark suite [2]. In each step, bodytrack computes
the estimated position of a human in a frame [2]. Figure 1
presents the bodytrack calcweights computation. Given a
tracking model, this computation scores the fit of each pose



(a) Precise Execution (b) No Outlier Detection (c) Outlier Detection

Figure 2: Output Quality for Bodytrack

in a set of poses against an image. The computation is imple-
mented as a set of Topaz tasks defined by the Topaz taskset
construct. When it executes, the taskset generates a set of
tasks, each of which executes three main components: the
task compute block (which defines the approximate compu-
tation of the task), transform block (which defines an out-
put abstraction), and combine block (which integrates the
computed result into the main computation).

compute block: The compute block defines the inputs
(with section in), outputs (with section out) and compu-
tation (following code block) associated with an approxi-
mate task. In our example, the compute block computes the
weight for a particular pose by invoking the CalcWeight

function, which is a standard C function. The taskset ex-
ecutes a compute task for each pose. In total, it executes
particles.size() tasks.

Each task takes as input two kinds of data: stable data,
which has the same value for all tasks in the taskset (stable
data is identified with the const keyword) and transient
data (which may have different values for each task in the
taskset). In our example each task has one transient input,
tpart (which identifies the pose to score) and several stable
inputs (that remain unchanged throughout the lifetime of the
taskset): (1) tmodel, the model information (2) timg, the
frame to process, (3) nCams, the number of cameras, and (4)
nBits, the bit depth of the image. The task produces one
result: tweight,

transform block: The transform construct defines the
AOV, which captures the key features of the task result.
Topaz performs outlier detection on this AOV when the task
finishes execution. In this example we use the pose position
from the task input (bp1,bp2,bp3) and pose weight from
the task result (bweight) as the AOV.

combine block: When the task completes, its combine

block executes to incorporate the results from the out pa-
rameters into the main Topaz computation (provided the out-
lier detector accepts the task). In our example, the combine
block updates the mWeights global program variable.

2.2 Approximate Execution
The current Topaz implementation runs on an approximate
computing platform with a precise processor and an approx-
imate processor. The precise processor executes all non-
taskset code and the transform and combine blocks of
executed tasks. The approximate processor executes the
compute bodies of the executed tasks. Since the taskset

construct is executed approximately, the computed results
may be inaccurate. In our example the task result, tweight
(the computed pose weight), may be inaccurate. That is, the
computed pose may be assigned an inappropriately high or
low weight for the provided frame.

If integrated into the main computation, significantly in-
accurate tasks can unacceptably corrupt the end-to-end re-
sult that the program produces. In our example, the combine
blocks write the computed weights into a persistent weight
array mWeights. Bodytrack uses this weight array to select
the highest weighted pose for each frame. If the computation
incorporates an incorrect weight, it may select an incorrect
pose as the best pose for the frame.

2.3 Outlier Detection
Topaz therefore deploys an outlier detector that is designed
to detect tasks that produce unacceptably inaccurate re-
sults. The outlier detector uses the user defined transform

block to convert the task inputs and results into a numeri-
cal vector, which we call the abstract output vector (AOV).
This vector captures the key features of the task result. The
transform block in our example defines a four dimensional
AOV <bweight,bp1,bp2,bp3> comprised of the weight
and pose position. We use this abstraction because we ex-
pect poses in the same location to be scored similarly.

The outlier detector uses this numerical vector to perform
outlier detection online (see Section 5.4 for more details).
The outlier detector accepts correct AOVs and rejects AOVs
that are outliers. In our example, the outlier detector rejects
tasks that produce high weights for bad poses – poses that are
positioned in parts of the frame without a person. Similarly,
the outlier detector rejects tasks that produce low weights for
good poses – poses near the person.



2.4 Precise Reexecution
When the outlier detector rejects a task, Topaz precisely re-
executes the task on the precise processor to obtain the cor-
rect task result, which it then integrates into the main com-
putation. The numerical vector attained by transforming the
task result is used to further update the outlier detector. To
minimize any error-related skew, Topaz uses only correct re-
sults attained via reexecution to train the outlier detector. In
our example, the tasks that assign abnormally high weights
to bad poses or low weights to good poses are rejected and
reexecuted. After all task results have been integrated and
the taskset has completed execution, the highest weight in
the persistent weight array belongs to a pose close to the
correct one. This technique maximizes the accuracy of the
overall computation.

Figure 2a presents the correct pose for a particular video
frame when the computation has no error. Figure 2b presents
the selected pose for the same frame run on approximate
hardware with no outlier detection. Note that the selected
pose is unacceptably inaccurate and does not even loosely
cover the figure. Figure 2c presents the selected pose for the
same frame on the same approximate hardware with outlier
detection. Observe that the chosen pose is visually indistin-
guishable from the correct pose (Figure 2a). The numerical
error for the computation with outlier detection is 0.161%
(compared to 73.63% error for the computation with no out-
lier detection). The outlier detector reexecutes 4.72% of the
tasks, causing a 4.10% energy degradation when compared
to the savings without detection (12.70% vs. 8.60%). With
the Topaz overhead included, the reported energy savings
are 7.69% (0.91% loss from Topaz overhead).

3. The Topaz Language
We implement Topaz as an extension to C. Topaz adds a sin-
gle statement, the taskset construct. When a taskset construct
executes, it creates a set of approximate tasks that execute to
produce results that are eventually combined back into the
main computation. Figure 3 presents the general form of this
construct.

taskset name(int i = l; i < u; i++) {

compute in (d1 x1 = e1, ..., dn xn = en)

out (o1 y1, ..., oj yj) {

<task body>

}

transform out(v1, ..., vk) {

<output abstraction>

}

combine { <combine body> }

}

Figure 3: Topaz Taskset Construct

Each taskset construct creates an indexed set of tasks.
Referring to Figure 3, the tasks are indexed by i, which
ranges from l to u-1. Each task uses an in clause to specify

a set of in parameters x1 through xn, each declared as d1

through dn and initialized to expressions e1 through en.
Topaz supports scalar declarations of the form double x,
float x, and int x, as well as array declarations of the
form double x[N], float x[N], and int x[N], where N

is a compile-time constant. To specify that input parameters
are stable and do not change throughout the lifetime of a
taskset, we prepend the const identifier to the input type.

Each task also uses an out clause to specify a set of out
parameters y1 through ym, each declared as o1 through om.
The task writes the results that it computes into these out
parameters. As for in parameters, out parameters can be
scalar or array variables.

Topaz imposes the requirement that the in and out pa-
rameters are disjoint and distinct from the variables in the
scope surrounding the taskset construct. Task bodies write
all of their results into the out parameters and have no other
externally visible side effects.

The transform body computes over the in parameters
x1, ..., xn and out parameters o1, ..., oj to produce
the numerical AOV v1, ..., vk. The outlier detector op-
erates on the AOV.

The combine body integrates the task results into the
main body of the computation. All of the task bodies for a
given taskset are independent and can execute in parallel —
only the combine bodies may have dependences.

4. Abstract Output Vectors
A well-designed AOV is an efficient abstraction that exposes
sufficient result quality information to the Topaz outlier de-
tector. To work well, AOVs should be efficiently computable
and produce a small set of numbers that make unacceptably
inaccurate results readily apparent. Each AOV produces a
floating point vector computed in the transform block. In
general, larger dimension vectors and more complex trans-
form blocks incur greater overhead.

4.1 Constructing an AOV
We consider two techniques for designing effective AOVs:
• Dimensionality Reduction: The transform block per-

forms a reduction on the task results to reduce the di-
mensionality of the AOV.
• Domain-Specific Normalization: The programmer uti-

lizes domain knowledge to construct an AOV that re-
moves the input correlation from the task results without
explicitly including the inputs in the AOV.

Dimensionality reduction is an easy-to-apply generalized
method that may be applied to any task. Normalization is
typically closely tied to the application semantics. We use
the blackscholes benchmark (see Section 6) to illustrate
these two techniques. Blackscholes predicts the future price
of a set of options, given the current prices and a set of
option parameters (strike,volatility,time,type,rate).
Each Topaz task computes prices for 64 options.



