
Compositional Pointer and Escape Analysis for Java Programs

John Whaley and Martin Rinard

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

fjwhaley, rinardg@lcs.mit.edu

Abstract

This paper presents a combined pointer and escape analy-
sis algorithm for Java programs. The algorithm is based on
the abstraction of points-to escape graphs, which character-
ize how local variables and �elds in objects refer to other
objects. Each points-to escape graph also contains escape
information, which characterizes how objects allocated in
one region of the program can escape to be accessed by an-
other region. The algorithm is designed to analyze arbitrary
regions of complete or incomplete programs, obtaining com-
plete information for objects that do not escape the analyzed
regions.

We have developed an implementation that uses the es-
cape information to eliminate synchronization for objects
that are accessed by only one thread and to allocate objects
on the stack instead of in the heap. Our experimental results
are encouraging. We were able to analyze programs tens
of thousands of lines long. For our benchmark programs,
our algorithms enable the elimination of between 24% and
67% of the synchronization operations. They also enable the
stack allocation of between 22% and 95% of the objects.

1 Introduction

This paper presents a combined pointer and escape anal-
ysis algorithm for Java programs and programs written in
similar object-oriented languages. The algorithm is based
on the abstraction of points-to escape graphs, which char-
acterize how local variables and �elds in objects refer to
other objects. Each points-to escape graph also contains es-
cape information, which characterizes how objects allocated
in one region of the program can escape to be accessed by
another region.

A key concept underlying this abstraction is the goal
of representing interactions between analyzed and unana-
lyzed regions of the program. Points-to escape graphs make
a clean distinction between objects and references created
within an analyzed region and those created in the rest of
the program. They therefore enable a
exible analysis that
is capable of analyzing arbitrary parts of the program, with

the analysis result becoming more precise as more of the
program is analyzed. At every stage in the analysis, the
algorithm can distinguish where it does and does not have
complete information.

1.1 Analysis Uses

Java presents a clean and simple memory model: concep-
tually, all objects are allocated in a garbage-collected heap.
While useful to the programmer, this model comes with a
cost. In many cases it would be more e�cient to allocate
objects on the stack, eliminating the dynamic memory man-
agement overhead for that object. A similar situation holds
for the Java synchronization model. Conceptually, every
Java object comes with a lock. Each synchronized method
ensures that it executes atomically by acquiring and releas-
ing the lock in its receiver object. But the lock overhead is
wasted when only one thread accesses the object | the locks
are required only when there is a possibility that multiple
threads may attempt to access the object simultaneously.

In this paper we discuss the use of our analysis results to
eliminate unnecessary synchronization and to enable stack
allocation of objects. The basic idea is to use the analy-
sis information to determine when objects do not escape
threads and methods. If an object does not escape from its
allocating thread to another thread, the compiler can trans-
form the program to eliminate synchronization operations
on that object. If an object does not escape a method, the
compiler can transform the program to allocate it in that
method's activation record instead of in the heap. Our ex-
perimental results show that the algorithms can eliminate a
signi�cant number of heap allocations and synchronization
operations.

1.2 Analysis Properties

Our analysis has several important properties:

� It is an interprocedural analysis. It is designed to com-
bine analysis results from multiple methods to obtain
precise points-to and escape information.

� It is a compositional analysis. It is designed to analyze
each method once to produce a single parameterized
analysis result that can be specialized for use at all of
the call sites that may invoke the method.1

1Recursive methods require an iterative algorithm that may ana-
lyze methods multiple times to reach a �xed point.

� It is a partial program analysis in two senses. First, it
is designed to analyze each method independently of
its callers. Second, it is capable of analyzing a method
without analyzing all of the methods that it invokes,
with the analysis result becoming more precise as more
of the invoked methods are analyzed.

Because the analysis is compositional and can analyze
pieces of the program independently of their callers and
callees, it is especially appropriate for dynamically loaded
programs. Our current implementation runs in a dynamic
compiler and analyzes libraries independently of applica-
tions. When the compiler loads an application, it retrieves
the previously computed analysis results for the libraries and
uses these results in the analysis of the application.

1.3 Basic Approach

The analysis is based on an abstraction we call points-to
escape graphs. The nodes of this abstraction represent ob-
jects; the edges represent references between objects. The
abstraction also contains information about which objects
escape to other methods or threads. For example, an ob-
ject escapes if it is returned to an unanalyzed region of the
program or passed as a parameter to an unanalyzed method.

For each method, the analysis produces a points-to es-
cape graph that characterizes the points-to relationships cre-
ated within the method and the interaction of the method
with the points-to relationships created by the rest of the
program. The analysis represents these interactions, in part,
by maintaining a distinction between two kinds of edges: in-
side edges, which represent references created inside the cur-
rently analyzed region, and outside edges, which represent
references created outside the currently analyzed region.

Similarly, there are two kinds of nodes: inside nodes,
which represent objects created inside the currently ana-
lyzed region and accessed via inside edges, and outside nodes,
which represent objects that are either created outside the
currently analyzed region or accessed via outside edges. Out-
side edges represent interactions in which the analyzed re-
gion reads a reference created in an unanalyzed region. In-
side edges from outside nodes or nodes reachable from out-
side nodes represent interactions in which the analyzed re-
gion creates a reference that the unanalyzed region may
read.

Edges between inside nodes represent references created
within the currently analyzed region. If the inside nodes
do not escape, they have no interaction with the rest of
the program and their edges in the points-to escape graph
completely characterize the points-to relationships between
the objects represented by these nodes. Because points-to
escape graphs record the interactions of methods with their
callers, the analysis can recover complete information about
objects that escape the currently analyzed method but are
recaptured in the caller.

Our analysis is compositional | it analyzes each method
independently of its callers. Unlike all other pointer and es-
cape analysis algorithms that we know of, our algorithm is
also capable of analyzing a method independently of meth-
ods that it may invoke. When the algorithm skips the anal-
ysis of a potentially invoked method, it records that all
objects passed as parameters to the invoked (but not an-
alyzed) method escape from the scope of the analysis. This
escape information allows the algorithm to clearly identify
both those objects for which it has complete points-to infor-
mation and those objects whose points-to relationships may

be a�ected by unanalyzed regions of the program. Our al-
gorithm is designed to analyze arbitrary regions of complete
or incomplete programs, obtaining complete information for
objects that do not escape the analyzed regions.

1.4 Contributions

This paper makes the following contributions:

� Analysis Algorithms: It presents a new combined
pointer and escape analysis algorithm. The algorithm
is compositional and is designed to deliver useful in-
formation without analyzing the entire program.

� Analysis Approach: It presents an analysis approach
that explicitly di�erentiates between references and
objects from analyzed and unanalyzed regions of the
program. This approach allows the algorithm to cap-
ture the interactions between these regions, and to
clearly identify where it does and does not have com-
plete information about the extracted relationships.

� Analysis Uses: It presents two optimizations en-
abled by the extracted points-to and escape informa-
tion: synchronization elimination and stack allocation.

� Experimental Results: It presents experimental re-
sults from a prototype implementation of the algo-
rithms. These results show that the algorithms can
eliminate a signi�cant amount of synchronization op-
erations and heap allocations.

The remainder of the paper is organized as follows. Sec-
tion 2 presents examples that illustrate how the analysis
works. Section 3 describes how the analysis represents the
program and the analysis objects that the algorithm uses.
Section 4 presents the intraprocedural analysis, and Sec-
tion 5 presents the interprocedural analysis. In Section 6 we
present an abstraction relation that characterizes the corre-
spondence between points-to escape graphs and the objects
and references that the program creates as it runs. Sec-
tion 7 presents the synchronization elimination and stack
allocation transformations. Section 8 presents the experi-
mental results from our implementation. Section 9 discusses
related work; we conclude in Section 10.

2 Example

In this section we present several examples that illustrate
how our analysis works.

2.1 Return Values

Figure 1 presents a complex number arithmetic example.
The add method adds two complex numbers, storing the
result in a newly allocated complex number object and re-
turning the new object. The multiply method operates sim-
ilarly, but multiplies the numbers instead of adding them.
Because each method returns the new object, the new object
escapes from the method.

The multiplyAdd method multiplies its two arguments,
then returns the sum of the product and the receiver. In this
case, only the add result escapes | the temporary result
from multiply is inaccessible outside of the multiplyAdd
method. It is therefore possible to generate a specialized
version of the multiply method that expects the storage for
the result object to be allocated on the stack of its caller.
It would then generate the result into the stack-allocated

class complex {
double x,y;
complex(double a, double b) { x = a; y = b; }
complex multiply(complex a) {

complex product =
new complex(x*a.x - y*a.y,x*a.y + y*a.x);

return(product);
}
complex add(complex a) {

complex sum = new complex(x+a.x,y+a.y);
return sum;

}
complex multiplyAdd(complex a, complex b) {
complex product = a.multiply(b);
complex sum = this.add(product);
return(sum);

}
}

Figure 1: Complex Number Example

Figure 2: Analysis Result for multiplyAdd

object rather than dynamically allocating a new complex
object to hold the result.

Figure 2 presents the analysis result for the multiplyAdd
method. The nodes in this graph represent variables and
objects; the edges represent references. The parameter vari-
ables a and b point to nodes that represent the parame-
ter objects; the variable this points to a node that rep-
resents the receiver. Because these objects are created out-
side the method, the corresponding nodes are outside nodes.
Note that the analysis assumes that the parameters are not
aliased. If the analysis result is used at a method invo-
cation site where the parameters are aliased, the mapping
algorithm presented in Section 5 merges the two parameter
nodes before it uses the analysis result. This mechanism
ensures that the algorithm can analyze the program under
the assumption that di�erent parameters and object �elds
are not aliased, but use the analysis results in contexts con-
taining aliases.

The product and sum variables point to nodes that rep-
resent the new complex number objects allocated, respec-
tively, in the multiply and add methods. The algorithm
represents objects allocated within the analyzed region of

public class Server extends Thread {
ServerSocket serverSocket;
int duplicateConnections;

Server(ServerSocket s) {
serverSocket = s;
duplicateConnections = 0;

}
public void run () {

try {
Vector connectorList = new Vector();
while (true) {

Socket clientSocket =
serverSocket.accept();

new ServerHelper(clientSocket).start();
InetAddress addr =
clientSocket.getInetAddress();

if (connectorList.indexOf(addr) < 0)
connectorList.addElement(addr);

else duplicateConnections++;
}

} catch (IOException e) { }
}

}

Figure 3: Server Example

the program with nodes that correspond to the object cre-
ation site. So, for example, product points to the node that
represents objects created at the object creation site inside
multiply. Because this node represents objects created in-
side the analyzed region, it is an inside node.

