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ABSTRACT

We present a new pointer and escape analysis. Instead of
analyzing the whole program, the algorithm incrementally
analyzes only those parts of the program that may deliver
useful results. An analysis policy monitors the analysis re-
sults to direct the incremental investment of analysis re-
sources to those parts of the program that offer the highest
expected optimization return.

Our experimental results show that almost all of the ob-
jects are allocated at a small number of allocation sites and
that an incremental analysis of a small region of the program
surrounding each site can deliver almost all of the benefit of a
whole-program analysis. Our analysis policy is usually able
to deliver this benefit at a fraction of the whole-program
analysis cost.

1. INTRODUCTION
Program analysis research has focused on two kinds of

analyses: local analyses, which analyze a single procedure,
and whole-program analyses, which analyze the entire pro-
gram. Local analyses fail to exploit information available
across procedure boundaries; whole-program analyses are
potentially quite expensive for large programs and are prob-
lematic when parts of the program are not available in ana-
lyzable form.

This paper describes our experience incrementalizing an
existing whole-program analysis so that it can analyze arbi-
trary regions of complete or incomplete programs. The new
analysis can 1) analyze each method independently of its
caller methods, 2) skip the analysis of potentially invoked
methods, and 3) incrementally incorporate analysis results
from previously skipped methods into an existing analysis
result. These features promote a structure in which the
algorithm executes under the direction of an analysis pol-
icy. The policy continuously monitors the analysis results
to direct the incremental investment of analysis resources
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to those parts of the program that offer the most attrac-
tive return (in terms of optimization opportunities) on the
invested resources. Our experimental results indicate that
this approach usually delivers almost all of the benefit of the
whole-program analysis, but at a fraction of the cost.

1.1 Analysis Overview
Our analysis incrementalizes an existing whole-program

analysis for extracting points-to and escape information [16].
The basic abstraction in this analysis is a points-to escape
graph. The nodes of the graph represent objects; the edges
represent references between objects. In addition to points-
to information, the analysis records how objects escape the
currently analyzed region of the program to be accessed by
unanalyzed regions. An object may escape to an unanalyzed
caller via a parameter passed into the analyzed region or
via the return value. It may also escape to a potentially
invoked but unanalyzed method via a parameter passed into
that method. Finally, it may escape via a global variable or
parallel thread. If an object does not escape, it is captured.

The analysis is flow sensitive, context sensitive, and com-
positional. Guided by the analysis policy, it performs an
incremental analysis of the neighborhood of the program
surrounding selected object allocation sites. When it first
analyzes a method, it skips the analysis of all potentially
invoked methods, but maintains enough information to re-
construct the result of analyzing these methods should it
become desirable to do so. The analysis policy then ex-
amines the graph to find objects that escape, directing the
incremental integration of (possibly cached) analysis results
from potential callers (if the object escapes to the caller)
or potentially invoked methods (if the object escapes into
these methods). Because the analysis has complete infor-
mation about captured objects, the goal is to analyze just
enough of the program to capture objects of interest.

1.2 Analysis Policy
We formulate the analysis policy as a solution to an in-

vestment problem. At each step of the analysis, the policy
can invest analysis resources in any one of several allocation
sites in an attempt to capture the objects allocated at that
site. To invest its resources wisely, the policy uses empirical
data from previous analyses, the current analysis result for
each site, and profiling data from a previous training run to
estimate the marginal return on invested analysis resources
for each site.

During the analysis, the allocation sites compete for re-
sources. At each step, the policy invests its next unit of
analysis resources in the allocation site that offers the best



marginal return. When the unit expires, the policy recom-
putes the estimated returns and again invests in the (po-
tentially different) allocation site with the best estimated
marginal return. As the analysis proceeds and the policy
obtains more information about each allocation site, the
marginal return estimates become more accurate and the
quality of the investment decisions improves.

1.3 Analysis Uses
We use the analysis results to enable a stack allocation

optimization. If the analysis captures an object in its allo-
cating method, the object is unreachable once the method
returns. In this case, the generated code allocates the ob-
ject in the activation record of its allocating method. If
the object escapes the allocating method, but is captured
in one or more of the methods that directly invoke the al-
locating method, the compiler inlines the allocating method
into the capturing callers, then generates code to allocate
the captured objects in the activation record of the caller.
The success of this optimization depends on the character-
istics of the application. The vast majority of the objects in
our benchmark applications are allocated at a small subset
of the allocation sites. For some applications the analysis is
able to capture and stack allocate all of the objects allocated
at these sites. In other applications these objects escape and
the analysis finds few relevant optimization opportunities.

Other optimization uses include synchronization elimina-
tion, the elimination of ScopedMemory checks in Real-Time
Java [6], and a range of traditional compiler optimizations.
Potential software engineering uses include the evaluation of
programmer hypotheses regarding points-to and escape in-
formation for specific objects, the discovery of methods with
no externally visible side effects, and the extraction of infor-
mation about how methods access data from the enclosing
environment.

Because the analysis is designed to be driven by an analy-
sis policy to explore only those regions of the program that
are relevant to a specific analysis goal, we expect the analysis
to be particularly useful in settings (such as dynamic com-
pilers and interactive software engineering tools) in which it
must quickly answer queries about specific objects.

1.4 Context
In general, a base analysis must have several key proper-

ties to be a good candidate for incrementalization: it must
be able to analyze methods independently of their callers,
it must be able to skip the analysis of invoked methods,
and it must be able to recognize when a partial analysis of
the program has given it enough information to apply the
desired optimization. Algorithms that incorporate escape
information are good candidates for incrementalization be-
cause they enable the analysis to recognize captured objects
(for which it has complete information). As discussed fur-
ther in Section 7, many existing escape analyses either have
or can easily be extended to have the other two key prop-
erties [14, 7, 3]. Many of these algorithms are significantly
more efficient than our base algorithm, and we would expect
incrementalization to provide these algorithms with addi-
tional efficiency increases comparable to those we observed
for our algorithm. Compiler developers would therefore be
able to choose from a variety of efficient analyses, with some
analyses imposing little to no overhead.

An arguably more important benefit is the fact that incre-

mentalized algorithms usually analyze only a local neighbor-
hood of the program surrounding each object allocation site.
The analysis time for each site is therefore independent of
the overall size of the program, enabling the analysis to scale
to handle programs of arbitrary size. And incrementalized
algorithms can analyze incomplete programs.

1.5 Contributions
This paper makes the following contributions:

• Analysis Approach: It presents an incremental ap-
proach to program analysis. Instead of analyzing the
entire program, the analysis is focused by an analysis
policy to incrementally analyze only those regions of
the program that may provide useful results.

• Analysis Algorithm: It presents a new combined
pointer and escape analysis algorithm based on the
incremental approach described above.

• Analysis Policy: It formulates the analysis policy as
a solution to an investment problem. Presented with
several analysis opportunities, the analysis policy in-
crementally invests analysis resources in those oppor-
tunities that offer the best estimated marginal return.