Figure 4: Effect of Performing Output Reduction

Dimensionality Reduction: We consider four blackscholes
AOVs: (1) a one-dimensional AOV which sums all 64 pre-
dicted prices to obtain a single element for outlier detection,
(2) a two-dimensional AOV in which each element is the
sum of 32 prices, (3) a four-dimensional AOV in which each
element is the sum of 16 prices, and (4) an eight-dimensional
AOV in which each element is the sum of eight prices.

Figure 4 presents the effect of dimensionality reduction
on the error detection rate, option price error, and energy
savings. As the dimensionality of the AOV increases, the
error detection rate increases. In response, the computation
becomes more accurate and the relative option price error
decreases, but from an already very small base error (specif-
ically, from 0.05% to 0.02%). Also in response, the energy
savings drops. There are two contributing factors. First, in-
creasing the dimensionality of the result increases the pre-
cision of the outlier detector, which detects more errors and
reexecutes more tasks as the dimensionality increases.1 Sec-
ond, the increase in the dimensionality of the AOV increases
the outlier detector overhead.
Contraindications for Dimensionality Reduction: Dimen-
sionality reduction has almost no impact on the overall ac-
curacy of blackscholes (in part because the correct option
prices all have similar magnitudes). Combining results from
radically different distributions may significantly degrade
Topaz’s ability to perform error detection and noticeably im-
pact result quality. For example, if one of the results tends to
be large and the other result is small, the larger result may
mask errors in the smaller result. In the barnes benchmark
(see Section 6), the magnitude ranges of the acceleration
and velocity task results are drastically different (-5 to 5 vs
-150 to 150). Topaz detects 52.50% of the errors when the
AOV combines like results and only 30.61% of the errors

1 The target reexecution rate for these executions is zero. The outlier detec-
tor therefore does not contract its bounds in an attempt to obtain a higher
reexecution rate.

(20% less) when the AOV combines unlike results. The cor-
responding energy savings are 6.40% (when combining like
results) and 7.91% (when combining unlike results).
Dimensionality Reduction and Batching: The natural task
granularity of some Topaz applications may be too small to
profitably amortize the Topaz task management overhead. In
such situations batching — combining multiple natural tasks
into a single larger Topaz task — is one way to drive the
Topaz task management overhead down to acceptable lev-
els. Batched tasks typically produce multiple sets of results
(one for each natural task in the batch). Batching can there-
fore often be productively combined with dimensionality re-
duction for effective outlier detection, with like results from
natural tasks combined into a single element for outlier de-
tection. Blackscholes, for example, batches 64 natural tasks
into a single Topaz task for a batching factor of 64. For this
application (but not all Topaz applications, see Section 6),
batching is essential for successfully amortizing the Topaz
task management overhead.
Domain-Specific Normalization: We derive a domain-
specific normalization for blackscholes using the no-arbitrage
bound for European put-call options [11]. The no-arbitrage
bound is a sane maximum and minimum option price, given
the option parameters and price. The benchmark utilizes Eu-
ropean put-call options. The original inequality is as follows:

if put: s · e−r ·t − p0 ≤ p ≤ p0
if call: p0 − s · e−r·t ≤ p ≤ s · e−r·t

Where s is the strike price, r is the rate, t is the time, p0 is
the input price and p is the result price. First, we normalize
the lower bound to attain an expression for p.

if put: 0 ≤ p− s · e−r·t + p0 ≤ 2 · p0 − s · e−r·t
if call: 0 ≤ p− p0 + s · e−r · t ≤ 2 · s · e−r·t − p0

We then normalize the expression against the upper bound
by dividing out the upper bound.

if put: 0 ≤ (p− s · e−r·t + p0) · (2 · p0 − s · e−r· t)
−1

≤ 1
if call: 0 ≤ (p− p0 + s · e−r·t) · (2 · s · e−r·t − p0)−1 ≤ 1

Note that the type variable determines whether the opera-
tion is a put or call operation. The above expression pro-
vides a normalized representation of p, where it is unlikely
that p falls outside of the range [0, 1].

With the no-arbitrage normalization applied, the Topaz
outlier detector catches 8% more errors (reexecuting 0.02%
more tasks) and loses 7% energy savings in comparison
with an AOV that simply uses the computed option price.
We attribute the lost energy savings to the more complex
AOV computation as reflected in the formulas above. This
example illustrates how an effective AOV must balance a
number of factors including reexecution rate, accuracy, and
AOV compute time.



4.2 AOVs and Quality Metrics
Note that although we use result quality metrics to evaluate
the quality of the AOV, we decouple the AOV definition from
the quality metric of the application when constructing the
AOV. We intentionally decouple the two phenomena because
quality metrics introduce the following complexities:

• Expensive to Compute: Some quality metrics can be
more expensive to specify and compute than AOVs. For
example, a quality metric may involve a comparison with
a reference result which can be expensive to compute.
• Indirect Measure of Detector Performance: Quality

metrics often have an indirect relationship to the efficacy
of the outlier detector since the computed taskset result
flows through the rest of the program, which may further
amplify or dampen any taskset inaccuracy.

In contrast, AOVs are typically easier to specify and com-
pute — they are specified at the task level, work only with
task inputs and results, and are designed only to enable
the detection of unacceptably inaccurate results, rather than
provide a full quantitative measure of quality. They there-
fore typically involve less specification overhead than a full-
blown quality metric and are more closely tied to the perfor-
mance of the outlier detector.
On Synthesizing AOVs: It is possible to automatically syn-
thesize an AOV given an application, representative input(s),
and target energy savings and result quality goals. The syn-
thesis procedure would empirically explore the space of re-
ductions applied to the task results to find an AOV that satis-
fied the target energy savings and result quality goals for the
application running on the representative input(s).

4.3 Application Classes and AOVs
There are some classes of applications for which designing
an AOV may be challenging or difficult. For these applica-
tions, the programmer may have to choose between carefully
designing a domain-specific AOV or using an AOV which is
a suboptimal proxy for the quality of the task results. We
next discuss two potentially problematic classes of applica-
tions.
Applications with Irreducible, Complex Task Outputs:
Applications which contain large or complex irreducible
task results may complicate the design of efficient AOVs.
For such applications AOVs that work with all or most of the
result components may be unacceptably inefficient. Compu-
tations with tasks that produce large segments of unstruc-
tured data (such as image data produced by graphics appli-
cations) may exhibit these characteristics.
Uncheckable Applications: In some applications an appro-
priate result distribution may be difficult to learn or infea-
sible to compute without imposing unacceptable overhead.
Tasks with complex result constraints or, conversely, com-
pletely unpredictable results, may exhibit these characteris-
tics.

5. Topaz Implementation
The Topaz implementation is designed to run on an approx-
imate computing platform with one precise processor and
one approximate processor. The precise processor executes
the main Topaz computation, which maps the Topaz tasks
onto the approximate processors for execution. The Topaz
implementation contains four components: (1) a front end
that translates the taskset construct into C-level Topaz API
calls, (2) a message-passing layer for dispatching tasks and
collecting results, (3) an outlier detector that prevents un-
acceptably inaccurate task results from corrupting the final
result, and (4) a fault handler for detecting failed tasks.

5.1 Topaz Compiler
As is standard in implementations of task-based languages
that are designed to run on distributed computing plat-
forms [34], the Topaz implementation contains a compiler
that translates the Topaz taskset construct into API calls to
the Topaz runtime. The Topaz front-end is written in OCaml.
The front-end generates task dispatch calls that pass in the
input parameters defined by the in construct, the task index,
and the identifier of the task to execute. The front end gener-
ates the code required to send the task results (the task’s out
parameters) to the precise processor running the main com-
putation. The front end also extracts the different pieces of
the taskset (the task body, combine block, and transform

block) into invocable functions.
The Topaz compiler generates code for the Topaz data

marshalling API, which coordinates the movement of tasks
and results between the precise and approximate processors.

