
Dynamic Feedback:
An Effective Technique for Adaptive Computing�

Pedro Diniz and Martin Rinard
Department of Computer Science

Engineering I Building
University of California, Santa Barbara

Santa Barbara, CA 93106-5110
fpedro,martin g@cs.ucsb.edu

Abstract

This paper presents dynamic feedback, a technique that enables
computations to adapt dynamically to different execution environ-
ments. A compiler that uses dynamic feedback produces several
different versions of the same source code; each version uses a dif-
ferent optimization policy. The generated code alternately performs
sampling phases and production phases. Each sampling phase mea-
sures the overhead of each version in the current environment. Each
production phase uses the version with the least overhead in the pre-
vious sampling phase. The computation periodically resamples to
adjust dynamically to changes in the environment.

We have implemented dynamic feedback in the context of a par-
allelizing compiler for object-based programs. The generated code
uses dynamic feedback to automatically choose the best synchro-
nization optimization policy. Our experimental results show that
the synchronization optimization policy has a significant impact on
the overall performance of the computation, that the best policy
varies from program to program, that the compiler is unable to stat-
ically choose the best policy, and that dynamic feedback enables the
generated code to exhibit performance that is comparable to that of
code that has been manually tuned to use the best policy. We have
also performed a theoretical analysis which provides, under certain
assumptions, a guaranteed optimality bound for dynamic feedback
relative to a hypothetical (and unrealizable) optimal algorithm that
uses the best policy at every point during the execution.

1 Introduction

The most efficient implementation of a given abstraction often de-
pends on the environment in which it is used. For example, the
best consistency protocol in a software distributed shared memory
system often depends on the access pattern of the parallel pro-
gram [12]. The best data distribution of dense matrices in dis-
tributed memory machines depends on how the different parts of
the program access the matrices [1, 2, 18, 21]. The best concrete
data structure to implement a given abstract data type often de-
pends on how it is used [14, 22]. The best algorithm to solve a
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given problem often depends on the combination of input and hard-
ware platform used to execute the algorithm [5]. In all of these
cases, it is impossible to statically choose the best implementation
— the best implementation depends on information (such as the
input data, dynamic program characteristics or hardware features)
that is either difficult to extract or unavailable at compile time. If
a programmer has a program with these characteristics, he or she
is currently faced with two unattractive alternatives: either manu-
ally tune the program for each environment, or settle for suboptimal
performance.

We have developed a new technique,dynamic feedback, that en-
ables programs to automatically adapt to different execution envi-
ronments. A compiler that uses dynamic feedback produces several
different versions of the same code. Each version uses a different
optimization policy. The generated code alternately performssam-
pling phases andproductionphases. During a sampling phase, the
generated code measures the overhead of each version in the cur-
rent environment by running that version for a fixed time interval.
Each production phase then uses the version with the least overhead
in the previous sampling phase. After running a production phase
for a fixed time interval, the generated code performs another sam-
pling phase. If the environment has changed, the generated code
dynamically adapts by using a different version in the next produc-
tion phase.

We see dynamic feedback as part of a general trend towards
adaptive computing. As the complexity of systems and the capa-
bilities of compilers increase, compiler developers will find that
they can automatically apply a large range of transformations, but
have no good way of statically determining which transformations
will deliver good results when the program is actually executed.
The problem will become even more acute with the emergence of
new computing paradigms such as mobile programs in the Internet.
The extreme heterogeneity of such systems will defeat any imple-
mentation that does not adapt to different execution environments.
Dynamic feedback is one example of the adaptive techniques that
will enable compilers to deliver good performance in modern com-
puting systems.

This paper describes the use of dynamic feedback in the context
of a parallelizing compiler for object-based languages. The com-
piler generates parallel code that uses synchronization constructs to
make operations execute atomically [33]. Our experimental results
show that the resulting synchronization overhead can significantly
degrade the performance [10]. We have developed a set of synchro-
nization transformations and a set of synchronization optimization
policies that use the transformations to reduce the synchronization
overhead [10]. Unfortunately, the best policy is different for differ-
ent programs, and may even vary dynamically for different parts of
the same program. Furthermore, the best policy depends on infor-



mation, such as the global topology of the manipulated data struc-
tures and the dynamic execution schedule of the parallel tasks, that
is unavailable at compile time. The compiler is therefore unable to
statically choose the best synchronization optimization policy.

Our implemented compiler generates code that uses dynamic
feedback to automatically choose the best synchronization opti-
mization policy. Our experimental results show that dynamic feed-
back enables the automatically generated code to exhibit perfor-
mance comparable to that of code that has been manually tuned to
use the best policy.

1.1 Contributions

This paper makes the following contributions:

� It presents a technique, dynamic feedback, that enables sys-
tems to automatically evaluate several different implemen-
tations of the same source code, then use the evaluation to
choose the best implementation for the current environment.

� It shows how to apply dynamic feedback in the context of a
parallelizing compiler for object-based programs. The gen-
erated code uses dynamic feedback to automatically choose
the best synchronization optimization policy.

� It presents a theoretical analysis that characterizes the worst-
case performance of systems that use dynamic feedback. This
analysis provides, under certain assumptions, a guaranteed
optimality bound for dynamic feedback relative to a hypo-
thetical (and unrealizable) optimal algorithm that uses the
best policy at every point during the execution.

� It presents experimental results for the automatically gen-
erated parallel code. These results show that the generated
code exhibits performance comparable to that of code that
has been manually tuned to use the best synchronization op-
timization policy.