• Experimental Results: Our experimental results
show that, for our benchmark programs, our analysis
policy delivers almost all of the benefit of the whole-
program analysis at a fraction of the cost.

The remainder of the paper is structured as follows. Sec-
tion 2 presents several examples. Section 3 presents our pre-
viously published base whole-program analysis [16]; readers
familiar with this analysis can skip this section. Section 4
presents the incrementalized analysis. Section 5 presents
the analysis policy; Section 6 presents experimental results.
Section 7 discusses related work; we conclude in Section 8.

2. EXAMPLES
We next present several examples that illustrate the basic

approach of our analysis. Figure 1 presents two classes: the
complex class, which implements a complex number pack-
age, and the client class, which uses the package. The
complex class uses two mechanisms for returning values to
callers: the add and multiplyAdd methods write the re-
sult into the receiver object (the this object), while the
multiply method allocates a new object to hold the result.

2.1 Thecompute Method
We assume that the analysis policy first targets the object

allocation site at line 3 of the compute method. The goal
is to capture the objects allocated at this site and allocate
them on the call stack. The initial analysis of compute skips
the call to the multiplyAdd method. Because the analysis
is flow sensitive, it produces a points-to escape graph for
each program point in the compute method. Because the
stack allocation optimization ties object lifetimes to method
lifetimes, the legality of this optimization is determined by
the points-to escape graph at the end of the method.

Figure 2 presents the points-to escape graph from the
end of the compute method. The solid nodes are inside
nodes, which represent objects created inside the currently
analyzed region of the program. Node 3 is an inside node



class complex {
double x,y;
complex(double a, double b) { x = a; y = b; }
void add(complex u, complex v) {
x = u.x+v.x; y = u.y+v.y;

}
complex multiply(complex m) {

11: complex r = new complex(x*m.x-y*m.y, x*m.y+y*m.x);
return(r);

}
void multiplyAdd(complex a, complex b, complex c) {
complex s = b.multiply(c);
this.add(a, s);

}
}
class client {

public static void compute(complex d, complex e) {
3: complex t = new complex(0.0, 0.0);

t.multiplyAdd(d,e,e);
}

}

Figure 1: Complex Number and Client Classes
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that represents all objects created at line 3 in the compute

method. The dashed nodes are outside nodes, which rep-
resent objects not identified as created inside the analyzed
region. Nodes 1 and 2 are a kind of outside node called a pa-
rameter node; they represent the parameters to the compute
method. The analysis result also records the skipped call
sites and the actual parameters at each site.

In this case, the analysis policy notices that the target
node (node 3) escapes because it is a parameter to the
skipped call to multiplyAdd. It therefore directs the al-
gorithm to analyze the multiplyAdd method and integrate
the result into the points-to escape graph from the program
point at the end of the compute method.

Figure 3 presents the points-to escape graph from the ini-
tial analysis of the multiplyAdd method. Nodes 4 through
7 are parameter nodes. Node 8 is another kind of outside
node: a return node that represents the return value of an
unanalyzed method, in this case the multiply method. To
integrate this graph into the caller graph from the compute

method, the analysis first maps the parameter nodes from
the multiplyAdd method to the nodes that represent the
actual parameters at the call site. In our example, node
4 maps to node 3, node 5 maps to node 1, and nodes 6

and 7 both map to node 2. The analysis uses this mapping
to combine the graphs into the new graph in Figure 4. The
analysis policy examines the new graph and determines that
the target node now escapes via the call to the add method.
It therefore directs the algorithm to analyze the add method
and integrate the resulting points-to escape graph into the
current graph for the compute method. Note that because
the call to the multiply method has no effect on the es-
cape status of the target node, the analysis policy directs
the algorithm to leave this method unanalyzed.

Figure 5 presents the new graph after the integration of
the graph from the add method. Because the add method
does not change the points-to or escape information, the net
effect is simply to remove the skipped call to the add method.
Note that the target node (node 3) is captured in this graph,
which implies that it is not accessible when the compute

method returns. The compiler can therefore generate code
that allocates all objects from the corresponding allocation
site in the activation record of this method.

2.2 Themultiply Method
The analysis next targets the object allocation site at line

11 of the multiply method in Figure 1. Figure 6 presents the
points-to escape graph from this method, which indicates
that the target node (node 11) escapes to the caller (in this
case the multiplyAdd method) via the return value. The al-
gorithm avoids repeated method reanalyses by retrieving the
cached points-to escape graph for the multiplyAdd method,
then integrating the graph from the multiply method into
this cached graph. Figure 7 presents the resulting points-
to escape graph, which is cached as the new (more precise)
points-to escape graph for the multiplyAdd method. This
graph indicates that the target node (node 11) does not es-
cape to the caller of the multiplyAdd method, but does es-
cape via the unanalyzed call to the add method. The analy-
sis therefore retrieves the cached points-to escape graph from
the add method, then integrates this graph into the current
graph from the multiplyAdd method. Figure 8 presents the
resulting graph. Once again, the algorithm caches this result
as the new graph for the multiplyAdd method. The target



node (node 11) is captured in this graph — it escapes its
enclosing method (the multiply method), but is recaptured
in a caller (the multiplyAdd method).
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Figure 6: Analysis Result from multiply Method
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At this point the compiler has several options: it can
inline the multiply method into the multiplyAdd method
and allocate the object on the stack, or it can preallocate
the object on the stack frame of the multiplyAdd method,
then pass it in by reference to a specialized version of the
multiply routine. Both options enable stack allocation even
if the node is captured in some but not all invocation paths,
if the analysis policy declines to analyze all potential callers,
or if it is not possible to identify all potential callers at com-
pile time. Our implemented compiler uses inlining.

2.3 Object Field Accesses
Our next example illustrates how the analysis deals with

object field accesses. Figure 9 presents a rational number
class that deals with return values in yet another way. Each
Rational object has a field called result; the methods in
Figure 9 that operate on these objects store the result of
their computation in this field for the caller to access.

We next discuss how the analysis policy guides the analy-
sis for the Rational allocation site at line 1 in the evaluate

method. Figure 10 presents the initial analysis result at the
end of this method. The dashed edge between nodes 1 and
2 is an outside edge, which represents references not iden-
tified as created inside the currently analyzed region of the
program. Outside edges always point from an escaped node
to a new kind of outside node, a load node, which represents
objects whose references are loaded at a given load state-

class Rational {
int numerator, denominator;
Rational result;
Rational(int n, int d) {

numerator = n;
denominator = d;

}
void scale(int m) {

result = new Rational(numerator * m,
denominator);

}
void abs() {

int n = numerator;
int d = denominator;
if (n < 0) n = -n;
if (d < 0) d = -d;
if (d % n == 0) {

4: result = new Rational(n / d, 1);
} else {

5: result = new Rational(n, d);
}

}
}
class client {

public static void evaluate(int i, int j) {
1: Rational r = new Rational(0.0, 0.0);

r.abs();
2: Rational n = r.result;

n.scale(m);
}

}

Figure 9: Rational Number and Client Classes
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ment, in this case the statement n = r.result at line 2 in
the evaluate method.