5.2 Topaz Runtime
The Topaz implementation works with a distributed model
of computation with separate processes running on the pre-
cise and approximate processors. Topaz includes a standard
task management component that coordinates the transfer
of tasks and data between the precise and approximate pro-
cessors. The current Topaz implementation uses MPI [12]
as the communication substrate that enables these separate
processes to interact. It is also obviously possible to im-
plement Topaz on shared memory machines using standard
techniques [34].

To amortize the communication overhead, Topaz divides
task data into two types: stable data and transient data.
Stable data does not vary over the lifetime of the taskset.
It is therefore sent over with the first task, reused in place
for subsequent tasks, and refreshed (sent over again) if the
Topaz implementation detects three consecutive incorrect
tasks. Transient data may vary across tasks and is sent over
with every task.

To execute a taskset, Topaz first sends the stable data to
the approximate processor. It then executes the tasks in the
taskset as follows:



• Task Creation: The precise processor sends the task, in-
cluding the transient data, to the approximate processor.
• Task Execution: The approximate processor receives the

task and executes the task’s compute block to obtain the
task results.
• Task Response: The approximate processor sends a mes-

sage containing the task results back to the precise pro-
cessor running the Topaz main computation.
• Outlier Detection: The precise processor executes the

task’s transform block to compute the abstract output
vector (AOV) for the task. It then runs the outlier detector
on the AOV. If the detector accepts the result, Topaz runs
the task’s combine body to integrate the result into the
main computation. If the detector rejects the result:

Task Reexecution: It reexecutes the task on the pre-
cise processor to obtain the correct result. It then runs
the combine block to integrate this correct result into
the Topaz main computation.

Outlier Detector Update: It uses the correct result to
update the outlier detector (see Section 5.4).

Stable Data Resend: If the task is the third consec-
utive incorrect task, Topaz resends the stable data to
the approximate processor. This feature was imple-
mented to counteract the degradation of stable data in
approximate memories (the values of stable data may
degrade/change over time as the memory cells lose
capacitance). Because the degradation of stable mem-
ory is only one of several sources of error, and to avoid
unnecessary communication overhead, the Topaz im-
plementation resends the stable data only after it ob-
serves three consecutive incorrect tasks.

5.3 Failed Task Detection
Topaz also handles cases where the task fails to complete
execution on the approximate processor. In the event a task
fails, the approximate processor notifies the main proces-
sor. Topaz reexecutes the task on the main processor and
refreshes the stable data on the approximate machine. It is
straightforward to extend Topaz to handle infinite loops by
modelling the task runtimes and reexecuting tasks that take
unacceptably long. If the precise reexecution also contains
an infinite loop, it is possible to apply the same model and
discard the task [5, 17, 32].

5.4 Outlier Detection
For each taskset, Topaz builds an outlier detector designed
to separate incorrect AOVs from correct AOVs. Topaz per-
forms outlier detection when a task is finished but prior to
result integration. It first runs the transform block to obtain
the AOV for the task. The outlier detector then processes the
AOV to either accept or reject the task. If it rejects the AOV,
Topaz reexecutes the task on the precise processor to obtain

correct results and re-sends the stable task data. The AOV of
the correct result is used to train the outlier detector.
We use the following notation:

• t: We use t to denote a task vector, which is comprised of
task data and the task results. We denote the task vector
from the precise machine as tp.
• aov(t), ||aov(t)|| = d: The function notation for apply-

ing the transform block, which transforms the task vector
into an AOV. The resulting AOV has dimensionality d.
• reexec(t): Reexecute the task using inputs defined by the

task vector t on the reliable machine, to obtain a new
(correct) task vector.
• w,w⊥,w>,wµ,wn: We denote outlier detector re-

gions with w. Regions are d dimensional hypercubes,
where we define the bottom corner, top corner, center
of mass and number of test points in a region w using
w⊥, w>, wµ, wn respectively.
• W = {w}: We define W as the set of regions used by

the outlier detector. We use ||W || to denote the number
of regions the detector is using.
• l: The user-specified maximum number of regions the

outlier detector may use. This bound limits the complex-
ity of the outlier detector.

Testing: The outlier detector maintains a set of regions,
where each region models a hypercube that encapsulates a
part of the distribution of the correct AOVs. If the AOV that
is being tested falls into any of these regions, the task result
is considered a valid result and accepted; otherwise, the task
result is rejected and the task is reexecuted. Consider t, a task
vector produced by an approximate worker machine. Figure
5 presents the algorithm for determining whether to accept
or reject the task:

bool is_acceptable(t):
v = aov(t)
for w ∈ W:

bool enc = true

for 0 ≤ i < d:
enc = enc && (w⊥(i) ≤ v(i) ≤ w>(i))

if enc:

wn += 1

return true;

end

return false

Figure 5: Task Outlier Detection Algorithm

Training: Figure 8 presents the algorithm for training the
outlier detector. The outlier detector runs this algorithm only
after it rejects a task, then reruns the task on the precise
processor to obtain the correct task vector tp. If the correct
AOV is already included in one of the regions of the outlier
detector, the outlier detector updates the region’s center of
mass. Otherwise, it creates a new region containing just the



double score(w,y):
overlap = 1

for 0 ≤ i < d:
if w⊥(i) > y⊥(i):
ov = w>(i) − y⊥(i)

else:

ov = y>(i) − w⊥(i)

if ov < 0:
ov = 0

overlap = overlap*ov

if overlap > 0:
return overlap

center_distance = 0

for 0 ≤ i < d:
center_distance += (wµ(i) − yµ(i))

2

return -center_distance

Figure 6: Region Proximity Scoring Algorithm

region merge(w,y):
z = new region()

zn = wn + yn
for 0 ≤ i < d:

z>(i) = max(w>(i),y>(i))
z⊥(i) = min(w⊥(i),y⊥(i))
zµ(i) = 1

zn
(wµ(i) · wn + yµ(i) · yn)

return z

Figure 7: Region Merge Algorithm

AOV and adds it to the set of regions. If the outlier detector
contains more than the maximum number of regions, it uses
the scoring algorithm to find the two most similar regions
and merges them (using the merge algorithm).

• Scoring: If the regions overlap, the score is the product of
the magnitude of the overlapping region along each axis.
The regions must overlap across all axes in order for them
to be overlapping. If the regions are non-overlapping,
the score is the negative distance between centers (to
penalize distant, non-overlapping regions). The higher
the score, the more similar the regions.
• Merging: The merged region is an n-dimensional hyper-

cube enclosing both regions with a center of mass that is
the weighted average of the two regions’ centers of mass.

5.5 Outlier Detector with Contraction
The outlier detector has an extension which contracts the
region’s bounds when the reexecution rate falls below the
user-defined target reexecution rate. Contracting the region’s
bounds increases the reexecution rate because the outlier

bool in_region(v,w):
enc = true

for 0 ≤ i < d:
enc = enc && (w⊥(i) ≤ v(i) ≤ w>(i))

return enc

tuple update_detector(t):
tp = reexec(t)
v = aov(tp)

for w in W:

if in_region(v,w):
wµ = update_mean(wµ, v)
return tp

z = new region()

z> = z⊥ = zµ = v
W = W ∪ v

if ||W || > l:
best_score = 0

best_pair = (nil,nil)

for (w, y) ∈ W × W:

curr_score = score(w,y)

if best_score < curr_score:

best_score = curr_score

best_pair = (w,y)

merge(best_pair)

return tp

Figure 8: Outlier Detector Training Algorithm

detector rejects tasks whose AOVs would have previously
fallen on the fringe of the hypercube defined by the region.
This mechanism allows the outlier detector to disclude fringe
values from the region and adapt to changing AOV distribu-
tions.