The node that product points to is accessible only via
the local variable product. We therefore say that this node
is captured. As soon as the multiplyAdd method returns, all
of the objects that this node represents will be inaccessible.
It is therefore legal to tie the lifetime of the object to the
lifetime of the method invocation, and allocate the object
on the activation record of the multiplyAdd method.

The multiplyAdd method returns the object that sum
points to. Even though the object escapes this method, it
may be recaptured by a method above multiplyAdd in the
call chain. The analysis maintains enough information to
recognize such situations.

2.2 Thread-Private Objects

The next example illustrates how the analysis can detect
thread-private objects, or objects that are accessed by only
one thread. The goal is to eliminate synchronization op-
erations on thread-private objects. The code in Figure 3
implements a simple server. The server waits for incoming
connection requests on the serverSocket. Whenever it gets
a request, it creates a new ServerHelper thread to service
the new connection. The server counts the number of du-
plicate connections | i.e., the number of times it connects
to a client that it has previously connected to.

To correctly compute this count, the server maintains a
list of the Internet addresses of clients that it has connected
to. Whenever it receives a new request, the server checks
the list to determine if it has previously connected to the
client. If so, it increments duplicateConnections, which is
the count of the number of duplicate connections that the
server has established. If not, it inserts the Internet address

of the client into the list so that it can detect any future
duplicate connections from this client.

In this example, the server uses a Vector to hold the
list of Internet addresses. This class is thread safe | its
methods are guaranteed to execute atomically even when
concurrently invoked by di�erent threads. Thread safety is
an important property. Without it, multithreaded programs
can fail in very subtle ways because of data races, or unantic-
ipated interactions between threads that concurrently access
the same object.

The problem with atomic operations is the overhead from
the synchronization operations that make the methods ex-
ecute atomically. In our example, the standard implemen-
tations of indexOf and addElement acquire and release the
lock in their receiver object. This overhead is especially
regrettable when, as in our example, the Vector is a thread-
private object.

The analysis of the run method in our example proceeds
as follows. The algorithm �rst analyzes the invoked methods
to obtain a points-to escape graph for each method. Each
graph summarizes how the method a�ects the points-to re-
lationships between objects and how the objects it creates
and accesses escape to other threads or to the caller. In
our example, the new clientSocket object escapes to the
ServerHelper thread. The indexOf and addElement meth-
ods may change the objects that the receiver points to, but
they do not change the escape status of the receiver.

Based on this information, and on its analysis of the run
method, the analysis determines that the connectorList
object is captured within the run method, and is accessible
only to the run method's thread. The synchronization in the
addElement and indexOf methods is therefore redundant.
The compiler can generate specialized, synchronization-free
versions of these methods. The generated code for the run
method invokes these specialized versions, and the compu-
tation executes without synchronization overhead for the
Vector object.

It is also possible to address the problem of synchro-
nization overhead for thread-private objects by providing
the programmer with two implementations of each class: a
thread-safe implementation with synchronization (used for
objects shared between threads), and a thread-unsafe imple-
mentation with no synchronization (used for thread-private
objects). The JDK 1.2 collections API takes this approach.
The problem with this approach is that it complicates the
API and burdens the programmer with the responsibility
of determining which objects are thread safe and which are
not. The last problem can become especially severe for pro-
grammers maintaining multithreaded programs. If a change
makes a previously thread-private object accessible to mul-
tiple threads, the programmer must search the program to
manually replace the thread-unsafe version with the thread-
safe version.

2.3 Recursive Data Structures

We next present an example that illustrates how our algo-
rithm deals with recursive data structures. Let us assume
that in the previous example, the server would like to count
the number of connections from each client, instead of sim-
ply counting the number of duplicate connections. In this
case, the server could use the multiset class in Figure 4,
which implements a multiset as a list of elements. Each ele-
ment has a count of the number of times it is present in the
multiset.

If the server used a multiset instead of a Vector, the

class multisetElement {
Object element;
int count;
multisetElement next;

multisetElement(Object e, multisetElement n) {
count = 1;
element = e;
next = n;

}
synchronized boolean check(Object e) {

if (element.equals(e)) {
count++;
return(true);

} else return false;
}
synchronized multisetElement insert(Object e) {

multisetElement m = this;
while (m != null) {

if (m.check(e)) return this;
m = m.next;

}
return new multisetElement(e, this);

}
}

class multiset {
multisetElement elements;
multiset() {
elements = null;

}
synchronized void addElement(Object e) {

if (elements == null)
elements = new multisetElement(e,null);

else elements = elements.insert(e);
}

}

Figure 4: Multiset Example

Figure 5: Analysis Result for insert

analysis of the run method in Figure 3 would still recognize
the multiset object as thread-private. In this section, we
focus on the treatment of recursive data structures in the
analysis of the insert method for multisetElements.

Figure 5 presents the analysis result at the end of the
insert method. The this variable points to the receiver
node, which represents the receiver object, while e points to
a parameter node, which represents the parameter object.
Both nodes are outside nodes. The other nodes represent
objects created or accessed during the execution of insert.
The next edge from the receiver node points to a node that
represents all objects referenced by the m.next �eld at the
load statement m = m.next, which loads the reference from
m's next �eld back into m. The edge is an outside edge, be-
cause it points to a node that represents an object allocated
outside the scope of the analysis of insert, and it points
to an outside node. In particular, it points to a load node,
because there is one of these nodes for each load statement
in the program.

There is also an outside edge from the load node back
to itself. As the loop in the insert method walks down
the list, it traverses the references in the next �elds of the
nodes. Because all of these references are loaded at the same
statement, the outside edges that represent the references
point to the same outside node, and there is cycle in the
graph. This mechanism ensures that the analysis terminates
for programs that manipulate recursive data structures.

The remaining node represents the new multisetElement
object that insert may allocate to hold the new multiset
entry. This node has an inside edge (from the next �eld)
to the receiver node, and an inside edge (from the element
�eld) to the parameter node. These edges represent refer-
ences to these nodes created during the execution of insert.

3 Analysis Algorithm

The algorithm analyzes the program at the granularity of
methods. The analysis of each method incorporates infor-
mation from the method and from some subset of the meth-
ods that it invokes. The combination of the currently ana-
lyzed method and all of the analyzed methods that it invokes
is called the current analysis scope.

3.1 Program Representation

The algorithm represents the program using the following
analysis objects. There is a set l 2 L of local variables
and a set p 2 P of formal parameter variables. There is
one formal parameter variable for each formal parameter
of each method in the program. Together, the local and
formal parameter variables make up the set v 2 V = L[P of
variables.

There is also a set cl 2 CL of classes and a set op 2 OP of
methods. Each method has a receiver class cl and a formal
parameter list p

0
; : : : ; pk. We adopt the convention that

parameter p
0
points to the receiver object of the method.

Finally, there is a set f 2 F of object �elds. Object
�elds are accessed using syntax of the form v:f. Static class
variables are accessed using syntax of the form cl:f.

The algorithm represents the computation of each method
using a control
ow graph. The nodes of control
ow graphs
are statements st 2 ST. The algorithm analyzes only those
statements that a�ect the points-to and escape information.
We assume the program has been preprocessed so that all
statements relevant to the analysis are in one of the following
forms:

� A copy statement l = v.

� A load statement l1 = l2:f.

� A store statement l1:f = l2.

� A global load statement l = cl:f.

� A global store statement cl:f = l.

� A return statement return l, which identi�es the re-
turn value l of the method.

� An object creation site of the form l = new cl. There
are two kinds of object creation sites:

{ If cl inherits from the class Thread, then the ob-
ject creation site is also a thread creation site.

{ If cl does not inherit from the class Thread, then
the object creation site is not a thread creation
site.

� A method invocation site of the form
l = l0:op(l1; : : : ; lk). Each method invocation site
corresponds to a method invocation site m 2M .

The control
ow graph for each method op starts with the
enter statement enterop and ends with an exit statement
exitop.

The analysis represents the control
ow relationships be-
tween statements as follows: pred(st) is the set of state-
ments that may execute immediately before st, and succ(st)
is the set of statements that may execute immediately after
st. There are two program points for each statement st,
the program point �st immediately before st executes, and
the program point st� immediately after st executes.

The interprocedural analysis uses call graph informa-
tion to compute sets of methods that may be invoked at
method invocation sites. For each method invocation site
m, callees(m) is the set of methods that m may invoke.
Given a method op, callers(op) is the set of method invoca-
tion sites that may invoke op. The current implementation
obtains this call graph information using a variant of class
hierarchy analysis [13], but the algorithm can use any con-
servative approximation to the actual call graph generated
when the program runs.

3.2 Object Representation

The analysis represents the objects that the program ma-
nipulates using a set n 2 N of nodes. There are several
kinds of nodes:

� There is the set NI of inside nodes, which represent
objects created within the current analysis scope and
accessed via references created within the current anal-
ysis scope. There is one inside node for each object
creation site; that inside node represents all objects
created within the current analysis scope at that site.

NT is the set of thread nodes, or inside nodes that
correspond to thread creation sites. Since each thread
corresponds to an object that inherits from the class
Thread, thread creation sites are also object creation
sites, and NT � NI .

� There is the set NO of outside nodes, which repre-
sent objects created outside the current analysis scope
or accessed via references created outside the current
analysis scope.

� There is the set CL of class nodes. Conceptually, each
class node represents a statically allocated object whose
�elds are the static class variables for the correspond-
ing class.

The set NO of outside nodes is futher divided into the
following kinds of nodes:

� There is a set NP of parameter nodes. There is one
parameter node for each formal parameter in the pro-
gram. Each parameter node represents the object that
its parameter points to during the execution of the
analyzed method. When the analysis starts, each of
the method's formal parameter variables points to its
corresponding parameter node. The receiver object is
treated as the �rst parameter of each method.

� There is a set NG of global nodes. There is one global
node for each static class variable cl:f in the program.
Each global node represents the objects that its static
class variable may point to during the execution of
the current method. When the analysis of the cur-
rent method starts, each accessed static class variable
points to its global node.