The analysis policy notices that the target node (node 1)
escapes via a call to the abs method. It therefore directs
the analysis to analyze abs and integrate the result into the
result from the end of the evaluate method. Figure 11
presents the analysis result from the end of the abs method.
Node 3 represents the receiver object, node 4 represents the
object created at line 4 of the abs method, and node 5 rep-
resents the object created at line 5. The solid edges from
node 3 to nodes 4 and 5 are inside edges. Inside edges rep-
resent references created within the analyzed region of the
program, in this case the abs method.

The algorithm next integrates this graph into the analysis
result from evaluate. The goal is to reconstruct the result
of the base whole-program analysis. In the base analysis,
which does not skip call sites, the analysis of abs changes
the points-to escape graph at the program point after the
call site. These changes in turn affect the analysis of the
statements in evaluate after the call to abs. The incremen-
talized analysis reconstructs the analysis result as follows. It
first determines that node 3 represented node 1 during the
analysis of abs. It then matches the outside edge against
the two inside edges to determine that, during the analysis
of the region of evaluate after the skipped call to abs, the
outside edge from node 1 to node 2 represented the inside
edges from node 3 to nodes 4 and 5, and that the load node
2 therefore represented nodes 4 and 5. The combined graph
therefore contains inside edges from node 1 to nodes 4 and
5. Because node 1 is captured, the analysis removes the
outside edge from this node. Finally, the updated analysis
replaces the load node 2 in the skipped call site to scale

with nodes 4 and 5. At this point the analysis has captured
node 1 inside the evaluate method, enabling the compiler to
stack allocate all of the objects created at the corresponding
allocation site at line 1 in Figure 9.

3. THE BASE ANALYSIS
The base analysis is a previously published points-to and

escape analysis [16]. For completeness, we present the algo-
rithm again here. The algorithm is compositional, analyzing
each method once before its callers to extract a single pa-
rameterized analysis result that can be specialized for use at
different call sites.1 It therefore analyzes the program in a
bottom-up fashion from the leaves of the call graph towards
the root. To simplify the presentation we ignore static class
variables, exceptions, and return values. Our implemented
algorithm correctly handles all of these features.

3.1 Object Representation
The analysis represents the objects that the program ma-

nipulates using a set n ∈ N of nodes, which consists of a set
NI of inside nodes and a set NO of outside nodes. Inside
nodes represent objects created inside the currently analyzed
region of the program, i.e., inside the current method or one
of the analyzed methods that it (transitively) invokes. There
is one inside node for each object allocation site; that node
represents all objects created at that site. The inside nodes
include the set of thread nodes NT ⊆ NI . Thread nodes rep-
resent thread objects, i.e. objects that inherit from Thread

or implement the Runnable interface.
1Recursive programs require a fixed-point algorithm that may analyze
methods involved in cycles in the call graph multiple times.

The set of parameter nodes NP ⊆ NO represents objects
passed as parameters into the currently analyzed method.
There is one load node n ∈ NL ⊆ NO for each load state-
ment in the program; that node represents all objects whose
references are 1) loaded at that statement, and 2) not iden-
tified as created inside the currently analyzed region of the
program. There is also a set f ∈ F of fields in objects, a set
v ∈ V of local or parameter variables, and a set l ∈ L ⊆ V of
local variables.

3.2 Points-To Escape Graphs
A points-to escape graph is a pair 〈O, I〉, where

• O ⊆ (N × F) × NL is a set of outside edges. We write

an edge 〈〈n1, f〉, n2〉 as n1
f→ n2.

• I ⊆ ((N ×F)×N)∪(V×N) is a set of inside edges. We
write an edge 〈v, n〉 as v → n and an edge 〈〈n1, f〉, n2〉
as n1

f→ n2.

Inside edges represent references created within the cur-
rently analyzed part of the program. Outside edges repre-
sent references not identified as created within the currently
analyzed part of the program. Outside edges usually repre-
sent references created outside the currently analyzed part
of the program, but when multiple nodes represent the same
object (for example, when a method is invoked with aliased
parameters), an outside edge from one node can represent a
reference from the object created within the currently ana-
lyzed part of the program.

A node escapes if it is reachable in O∪I from a parameter
node or a thread node. We formalize this notion by defining
an escape function

eO,I(n) = {n′ ∈ NT ∪ NP .n is reachable from n′ in O ∪ I}
that returns the set of parameter and thread nodes through
which n escapes. We define the concepts of escaped and
captured nodes as follows:

• escaped(〈O, I〉, n) if eO,I(n) 6= ∅
• captured(〈O, I〉, n) if eO,I(n) = ∅

We say that an allocation site escapes or is captured in the
context of a given analysis if the corresponding inside node
is escaped or captured in the points-to escape graph that
the analysis produces.

3.3 Program Representation
The algorithm represents the computation of each method

using a control flow graph. We assume the program has been
preprocessed so that all statements relevant to the analy-
sis are either a copy statement l = v, a load statement
l1 = l2.f, a store statement l1.f = l2, an object allo-
cation statement l = new cl, or a method call statement
l0.op(l1, . . . , lk).

3.4 Intraprocedural Analysis
The intraprocedural analysis is a forward dataflow analy-

sis that produces a points-to escape graph for each program
point in the method. Each method is analyzed under the
assumption that the parameters are maximally unaliased,
i.e., point to different objects. For a method with formal
parameters v0, . . . , vn, the initial points-to escape graph at
the entry point of the method is 〈∅, {〈vi, nvi〉.1 ≤ i ≤ n}〉



where nvi is the parameter node for parameter vi. If the
method is invoked in a context where some of the parame-
ters may point to the same object, the interprocedural anal-
ysis described below in Section 3.5 merges parameter nodes
to conservatively model the effect of the aliasing.

where

where

Statement Existing Edges Generated Edges

Figure 13: Generated Edges for Basic Statements

The transfer function 〈O′, I ′〉 = [[ st ]] (〈O, I〉) models the
effect of each statement st on the current points-to escape
graph. Figure 13 graphically presents the rules that deter-
mine the new graph for each statement. Each row in this
figure contains three items: a statement, a graphical repre-
sentation of existing edges, and a graphical representation
of the existing edges plus the new edges that the statement
generates. Two of the rows (for statements l1 = l2.f and
l = new cl) also have a where clause that specifies a set of
side conditions. The interpretation of each row is that when-
ever the points-to escape graph contains the existing edges
and the side conditions are satisfied, the transfer function
for the statement generates the new edges. Assignments to

a variable kill existing edges from that variable; assignments
to fields of objects leave existing edges in place. At control-
flow merges, the analysis takes the union of the inside and
outside edges. At the end of the method, the analysis re-
moves all captured nodes and local or parameter variables
from the points-to escape graph.