We augment the outlier detector so that each region also
contains a Proportional-Integral-Derivative (PID) control
system, which controls the region contraction. We define
the notation for the control system as follows:

• γ = γr,γc,γ∫ ,γ∂ : The Proportional-Integral-Derivative
(PID) control system γ comprised of the running reexe-
cution rate (γr) and the current (γc), integral (γ∫ ), and
discrete derivative (γ∂) of the difference between the tar-
get and running reexecution rate.
• Kc,K∫ ,K∂ : Weights associated with the PID control

system.
• ctrl(w): The control system associated with region w.
• g: The user defined target reexecution rate. This bound

limits the reexecution overhead and controls the contrac-
tion of the regions.



• update control(γ,u): given u, where u is 0 if the AOV
was accepted or 1 if the AOV was rejected, update the
control system γ.
• get contract(γ): get the region contraction factor for the

given control system γ.
• update running rate(γr,u): Given the running reexe-

cution rate γr and u (as defined above), update and return
the running reexecution rate.
• update running integral(γ∫ ,γc): Given the current in-

tegral of the difference between the target and running
reexecution rate, update and return the integral.

We next discuss two algorithms: (1) updating the control
system and the (2) contracting the region bounds.

Control System Get: Figure 9 presents the algorithm for
getting the contraction rate. To compute the contraction rate,
we use the PID control formula, a standard technique in con-
trol systems. This formula uses the integral, derivative and
current reexecution rate to compute the contraction rate.

double get_contract(γ):
F = Kc · γc +K∫ · γ∫ + K∂ · γ∂
return F

Figure 9: Contraction Rate Computation

Control System Update: Figure 10 presents the algorithm
for updating the control system. It first updates the running
reexecution rate to include the outcome of the testing the
last task. It then updates the derivative, running integral, and
present difference between the running reexecution rate and
target rate and returns the new control system.

object update_control(g,γ,u):
γr = update_running_rate(γr,u)
i = γr- g
γ∂ = i − γc
γc = i
γ∫ = update_running_integral(γ∫ ,γc)
return γ

Figure 10: Control System Update

Region Contract: Given the target rate, the approximate
AOV, whether the AOV was accepted, and the region the
AOV belongs to, the algorithm in Figure 11 adjusts the re-
gion. The algorithm operates as follows.

It first updates the region’s rejection rate based on whether
the last point was accepted or rejected. It then queries the
control system to obtain F, the factor by which to contract
the region. It clamps the contracting factor to (0.5, 1) so that
region doesn’t shrink by more than half its size. It finally
scales the region relative to its center of mass.

function contract_region(g,w,u)
γ = ctrl(w)
γ = update_control(g, γ, u)

contraction_factor = get_contract(γ)
F = min(max(contraction_factor,1),0.5)

for 0 ≤ i < d
w>(i) = wµ(i) + F · (w>(i) − wµ(i))
w⊥(i) = wµ(i) − F · (wµ(i) − w⊥(i))

Figure 11: Region Contract

5.6 Mathematical Model
We next present a simple mathematical model that may be
used to predict energy savings and outlier detector efficacy
across the space of reexecution rates, taskset sizes, and ab-
straction configurations. To simplify the presentation, we as-
sume the application executes one taskset and that all tasks
in that taskset execute the same number of instructions. It is
straightforward to generalize the model to include multiple
tasksets and tasks with varying numbers of instructions:

• n: The number of tasks in the taskset.
• r: The number of reexecuted tasks. This may be approx-

imated from a reexecution rate v using: r = n · v
• c: The number of stable data transfers.
• p, q,o: The size of transient data (p), stable data (q), and

task results (o), in bytes.
• d: The dimensionality of the AOV emitted by the trans-

form block.
• l: The maximum number of regions used by the outlier

detector.
• T ,V ,M : The number of instructions in a task (T ), AOV

transformation (V ), and the total number of non-taskset
instructions (M ).

We also consider the following Topaz parameters:

• ıp, ıa: Topaz initialization overhead for the precise (ıp)
and approximate (ıa) processors.
• σ,ρ: Per-task Topaz instruction overhead for communi-

cating data, per byte, for sending (σ) and receiving (ρ)
data.
• τm, τw: Per-task Topaz instruction overhead not associ-

ated with data communication, precise (τp) and approxi-
mate (τa) processors.
• α: Per-task AOV computation overhead.
• δt, δr: Per-task, per detector region, and per AOV dimen-

sion detector testing (δt) and training (δr) overhead.

We also consider ∆, the energy consumption of the approxi-
mate processor relative to the precise processor. We approx-



imate the Topaz overhead on the precise (Op) and approxi-
mate (Oa) processors as follows:

Op = ıp + σ · c · q + σ · n · p+ ρ · n · o+ τp · n

Oa = ıa + ρ · c · q + γ · n · p+ σ · n · o+ τa · n

Essentially, we sum up the initialization overhead, commu-
nication overheads and per-task runtime overheads to deter-
mine the Topaz overhead.
Next we compute the detection overhead:

D = δr · r · d · l + δt · n · d · l + V · (n+ r)

Finally, we model the energy savings as follows:

S = 1− T · r +M +D +Op + ∆ · [T · n+Oa]

M + T · n

We use this model to approximate the energy consumption,
given a particular set of parameters.

Software and Hardware Interdependences: The above
model does not attempt to derive task error rates as a function
of hardware error rates because the hardware error character-
istics and software characteristics are often interdependent:

• Stateful Errors: Some classes of errors, such as memory
errors, are stateful and may persist across tasks.
• Hardware-Dependent Errors: Some classes of errors,

such as cache and memory errors, depend on which data
is loaded into cache and memory (as well as the values of
that data), which depends on the behavior of the applica-
tion.
• Time-Dependent Errors: Some classes of errors, such

as memory decay errors, have error rates that are func-
tions of time (time since last refresh). Since data is re-
freshed when it is written, these errors can also depend
on the behavior of the application.

6. Experimental Results
We present experimental results for Topaz implementations
of our set of five benchmark computations:

• blackscholes: A financial analysis application from the
Parsec benchmark suite that solves a partial differential
equation to compute the price of a portfolio of European
options [2].
• water: A computation from the SPLASH2 benchmark

suite that simulates liquid water [33, 48].
• barnes: A computation from the SPLASH2 benchmark

suite that simulates a system of N interacting bodies
(such as molecules, stars, or galaxies) [48]. At each step
of the simulation, the computation determines the forces
acting on each body, then uses these forces to update the
positions, velocities, and accelerations of the bodies [1].

• bodytrack: A computation from the Parsec benchmark
suite that tracks the pose of the subject, given a series of
frames [2].
• streamcluster: A computation from the Parsec bench-

mark suite that performs hierarchical k-means clustering
[2].

We provide an artifact containing detailed instructions for
installing Topaz and replicating the experiments, as well as
a Virtualbox virtual machine image and EC2 AMI image
containing the Topaz environment [37].

6.1 Experimental Setup
We perform our experiments on a simulated computational
platform with one precise processor and one approximate
processor. There is one process per processor; the processes
communicate using the MPI message passing interface [12].
Caches and Memories: The computational platform con-
tains a memory hierarchy with a mix of reliable and unreli-
able components.
Caches: The precise processor has a precise L1 instruction
and data cache, while the approximate processor has a pre-
cise L1 instruction cache and mixed precise-approximate
L1 data cache. Each processor has a larger, mixed precise-
approximate L2 cache with the same cache line size as the
L1 cache. The mixed precise-approximate caches are dual
voltage caches where cache lines may be flagged to use re-
duced voltage [9]. In our evaluation all critical data is stored
in high voltage cache lines, while task data is stored in low
voltage cache lines. The fault characteristics for these ap-
proximate caches are modelled as probabilistic write cor-
ruptions and read corruptions [35]. Table 1 presents the fault
and energy characteristics for approximate caches. In our
cache hierarchy, we model 16K,4 Way,16 byte/line L1i and
L1d caches and a 64K,8 Way,16 byte/line L2 cache.