� There is a set NL of load nodes. There is one load
node for each load statement in the program. When
the load statement executes, it loads a value from a
�eld in an object. If the loaded value is a reference, the
analysis must represent the object that the reference
points to. Each load node represents all of the objects
whose references are loaded by the corresponding load
statement.

� There is a set NR of return nodes. There is one return
node for each method invocation site in the program.
Return nodes are used to represent the return values
of invocations of unanalyzed methods.

The analysis represents each array with a single node.
This node has a �eld elements, which represents all of the
elements of the array. Because the points-to information for
all of the array elements is merged into this �eld, the analysis
does not make a distinction between di�erent elements of the
same array.

3.3 Points-To Escape Graphs

A points-to escape graph is a quadruple of the form hO; I; e; ri,
where

� O � (N � F) � (NL [NG) is a set of outside edges.
Outside edges represent references created outside the
current analysis scope, either by the caller, by a thread
running in parallel with the current thread, or by an
unanalyzed invoked method.

� I � (V [(N � F))�N is a set of inside edges. Inside
edges represent references created inside the current
analysis scope.

� e : N ! 2M is an escape function that records the
set of unanalyzed method invocation sites that a node
escapes down into.

� r � N is a return set that represents the set of ob-
jects that may be returned by the currently analyzed
method.

Both O and I are graphs with edges labeled with a �eld
from F . We de�ne the following operations on nodes of the
graphs:

edgesTo(O; n) = fhn0; ni 2 Og [fhhn0; fi; ni 2 Og
edgesFrom(O; n) = fhn; n0i 2 Og [fhhn; fi; n0i 2 Og

edges(O; n) = edgesTo(O; n) [edgesFrom(O; n)
O(n) = fn0:hn; n0i 2 Og

O(n; f) = fn0:hhn; fi; n0i 2 Og

The following operation removes a set S of nodes from a
points-to escape graph. hO0; I 0; e0; r0i = remove(S; hO; I; e; ri),
where

O0 = O �[fedges(O; n):n 2 Sg
I 0 = I � [fedges(I; n):n 2 Sg

e0(n) =

�
e(n) if n 62 S
; otherwise

r0 = r � S

3.4 Reachability and Escaped Nodes

We identify two di�erent kinds of escape information, with
the distinction based on when an object becomes accessi-
ble outside the current method. If an object was created
outside the current analysis scope or was accessed via a ref-
erence created outside the current analysis scope, the object
is already accessible to other parts of the program. In this
case we say that the object has escaped or is escaped.

If an object has not escaped but will be returned by the
method to its caller, we say that the object will escape.

An object has directly escaped the current method in all
of the following situations:

� A reference to the object was passed as a parameter
into the current method.

� A reference to the object was written into a static class
variable.

� A reference to the object was passed as a parameter to
an invoked method, and there is no information about
what the invoked method did with the object.

� The object is a thread object.

An object has escaped if it is reachable via some sequence of
object references from a directly escaped object. An object
is captured if it has not escaped.

Given our abstraction of points-to escape graphs, we can
formalize the concepts of reachability and escaped nodes as
follows. A node n0 is directly reachable from a node n in a
graph O if n = n0, hn; n0i 2 O or 9f:hhn; fi; n0i 2 O. A node
n0 is reachable from a node n in O if n = n0 or there exists a
sequence n0 � � � � � nk such that n = n0, n

0 = nk, and for all
0 � i < k, ni+1 is directly reachable from ni in O. Finally,
a node n0 is reachable from a set of nodes S in O if there
exists a node n 2 S such that n0 is reachable from n in O.
We de�ne reachable(O; S; n) if n is reachable from S in O.

Given a points-to escape graph hO; I; e; ri, a node n di-
rectly escapes if n 2 NP [NR [NT [CL or e(n) 6= ;. We
de�ne escaped(hO; I; e; ri; n) if n is reachable in O [I from
a node that directly escapes, and captured(hO; I; e; ri; n) if
not escaped(hO; I; e; ri; n).

4 Intraprocedural Analysis

The algorithm uses a data
ow analysis to generate a points-
to escape graph at each point in the method. The analysis
of each method starts with the construction of the points-
to escape graph hO0; I0; e0; r0i for the �rst statement in the
method. Given a method op with formal parameter list
p
0
; : : : ; pk and accessed static class variables cl1:f1; : : : ; clj :fj ,

the initial points-to escape graph hO0; I0; e0; r0i is de�ned as
follows.

� In I0, each parameter pi points to its corresponding
parameter node np

i
. The formal parameter p

0
points

to the receiver object of the method; the node np
0

represents the receiver object in the analysis of the
method.

I0 = fhpi; npii:0 � i � kg

� In O0, each accessed static class variable cli:fi points
to its corresponding global node ncli:fi

.

O0 = fhhcli; fii; ncli:fii:1 � i � jg

� For all n, e0(n) = ;.

� r0 = ;.

Note that the algorithm analyzes the method under the as-
sumption that the parameters and accessed static class vari-
ables all point to di�erent objects. If the method may be
invoked in a calling context in which some of these pointers
point to the same object, this object will be represented by
multiple nodes during the analysis of the method. In this
case, the mapping operation described below in Section 5
will merge the corresponding outside objects when it maps
the �nal analysis result for the method into the calling con-
text at the method invocation site. Because the mapping
retains all of the edges from the merged objects, it conser-
vatively models the actual e�ect of the method.

Once it has �nished constructing the initial points-to es-
cape graph, the analysis continues by propagating points-
to escape graphs through the statements of the method's
control
ow graph. The transfer function hO0; I 0; e0; r0i =
[[st]] (hO; I; e; ri) de�nes the e�ect of each statement st on
the current points-to escape graph. Most of the statements
�rst kill a set of inside edges, then generate additional inside
and outside edges. In this case, the transfer function has the
following general form:

I 0 = (I �KillI) [GenI
O0 = O [GenO

Figure 6 graphically presents the rules that determine the
sets of generated edges for the di�erent kinds of statements.
Each row in this �gure contains four items: a statement, a
graphical representation of existing edges, a graphical rep-
resentation of the existing edges plus the new edges that the
statement generates, and a set of side conditions. The inter-
pretation of each row is that whenever the points-to escape
graph contains the existing edges and the side conditions are
satis�ed, the transfer function for the statement generates
the new edges.

4.1 Copy Statements

A copy statement of the form l = v makes l point to the
object that v points to. The transfer function updates I to
re
ect this change by killing the current set of edges from l,

then generating additional inside edges from l to all of the
nodes that v points to.

KillI = edges(I; l)
GenI = flg � I(v)

I 0 = (I �KillI) [GenI

4.2 Load Statements

A load statement of the form l1 = l2:fmakes l1 point to the
object that l2:f points to. The analysis models this change
by constructing a set S of nodes that represent all of the
objects to which l2:f may point, then generating additional
inside edges from l1 to every node in this set.

All nodes accessible via inside edges from l2:f should
clearly be in S. But if l2 points to an escaped node, other
parts of the program such as the caller or threads executing
in parallel with the current thread can access the referenced
object and store values in its �elds. In particular, the value
in l2:f may have been written by the caller or a thread
running in parallel with the current thread| in other words,
l2:f may contain a reference created outside of the current
analysis scope. The analysis uses an outside edge to model
this reference. The outside edge points to the load node for
the load statement, which is the outside node that represents
the objects that the reference may point to.

The analysis must therefore consider two cases: the case
when l2 does not point to an escaped node, and the case
when l2 does point to an escaped node. The algorithm
determines which case applies by computing SE , the set of
escaped nodes to which l2 points. SI is the set of nodes
accessible via inside edges from l2:f.

SE = fn2 2 I(l2):escaped(hO; I; e; ri; n2)g
SI = [fI(n2; f):n2 2 I(l2)g

If SE = ; (i.e., l2 does not point to an escaped node),
S = SI and the transfer function simply kills all edges from
l1, then generates inside edges from l1 to all of the nodes
in S.

KillI = edges(I; l1)
GenI = fl1g � S

I 0 = (I �KillI) [GenI

If SE 6= ; (i.e., l2 points to at least one escaped node), S =
SI[fng, where n is the load node for the load statement. In
addition to killing all edges from l1, then generating inside
edges from l1 to all of the nodes in S, the transfer function
also generates outside edges from the escaped nodes to n.

KillI = edges(I; l1)
GenI = fl1g � S

I 0 = (I �KillI) [GenI
GenO = (SE � ffg)� fng

O0 = O [GenO

4.3 Store Statements

A store statement of the form l1:f = l2 �nds the object to
which l1 points, then makes the f �eld of this object point
to same object as l2. The analysis models the e�ect of this
assignment by �nding the set of nodes that l1 points to,
then generating inside edges from all of these nodes to the
nodes that l2 points to.

GenI = (I(l1)� ffg)� I(l2)
I 0 = I [GenI

Figure 6: Generated Edges for Basic Statements

4.4 Global Load Statements

A global load statement of the form l = cl:f makes l point
to the same object that cl:f points to. The analysis models
this change by killing all edges from l and generating inside
edges from l to all of the nodes that cl:f points to.

KillI = edges(I; l)
GenI = flg � (O [I)(cl; f)

I 0 = (I �KillI) [GenI

4.5 Global Store Statements

A global store statement of the form cl:f = l makes the
static class variable cl:f point to the same object as l. The
analysis models this change by generating inside edges from
cl:f to all of the nodes that l points to.

GenI = fhcl; fig � I(l)
I 0 = I [GenI

4.6 Object Creation Sites

An object creation site of the form l = new cl allocates a
new object and makes l point to the object. The analysis
represents all objects allocated at a speci�c creation site
with the creation site's inside node n. The transfer function
models the e�ect of the statement by killing all edges from
l, then generating an inside edge from l to n.

KillI = edges(I; l)
GenI = fhl; nig

I 0 = (I �KillI) [GenI

4.7 Return Statements

A return statement return l speci�es the return value for
the method. The immediate successor of each return state-
ment is the exit statement of the method. The analysis
models the e�ect of the return statement by updating r to
include all of the nodes that l points to.

r0 = I(l)

4.8 Exit Statements

The transfer function for an exit statement exitop produces
the �nal analysis result for the method. This result is used,
at all call sites that may invoke the method, to compute
the e�ect of the method on the analysis of its caller. The
primary activity of the transfer function is to remove infor-
mation from the points-to escape graph that should not be
visible to the caller. The algorithm �rst computes the set
S of nodes that are not reachable from the static class vari-
ables, the parameters, or the return values. It then removes
these nodes from the points-to escape graph.