3.5 Interprocedural Analysis
At each call statement, the interprocedural analysis uses

the analysis result from each potentially invoked method to
compute a transfer function for the statement. We assume a
call site of the form l0.op(l1, . . . , lk), a potentially invoked
method op with formal parameters v0, . . . , vk, a points-to
escape graph 〈O1, I1〉 at the program point before the call
site, and a graph 〈O2, I2〉 from the end of op.

A map µ ⊆ N × N combines the callee graph into the
caller graph. The map serves two purposes: 1) it maps
each outside node in the callee to the nodes in the caller
that it represents during the analysis of the callee, and 2)
it maps each node in the callee to itself if that node should
be present in the combined graph. We use the notation

µ(n) = {n′.〈n, n′〉 ∈ µ} and n1
µ−→ n2 for n2 ∈ µ(n1).

The interprocedural mapping algorithm 〈〈O, I〉, µ〉 =
map(〈O1, I1〉, 〈O2, I2〉, µ̂) starts with the points-to escape
graph 〈O1, I1〉 from the caller, the graph 〈O2, I2〉 from the
callee, and an initial parameter map

µ̂(n) =

{
I1(li) if {n} = I2(vi)
∅ otherwise

that maps each parameter node from the callee to the nodes
that represent the corresponding actual parameters at the
call site. It produces the new mapped edges from the callee
〈O, I〉 and the new map µ.

Figure 14 presents the constraints that define the new
edges 〈O, I〉 and new map µ. Constraint 1 initializes the
map µ to the initial parameter map µ̂. Constraint 2 extends
µ, matching outside edges from the callee against edges from
the caller to ensure that µ maps each outside node from
the callee to the corresponding nodes in the caller that it
represents during the analysis of the callee. Constraint 3
extends µ to model situations in which aliasing in the caller
causes an outside node from the callee to represent other
callee nodes during the analysis of the callee. Constraints 4
and 5 complete the map by computing which nodes from
the callee should be present in the caller and mapping these
nodes to themselves. Constraints 6 and 7 use the map to
translate inside and outside edges from the callee into the
caller. The new graph at the program point after the call
site is 〈I1 ∪ I, O1 ∪ O〉.

Because of dynamic dispatch, a single call site may invoke
several different methods. The transfer function therefore
merges the points-to escape graphs from the analysis of all
potentially invoked methods to derive the new graph at the
point after the call site. The current implementation obtains
this call graph information using a variant of a cartesian
product type analysis [1], but it can use any conservative
approximation to the dynamic call graph.

3.6 Merge Optimization
As presented so far, the analysis may generate points-to

escape graphs 〈O, I〉 in which a node n may have multiple

distinct outside edges n
f→ n1, . . . , n

f→ nk ∈ O. We elimi-
nate this inefficiency by merging the load nodes n1, . . . , nk.



µ̂(n) ⊆ µ(n) (1)

n1
f→ n2 ∈ O2, n3

f→ n4 ∈ O1 ∪ I1, n1
µ−→ n3

n2
µ−→ n4

(2)

n1
µ−→ n3, n2

µ−→ n3, n1 6= n2,

n1
f→ n4 ∈ O2, n2

f→ n5 ∈ O2 ∪ I2

µ(n4) ⊆ µ(n5)

(3)

n1
f→ n2 ∈ I2, n1

µ−→ n, n2 ∈ NI

n2
µ−→ n2

(4)

n1
f→ n2 ∈ O2, n1

µ−→ n, escaped(〈O, I〉, n)

n2
µ−→ n2

(5)

n1
f→ n2 ∈ I2

(µ(n1) × {f}) × µ(n2) ⊆ I
(6)

n1
f→ n2 ∈ O2, n2

µ−→ n2

(µ(n1) × {f}) × {n2} ⊆ O
(7)

Figure 14: Constraints for Interprocedural Analysis

With this optimization, a single load node may be associ-
ated with multiple load statements. The load node gener-
ated from the merge of k load nodes n1, . . . , nk is associated
with all of the statements of n1, . . . , nk.

4. THE INCREMENTALIZED ANALYSIS
We next describe how to incrementalize the base algo-

rithm — how to enhance the algorithm so that it can skip
the analysis of call sites while maintaining enough infor-
mation to reconstruct the result of analyzing the invoked
methods should the analysis policy direct the analysis to
do so. The first step is to record the set S of skipped call
sites. For each skipped call site s, the analysis records the
invoked method ops and the initial parameter map µ̂s that
the base algorithm would compute at that call site. To sim-
plify the presentation, we assume that each skipped call site
is 1) executed at most once, and 2) invokes a single method.
Section 4.8 discusses how we eliminate these restrictions in
our implemented algorithm.

The next step is to define an updated escape function
eS,O,I that determines how objects escape the currently an-
alyzed region of the program via skipped call sites:

eS,O,I(n) = {s ∈ S.∃n1 ∈ NP .n1
µ̂s−→ n2 and

n is reachable from n2 in O ∪ I} ∪ eO,I(n)

We adapt the interprocedural mapping algorithm from Sec-
tion 3.5 to use this updated escape function. By definition,
n escapes through a call site s if s ∈ eS,O,I(n).

A key complication is preserving flow sensitivity with re-
spect to previously skipped call sites during the integration
of analysis results from those sites. For optimization pur-
poses, the compiler works with the analysis result from the
end of the method. But the skipped call sites occur at var-

ious program points inside the method. We therefore aug-
ment the points-to escape graphs from the base analysis with
several orders, which record ordering information between
edges in the points-to escape graph and skipped call sites:

• ω ⊆ S× ((N ×{f})×NL). For each call site s, ω(s) =

{n1
f→ n2.〈s, n1

f→ n2〉 ∈ ω} is the set of outside edges
that the analysis generates before it skips s.

• ι ⊆ S × ((N × {f}) × N). For each call site s, ι(s) =

{n1
f→ n2.〈s, n1

f→ n2〉 ∈ ι} is the set of inside edges
that the analysis generates before it skips s.

• τ ⊆ S × ((N ×{f})×NL). For each call site s, τ(s) =

{n1
f→ n2.〈s, n1

f→ n2〉 ∈ τ} is the set of outside edges
that the analysis generates after it skips s.

• ν ⊆ S × ((N × {f}) × N). For each call site s, ν(s) =

{n1
f→ n2.〈s, n1

f→ n2〉 ∈ ν} is the set of inside edges
that the analysis generates after it skips s.

• β ⊆ S × S. For each call site s, β(s) = {s′.〈s, s′〉 ∈ β}
is the set of call sites that the analysis skips before
skipping s.

• α ⊆ S × S. For each call site s, α(s) = {s′.〈s, s′〉 ∈
α} is the set of call sites that the analysis skips after
skipping s.

The incrementalized analysis works with augmented points-
to escape graphs of the form 〈O, I, S, ω, ι, τ, ν, β, α〉. Note
that because β and α are inverses,2 the analysis does not
need to represent both explicitly. It is of course possible
to use any conservative approximation of ω, ι, τ , ν, β and
α; an especially simple approach uses ω(s) = τ(s) = O,
ι(s) = ν(s) = I, and β(s) = α(s) = S.