Main Memory: Main memory is divided into precise, high
refresh DIMMs and no refresh DIMMs. Prior work mod-
els DRAM faults as random corruptions that occur in non-
refreshed cells over time. For our evaluation, we construct
the per-millisecond bit flip probability model by modelling
the regression of Flikker’s DRAM error rates and use the
energy consumption associated with DRAM refresh to com-
pute energy savings [22]. We also consider a more sophis-
ticated fault model where the per-millisecond error rate
per row fluctuates based on DIMM activity [21]. Table 1
presents the fault and energy characteristics for approximate
DRAMs. We store all stable and transient data associated
with task execution in the no-refresh DRAMs. We assume
40% percent of the memory banks are approximate.
Bit Pattern Dependence: Recent research has found a signif-
icant fraction of DRAM errors are dependent on the values
of the data stored in DRAM [21]. In a DIMM, bitline-bitline
and bitline-wordline coupling effects impact the cell leak-
age. That is, neighboring cells may influence the value read



Property Error Probability
Sram read upset probability† 10−7.4 / read
Sram write upset probability† 10−4.94 / write

Supply Power Saved† 80%
Fraction energy consumption† 0.2996%

L1 Cache Size 16K
L1 Cache Associativity 4 ways

L1 Cache Line Size 16 bytes
L2 Cache Size 64K

L2 Cache Associativity 4 ways
L2 Cache Line Size 16 bytes
Dram per-word error

probability over time (cell/ms)†† 3 · 10−7 · t2.6908
Dram Energy Saved†† 33%

Fraction energy consumption† 0.7009
Fraction DRAM no-refresh 0.40

Table 1: Hardware Model Parameters. †: from Enerj Paper
( [35]). ††: from Flikkr Paper [22].

from the target cell[14]. The effect can be described as fol-
lows: if the target cell contains a logic 1 and the adjacent cell
also contains a logic 1, the target cell is considered stressed
and may be read as a 0. If the target cell contains a logic 0
and the adjacent cell contains a logic 0, the target cell is con-
sidered stressed and may be read as a 1.
Hardware Models: In the basic hardware model, we use the
fixed DRAM error rate seen in previous work [35]. In our
ddep hardware model, we model the dependence between
the retention time of data in a row and the data stored in the
DIMM as described above.
Hardware Emulator: To simulate the approximate hard-
ware we implemented an approximate hardware emulator
using the Pin [23] binary instrumentor. We based this emula-
tor on on iAct, Intel’s approximate hardware tool [27]. Our
tool instruments memory and stack reads to access simulated
versions of the caches and main memory described above,
using the fault parameters from Table 1. We have included
a specialized API for setting the hardware model and en-
abling/disabling fault injection. We track various statistics,
such as the cache hit and miss rates and the average fraction
of unreliable lines in cache, to populate the energy model.

We simulate the time-dependence of DRAM error proba-
bility by increasing the probability of a DRAM error in ac-
cordance with the model every 104 instructions, or 0.01 mil-
liseconds (for a 2GHZ machine). For the ddep model, we
simulate the data-dependence of the DRAM error probabil-
ity by modelling a simplified version of bitline coupling. We
attach a multiplier (up to 2x) to the nominal error rate in Ta-
ble 1 wi ∈ {1.0, 2.0} depending on the parity of the neigh-
bors compared to the bit being read. This model assumes
contiguous regions of memory are spatially co-located in the
DIMMs.

Hardware Energy Model: We next present our hardware
energy savings model. We break up energy consumption
into the SRAM energy consumption and DRAM energy
consumption.

Cache Energy Savings: For each cache C, we consider the
following parameters: the average fraction of approximate
lines in the cache βc, the size of the cache Sc, the relative
energy consumption (1-savings) for low power cache lines
ψlow, and the energy consumption for high power cache
lines ψhigh (1) (see Table 1). We consider the following
caches: C = {L1I, L1D,L2}. The energy consumption of
the approximate cache hierarchy relative to the precise cache
hierarchy is as follows:

∆C =

∑
c∈C βc · Sc · ψlow + (1− αc) · Sc · ψhigh∑

c∈C Sc · ψhigh

Main Memory Energy Consumption: We assume a constant
fraction of memory, βm, is no-refresh. We assume all banks
are in use. Given the energy consumption for no refresh
memories ψnoref and refresh memories ψref (see Table 1),
we compute the approximate DRAM consumption relative
to the fully precise energy consumption as follows:

∆M =
βm · ψnoref + (1− βm) · ψref

ψref

Cache + Memory Energy Consumption: We parameterize
the formula with fd, the fraction of system energy con-
sumption from memories and fc, the fraction of system en-
ergy consumption for caches. See Table 1 for parameters.
We compute the energy consumption of the approximate
cache+memory system relative to the precise system as fol-
lows:

∆ = ∆Mfd + ∆Cfc

6.2 Benchmark Executions
We present experimental results that characterize the accu-
racy and energy consumption of Topaz benchmarks under a
variety of conditions:

• Precise: We execute the entire computation, Topaz tasks
included, on the precise processor. This execution pro-
vides the precise, fully accurate results that we use to
evaluate the accuracy of the other executions.
• No Topaz: We attempt to execute the full computation,

main Topaz computation included, on the approximate
processor. For all the benchmarks, this computation ter-
minates with a segmentation violation.
• No Outlier Detection: We execute the Topaz main com-

putation on the precise processor and the Topaz tasks on
the approximate processor with no outlier detection. If a
task crashes and does not return a result, the Topaz imple-
mentation reexecutes the task on the precise processor.
Stable data is only resent when three consecutive tasks
crash. We integrate all of the results from approximate
tasks that do not crash into the main computation.
• Outlier Detection: We execute the Topaz main compu-

tation on the precise processor and the Topaz tasks on the
approximate processor with outlier detection and reexe-
cution as described in Section 5.



No Outlier Outlier
Benchmark Model Detector Detector

barnes basic inf 0.158229%
blackscholes basic inf 0.135584%

bodytrack basic 73.6327% 0.161024%
streamcluster basic 0.6219 0.6344

water basic nan 0.000469%
barnes ddep inf 0.075927%

blackscholes ddep inf 0.025791%
bodytrack ddep 73.6327% 0.317984%

streamcluster ddep 0.6321 0.6344
water ddep nan 0.000383%

Table 2: End-to-End Output Quality

6.3 Benchmark AOVs
We use the following AOVs:

• barnes: Each task is the force calculation computation
for a particular body. The tasks are batched such that
each task computes the velocity and acceleration of two
bodies. The AOV is the amplitude of the velocity and
acceleration vectors and the scalar result phi.
• bodytrack: Each task is the weight calculation of a par-

ticular pose in a given frame on the approximate machine.
The AOV is the position vector and weight.
• streamcluster: Each task is a subclustering operation

in the bi-level clustering scheme. The AOV is the gain
of opening/closing the chosen centers and the sum of
weights assigned to the points in the subclustering op-
eration.
• water: Two computations execute on the approximate

machine: (1) the intermolecular force calculation, which
determines the motion of the water molecules (interf)
(2) the potential energy estimation, which determines the
potential energy of each molecule (poteng). The tasks
are batched such that each task computes sixty four
forces/energies. The AOVs are as follows:

interf: The AOV is the cumulative force exerted on
the H,O,H atoms in the x,y and z directions and the
scalar result incr.
poteng: The AOV is the sum of the magnitude of
potential energy in the x,y and z directions.

• blackscholes: Each task is a price prediction on the ap-
proximate machine. These tasks are batched such that
each task computes 64 prices. The single dimensional
AOV is the sum of the 64 computed prices.