S = fn 2 N:not reachable(O [I; CL [P [r; n)g
hO0; I 0; e0; r0i = remove(S; hO; I; e; ri)

The analysis uses the reachability information at method
exit points to bound object lifetimes. If an inside node is
not reachable from the static class variables, the parameters,
the return values, or a thread object, then all of the objects
it represents (i.e., all of the objects allocated at the corre-
sponding object allocation site within the current analysis
scope) are inaccessible both to the method's caller and to
other threads. When the method returns, these objects are
inaccessible to the rest of the computation. It is therefore
legal to allocate these objects in the activation record of the
method and to access the objects without synchronization.

4.9 Control-Flow Join Points

To analyze a statement, the algorithm �rst computes the
join of the points-to escape graphs
owing into the statement
from all of its predecessors. It then applies the transfer
function to obtain a new points-to escape graph at the point
after the statement. The join operation is de�ned as follows.
hO1; I1; e1; r1ithO2; I2; e2; r2i = hO; I; e; ri, where O = O1[
O2, I = I1[I2, 8n 2 N:e(n) = e1(n)[e2(n), and r = r1[r2.
The corresponding partial order for points-to escape graphs
is hO1; I1; e1; r1i v hO2; I2; e2; r2i if O1 � O2, I1 � I2, 8n 2
N:e1(n) � e2(n), and r1 � r2. The bottom points-to escape
graph is h;; ;; e?; ;i, where e?(n) = ; for all n.

The analysis of each method produces analysis results
�(�st) and �(st�) before and after each statement st in the
method's control
ow graph. The analysis result � satis�es
the following equations:

�(�enterop) = hO0; I0; e0; r0i
�(�st) = tf�(st0�):st0 2 pred(st)g
�(st�) = [[st]] (�(�st))

The �nal analysis result of method op is the analysis result
at the program point after the exit node, i.e., �(exitop�).
As described below in Section 5.3, the analysis solves these
equations using a standard worklist algorithm.

4.10 Strong Updates

Our analysis models the execution of statements that update
memory locations by adding edges to the nodes that repre-
sent the updated locations. There are two possible kinds of
updates: weak updates, which leave the existing edges in
place, and strong updates, which remove the existing edges.
Because strong updates leave fewer edges in the points-to es-
cape graph, they may produce more precise analysis results.
In the analysis presented so far, updates to local variables
are strong and all other updates are weak.

The analysis can legally perform a strong update when-
ever the updated node is captured and represents exactly
one updated memory location when the program runs. For
a store statement of the form l1:f = l2, this condition is
satis�ed whenever l1 points to a single captured node n,
n represents a single object, and f represents a single lo-
cation in that object. The last condition is satis�ed unless
f = elements, the special �eld identi�er for array elements
discussed in Section 3.2.

4.10.1 Strong Updates for Singular Nodes and Fields

The node n is singular if it represents one object. This is the
case, for example, if n is an inside node that corresponds to a
statement executed at most once within the current analysis
scope. The �eld f is singular if it represents a single location
within an object. Given these de�nitions, we can provide
the following de�nition of I 0 for the transfer function of a
store statement l1:f = l2. With this de�nition, the transfer
function for store statements performs strong updates.

KillI =

(
edgesFrom(n; f) if I(l1) = fng; n; f singular;

and captured(hI; O; e; ri; n)
; otherwise

GenI = (I(l1)� ffg)� I(l2)
I 0 = (I �KillI) [GenI

4.10.2 Summary Nodes

It is possible to extend the object representation so that each
inside node would represent only the last object allocated at
the corresponding allocation site. All other nodes allocated
at this site would be represented by a summary node. With
this approach, the analysis would perform strong updates for
all inside nodes, and weak updates only for summary nodes.
Similar approaches have been proposed for intraprocedural
shape analysis algorithms [24, 12].

4.11 An Optimization for Static Class Variables

In the absence of information about how parallel threads ac-
cess static class variables, the extracted analysis information
imposes no limit on the lifetimes or points-to relationships
of objects reachable from these variables. The implemented
compiler therefore adopts a more compact representation
for the points-to relationships involving nodes that repre-
sent these objects. Instead of recording the speci�c set of
static class variables that may point to a node, the analysis
simply records that at least one does. This representation
reduces the size of the points-to escape graph without re-
ducing the amount of useful information.

5 Interprocedural Analysis

At each method invocation site, the analysis has the option
of either skipping the site or analyzing the site. If it analyzes
the site, it collects the �nal analysis results from all of the
potentially invoked methods, maps each analysis result into
the points-to escape graph from the program point before
the method invocation site, then merges the mapped results
to derive the points-to escape graph at the point after the
method invocation site. If the analysis skips a method invo-
cation site, it marks all of the parameters as escaping down
into the site.

5.1 Skipped Method Invocation Sites

The transfer function for a skipped method invocation site is
de�ned as follows. Given a skipped method invocation site
m of the form l = l0:op(l1; : : : ; lk) with return node nR
and a current points-to escape graph hO; I; e; ri, the points-
to escape graph hO; I 0; e; r0i = [[m]] (hO; I; e; ri) after the site
is de�ned as follows:

I 0 = (I � edges(I; l)) [fhl; nRig

e0(n) =

�
e(n) [fmg if 90 � i � k:n 2 I(li)
e(n) otherwise

The return node nR is an outside node used to represent the
return value of the invoked method.

5.2 Analyzed Method Invocation Sites

Given an analyzed method invocation site m of the form
l = l0:op(l1; : : : ; lk) and a current points-to escape graph
hO; I; e; ri, the new points-to escape graph hO0; I 0; e0; r0i =
[[m]] (hO; I; e; ri) after the site is de�ned as follows:

hO0
; I

0
; e

0
; r

0i = tfmap(m; hO; I; e; ri; op):op 2 callees(m)g

We next present the mapping algorithm for method in-
vocation sites. We assume a method invocation sitem of the
form l = l0:op(l1; : : : ; lk) and an invoked method op with
formal parameter list p0; : : : ; pk and accessed static class
variables cl1:f1; : : : ; clj :fj . There are three points-to es-
cape graphs involved in the algorithm:

� The old graph is the points-to escape graph hO; I; e; ri
at the point before the method invocation site.

� The incoming graph is the �nal analysis result
hOR; IR; eR; rRi = �(exitop�) for the invokedmethod.

� The mapping algorithm produces the new graph
hOM ; IM ; eM ; rMi = map(m; hO; I; e; ri; op).

5.2.1 Overview

Conceptually, the algorithm �rst builds an initial mapping
� : N ! 2N from the nodes of the incoming graph to the
nodes of the old graph. For each outside node n in the in-
coming graph, �(n) is the set of nodes from the old graph
that n represents during the analysis of the invoked method
op. This initial value of � maps global nodes, parameter
nodes, and load nodes to their corresponding nodes in the
new graph. It builds the mapping for load nodes by tracing
correlated paths in the old graph and the incoming graph.
Each path in the old graph consists of a sequence of inside
edges; the corresponding path in the incoming graph con-
sists of the sequence of outside edges that represent the cor-
responding inside edges during the analysis of the method.

The algorithm then builds the new points-to escape graph
hOM ; IM ; eM ; rMi = map(m; hO; I; e; ri; op). The algorithm
starts by initializing the new graph to the old graph hO; I; e; ri.
It then uses the mapping � to map nodes and edges from the
incoming graph into the new graph. The mapped nodes rep-
resent objects allocated or accessed by the invoked method.
The mapped edges represent references that the invoked
method created or read. During the mapping process, edges
are mapped from pairs of nodes in the incoming graph to
corresponding pairs of nodes in the new graph. In this case
we say that the nodes in the new graph acquire the edges
from the nodes in the incoming graph.

As part of the mapping process, the algorithm extends
� so that if the algorithm maps a node n from the incoming
graph into the new graph, n 2 �(n). In this case we say
that n is present in the new graph.

We next describe the roles that the di�erent kinds of
nodes in the incoming graph play in the analysis, and discuss
how these roles a�ect each node's presence in the new graph,
its e�ect on the mapping �, and the edges that are mapped
into the new graph.

� n 2 NP : If n is a parameter node, it represents the
nodes that the corresponding actual parameter points
to. These nodes should acquire n's edges, but n itself
should not be present in the new graph.

�(n) is the set of nodes in the current graph that the
corresponding actual parameter points to.

� n 2 NG: If n is a global node, it represents the objects
that the corresponding static class variable points to.
These nodes should acquire n's edges, and n should be
present in the new graph. Note that n is also escaped
in the the new graph.

�(n) is the set of nodes in the current graph that the
corresponding static class variable points to. Note that
n 2 �(n).

� n 2 NL: If n is a load node, all of the nodes that it rep-
resents should acquire its edges. If n may represent an
object created outside the analysis scope of the caller
or an object accessed via a reference created outside

that scope, it and its edges should also be mapped into
the new graph.

The basic idea is that n should be present in the new
graph only if an escaped node would point to it |
there should be no outside edges from captured nodes.
The analysis determines if n should be present by ex-
amining all of the nodes in the incoming graph that
point to n. There are two cases:

{ If at least one of these nodes (say n0) is present
and escaped in the new graph, n should also be
present, and there should be an outside edge in
the new graph from n0 to n.

{ If at least one of these nodes is mapped to an es-
caped node (say n0) from the old graph, n should
be present, and there should be an outside edge
in the new graph from n0 to n.

In both cases, n is escaped in the new graph. �(n)
includes the set of nodes in the old graph that n rep-
resented during the analysis of the method. And n 2
�(n) if n is present in the new graph.

� n 2 NI : If n is an inside node, it and its inside edges
should be present in the new graph if the objects that
it represents are reachable in the caller. The analysis
determines if n should be present by examining all of
the nodes in the incoming graph that point to it. As
for load nodes, there are two cases:

{ If at least one of these nodes (say n0) is present
in the new graph, n should also be present, and
there should be an edge in the new graph from n0

to n.

{ If at least one of these nodes represents a node
(say n0) in the old graph, n should be present,
and there should be an edge in the new graph
from n0 to n.

A primary di�erence between load nodes and inside
nodes is that load nodes are present in the new graph
only if they are escaped in that graph. Inside nodes
are present if they are reachable, and can be either
escaped or captured in the new graph.

If an inside node n is present in the new graph, �(n) =
fng. Otherwise �(n) = ;.