We next discuss how the analysis uses these additional
components during the incremental analysis of a call site.
We assume a current augmented points-to escape graph
〈O1, I1, S1, ω1, ι1, τ1, ν1, β1, α1〉, a call site s ∈ S1 with in-
voked operation ops, and an augmented points-to escape
graph 〈O2, I2, S2, ω2, ι2, τ2, ν2, β2, α2〉 from the end of ops.

4.1 Matched Edges
In the base algorithm, the analysis of a call site matches

outside edges from the analyzed method against existing
edges in the points-to escape graph from the program point
before the site. By the time the algorithm has propagated
the graph to the end of the method, it may contain addi-
tional edges generated by the analysis of statements that
execute after the call site. When the incrementalized algo-
rithm integrates the analysis result from a skipped call site,
it matches outside edges from the invoked method against
only those edges that were present in the points-to escape
graph at the program point before the call site. ω(s) and ι(s)
provide just those edges. The algorithm therefore computes

〈O, I, µ〉 = map(〈ω1(s), ι1(s)〉, 〈O2, I2〉, µ̂s)

where O and I are the new sets of edges that the analysis
of the callee adds to the caller graph.

2Under the interpretation β−1 = {〈s1, s2〉.〈s2, s1〉 ∈ β} and α−1 =

{〈s1, s2〉.〈s2, s1〉 ∈ α}, β = α−1 and β−1 = α.



4.2 Propagated Edges
In the base algorithm, the transfer function for an ana-

lyzed call site may add new edges to the points-to graph
from before the site. These new edges create effects that
propagate through the analysis of subsequent statements.
Specifically, the analysis of these subsequent statements may
read the new edges, then generate additional edges involv-
ing the newly referenced nodes. In the points-to graph from
the incrementalized algorithm, the edges from the invoked
method will not be present if the analysis skips the call site.
But these missing edges must come (directly or indirectly)
from nodes that escape into the skipped call site. In the
points-to graphs from the caller, these missing edges are rep-
resented by outside edges that are generated by the analysis
of subsequent statements. The analysis can therefore use
τ1(s) and ν1(s) to reconstruct the propagated effect of ana-
lyzing the skipped method. It computes

〈O′, I ′, µ′〉 = map(〈O, I〉, 〈τ1(s), ν1(s)〉, {〈n, n〉.n ∈ N})
where O′ and I ′ are the new sets of edges that come from
the interaction of the analysis of the skipped method and
subsequent statements, and µ′ maps each outside node from
the caller to the nodes from the callee that it represents
during the analysis from the program point after the skipped
call site to the end of the method. Note that this algorithm
generates all of the new edges that a complete reanalysis
would generate. But it generates the edges incrementally
without reanalyzing the code.

4.3 Skipped Call Sites from the Caller
In the base algorithm, the analysis of one call site may

affect the initial parameter map for subsequent call sites.
Specifically, the analysis of a site may cause the formal pa-
rameter nodes at subsequent sites to be mapped to addi-
tional nodes in the graph from the caller.

For each skipped call site, the incrementalized algorithm
records the parameter map that the base algorithm would
have used at that site. When the incrementalized algorithm
integrates an analysis result from a previously skipped site,
it must update the recorded parameter maps for subsequent
skipped sites. At each of these sites, outside nodes repre-
sent the additional nodes that the analysis of the previously
skipped site may add to the map. And the map µ′ records
how each of these outside nodes should be mapped. For
each subsequent site s′ ∈ α1(s), the algorithm composes the
site’s current recorded parameter map µ̂s′ with µ′ to obtain
its new recorded parameter map µ′ ◦ µ̂s′ .

4.4 Skipped Call Sites from the Callee
The new set of skipped call sites S′ = (S1 ∪ S2) contains

the set of skipped call sites S2 from the callee. When it maps
the callee graph into the caller graph, the analysis updates
the recorded parameter maps for the skipped call sites in
S2. For each site s′ ∈ S2, the analysis simply composes the
site’s current map µ̂s′ with the map µ to obtain the new
recorded parameter map µ ◦ µ̂s′ for s′.

4.5 New Orders
The analysis constructs the new orders by integrating the

orders from the caller and callee into the new analysis result
and extending the orders for s to the mapped edges and
skipped call sites from the callee. So, for example, the new
order between outside edges and subsequent call sites (ω′)

consists of the order from the caller (ω1), the mapped order
from the callee (ω2[µ]), the order from s extended to the
skipped call sites from the callee (S2×ω1(s)), and the outside
edges from the callee ordered with respect to the call sites
after s (α1(s) × O):

ω′=ω1 ∪ ω2[µ] ∪ (S2 × ω1(s)) ∪ (α1(s) × O)
ι′=ι1 ∪ ι2[µ] ∪ (S2 × ι1(s)) ∪ (α1(s) × I)
τ ′=τ1 ∪ τ2[µ] ∪ (S2 × τ1(s)) ∪ (β1(s) × O)
ν′=ν1 ∪ ν2[µ] ∪ (S2 × ν1(s)) ∪ (β1(s) × I)
β′=β1 ∪ β2 ∪ (S2 × β1(s)) ∪ (α1(s) × S2)
α′=α1 ∪ α2 ∪ (S2 × α1(s)) ∪ (β1(s) × S2)

Here ω[µ] is the order ω under the map µ, i.e., ω[µ] =

{〈s, n′
1

f→ n′
2〉.〈s, n1

f→ n2〉 ∈ ω, n1
µ−→ n′

1, and n2
µ−→ n′

2},
and similarly for ι, τ, and ν.

4.6 Cleanup
At this point the algorithm can compute a new graph

〈O1 ∪ O ∪ O′, I1 ∪ I ∪ I ′, S′, ω′, ι′, τ ′, ν′, β′, α′〉 that reflects
the integration of the analysis of s into the previous anal-
ysis result 〈O1, I1, S1, ω1, ι1, τ1, ν1, β1, α1〉. The final step is
to remove s from all components of the new graph and to
remove all outside edges from captured nodes.

4.7 Updated Intraprocedural Analysis
The transfer function for a skipped call site s performs

the following additional tasks:

• Record the initial parameter map µ̂s that the base al-
gorithm would use when it analyzed the site.

• Update ω to include {s}×O, update ι to include {s}×
I, update α to contain S×{s}, and update β to contain
{s} × S.

• Update S to include the skipped call site s.

Whenever a load statement generates a new outside edge

n1
f→ n2, the transfer function updates τ to include S ×

{n1
f→ n2}. Whenever a store statement generates a new

inside edge n1
f→ n2, the transfer function updates ν to

include S × {n1
f→ n2}.

Finally, the incrementalized algorithm extends the con-
fluence operator to merge the additional components. For
each additional component (including the recorded param-
eter maps µs), the confluence operator is set union.