6.4 End-to-End Output Quality
Table 2 presents the end-to-end output quality metrics for
the (1) No Outlier Detection and (2) Outlier Detection cases.
With one exception (streamcluster), executing the bench-
marks with no outlier detection produces unacceptably in-
accurate results. With outlier detection, the output quality is
always acceptable and typically very small.
barnes: The output quality metric is the percent positional
error (PPE) of each body. With outlier detection, the PPE

(a) Correct (b) No Detection (c) Outlier Detection

(d) Correct (e) No Detection (f) Detection

(g) Correct (h) No Detection (i) Detection

Figure 12: Visual Representation of Output Quality. (a-c)
Barnes. (d-f) Water. (g-i) Streamcluster.

between the precise and approximate executions is a fraction
of a percent and visually indistinguishable in the output. See
Figures 12a and 12c, which plot the positions of the bodies
at the end of the simulation. Figure 12c overlays the posi-
tions of the bodies from the precise execution (in red) and
the approximate execution with outlier detection (in black).
Figure 12b plots the output from the approximate compu-
tation without outlier detection (almost all of the bodies lie
outside the plotted range).
blackscholes: The quality metric is the cumulative error of
the predicted stock prices with respect to the total portfolio
value. Without outlier detection, the percent portfolio error is
many times more than the value of the portfolio. With outlier
detection, the portfolio error is a fraction of a percent of the
value of the portfolio.
bodytrack: The quality metric is the weighted percent error
in the selected pose for each frame. In both the basic and
ddep hardware models, we observed wildly incorrect pose
choices. With outlier detection, the selected poses are visu-
ally good matches for the body. Figures 2c and 2a present a
visual comparison.
streamcluster: The quality metric is the weighted silhouette
score, which is a measure of cluster quality - the closer to
one, the better the clusters. The silhouette score with fully
precise execution is 0.557. Figures 12g-12i) plot the input
data (black dots) and the cluster centers (red dots). The pre-
cise (Figure 12g) cluster centers are visually similar to the
cluster centers produced by the approximate machine with
no outlier detection (Figure 12h) and with outlier detection
(Figure 12i). We attribute this result the robustness of the
computation, which is inherently resilient to outliers. More-



Hardware Correct Correct Error Error Rejection Errors
Benchmark Model Accepted (%) Rejected (%) Accepted (%) Rejected (%) Accuracy (%) Detected (%)

barnes basic 94.48% 0.19% 2.94% 2.38% 92.58% 44.74%
bodytrack basic 87.58% 0.16% 7.67% 4.58% 96.62% 37.39%

water-interf basic 95.30% 0.32% 1.71% 2.67% 89.37% 60.96%
water-poteng basic 99.51% 0.26% 0.02% 0.20% 43.59% 89.47%
blackscholes basic 98.57% 0.04% 1.06% 0.33% 90.00% 24.06%
streamcluster basic 98.34% 0.14% 0.37% 1.15% 89.15% 75.66%

barnes ddep 94.22% 0.20% 3.11% 2.47% 92.59% 44.26%
bodytrack ddep 77.34% 0.15% 16.04% 6.46% 97.67% 28.71%

water-interf ddep 95.44% 0.33% 1.62% 2.61% 88.81% 61.71%
water-poteng ddep 99.49% 0.26% 0.04% 0.21% 44.54% 85.48%
blackscholes ddep 98.70% 0.04% 0.94% 0.33% 89.80% 25.88%
streamcluster ddep 62.24% 0.11% 36.68% 0.98% 89.90% 2.59%

Table 3: Overall Outlier Detector Effectiveness

over, the precise machine performs the top-level clustering
operation, since errors in the top level clustering operation
would have a disproportionate effect on the output. These
two properties make introducing non-existent clusters and
eliminating well-represented clusters unlikely — for this to
occur, the approximate hardware would have to systemati-
cally produce errors that result in selecting (or excluding)
particular subsets of points.
water: The output quality metric is the percent positional er-
ror (PPE) of each molecule. With outlier detection, the PPE
between the precise and approximate executions is a frac-
tion of a percent. The approximate molecule positions with
outlier detection (Figure 12f) are visually indistinguishable
from the precise molecule positions (Figure 12d). Figures
12d-12f plot the positions from precise execution (in red),
and the approximate execution (in black). Figure 12e plots
the output from the approximate execution without outlier
detection (almost all of the molecules lie outside the plotted
range).

6.5 Outlier Detector Effectiveness
Table 3 presents data that characterizes the overall effective-
ness of the outlier detector. The third through sixth columns
present a breakdown of all of the tasks into correct tasks
that were accepted (third column) or rejected (fourth col-
umn) by the outlier detector and incorrect tasks that were
accepted (fifth column) or rejected (sixth column). The sev-
enth column (Rejection Accuracy) presents the percentage
of rejected tasks that contain errors. The eighth column (Er-
rors Detected) presents the percentage of tasks with errors
that were rejected.

These numbers indicate that, in general, (1) the majority
of the tasks are correct and accepted by the outlier detector
(column three, Correct Accepted) and (2) a large percentage
of the rejected tasks contain errors (with the exception of
water-poteng) (column seven, Rejection Accuracy). Even
though the outlier detector rejects at most a few percent of
the tasks, the data in Table 2 show that if the outputs from
these few percent of the tasks are incorporated into the main
computation, they produce unacceptably inaccurate results.

Detect & Full
Benchmarks Model Baseline Reexecute Topaz

barnes basic 17.47% 14.77% 13.02%
blackscholes basic 16.20% 14.62% 9.94%

bodytrack basic 12.70% 8.60% 7.69%
streamcluster basic 16.87% 15.62% 11.03%

water basic 18.41% 15.12% 12.43%
barnes ddep 17.47% 14.76% 13.02%

blackscholes ddep 16.02% 14.41% 9.70%
bodytrack ddep 12.88% 6.51% 5.02%

streamcluster ddep 16.89% 15.58% 11.03%
water ddep 18.41% 15.37% 12.82%

Table 4: Energy Savings, basic and ddep Hardware Models

Across applications, many of the incorrect tasks produce
results that are embedded within the range of correct out-
puts. The outlier detector therefore accepts these tasks (com-
pare column five, Error Accepted, and column six, Error Re-
jected). Since the errors for these tasks are small, they are
acceptably inaccurate and have (very) acceptable impact on
the overall end-to-end output quality. The outlier detector is
effective at detecting the (in most applications relatively few)
unacceptably inaccurate tasks that would cause the applica-
tion to produce unacceptable end-to-end quality.

6.6 Energy Savings
Table 4 presents the energy savings for our benchmark appli-
cations. We break the computation into the following com-
ponents: instruction count of the main computation on the
precise processor M , instruction count of tasks executing
on the approximate processor A, instruction count of outlier
detection routine and task reexecution on the precise pro-
cessor R, and the overhead from the Topaz implementation
and marshalling/unmarshalling task data L. For the simple
model presented in Section 5.6 (a Topaz program with a
single taskset with n tasks, each of which executes T in-
structions, r reexecuted tasks, D detector overhead, and Op
and Oa Topaz overhead on the precise and approximate pro-
cessors, respectively), A = T · n, R = T · r + D, and
L = Op + ∆ ·Oa. For each benchmark, Table 4 presents the
following three energy savings metrics:



(a) Actual Reexecution Rate (b) False Detection Date (c) Error Detection Rate

(d) Energy Savings (e) End-to-End Application Error

Figure 13: Tradeoff Analysis Graphs

Target Reexecution Rate 0.00% 1.00% 2.00% 4.00% 8.00% 11.00% 16.00%
Silhouette Score 0.634 0.635 0.629 0.635 0.634 -1.000 0.635

Table 5: Output Quality vs Reexecution Rate for Streamcluster

Baseline: The baseline energy savings available from exe-
cuting tasks on the approximate processor:

1− M + ∆ ·A
M +A

Detect & Reexecute: The energy savings including outlier
detection and task reexecution on the precise processor:

1− M + ∆ ·A+R

M +A

Full Topaz: The energy savings, with outlier detection and
task reexecution, accounting for the Topaz overhead, includ-
ing the overhead devoted to coordinating the distribution of
the computation across the precise and approximate proces-
sors:

1− M + ∆ ·A+R+ L

M +A

Each row presents the Baseline, Detect & Reexecute,
and Full Topaz savings metrics for the application specified
in the first column (Benchmark). The maximum attainable

savings is 19.185%, which is attained when all of the lines
in the approximate caches are approximate lines, there is
no overhead, and all of the computation executes on the
approximate processor. The numbers in the table are for a
target reexecution rate of zero — the outlier detector bounds
grow to include the correct task results and never contract.
At higher target reexecution rates, the outlier detector control
algorithm contracts the bounds, detects more incorrect tasks,
and the energy consumption and number of reexecuted tasks
grows (see Figures 13d and 13c).