� n 2 NR: If n is a return node (these nodes represent
return values from invoked but unanalyzed methods),
the conditions are the same as for inside nodes.

5.2.2 Constraints for the Mapping Algorithm

Figures 7 and 8 present a formal speci�cation of the con-
straints that the mapping � and the new points-to escape
graph hOM ; IM ; eM ; rMi must satisfy. The constraints are
speci�ed as a set of inference rules that the �nal mapping
and points-to escape graph must satisfy.2

Conceptually, many of these inference rules start with an
existing mapping and set of edges, then generate additional

2Each inference rule is written in the standard form

c1; : : : ; ck

c
0

1
; : : : ; c

0

j

which imposes the constraint that if all of c1; : : : ; ck are true, then
all of c0

1
; : : : ; c

0

j must be true.

mappings and edges. Figure 9 graphically presents the gen-
erated mappings and edges for some of the crucial rules.
Each row in this �gure contains four items: an inference
rule, a graphical representation of existing edges and map-
pings, a graphical representation of the existing edges and
mappings plus the new edges and mappings that the rule
generates, and a set of side conditions. The nodes on the
bottom row of each graphical representation are from the
incoming graph, while the nodes on the top row are from
the new graph. The interpretation of each row is that if the
existing edges and mappings are present in the incoming
graph and new graph, and the side conditions are true, then
the inference rule generates the new edges and mappings.

0 � i � k; n 2 I(li)
n 2 �(np

i
)

(1)

1 � i � j

cli 2 �(cli)
(2)

hhn1; fi; n2i 2 OR; hhn3; fi; n4i 2 I;
n3 2 �(n1); n1 62 NI

n4 2 �(n2)
(3)

Figure 7: Initial Rules for �

O � OM I � edges(l) � IM
e(n) � eM(n) r � rM

(4)

hhn1; fi; n2i 2 IR
(�(n1)� ffg)� �(n2) � IM

(5)

hhn1; fi; n2i 2 IR; n 2 �(n1); n2 2 NI [NR

n2 2 �(n2)
(6)

hhn1; fi; n2i 2 OR; n 2 �(n1);
escaped(hOM ; IM ; eM ; rM i; n)
hhn; fi; n2i 2 OM ; n2 2 �(n2)

(7)

n 2 rR \ (NI [NR)
n 2 �(n)

(8)

eR(n) 6= ;; n0 2 �(n)
m 2 eM(n0)

(9)

[f�(n):n 2 rRg � IM(l) (10)

Figure 8: Rules for � and hOM ; IM ; eM ; rMi

5.2.3 Initial Rules

The initial set of contraints, Rules 1 through 3, set up the
initial mapping � so that all outside nodes in the incoming
graph are mapped to the nodes in the old graph that they
represent during the analysis of the invoked method op.

� Rule 1 maps each parameter node np
i
to the nodes

I(li) in the old graph that it represents during the
analysis of the method.3

� Rule 2, along with Rule 3, ensures that each accessed
global node is mapped to the nodes in the old graph

3Recall that the method invocation site has actual parameters
l0; : : : ; lk, the method has formal parameters p

0
; : : : ; pk, and npi

is the parameter node for pi.

Figure 9: Generated Edges and Mappings for Inference Rules

that it represents during the analysis of the method.4

� Rule 3 maps outside nodes to the nodes that they rep-
resent during the analysis of the method, matching
outside edges in the incoming graph with correspond-
ing inside edges in the old graph. The constraint starts
with a node n1 from the incoming graph that already
maps to a node n3 in the old graph. It then matches
edges from these two nodes to �nd a load node n2 from
the incoming graph that represents a node n4 in the
new graph during the analysis of the method. The
constraint maps n2 to n4.

Rules 1 through 3 map outside nodes only. Rule 6, how-
ever, may map an inside node into the new graph. It is
important that Rule 3 does not match outside edges from
these inside nodes against inside edges in the old graph. The
reason for this restriction is that inside nodes represent ob-
jects that were allocated inside the current analysis scope.
These objects did not exist when the analyzed method was
invoked. Any outside edges from inside nodes therefore rep-
resent references created either by threads running in paral-
lel with the current analysis scope, or by unanalyzed meth-
ods invoked by the current analysis scope. In either case
the reference did not exist when the method was invoked.
Because all inside edges in the old graph existed when the
analyzed method was invoked, the outside edge in the in-
coming graph did not represent these edges.

5.2.4 Remaining Rules

Rule 4 initializes the new graph to include the old graph.
Rule 5 maps inside edges from the incoming graph into the
new graph. There is an inside edge between two nodes in
the new graph if there is an inside edge between their two
corresponding nodes in the incoming graph.

Rules 6 through 8 map nodes from the incoming graph
into the new graph. Rule 6 maps an inside or return node
into the new graph if it is reachable from a node that is
already mapped into the new graph. Rule 7 maps a load
node into the new graph if it is reachable from an escaped
node that is already mapped into the new graph. Finally,
Rule 8 maps an inside or return node into the new graph if
it is returned by the method.

Rule 9 ensures that all nodes passed into unanalyzed
methods are marked appropriately in the escape function.
Rule 10 makes l (the local variable that is assigned to the
value that the method returns) point to the nodes that rep-
resent the return value of the method.

5.2.5 Constraint Solution Algorithm

Figures 10 and 11 present an algorithm for solving the con-
straint system in Figures 7 and 8. The algorithm directly
re
ects the structure of the inference rules. At each step it
detects an inference rule antecedent that becomes true, then
takes action to ensure that the consequent is also true.

The mapNode(n1; n) procedure is invoked whenever the
algorithm maps a node n1 from the incoming graph to a
node n in the new graph. It �rst updates the escape func-
tion eM (n) to re
ect any new escape information. It then
maps new inside edges both to and from n to re
ect the
corresponding inside edges from the incoming graph. Rule 5
is the only constraint that maps inside edges from the in-
coming graph into the new graph. Because all insertions of

4Recall that the method accesses static class variables
cl0:f0; : : : ; clj :fj , and that ncli:fi

is the global node for cli:fi.

inside edges into the new graph take place inside mapNode,
it is responsible for ensuring that the new graph contains
the right inside edges.

The control structure of the algorithm is based on three
worklists. Each worklist corresponds to one of the rules that
map nodes from the incoming graph to the new graph. Each
worklist entry contains a node n from the new graph and
an edge hhn1; fi; n2i from the incoming graph. All worklist
entries have the property that n 2 �(n1).

When the algorithm processes the worklist entry, it checks
to see if it should update the mapping for n2. The details
of the check depend on the speci�c worklist.

� The worklistWE corresponds to Rule 3, which matches
outside edges from the incoming graph against inside
edges in the old graph. All edges in this worklist are
outside edges. To process an entry from this worklist,
the algorithm matches the edge hhn1; fi; n2i from the
worklist against all corresponding inside edges
hhn; fi; n4i in the old graph. For each corresponding
edge it maps n2 to n4.

� The worklist WI corresponds to Rule 6, which maps
inside nodes into the new graph. All edges in this
worklist are inside edges. To process an entry from
this worklist, the algorithm extracts the node n2 that
the worklist edge points to, and maps n2 into the new
graph.

� The worklist WO corresponds to Rule 7, which maps
outside nodes into the new graph. All edges in this
worklist are outside edges. To process an entry from
this worklist, the algorithm inserts a corresponding
outside edge hhn; fi; n2i into the new graph and maps
n2 into the new graph.

There is a slight complication in the algorithm. As the
algorithm executes, it periodically maps inside edges from
the incoming graph into the new graph. Whenever a node
n1 is mapped to n, the algorithm maps each inside edge
hhn1; fi; n2i from the incoming graph into the new graph.
This mapping process inserts a corresponding inside edge
from n to each node that n2 maps to; i.e., to each node in
�(n2). The algorithm must ensure that when it completes,
there is one such edge for each node in the �nal set of nodes
�(n2). But when the algorithm �rst maps hhn1; fi; n2i into
the new graph, �(n2) may not be complete. In this case,
the algorithm will eventually map n2 to more nodes, in-
creasing the set of nodes in �(n2). There should be edges
from n to all of the nodes in the �nal �(n2), not just to
those node that were present in �(n2) when the algorithm
mapped hhn1; fi; n2i into the new graph.

The algorithm ensures that all of these edges are present
in the �nal graph by building a set �(n2) of delayed actions.
Each delayed action consists of a node in the new graph and
a �eld in that node. Whenever the node n2 is mapped to a
new node n0 (i.e., the algorithm sets �(n2) = �(n2)[fn

0g),
the algorithm establishes a new inside edge for each delayed
action. The new edge goes from the node in the action to
the newly mapped node n0. These edges ensure that the
�nal set of inside edges satis�es the constraints.

5.3 Global Fixed-Point Analysis Algorithm

Figure 12 presents the global �xed-point algorithm that the
compiler uses to solve the combined intraprocedural and in-
terprocedural data
ow equations. It maintains a worklist of
pending statements. At each step, it removes a statement

mapNode(n1; n)
if hn1; ni 62 D then

�(n1) = �(n1) [fng
D = D [fhn1; nig
Update eM(n) to satisfy Rule 9
if (eR(n1) 6= ;) then eM(n) = eM(n) [fmg
Update IM to satisfy Rule 5
IM = IM [(�(n1)� fng)
for all hhn1; fi; n2i 2 IR do

IM = IM [fhn; fig � �(n2)
�(n2) = �(n2) [fhn; fig

Update worklists for Rules 3,6 and 7
WE =WE [(fng � edgesFrom(OR; n1))
if (n1 = n) then

WI =WI [(fng � edgesFrom(IR; n1))
WO =WO [(fng � edgesFrom(OR; n1))

Figure 10: Procedure for Mapping One Node to Another

Initialize worklists
WE =WI =WO = ;
Initialize new graph to satisfy Rule 4
hOM ; IM ; eM ; rMi = hO; I � edges(l); e; ri
Map parameter nodes to satisfy Rule 1
for 0 � i � k do

for all n 2 I(li) do mapNode(np
i
; n)