4.8 Extensions
So far, we have assumed that each skipped call site is ex-

ecuted at most once and invokes a single method. We next
discuss how our implemented algorithm eliminates these re-
strictions. To handle dynamic dispatch, we compute the
graph for all of the possible methods that the call site may
invoke, then merge these graphs to obtain the new graph.

We also extend the abstraction to handle skipped call sites
that are in loops or are invoked via multiple paths in the
control flow graph. We maintain a multiplicity flag for each
call site specifying whether the call site may be executed
multiple times:

• The transfer function for a skipped call site s checks to
see if the site is already in the set of skipped sites S. If
so, it sets the multiplicity flag to indicate that s may
be invoked multiple times. It also takes the union of



the site’s current recorded parameter map µ̂s and the
parameter map µ̂ from the transfer function to obtain
the site’s new recorded parameter map µ̂s ∪ µ̂.

• The algorithm that integrates analysis results from
previously skipped call sites performs a similar set of
operations to maintain the recorded parameter maps
and multiplicity flags for call sites that may be present
in the analysis results from both the callee and the
caller. If the skipped call site may be executed mul-
tiple times, the analysis uses a fixed-point algorithm
when it integrates the analysis result from the skipped
call site. This algorithm models the effect of executing
the site multiple times.

4.9 Recursion
The base analysis uses a fixed-point algorithm to ensure

that it terminates in the presence of recursion. It is possible
to use a similar approach in the incrementalized algorithm.
Our implemented algorithm, however, does not check for
recursion as it explores the call graph. If a node escapes
into a recursive method, the analysis may, in principle, never
terminate. In practice, the algorithm relies on the analysis
policy to react to the expansion of the analyzed region by
directing analysis resources to other allocation sites.

4.10 Incomplete Call Graphs
Our algorithm deals with incomplete call graphs as fol-

lows. If it is unable to locate all of the potential callers of a
given method, it simply analyzes those it is able to locate.
If it is unable to locate all potential callees at a given call
site, it simply considers all nodes that escape into the site
as permanently escaped.

5. ANALYSIS POLICY
The goal of the analysis policy is to find and analyze al-

location sites that can be captured quickly and have a large
optimization payoff. Conceptually, the policy uses the fol-
lowing basic approach. It estimates the payoff for capturing
an allocation site as the number of objects allocated at that
site in a previous profiling run. It uses empirical data and
the current analysis result for the site to estimate the like-
lihood that it will ever be able to capture the site, and,
assuming that it is able to capture the site, the amount of
time required to do so. It then uses these estimates to calcu-
late an estimated marginal return for each unit of analysis
time invested in each site.

At each analysis step, the policy is faced with a set of par-
tially analyzed sites that it can invest in. The policy simply
chooses the site with the best estimated marginal return,
and invests a (configurable) unit of analysis time in that
site. During this time, the algorithm repeatedly selects one
of the skipped call sites through which the allocation site
escapes, analyzes the methods potentially invoked at that
site (reusing the cached results if they are available), and
integrates the results from these methods into the current
result for the allocation site. If these analyses capture the
site, the policy moves on to the site with the next best esti-
mated marginal return. Otherwise, when the time expires,
the policy recomputes the site’s estimated marginal return
in light of the additional information it has gained during
the analysis, and once again invests in the (potentially dif-
ferent) site with the current best estimated marginal return.

5.1 Stack Allocation
The compiler applies two potential stack allocation opti-

mizations depending on where an allocation site is captured:

• Stack Allocate: If the site is captured in the method
that contains it, the compiler generates code to allo-
cate all objects created at that site in the activation
record of the containing method.

• Inline and Stack Allocate: If the site is captured
in a direct caller of the method containing the site, the
compiler first inlines the method into the caller. After
inlining, the caller contains the site, and the generated
code allocates all objects created at that site in the
activation record of the caller.

The current analysis policy assumes that the compiler is 1)
unable to inline a method if, because of dynamic dispatch,
the corresponding call site may invoke multiple methods,
and 2) unwilling to enable additional optimizations by fur-
ther inlining the callers of the method containing the alloca-
tion site into their callers. It is, of course, possible to relax
these assumptions to support more sophisticated inlining
and/or specialization strategies.

Inlining complicates the conceptual analysis policy de-
scribed above. Because each call site provides a distinct
analysis context, the same allocation site may have differ-
ent analysis characteristics and outcomes when its enclosing
method is inlined at different call sites. The policy therefore
treats each distinct combination of call site and allocation
site as its own separate analysis opportunity.

5.2 Analysis Opportunities
The policy represents an opportunity to capture an alloca-

tion site a in its enclosing method op as 〈a, op, G, p, c, d, m〉,
where G is the current augmented points-to escape graph for
the site, p is the estimated payoff for capturing the site, c is
the count of the number of skipped call sites in G through
which a escapes, d is the method call depth of the analyzed
region represented by G, and m is the mean cost of the
call site analyses performed so far on behalf of this analysis
opportunity. Note that a, op, and G are used to perform
the incremental analysis, while p, c, d, and m are used to
estimate the marginal return. Opportunities to capture an
allocation site a in the caller op of its enclosing method have
the form 〈a, op, s, G, p, c, d, m〉, where s is the call site in op

that invokes the method containing a, and the remainder of
the fields have the same meaning as before.

Figure 15 presents the state-transition diagram for anal-
ysis opportunities. Each analysis opportunity can be in one
of the states of the diagram; the transitions correspond to
state changes that take place during the analysis of the op-
portunity. The states have the following meanings:

• Unanalyzed: No analysis done on the opportunity.

• Escapes Below Enclosing Method: The opportu-
nity’s allocation site escapes into one or more skipped
call sites, but does not (currently) escape to the caller
of the enclosing method. The opportunity is of the
form 〈a, op, G, p, c, d, m〉.

• Escapes Below Caller of Enclosing Method: The
opportunity’s site escapes to the caller of its enclos-
ing method, but does not (currently) escape from this
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Figure 15: State-Transition Diagram for Analysis
Opportunities

caller. The site may also escape into one or more
skipped call sites. The opportunity is of the form
〈a, op, s, G, p, c, d, m〉.

• Captured: The opportunity’s site is captured.

• Abandoned: The policy has permanently abandoned
the analysis of the opportunity, either because its allo-
cation site permanently escapes via a static class vari-
able or thread, because the site escapes to the caller of
the caller of its enclosing method (and is therefore un-
optimizable), or because the site escapes to the caller
of its enclosing method and (because of dynamic dis-
patch) the compiler is unable to inline the enclosing
method into the caller.

In Figure 15 there are multiple transitions from the Es-
capes Below Enclosing Method state to the Escapes Below
Caller of Enclosing Method state. These transitions indi-
cate that one Escapes Below Enclosing Method opportunity
may generate multiple new Escapes Below Caller of Enclos-
ing Method opportunities — one new opportunity for each
potential call site that invokes the enclosing method from
the old opportunity.