6.7 Crossover Analysis
We evaluate the effect of different target reexecution rates on
percent errors detected and output quality. Figures 13a-13e
present the results for each benchmark (we report results for
the basic hardware model).

For all applications, the Topaz control system effectively
matches the actual task reexecution rate with the target reex-
ecution rate (Figure 13a). For some benchmarks, the control
system fails to meet the target rate for low reexecution rates



(a) 0% Target Reexecution Rate (b) 1% Target Reexecution Rate (c) 2% Target Reexecution Rate

(d) 4% Target Reexecution Rate (e) 8% Target Reexecution Rate (f) 16% Target Reexecution Rate

Figure 14: Time Series Visual Representation of Outlier Detector Behavior. Gray circles indicate correct tasks, red triangles
indicate tasks with errors, the blue lines indicate the outlier detector bounds, and the black dashed line is the center of mass of
the tasks that the outlier detector accepts. The shaded region is the region the outlier detector accepts.

because too many AOVs fall outside the envelope defined by
previously seen AOVs to attain the reexecution rate.

As the target reexecution rate increases, the percentage
of detected errors (and reexecuted tasks) increases (Fig-
ure 13c). Increasing the target reexecution rate also dras-
tically increases the percent of reexecuted tasks that have
no errors (Figure 13b) — increasing the reexecution rate
causes the detector to contract its regions, cutting into the
periphery of the AOV distribution. Although there are some
errors at the periphery, most of the AOVs are correct, which
is why the false detection rate increases more quickly than
the error detection rate.

The task reexecutions decrease the energy savings (Fig-
ure 13d), with the crossover point from energy savings to
increased energy consumption occurring between a target re-
execution rate of 10% (blackscholes) to 14% (barnes,water).
The crossover point occurs when the application curve in-
tersects the 0% energy savings axis (black horizontal line,
Figure 13d).

Figure 13e presents the end-to-end application error for
all applications except streamcluster (all of these application
error metrics are computed relative to the output from the
precise execution). Table 5 separately presents the Silhouette
end-to-end quality metric for streamcluster. The end-to-end
output quality (Figure 13e and Table 5) is largely unaffected

by the target reexecution rate. We attribute this phenomenon
to (1) the outlier detector’s ability to effectively detect and
reexecute unacceptably inaccurate tasks at all target reexecu-
tion rates and (2) the tolerance of our set of approximate ap-
plications to the remaining acceptably inaccurate tasks. Note
that streamcluster has an anomalous score (-1) at 11% reexe-
cution rate. We attribute this anomaly to the algorithm drop-
ping a cluster (two to one cluster) — where the silhouette
score of one cluster is always -1.

Figures 14a-14f graphically illustrate the operation of the
outlier detector for blackscholes running with different tar-
get reexecution rates. Each gray circle indicates the AOV
value for a correctly executed task. Each red triangle indi-
cates the AOV value for a task with an error. The x axis
plots time (measured in the number of Topaz tasks executed)
while the y axis plots AOV value. So a task that executes at
time x with AOV value y will generate a red triangle or gray
circle at the point x,y in the figure.

The blue lines indicate the upper and lower bounds of the
outlier detector as a function of time. The black dashed line
is the center of mass of the region. For small target reexe-
cution rates, the bounds contract slowly about the center of
mass (or not at all for a zero target reexecution rate). For
larger target reexecution rates, the bounds contract more ag-
gressively. When a reexecuted task produces an AOV value



outside of the outlier detector bounds, the outlier detector ex-
pands one of the bounds to include the produced AOV value.

The range of the y axis includes all correct AOV val-
ues. Incorrect AOV values that lie outside the range of the
y axis are pinned at either the minimum or maximum visible
y values. The graphs clearly show the bimodal distribution
of AOV values. Some of the incorrect values are embedded
within the gray region of correct AOV values, while others
(the lines of red triangles along the top and bottom of each
graph) are widely removed from the gray region of correct
AOV values. These graphs highlight how the outlier detec-
tor (1) accepts incorrect tasks whose results are within the
region of observed correct results and (2) detects and reexe-
cutes tasks with clearly unacceptably inaccurate results.

These graphs also indicate that most of the incorrect tasks
produce results that are within the gray region of correct
AOV values (also see Table 3). The ability of blackscholes
to incorporate the values produced by these accepted incor-
rect tasks into its computation while still producing accept-
ably accurate end-to-end results (Figure 13e) highlights its
robustness to small inaccuracies in the results that the tasks
produce.

7. Discussion
We next discuss appropriate and inappropriate application
classes for Topaz, the guarantees Topaz provides and the in-
terplay between the Topaz language design, hardware and
implementation. We first note that any application in which
exact results are both feasible to obtain and either required or
highly desirable is not appropriate for Topaz. Examples of
such applications include compilers, traditional relational
databases, theorem provers, and much operating system
code. For Topaz to be at all applicable, the application must
have some flexibility to generate approximate results. A sec-
ondary requirement is that the majority of the computation
must consist of independent tasks that fit the basic Topaz
taskset construct. Examples of applications that may not
fit naturally into this pattern include applications with long
sequential dependence chains such as text formatters and
standard compression/decompression computations.

7.1 Appropriate Application Classes
We next outline several application characteristics that make
applications a good match for Topaz:

• Effective Sanity Checks: For the Topaz outlier detector
to function effectively, it must be able to efficiently de-
tect and discard unacceptably inaccurate tasks — in other
words, there must be an efficient and acceptably accurate
sanity check for acceptably accurate tasks. And it must
be possible to express this sanity check within the Topaz
AOV framework. Examples of computations with such
sanity checks include checkable computations (whose
correctness can be checked exactly with an efficient
checker) [26] and computations whose unacceptably in-

accurate tasks fall within a range that is disjoint from
any acceptably accurate (including correct) tasks. Exam-
ples include scientific computations, machine learning
computations, big data computations, and financial ap-
plications [26]. For all of these applications acceptably
accurate results are typically constrained by the underly-
ing domain-specific phenomena to fall within a relatively
narrow range suitable for outlier detection.
• Amortizable Tasks: The use of Topaz entails task man-

agement overheads, including the AOV and outlier de-
tector overheads. Topaz therefore works best with tasks
that can profitably amortize the Topaz overhead. In our
experience, the natural task granularity of many applica-
tions is large enough for this purpose. And even when the
natural granularity is too small, we have found that it is
often possible to batch the application’s natural tasks to-
gether into Topaz tasks that are more than large enough to
amortize the Topaz overhead. Once again, scientific, ma-
chine learning, and financial applications typically per-
form more than enough independent computations to en-
able the construction of Topaz tasks that are large enough
to profitably amortize the Topaz overhead.
• Acceptable Task Error Rates: Topaz detects unaccept-

ably inaccurate computations at the granularity of tasks.
The larger the task, the higher the probability that the task
will encounter an error that introduces an unacceptable
inaccuracy. The tasks must therefore be small enough
so that an acceptably small number of tasks encounters
such errors. Acceptable Topaz tasks sizes are therefore
bounded below by the need to amortize Topaz task man-
agement overhead and bounded above by the need to
avoid large numbers of unacceptably inaccurate tasks.