Map classes to satisfy Rule 2
for 1 � i � j do mapNode(cli; cli)
Map return values to satisfy Rule 8
for all n 2 rR \ (NI [NR) do mapNode(n; n)
done = false
while not done do

done = true
if choose hn3; hhn1; fi; n2ii 2 WE such that

n1 62 NI then
WE =WE � fhn3; hhn1; fi; n2iig
Map nodes to satisfy Rule 3
for all hhn3; fi; n4i 2 I do mapNode(n2; n4)
done = false

else if choose hn; hhn1; fi; n2ii 2 WI such that
n2 2 NI [NR then

WI =WI � fhn; hhn1; fi; n2iig
Map inside node to satisfy Rule 6
mapNode(n2; n2)
done = false

else if choose hn; hhn1; fi; n2ii 2 W0 such that
escaped(hOM ; IM ; eM ; rMi; n) then

WO =WO � fhn; hhn1; fi; n2iig
Map outside edge and outside node
to satisfy Rule 7
OM = OM [fhhn; fi; n2ig
mapNode(n2; n2)
done = false

Update IM (l) to satisfy Rule 10
IM(l) = [f�(n):n 2 rRg

Figure 11: Constraint Solution Algorithm for � and
hOM ; IM ; eM ; rMi

Initialize analysis results
for all st 2 ST do

�(�st) = �(st�) = h;; ;; e?; ;i
for all op 2 OP do

�(�enterop) = hO0; I0; e0; r0i
Initialize the worklist
W = fenterop:op 2 OPg
while (W 6= ;) do

Remove a statement from worklist
W =W � fstg
Process the statement
�(�st) = tf�(st0�):st0 2 pred(st)g
�(st�) = [[st]] (�(�st))
if �(st�) changed then

Put potentially a�ected statements
onto worklist
W =W [succ(st)
if st � exitop then

W =W [callers(op)

Figure 12: Fixed-Point Analysis Algorithm

and updates the analysis results before and after the state-
ment. If the analysis result after the statement changed,
it inserts all of its successors (or for exit nodes, all of the
callers of its method) into the worklist.

The order in which the algorithm analyzes methods can
have a signi�cant impact on the analysis. For non-recursive
methods, a bottom-up analysis of the program yields the full
result with one analysis per method. For recursive methods,
the analysis results must be iteratively recomputed within
each strongly connected component of the call graph us-
ing the current best result until the analysis reaches a �xed
point.

It is possible to extend the algorithm so that it initially
skips the analysis of method invocation sites. If the analysis
result is not precise enough, it can incrementally increase
the precision by analyzing method invocation sites that it
originally skipped. The algorithm will then propagate the
new, more precise result to update the analysis results at
a�ected program points.

6 Abstraction Relation

In this section, we characterize the correspondence between
points-to escape graphs and the objects and references cre-
ated during the execution of the program. A key property
of this correspondence is that a single concrete object in
the execution of the program may be represented by multi-
ple nodes in the points-to escape graph. We therefore state
the properties that characterize the correspondence using an
abstraction relation, which relates each object to all of the
nodes that represent it.

As the program executes, it creates a set of concrete
objects o 2 C and a set of references r 2 R � (V � C) [
((CL�F)�C)[((C�F)�C) between objects. At each point
in the execution of the program, it is possible to de�ne the
following sets of references and objects:

� RC is the set of references created by the current ex-
ecution of the current method and all of the analyzed
methods that it invokes.

� RR is the set of references read by the current exe-
cution of the current method and all of the analyzed
methods that it invokes.

� CR is the set of objects reachable from the local vari-
ables, static class variables, and parameters by follow-
ing references in RC [RR.

� RI = RC \ (CR � F � CR) is the set of inside refer-
ences. These are the references represented by the set
of inside edges in the analysis.

� RO = (RR \ (CR�F �CR))�RI is the set of outside
references. These are the references represented by the
set of outside edges in the analysis.

It is always possible to construct an abstraction relation
� � C�N between the objects and the nodes in the points-
to escape graph hO; I; e; ri at the current program point.
This relation relates each object to all of the nodes in the
points-to escape graph that represent the object during the
analysis of the method. The abstraction relation has all of
the properties described below.

� Reachable objects are represented by their allocation
sites. If o was created at an object creation site within
the current execution of the current method or ana-
lyzed methods that it invokes, and o is reachable (i.e.
o 2 CR), n 2 �(o), where n is the object creation site's
inside node.

� Each object is represented by at most one inside node:

{ n1; n2 2 �(o) and n1; n2 2 NI implies n1 = n2

� All outside references have a corresponding outside
edge in the points-to escape graph:

{ hv; oi 2 RO implies O(v) \ �(o) 6= ;

{ hhcl; fi; oi 2 RO implies O(cl; f) \ �(o) 6= ;

{ hho1; fi; o2i 2 RO implies
(�(o1)� ffg)� �(o2) \ O 6= ;

� All inside references have a corresponding inside edge
in the points-to escape graph:

{ hv; oi 2 RI implies I(v) \ �(o) 6= ;

{ hhcl; fi; oi 2 RI implies I(cl; f) \ �(o) 6= ;

{ hho1; fi; o2i 2 RI implies
(�(o1)� ffg)� �(o2) \ I 6= ;

� If an object is represented by a captured node, it is
represented by only that node:

{ n 2 �(o) and captured(hO; I; e; ri; n) implies
�(o) = fng

Given this property, we de�ne that an object is cap-
tured if it is represented by a captured node. All ref-
erences to captured objects are either from local vari-
ables or from other captured objects:

{ n 2 �(o), captured(hO; I; e; ri; n), and hv; oi 2 R
implies v 2 L

{ n2 2 �(o2), captured(hO; I; e; ri; n2), and
hho1; fi; o2i 2 R implies 9n1 2 N:�(o1) = fn1g
and captured(hO; I; e; ri; n1)

These properties ensure that captured objects are reach-
able only via paths that start with the local variables.
If an object is captured at a method exit point, it will
therefore become inaccessible as soon as the method
returns.

� The points-to information in the points-to escape graph
completely characterizes the references between ob-
jects represented by captured nodes:

{ captured(hO; I; e; ri; n1); captured(hO; I; e; ri; n2);
n1 2 �(o1); n2 2 �(o2) and hhn1; fi; n2i 62 I implies
hho1; fi; o2i 62 R

7 Optimizations

For optimization purposes, the two most important proper-
ties are that the absence of edges between captured nodes
guarantees the absence of references between the represented
objects, and that captured objects are inaccessible when the
method returns. In this section we discuss two transforma-
tions, stack allocation of objects and synchronization elimi-
nation, that the escape information enables.

7.1 Synchronization Elimination

If an object does not escape a thread, it is legal to remove
the lock acquire and release operations from synchronized
methods that execute on that object. The bene�t of this
transformation is the elimination of synchronization over-
head 5

To apply the transformation, the compiler generates a
specialized, synchronization-free version of each synchronized
method that may execute on a captured object. At each call
site that invokes the method only on captured objects, the
compiler generates code that invokes the synchronization-
free version.

An issue that the compiler must deal with is the dis-
tance in the call graph between the method that captures
the object and the synchronized method. In addition to
removing synchronization operations from the synchronized
method, the compiler must also generate specialized ver-
sions of all methods in the call chain from the capturing
method to the method containing the call site that invokes
the synchronization-free version. Our specialization policy
imposes no limit on the number of specialized methods |
it applies the transformation whenever possible.

A �nal problem is �nding the paths in the call graph that
go from captured objects to synchronized methods. The
compiler solves this problem by augmenting the analysis to
record, for each node in the points-to escape graph, paths in
the call graph that lead to synchronized operations on the
objects represented by that node. For captured objects, the
compiler can use this information to trace a path from the
captured object down to the call sites that invoke synchro-
nized methods on that object.

7.2 Stack Allocation of Objects

If an object does not escape a method, it can be allocated
on the stack instead of in the heap. One bene�t of this
transformation is the elimination of garbage collection over-
head. Instead of being processed by the collector, the object

5To preserve the semantics of the Java memory model on machines
that implement weak memory consistency models, the compiler may
need to insert memory barriers at the original lock acquire and release
sites when it removes the acquire and release constructs.

will be implicitly collected when the method returns and the
stack rolls back. Another bene�t is better memory locality
because the stack frame will tend to be resident in the cache.
Finally, if the compiler can precisely compute the location
of the object on the stack, it can generate code that accesses
the object �elds directly in the stack frame.

The largest potential drawback of stack allocation is that
it may increase memory consumption by extending the life-
time of objects allocated on the stack. Because this prob-
lem may be especially acute for allocation sites that create
a statically unbounded number of objects on the stack, our
implementation allocates objects on the stack only if the al-
location site will be executed at most once per invocation
of the allocating method, or the method that contains the
object allocation site.

In the simplest case, a captured object does not escape
its allocating method. In this case, the compiler can sim-
ply replace the normal object allocation instruction with a
special instruction that allocates the object on the heap.

If an object escapes its allocating method, but is recap-
tured within a caller (direct or indirect), it may be possi-
ble to allocate the object on the stack of the method that
captures the object. In addition to requiring that stack-
allocated objects come from allocation sites that are exe-
cuted at most once per invocation of the allocating method,
the compiler also requires that the allocating method be in-
voked at most once for each call site in the captured method
that leads to the allocating method.

If the allocation site satis�es this restriction, the compiler
generates a specialized version of the allocating method. In-
stead of allocating the object itself, the specialized version
takes, as a parameter, a pointer to preallocated space in the
capturing method's activation record. The allocation site
is transformed to initialize the object at the given location,
rather than to allocate it in the heap. As for the synchro-
nization elimination transformation described above, the com-
piler must generate specialized versions of all methods on
the call chain from the capturing method to the allocating
method.

For this transformation to interoperate correctly with
the rest of the system, the garbage collector must recog-
nize stack-allocated objects. The recognition mechanism is
simple | it examines the address of the object to deter-
mine if it is allocated on a stack or in the heap. During
a collection, the collector still scans stack-allocated objects
normally. But it does not attempt to move or collect stack-
allocated objects.

8 Experimental Results

We have implemented a combined pointer and escape analy-
sis based on the algorithm described in Sections 4 and 5. We
implemented the analysis in the compiler for the Jalape~no
JVM [8], a Java virtual machine written in Java with a few
unsafe extensions for performing low-level system operations
such as explicit memory management and pointer manipu-
lation.

8.1 Compiler Structure

The analysis is implemented as a separate phase of the
Jalape~no dynamic compiler, which operates on the Jalape~no
intermediate representation. To analyze a class, the algo-
rithm loads the class, converts its methods into the interme-
diate representation, then analyzes the methods. The �nal
analysis results for the methods are written out to a �le.