When an analysis opportunity enters the Escapes Below
Caller of Enclosing Method state, the first analysis action
is to integrate the augmented points-to escape graph from
the enclosing method into the graph from the caller of the
enclosing method.

5.3 Estimated Marginal Returns
If the opportunity is Unanalyzed, the estimated marginal

return is (ξ · p)/σ, where ξ is the probability of capturing
an allocation site given no analysis information about the
site, p is the payoff of capturing the site, and, assuming
the analysis eventually captures the site, σ is the expected
analysis time required to do so.

If the opportunity is in the state Escapes Below Enclosing
Method, the estimated marginal return is (ξ1(d) · p)/(c ·m).
Here ξ1(d) is the conditional probability of capturing an al-
location site given that the algorithm has explored a region
of call depth d below the method containing the site, the al-
gorithm has not (yet) captured the site, and the site has not
escaped (so far) to the caller of its enclosing method. If the
opportunity is in the state Escapes Below Caller of Enclosing
Method, the estimated marginal return is (ξ2(d) · p)/(c ·m).
Here ξ2(d) has the same meaning as ξ1(d), except that the
assumption is that the site has escaped to the caller of its

enclosing method, but not (so far) to the caller of the caller
of its enclosing method.

We obtain the capture probability functions ξ, ξ1, and ξ2

empirically by preanalyzing all of the executed allocation
sites in some sample programs and collecting data that al-
lows us to compute these functions. For Escapes Below En-
closing Method opportunities, the estimated payoff p is the
number of objects allocated at the opportunity’s allocation
site a during a profiling run. For Escapes Below Caller of
Enclosing Method opportunities, the estimated payoff is the
number of objects allocated at the opportunity’s allocation
site a when the allocator is invoked from the opportunity’s
call site s.

When an analysis opportunity changes state or increases
its method call depth, its estimated marginal return may
change significantly. The policy therefore recomputes the
opportunity’s return whenever one of these events happens.
If the best opportunity changes because of this recomputa-
tion, the policy redirects the analysis to work on the new
best opportunity.

5.4 Termination
In principle, the policy can continue the analysis indefi-

nitely as it invests in ever less profitable opportunities. In
practice, it is important to terminate the analysis when the
prospective returns become small compared to the analy-
sis time required to realize them. We say that the analysis
has decided an object if that object’s opportunity is in the
Captured or Abandoned state. The payoffs p in the analy-
sis opportunities enable the policy to compute the current
number of decided and undecided objects.

Two factors contribute to our termination policy: the
percentage of undecided objects (this percentage indicates
the maximum potential payoff from continuing the analy-
sis), and the rate at which the analysis has recently been
deciding objects. The results in Section 6 are from analy-
ses terminated when the percentage of decided objects rises
above 90% and the decision rate for the last quarter of the
analysis drops below 1 percent per second, with a cutoff of
75 seconds of total analysis time.

We anticipate the development of a variety of termination
policies to fit the particular needs of different compilers. A
dynamic compiler, for example, could accumulate an analy-
sis budget as a percentage of the time spent executing the
application — the longer the application ran, the more time
the policy would be authorized to invest analyzing it. The
accumulation rate would determine the maximum amortized
analysis overhead.

6. EXPERIMENTAL RESULTS
We have implemented our analysis and the stack alloca-

tion optimization in the MIT Flex compiler, an ahead-of-
time compiler written in Java for Java.3 We ran the exper-
iments on an 800 MHz Pentium III PC with 768Mbytes of
memory running Linux Version 2.2.18. We ran the compiler
using the Java Hotspot Client VM version 1.3.0 for Linux.
The compiler generates portable C code, which we compile
to an executable using gcc. The generated code manages the
heap using the Boehm-Demers-Weiser conservative garbage
collector [4] and uses alloca for stack allocation.

3The compiler is available at www.flexc.lcs.mit.edu.



6.1 Benchmark Programs
Our benchmark programs include two multithreaded sci-

entific computations (Barnes and Water), Jlex, and several
Spec benchmarks (Db, Compress, and Raytrace). Barnes
and Water are well-known benchmarks in the parallel com-
puting community; our Java versions were derived from ver-
sions in the SPLASH-2 benchmark suite [17]. Figure 16
presents the compile and whole-program analysis times for
the applications.

Compile Time Whole-Program
Application Without Analysis Analysis Time
Barnes 89.7 34.3
Water 91.1 38.2
Jlex 119.5 222.8
Db 93.6 126.6
Raytrace 118.4 102.2
Compress 219.6 645.1

Figure 16: Compile and Whole-Program Analysis
Times (seconds)

6.2 Marginal Returns and Pro£ling Information
We derived the estimated capture probability functions

ξ, ξ1, and ξ2 from an instrumented analysis of all of the ex-
ecuted object allocation sites in Barnes, Water, Db, and
Raytrace. Figure 17 presents the capture probabilities ξ1(d)
and ξ2(d) as a function of the call depth d; ξ is .33.
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Figure 17: Capture Probability Functions

To compute the estimated marginal returns and imple-
ment the termination policy, the analysis policy needs an
estimated optimization payoff for each allocation site. We
obtain these payoffs as the number of objects allocated at
each site during a training run on a small training input.
The presented execution and analysis statistics are for exe-
cutions on larger production inputs.

6.3 Analysis Payoffs and Statistics
Figure 18 presents analysis statistics from the incremen-

talized analysis. We present the number of captured al-
location sites as the sum of two counts. The first count
is the number of sites captured in the enclosing method;
the second is the number captured in the caller of the en-
closing method. Fractional counts indicate allocation sites
that were captured in some but not all callers of the en-
closing method. In Db, for example, one of the allocation
sites is captured in two of the eight callers of its enclosing
method. The Undecided Allocation Sites column counts the
number of allocation sites in which the policy invested some
resources, but did not determine whether it could stack al-
locate the corresponding objects or not. The Analyzed Call
Sites, Total Call Sites, Analyzed Methods, and Total Meth-
ods columns show that the policy analyzes a small fraction
of the total program.

The graphs in Figure 19 present three curves for each ap-
plication. The horizontal dotted line indicates the percent-
age of objects that the whole-program analysis allocates on
the stack. The dashed curve plots the percentage of decided
objects (objects whose analysis opportunities are either Cap-
tured or Abandoned) as a function of the analysis time. The
solid curve plots the percentage of objects allocated on the
stack. For Barnes, Jlex, and Db, the incrementalized anal-
ysis captures virtually the same number of objects as the
whole-program analysis, but spends a very small fraction of
the whole-program analysis time to do so. Incrementaliza-
tion provides less of a benefit for Water because two large
methods account for a much of the analysis time of both
analyses. For Raytrace and Compress, a bug in the 1.3 JVM
forced us to run the incrementalized analysis, but not the
whole-program analysis, on the 1.2 JVM. Our experience
with the other applications indicates that both analyses run
between five and six times faster on the 1.3 JVM than on
the 1.2 JVM.
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Figure 19: Analysis Time Payoffs

6.4 Application Execution Statistics
Figure 20 presents the total amount of memory that the

applications allocate in the heap. Almost all of the allocated
memory in Barnes and Water is devoted to temporary arrays
that hold the results of intermediate computations. The
C++ version of these applications allocates these arrays on
the stack; our analysis restores this allocation strategy in
the Java version. Most of the memory in Jlex is devoted to
temporary iterators, which are stack allocated after inlining.
Note the anomaly in Db and Compress: many objects are
allocated on the stack, but the heap allocated objects are
much bigger than the stack allocated objects.