We next discuss two concerns that can make applications
a poor fit for the basic Topaz approach:

• Externally Visible Effects: Tasks with externally visible
effects (such as interacting with the network or manip-
ulating sensors, actuators, or system configurations) are
typically a poor match for Topaz since they are (in gen-
eral) not idempotent and cannot be successfully reexe-
cuted if discarded by the Topaz outlier detector.
• Outlier Detector Accuracy: The Topaz outlier detector

relies on relatively uniform task input/output behavior to
operate successfully. If this behavior changes too quickly
or unpredictably, the outlier detector may reexecute too
many tasks (so that any gains are overcome by repeated
task executions). Rapidly shifting input/output distribu-
tions that cannot be accurately captured with an appropri-
ate AOV or monotonically increasing outputs are two ex-
amples of task input/output behavior that can cause coun-
terproductive outlier detector behavior. A related concern
is short, nonrepeating tasksets. In this case the initial
learning phase of the Topaz outlier detector, which ex-
hibits a high reexecution rate as the outlier detector con-
verges to its steady state, may comprise a large percent-



age of the total taskset execution with the initial reexe-
cution overhead not successfully amortized by the steady
state taskset execution.
Examples of applications with rapidly changing charac-
teristics that may interact poorly with outlier detection
include simulations of turbulent fluid flow and explosive
combustion simulations.

These concerns highlight how Topaz is most appropriate
for compute-intensive applications with many appropriately
sized tasks.

7.2 Static Accuracy Guarantees and Topaz
There are two kinds of static accuracy guarantees that
would be appropriate for Topaz programs: taskset guar-
antees, which would characterize the accuracy of the task
and taskset results, and end-to-end guarantees, which would
characterize the overall accuracy of Topaz computations.
Topaz currently provides neither kind of guarantee. We next
outline the challenges associated with obtaining each kind
of guarantee:

• Taskset Guarantees: Topaz is designed to work with
hardware platforms that may generate arbitrarily inac-
curate results, with the Topaz outlier detector detecting
and reexecuting unacceptably inaccurate results. The key
to obtaining taskset guarantees is bounding the inaccu-
racy resulting from tasks that the outlier detector accepts.
With the current Topaz model of computation, there is
no bound on this inaccuracy — an approximate task may
produce an incorrect result that is very close to previously
observed results (so the outlier detector accepts the incor-
rect result) while the correct result is arbitrarily far away.
Additional guarantees about the operation of the underly-
ing hardware platform or the values of task results would
be required to obtain any Topaz taskset accuracy guaran-
tees. For example, it should be possible to obtain Topaz
taskset accuracy guarantees for Topaz programs running
on approximate hardware that provides bounds on the in-
accuracy of the results that it may compute.
• End-to-End Guarantees: To obtain an end-to-end ac-

curacy guarantee, one must first obtain a Topaz taskset
guarantee, then reason about how the bounded taskset in-
accuracy propagates through the Topaz application to in-
fluence the outputs that the application produces. Poten-
tial options for such guarantees include worst-case and
probabilistic guarantees. While techniques exist for pro-
viding such guarantees, they have yet to be shown to scale
to large applications.

7.3 Interplay Between Language Design, Hardware,
and Runtime System

The Topaz language design decisions enable Topaz to work
with approximate computing platforms that may produce
arbitrarily inaccurate results:

• Distributed Memory Model: Topaz employs a dis-
tributed memory model for program data. This mech-
anism confines any data corruption within the worker
process executing the approximate tasks. Topaz therefore
supports platforms with hardware errors that may trigger
cascading software faults or data corruption.
• Self-Contained, Stateless Tasks: Tasks are stateless and

self contained. In the event the Topaz worker process
(or the approximate processor) crashes, the approximate
processor can begin receiving tasks after reboot without
any checkpointing.
• Abstract Output Vectors: AOVs provide a powerful

mechanism for obtaining the data on which the outlier
detector operates. AOVs also support efforts to automate
the selection of an appropriate abstraction for outlier de-
tection.
• Outlier Detector: The outlier detector enables Topaz

to exclude unacceptable results and adapt to the error
characteristics of the system and the application (via the
control system). This technique is vital to operating on
systems with a difficult to formalize and volatile error
characteristics.

8. Related Work
We discuss related work in software and hardware approxi-
mate computing.

Software Approximate Computing. Task skipping [32]
and loop perforation [41] both apply approximate comput-
ing at the software level with no hardware support. The re-
sults indicate that this approach can deliver significant per-
formance improvements and energy savings.

Approximate Hardware Platforms. Researchers have
previously proposed multiple hardware architecture designs
that improve the performance or energy consumption of pro-
cessors by reducing precision or increasing the incidence of
error [8, 9, 15, 18, 19, 28, 30, 35, 44, 46, 47]. Researchers
have also proposed a variety of approximate DRAM and
SRAM designs. To save DRAM energy, researchers have
proposed downgrading the refresh rate [9, 22] or using a
different underlying substrate [36], For SRAM, researchers
have proposed decreasing operating voltage [9, 39]. Re-
searchers have also designed hardware platforms with a sin-
gle precise core and multiple approximate cores [19, 29].
Topaz targets all of these approximate hardware models and
has been tested on a subset of these models.

Not all approximate hardware is easy to model. Re-
searchers have done experiments on systems with hard to
quantify fault characteristics, such as undervolted and over-
clocked hardware, and found them hard to model or quan-
tify [16, 19, 25]. In industry, hardware component manu-
facturers sacrifice some performance, die space and energy
into error correction hardware to reduce the effects of man-
ufacturing defects [13]. These difficult to model pieces of
hardware are good targets for Topaz.



Programming Models for Approximate Hardware. Re-
searchers have previously investigated using task checkers
for approximate hardware. Relax is a task-based program-
ming language and ISA extension that supports manually
developed checker computations [7]. If a checker compu-
tation fails, Relax allows a developer to specify a custom
recovery mechanism. Although Topaz is also task-based, it
operates entirely in software, and does not require ISA ex-
tensions. In contrast to Relax, Topaz uses online outlier de-
tection as an automatic checking mechanism and automati-
cally re-executes tasks as a default recovery mechanism.

Jade is a task-based language for parallel computing [34].
It is possible to execute Jade tasks on unreliable hardware
or software platforms, with the implementation discarding
failed tasks to produce acceptably accurate approximate re-
sults [32]. The Topaz implementation, in contrast, reexecutes
failed tasks (as well as tasks that the outlier detector rejects).
It is obviously possible to modify the Topaz implementation
to discard (instead of reexecuting) failed and/or outlier tasks.
The Jade results suggest that this alternate implementation
strategy would also deliver acceptably accurate results.

Researchers have also investigated language features that
allow developers to annotate approximate data and opera-
tions. Flikker provides a C API, which developers can use to
specify data to store in unreliable memory [22]. Enerj pro-
vides a type system to specify data that may be placed in
unreliable memories or computed using approximate com-
putations [35]. Rely provides a specification language that
developers can use to specify quantitative reliability require-
ments and an analysis that verifies that Rely programs satisfy
these requirements when run on approximate hardware [6].
Unlike these systems, Topaz does not require the developer
to provide such fine grain annotations.

Recently, researchers have sought to lessen program-
mer burden by automatically determining the placement of
approximate structures and annotations. Researchers have
demonstrated that it is possible to automatically find criti-
cal input regions and code [4, 32]. Chisel allows a devel-
oper to express accuracy and reliability constraints and au-
tomates the placement of unreliable operations for a Rely
program by framing the provided energy model and pro-
gram as an integer programming problem [26]. Like Chisel,
ExpAX searches for approximations that minimize energy
usage subject to accuracy and reliability constraints using
genetic programming [31]. Both Chisel and ExpAX remove
the need for the programmer to specify approximate opera-
tions. But, unlike Topaz, they still require the programmer
provide software and hardware specifications.

9. Conclusion
Topaz enables developers to cleanly express the approximate
tasks present in their approximate computations. The Topaz
implementation then maps the tasks appropriately onto the
underlying approximate computing platform and manages

the resulting distributed approximate execution. The Topaz
execution model gives approximate hardware and software
designers the freedom and flexibility they need to produce
maximally efficient approximate hardware and software —
the Topaz outlier detection and reexecution algorithms en-
able Topaz computations to work with approximate com-
puting platforms even if the platform may occasionally pro-
duce arbitrarily inaccurate results. Topaz therefore supports
emerging and future approximate computing platforms that
promise to provide an effective, energy-efficient computing
substrate for existing and future approximate computations.
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