This approach provides excellent support for dynamically
loaded programs. It allows the compiler to analyze a large,
commonly used package such as the Java Class Libraries
once, then reuse the analyze results every time a program is
loaded that uses the package. It also supports the delivery
of preanalyzed packages. Instead of requiring the analysis
to be performed when the package is �rst loaded into a cus-
tomer's virtual machine, a vendor could perform the analysis
as part of the release process, then ship the analysis results
along with the code.

When the Jalape~no compiler generates code for a dynam-
ically loaded class, it uses the information in the analysis �le
to apply the stack allocation and synchronization elimina-
tion optimizations described above.6 One unusual feature
of the system is that the analysis is applied to the compiler
and virtual machine during the bootstrap process. The en-
tire system, including the dynamic compiler and the virtual
machine as well as the applications, therefore executes with
the optimizations applied.

8.2 Benchmark Set

Our benchmark set includes four programs. Javac7 is the
standard Java compiler. Javacup8 is a yacc-like parser gen-
erator for Java. Javalex9 is a lexical analyzer generator for
Java. Pbob is a transaction-processing benchmark designed
to quantify the performance of simple transactional server
workloads written in Java.

We chose these applications in part because they are all
complete programs in regular use. We therefore expect them
to exhibit realistic object creation and access patterns. They
were also chosen to test the scalability of our analysis. With
the associated (and analyzed) class libraries, all three pro-
grams are on the order of tens of thousands of lines of code,
and many existing pointer analysis algorithms are impracti-
cal for programs of this size. Figure 13 presents the number
of lines of code and the total sizes of the class �les for these
applications. JVM is the Jalape~no virtual machine.

Lines of Class File
Benchmark Code Size (bytes)

javac - 87,801
javacup 10,574 157,057
javalex 8,159 95,229
pbob 18,370 253,752
JVM 70,536 456,494

Figure 13: Benchmark Characteristics

We staged the analysis of the applications as follows.
We �rst analyzed the virtual machine and the standard li-
braries, writing the analysis results out to the appropriate
�les. We then analyzed the application code, reusing the
analysis results from the standard libraries.

Number of Number of
Synchronization Synchronization
Operations Operations
Before After

Benchmark Optimization Optimization
javac 4,583,013 2,925,653

javacup 1,004,409 330,952
javalex 2,038,945 1,058,456
pbob 205,198,941 155,764,374

Figure 14: Number of Synchronization Operations Before
and After Optimization

0%

20%

40%

60%

80%

100%

javac javacup javalex pbob

Figure 15: Percentage of Eliminated Synchronization Oper-
ations

8.3 Synchronization Elimination

Figure 14 presents the dynamic number of synchronization
operations for all of the applications both before and af-
ter the synchronization elimination optimization. Figure 15
plots the percentage of eliminated synchronization opera-
tions. The analysis achieves reasonable results, eliminating
between 24% to 64% of the synchronization operations.

8.4 Stack Allocation

Figure 16 presents the dynamic number of heap allocated
objects for all of the applications both before and after the
stack allocation optimization. Figure 17 plots the percent-
age of objects allocated on the stack. Once again, the anal-
ysis achieves reasonable results, allocating between 22% and
95% of the objects on the stack.

Figure 18 presents the total size of the heap allocated
objects for all of the applications both before and after the
stack allocation optimization. Figure 17 plots the percent-
age of memory allocated on the stack instead of in the heap.
The relative amount of object memory allocated on the stack
is closely correlated with the number of objects allocated on
the stack.

6The current version of the Jalape~no JVM does not support stack
allocation. All objects are therefore allocated on the heap. The com-
piler does, however, generate all of the specialized methods necessary
to support stack allocation. The compiler fully implements the syn-
chronization elimination optimization.

7See the package sun.tools.javac in the standard Java distribution.
8Available at www.cs.princeton.edu/ appel/modern/java/CUP/
9Available at www.cs.princeton.edu/ appel/modern/java/JLex/

Number of Number of
Heap-Allocated Heap-Allocated

Objects Objects
Before After

Benchmark Optimization Optimization
javac 2,845,485 2,033,525

javacup 1,913,594 1,495,141
javalex 4,389,452 214,803
pbob 56,708,490 39,751,260

Figure 16: Number of Heap-Allocated Objects Before and
After Optimization

0%

20%

40%

60%

80%

100%

javac javacup javalex pbob

Figure 17: Percentage of Objects Allocated on the Stack

Size of Size of
Heap-Allocated Heap-Allocated

Objects Objects
Before After

Benchmark Optimization Optimization
javac 81,573,448 60,843,884

javacup 54,089,120 43,038,640
javalex 107,347,648 8,887,836
pbob 25,950,641,024 18,046,027,560

Figure 18: Total Size of Heap-Allocated Objects Before and
After Optimization (bytes)

0%

20%

40%

60%

80%

100%

javac javacup javalex pbob

Figure 19: Percentage of Object Memory Allocated on the
Stack

9 Related Work

In this section, we discuss several areas of related work:
pointer analysis, escape analysis, and synchronization op-
timizations.

9.1 Pointer Analysis

Pointer analysis for sequential programs is a relatively ma-
ture �eld. Flow-insensitive analyses, as the name suggests,
do not take statement ordering into account, and typically
use some form of constraint-based analysis to produce a
single points-to graph that is valid across the entire pro-
gram [2, 27, 26]. Flow-insensitive analyses extend trivially
from sequential programs to multithreaded programs. Be-
cause they are insensitive to the statement order, they triv-
ially model all of the interleavings of the parallel executions.

9.1.1 Flow-Sensitive Analyses

Flow-sensitive analyses take the statement ordering into ac-
count, typically using a data
ow analysis to produce a points-
to graph or set of alias pairs for each program point [25, 22,
28, 18, 10, 20]. One approach analyzes the program in a top-
down fashion starting from the main procedure, reanalyzing
each potentially invoked procedure in each new calling con-
text [28, 18]. This approach exposes the compiler to the
possibility of spending signi�cant amounts of time reanalyz-
ing procedures. It also commits the compiler to an analysis
of the entire program and is impractical for situations in
which the entire program is not available.

Another approach analyzes the program in a bottom-up
fashion, extracting a single analysis result for each proce-
dure. The analysis reuses the result at each call site that
may invoke the procedure. Sathyanathan and Lam present
an algorithm for programs with non-recursive pointer data
types [25]. This algorithm supports strong updates and ex-
tracts enough information to obtain fully context-sensitive
results in a compositional way. Chatterjee, Ryder, and
Landi describe an approach that extracts multiple analysis
results; each result is indexed under the calling context for
which it is valid [9]. Our approach extracts a single analysis
result for calling contexts with no aliases, and merges nodes
for calling contexts with aliases. The disadvantage of this
approach is that it may produce less precise results than
approaches that maintain information for multiple calling
contexts. The advantage is that it leads to a simpler algo-
rithm and smaller analysis results.

Many pointer and shape analysis algorithms are based
on the abstraction of points-to graphs [24, 18, 28]. The
nodes in these graphs typically represent memory locations,
objects, or variables, and the edges represent references be-
tween the represented entities. A standard technique is to
use invisible variables [20, 18, 28] to parameterize the anal-
ysis result so that it can be used at di�erent call sites. Like
outside objects, invisible variables represent entities from
outside the analysis context. But the relationships between
invisible variables are typically determined by the aliasing
relationships in the calling context or by the type system.
In our approach, the relationships between outside objects
are determined by the structure of the analyzed method |
each load statement corresponds to a single outside object.
This approach leads to a simple and e�cient treatment of
recursive data structures. Another di�erence between the
approach presented in this paper and other previously pre-
sented approaches is the explicit distinction between inside
and outside edges.

9.1.2 Pointer Analysis for Multithreaded Programs

Rugina and Rinard recently developed a
ow-sensitive pointer
analysis algorithm for multithreaded programs [23]. The key
complication in this algorithm is characterizing the interac-
tion between multiple threads and how this interaction af-
fects the points-to relationship. The analysis presented in
this paper simply sidesteps this issue. It generates precise re-
sults only for objects that do not escape. If an object escapes
to another thread, our algorithm is not designed to main-
tain precise information about its points-to relationships. It
is important to realize that this is a key design decision that
allows us to obtain good escape analysis results with what
is essentially a local analysis.

Corbett describes a shape analysis algorithm for multi-
threaded Java programs [12]. The algorithm can be used
to �nd objects that are accessible to a single thread or ob-
jects that are accessed by at most one thread at any given
time. The goal is to use this information to reduce the size
of the state space explored by a model checker. The algo-
rithm is intraprocedural, and does not address the problem
of analyzing programs with multiple procedures.

9.2 Escape Analysis

There has been a fair amount of work on escape analysis
in the context of functional languages [4, 3, 29, 14, 15, 5,
19]. The implementations of functional languages create
many objects (for example, cons cells and closures) implic-
itly. These objects are usually allocated in the heap and
reclaimed later by the garbage collector. It is often possible
to use a lifetime or escape analysis to deduce bounds on the
lifetimes of these dynamically created objects, and to per-
form optimizations to improve their memory management.

Deutsch [14] describes a lifetime and sharing analysis for
higher-order functional languages. His analysis �rst trans-
lates a higher-order functional program into a sequence of
operations in a low-level operational model, then performs
an analysis on the translated program to determine the life-
times of dynamically created objects. The analysis is a
whole-program analysis. Park and Goldberg [3] also describe
an escape analysis for higher-order functional languages.
Their analysis is less precise than Deutsch's. It is, how-
ever, conceptually simpler and more e�cient. Their main
contribution was to extend escape analysis to include lists.
Deutsch [15] later presented an analysis that extracts the
same information but runs in almost linear time. Blanchet [5]
extended this algorithm to work in the presence of impera-
tive features and polymorphism. He also provides a correct-
ness proof and some experimental results.

Baker [4] describes an novel approach to higher-order
escape analysis of functional languages based on the type
inference (uni�cation) technique. The analysis provides es-
cape information for lists only. Hannan also describes a
type-based analysis in [19]. He uses annotated types to de-
scribe the escape information. He only gives inference rules
and no algorithm to compute annotated types.

9.3 Synchronization Optimizations

Diniz and Rinard [16, 17] describe several algorithms for per-
forming synchronization optimizations in parallel programs.
The basic idea is to drive down the locking overhead by coa-
lescing multiple critical sections that acquire and release the
same lock multiple times into a single critical section that
acquires and releases the lock only once. When possible, the
algorithm also coarsens the lock granularity by using locks

in enclosing objects to synchronize operations on nested ob-
jects. Plevyak and Chien describe similar algorithms for
reducing synchronization overhead in sequential executions
of concurrent object-oriented programs [21].