Analysis Captured Abandoned Undecided Total Analyzed Total
Time Allocation Allocation Allocation Allocation Call Call Analyzed Total

(seconds) Sites Sites Sites Sites Sites Sites Methods Methods
Barnes 0.8 3+0 0 2 736 18 1675 13 512
Water 21.7 33+0 4 33 748 94 1799 33 481
Jlex 0.9 0+2 1 2 1054 27 2879 12 569
Db 4.5 1+0.25 4 1.75 1118 54 2444 25 631
Raytrace 76.3 8+0.37 20.63 54 1067 271 3109 64 699
Compress 79.5 4+0.33 4 19.66 1354 111 4084 40 808

Figure 18: Analysis Statistics from Incrementalized Analysis

Figure 21 presents the execution times. The optimizations
provide a significant performance benefit for Barnes and Wa-
ter and some benefit for Jlex and Db. Without stack allo-
cation, Barnes and Water interact poorly with the conser-
vative garbage collector. We expect that a precise garbage
collector would reduce the performance difference between
the versions with and without stack allocation.

No Incrementalized Whole-Program
Application Analysis Analysis Analysis
Barnes 36.0 3.2 2.0
Water 190.2 2.2 0.6
Jlex 40.8 3.1 2.5
Db 77.6 31.2 31.2
Raytrace 13.4 9.0 6.7
Compress 110.1 110.1 110.1

Figure 20: Allocated Heap Memory (Mbytes)

No Incrementalized Whole-Program
Application Analysis Analysis Analysis
Barnes 33.4 22.7 24.0
Water 18.8 11.2 10.7
Jlex 5.5 5.0 4.7
Db 103.8 104.0 101.3
Raytrace 3.0 2.9 2.9
Compress 44.9 44.8 45.1

Figure 21: Execution Times (seconds)

7. RELATED WORK
We first address related work in escape analysis, focusing

on the prospects for incrementalizing existing algorithms.
We then discuss several interprocedural analyses (demand-
driven analysis, fragment analysis, and incremental analy-
sis) that are designed to analyze part, but not all, of the
program.

7.1 Escape Analysis
Many other researchers have developed escape analyses for

Java [16, 7, 14, 3, 5]. These analyses have been presented
as whole-program analyses, although many contain elements
that make them amenable to incrementalization. All of the
analyses listed above except the last [5] analyze methods
independently of their callers, generating a summary that
can be specialized for use at each call site. Unlike our base
analysis [16], these analyses are not designed to skip call
sites. But we believe it would be relatively straightforward
to augment them to do so. With this extension in place, the
remaining question is incrementalization. For flow-sensitive
analyses [16, 7], the incrementalized algorithm must record
information about the ordering of skipped call sites relative
to the rest of the analysis information if it is to preserve

the precision of the base whole-program analysis with re-
spect to skipped call sites. Flow-insensitive analyses [14, 3],
can ignore this ordering information and should therefore
be able to use an extended abstraction that records only
the mapping information for skipped call sites. In this sense
flow-insensitive analyses should be, in general, simpler to
incrementalize than flow-sensitive analyses.

Escape analyses have typically been used for stack allo-
cation and synchronization elimination. Our results show
that analyzing a local region around each allocation site
works well for stack allocation, presumably because stack
allocation ties object lifetimes to the lifetimes of the captur-
ing methods. But for synchronization elimination, a whole-
program analysis may deliver significant additional opti-
mization opportunities. For example, Ruf’s synchronization
elimination analysis determines which threads may synchro-
nize on which objects [14]. In many cases, the analysis is able
to determine that only one thread synchronizes on a given
object, even though the object may be accessible to multi-
ple threads or even, via a static class variable, to all threads.
Exploiting this global information significantly improves the
ability of the compiler to eliminate superfluous synchroniza-
tion operations, especially for single threaded programs. We
do not see how an incrementalized analysis could extract this
kind of global information without scanning all of the code
in each thread.

7.2 Demand-Driven Analysis
Demand-driven algorithms analyze only those parts of the

program required to compute an analysis fact at a subset of
the program points or to answer a given query [2, 10, 8,
11]. This approach can dramatically reduce the analyzed
part of the program, providing a corresponding decrease in
the analysis time. Like demand-driven analyses, our analy-
sis does not analyze those parts of the program that do not
affect the desired analysis results. Our approach differs in
that it is designed to temporarily skip parts of the program
even if the skipped parts potentially affect the analysis re-
sult. This approach works for its intended application (stack
allocation) because it enables the analysis to choose from a
set of potential optimization opportunities, some or all of
which it is willing to forgo if the analysis cost is too high.
In this context, avoiding excessively expensive, even if ul-
timately successful, analyses is as important as analyzing
only those parts of the program required to obtain a spe-
cific result. Because our analysis can skip call sites, it can
incrementally invest in multiple optimization opportunities,
use the acquired information to improve its estimates of the
marginal return of each opportunity, then dynamically redi-
rect analysis resources to the currently most promising op-
portunities. In practice, this approach enables our analysis
policy to quickly discover and exploit the best opportuni-



ties while avoiding opportunities that provide little or no
optimization payoff.

7.3 Fragment and Incremental Analysis
Fragment analysis is designed to analyze a predetermined

part of the program [12, 13]. The analysis either extracts
a result that is valid for all possible contexts in which the
fragment may be placed [12], or is designed to analyze the
fragment in the context of a whole-program analysis result
from a less expensive algorithm [13]. A similar effect may
be obtained by explicitly specifying the analysis results for
missing parts of the program [9, 15]. Our approach differs
in that it monitors the analysis results to dynamically deter-
mine which parts of the program it should analyze to obtain
the best optimization outcome.

Incremental algorithms update an existing analysis result
to reflect the effect of program changes [18]. Our algorithm,
in contrast, analyzes part of the program assuming no pre-
vious analysis results.

8. CONCLUSION
This paper presents a new incrementalized pointer and es-

cape analysis. Instead of analyzing the whole program, the
analysis executes under the direction of an analysis policy.
The policy continually monitors the analysis results to di-
rect the incremental analysis of those parts of the program
that offer the best marginal return on the invested analysis
resources. Our experimental results show that our analysis,
when used for stack allocation, usually delivers almost all
of the benefit of the whole-program analysis at a fraction of
the cost. And because it analyzes only a local region of the
program surrounding each allocation site, it scales to handle
programs of arbitrary size.
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