Several research groups have recently developed synchro-
nization optimization techniques for Java programs. Aldrich,
Chambers, Sirer, and Eggers describe several techniques for
reducing synchronization overhead, including synchroniza-
tion elimination for thread-private objects and several opti-
mizations that eliminate synchronization from nested moni-
tor calls [1]. Blanchet describes a pure escape analysis based
on an abstraction of a type-based analysis [6]. The imple-
mentation uses the results to eliminate synchronization for
thread-private objects and to allocate captured objects on
the stack. Bogda and Hoelzle describe a
ow-insensitive es-
cape analysis based on global set inclusion constraints [7].
The implementation uses the results to eliminate synchro-
nization for thread-private objects. A limitation is that the
analysis is not designed to �nd captured objects that are
reachable via paths with more than two references.

Choi, Gupta, Serrano, Sreedhar, and Midki� present a
compositional data
ow analysis for computing reachability
information [11]. The analysis results are used for synchro-
nization elimination and stack allocation of objects. Like
the analysis presented in this paper, it uses an extension
of points-to graphs with abstract nodes that may represent
multiple objects. It does not distinguish between inside and
outside edges, but does contain an optimization, deferred
edges, that is designed to improve the e�ciency of the anal-
ysis. The approach classi�es objects as globally escaping,
escaping via an argument, and not escaping. Because the
primary goal was to compute escape information, the anal-
ysis collapses globally escaping subgraphs into a single node
instead of maintaining the extracted points-to information.
Our analysis retains this information, in part because we
anticipate further thread interaction analyses (for example,
extensions of existing pointer analysis algorithms for multi-
threaded programs [23]) that will use this information.

10 Conclusion

This paper presents a new combined pointer and escape
analysis algorithm for object-oriented programs. The al-
gorithm is designed to analyze arbitrary parts of complete
or incomplete programs, obtaining complete information for
objects that do not escape the analyzed parts.

We have implemented the algorithm in the IBM Jalape~no
virtual machine, and applied the analysis information to
two optimization problems: synchronization elimination and
stack allocation of objects. For our benchmark programs,
our algorithms enable the stack allocation of between 22%
and 95% of the objects. They also enable the elimination of
between 24% and 67% of the synchronization operations.

In the long run, we believe the most important concept
in this research may turn out to be designing analysis algo-
rithms from the perspective of extracting and representing
interactions between analyzed and unanalyzed regions of the
program. This concept leads to representations, such as the
points-to escape graphs presented in this paper, that make a
clean distinction between information created locally within
an analyzed region and information created in the rest of
the program outside the analyzed region.

These representations support
exible analyses that are
capable of analyzing arbitrary parts of the program, with
the analysis result becoming more precise as more of the
program is analyzed. At every stage of the analysis, the

algorithm can distinguish where it does and does not have
complete information. As developers continue to move to
a model of dynamically loaded, component-based software,
we believe this general approach will become increasingly
relevant and compelling.

Acknowledgements

The authors would like to acknowledge discussions with Radu
Rugina and Darko Marinov regarding pointer and escape
analysis. The second author would like to acknowledge dis-
cussions with Mooly Sagiv regarding pointer, escape, and
shape analysis. The �rst author would like to acknowledge
Jong-Deok Choi for introducing him to the concept of using
escape information for synchronization elimination, while he
was an IBM employee in the summer of 1998. The authors
would like to thank the developers of the IBM Jalape~no vir-
tual machine and the MIT Flex project for providing the
compiler infrastructure in which this research was imple-
mented, and the anonymous reviewers for their comments.

References

[1] J. Aldrich, C. Chambers, E. Sirer, and S. Eggers. Static
analyses for eliminating unnecessary synchronization
from java programs. In Proceedings of the 6th Inter-
national Static Analysis Symposium, September 1999.

[2] Lars Ole Andersen. Program Analysis and Specializa-
tion for the C Programming Language. PhD thesis,
DIKU, University of Copenhagen, May 1994.

[3] B. Goldberg and Y. Park. Escape analysis on lists. In
Proceedings of the SIGPLAN '92 Conference on Pro-
gram Language Design and Implementation, pages 116{
127, July 1992.

[4] H. Baker. Unifying and conquer (garbage, updating,
aliasing ...) in functional languages. In Proceedings of
the ACM Conference on Lisp and Functional Program-
ming, pages 218{226, 1990.

[5] B. Blanchet. Escape analysis: Correctness proof, imple-
mentation and experimental results. In Proceedings of
the 25th Annual ACM Symposium on the Principles of
Programming Languages, Paris, France, January 1998.
ACM, ACM, New York.

[6] B. Blanchet. Escape analysis for object oriented lan-
guages. application to java. In Proceedings of the 14th
Annual Conference on Object-Oriented Programming
Systems, Languages and Applications, Denver, CO,
November 1999.

[7] J. Bodga and U. Hoelzle. Removing unnecessary syn-
chronization in java. In Proceedings of the 14th Annual
Conference on Object-Oriented Programming Systems,
Languages and Applications, Denver, CO, November
1999.

[8] M. Burke, J. Choi, S. Fink, D. Grove, M. Hind,
V. Sarkar, M. Serrano, V. Sreedhar, H. Srinivasan, and
J. Whaley. The jalape~no dynamic optimizing compiler
for java. In Proceedings of the ACM SIGPLAN 1999
Java Grande Conference, June 1999.

[9] R. Chatterjee, B. Ryder, and W. Landi. Relevant
context inference. In Proceedings of the 26th Annual
ACM Symposium on the Principles of Programming
Languages, San Antonio, TX, January 1999.

[10] J. Choi, M. Burke, and P. Carini. E�cient

ow-sensitive interprocedural computation of pointer-
induced aliases and side e�ects. In Conference Record of
the Twentieth Annual Symposium on Principles of Pro-
gramming Languages, Charleston, SC, January 1993.
ACM.

[11] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and
S. Midki�. Escape analysis for java. In Proceedings
of the 14th Annual Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications, Den-
ver, CO, November 1999.

[12] J. Corbett. Using shape analysis to reduce �nite-state
models of concurrent java programs. In Proceedings of
the International Symposium on Software Testing and
Analysis, March 1998.

[13] J. Dean, D. Grove, and C. Chambers. Optimization
of object-oriented programs using static class hierarchy
analysis. In Proceedings of the 9th European Confer-
ence on Object-Oriented Programming, Aarhus, Den-
mark, August 1995.

[14] A. Deutsch. On determining lifetime and aliasing of
dynamically allocated data in higher-order functional
speci�cations. In Proceedings of the 17th Annual ACM
Symposium on the Principles of Programming Lan-
guages, pages 157{168, San Francisco, CA, January
1990. ACM, ACM, New York.

[15] A. Deutsch. On the complexity of escape analysis. In
Proceedings of the 24th Annual ACM Symposium on the
Principles of Programming Languages, Paris, France,
January 1997. ACM, ACM, New York.

[16] P. Diniz and M. Rinard. Lock coarsening: Eliminat-
ing lock overhead in automatically parallelized object-
based programs. In Proceedings of the Ninth Workshop
on Languages and Compilers for Parallel Computing,
pages 285{299, San Jose, CA, August 1996. Springer-
Verlag.

[17] P. Diniz and M. Rinard. Synchronization transforma-
tions for parallel computing. In Proceedings of the 24th
Annual ACM Symposium on the Principles of Program-
ming Languages, pages 187{200, Paris, France, January
1997. ACM, New York.

[18] M. Emami, R. Ghiya, and L. Hendren. Context-
sensitive interprocedural points-to analysis in the pres-
ence of function pointers. In Proceedings of the SIG-
PLAN '94 Conference on Program Language Design
and Implementation, pages 242{256, Orlando, FL, June
1994. ACM, New York.

[19] J. Hannan. A type-based analysis for block allocation
in functional languages. In Proceedings of the Second
International Static Analysis Symposium. ACM, ACM,
New York, September 1995.

[20] W. Landi and B. Ryder. A safe approximation algo-
rithm for interprocedural pointer aliasing. In Proceed-
ings of the SIGPLAN '92 Conference on Program Lan-
guage Design and Implementation, San Francisco, CA,
June 1992.

[21] J. Plevyak, X. Zhang, and A. Chien. Obtaining sequen-
tial e�ciency for concurrent object-oriented languages.
In Proceedings of the 22nd Annual ACM Symposium on
the Principles of Programming Languages, San Fran-
cisco, CA, January 1995. ACM, New York.

[22] E. Ruf. Context-insensitive alias analysis reconsidered.
In Proceedings of the SIGPLAN '95 Conference on Pro-
gram Language Design and Implementation, La Jolla,
CA, June 1995.

[23] R. Rugina and M. Rinard. Pointer analysis for mul-
tithreaded programs. In Proceedings of the SIGPLAN
'99 Conference on Program Language Design and Im-
plementation, Atlanta, GA, May 1999.

[24] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-
analysis problems in languages with destructive updat-
ing. ACM Transactions on Programming Languages
and Systems, 20(1):1{50, January 1998.

[25] P. Sathyanathan and M. Lam. Context-sensitive in-
terprocedural pointer analysis in the presence of dy-
namic aliasing. In Proceedings of the Ninth Workshop
on Languages and Compilers for Parallel Computing,
San Jose, CA, August 1996. Springer-Verlag.

[26] M. Shapiro and S. Horwitz. Fast and accurate
ow-
insensitive points-to analysis. In Proceedings of the 24th
Annual ACM Symposium on the Principles of Program-
ming Languages, Paris, France, January 1997.

[27] Bjarne Steensgaard. Points-to analysis in almost linear
time. In Proceedings of the 23rd Annual ACM Sympo-
sium on the Principles of Programming Languages, St.
Petersburg Beach, FL, January 1996.

[28] R. Wilson and M. Lam. E�cient context-sensitive
pointer analysis for C programs. In Proceedings of the
SIGPLAN '95 Conference on Program Language De-
sign and Implementation, La Jolla, CA, June 1995.
ACM, New York.

[29] Y. Tang and P. Jouvelot. Control-
ow e�ects for escape
analysis. In Workshop on Static Analysis, pages 313{
321, September 1992.