1.2 Structure

The remainder of the paper is structured as follows. In Section 2,
we briefly summarize the analysis technique, commutativity analy-
sis, that our compiler is based on. Section 3 summarizes the issues
that affect the performance impact of the synchronization optimiza-
tion algorithms. Section 4 describes the implementation details of
applying dynamic feedback to the problem of choosing the best
synchronization policy. Section 5 presents the theoretical analy-
sis. Section 6 presents the experimental results. We discuss related
work in Section 7 and conclude in Section 8.

2 Commutativity Analysis

Our compiler usescommutativity analysisto automatically paral-
lelize serial, object-based programs. Such programs structure the
computation as a sequence ofoperationson objects. The compiler
analyzes the program at this granularity to determine when opera-
tions commute, or generate the same result regardless of the order
in which they execute. If all of the operations in a given compu-
tation commute, the compiler can automatically generate parallel
code. This code executes all of the operations in the computation
in parallel. Our experimental results indicate that this approach can
effectively parallelize irregular computations that manipulate dy-
namic, linked data structures such as trees and graphs [33].

To ensure that operations execute atomically, the compiler aug-
ments each object with amutual exclusion lock. It then automati-
cally inserts synchronization constructs into operations that update
objects. These operations first acquire the object's lock, perform
the update, then release the lock. The synchronization constructs
ensure that the operation executes atomically with respect to all
other operations that access the object.

3 Synchronization Optimizations

We found that, in practice, the overhead generated by the synchro-
nization constructs often reduced the performance. We therefore
developed several synchronization optimization algorithms [10].
These algorithms are designed for parallel programs, such as those
generated by our compiler, that use mutual exclusion locks to im-
plementcritical regions. Each critical region acquires its mutual
exclusion lock, performs its computation, then releases the lock.

Computations that use mutual exclusion locks may incur two
kinds of overhead:lockingoverhead andwaiting overhead. Lock-
ing overhead is the overhead generated by the execution of con-
structs that successfully acquire or release a lock. Waiting overhead
is the overhead generated when one processor waits to acquire a
lock held by another processor.

If a computation releases a lock, then reacquires the same lock,
it is possible to reduce the locking overhead by eliminating the re-
lease and acquire. Our synchronization optimization algorithms
statically detect computations that repeatedly release and reacquire
the same lock. They then applylock elimination transformations
to eliminate the intermediate release and acquire constructs [10].
The result is a computation that acquires and releases the lock only
once. In effect, the optimization coalesces multiple critical regions
that acquire and release the same lock multiple times into a single
larger critical region that includes all of the original critical regions.
The larger critical region, of course, acquires and releases the lock
only once. This reduction in the number of times that the computa-
tion acquires and releases locks translates directly into a reduction
in the locking overhead.

Figures 1 and 2 present an example of how synchronization op-
timizations can reduce the number of executed acquire and release
constructs. Figure 1 presents a program (inspired by the Barnes-
Hut benchmark described in Section 6) that uses mutual exclusion
locks to makebody::one interaction operations execute
atomically. Figure 2 presents the program after the application of a
synchronization optimization algorithm. The algorithm interproce-
durally lifts the acquire and release constructs out of the loop in the
body::interactions operation. This transformation reduces
the number of times that theacquire andrelease constructs
are executed.

An overly aggressive synchronization optimization algorithm
may introducefalse exclusion. False exclusion may occur when a
processor holds a lock during an extended period of computation
that was originally part of no critical region. If another proces-
sor attempts to execute a critical region that uses the same lock, it
must wait for the first processor to release the lock even though the
first processor is not executing a computation that needs to be in a
critical region. The result is an increase in the waiting overhead.
Excessive false exclusion reduces the amount of available concur-
rency, which can in turn decrease the overall performance.

The synchronization optimization algorithms must therefore me-
diate a trade-off between the locking overhead and the waiting over-
head. Transformations that reduce the locking overhead may in-
crease the waiting overhead, and vice-versa. The synchronization
optimization algorithms differ in the policies that govern their use
of the lock elimination transformation:



extern double interact(double,double);
class body f

private:
lock mutex;
double pos,sum;

public:
void one interaction(body *b);
void interactions(body b[], int n);

g;

void body::one interaction(body *b) f
double val = interact(this->pos, b->pos);
mutex.acquire();
sum = sum + val;
mutex.release();

g

void body::interactions(body b[], int n) f
for (int i = 0; i < n; i++) f

this->one interaction(&b[i]);
g

g

Figure 1: Unoptimized Example Computation

extern double interact(double,double);
class body f

private:
lock mutex;
double pos,sum;

public:
void one interaction(body *b);
void interactions(body b[], int n);

g;

void body::one interaction(body *b) f
double val = interact(this->pos, b->pos);
sum = sum + val;

g

void body::interactions(body b[], int n) f
mutex.acquire();
for (int i = 0; i < n; i++) f

this->one interaction(&b[i]);
g
mutex.release();

g

Figure 2: Optimized Example Computation

� Original: Never apply the transformation — always use the
default placement of acquire and release constructs. In the
default placement, each operation that updates an object ac-
quires and releases that object's lock.

� Bounded: Apply the transformation only if the new critical
region will contain no cycles in the call graph. The idea is
to limit the severity of any false exclusion by limiting the
dynamic size of the critical region.

� Aggressive:Always apply the transformation.

In general, the amount of overhead depends on complicated dy-
namic properties of the computation such as the global topology of
the manipulated data structures and the run-time scheduling of the
parallel tasks. Our experimental results show that the synchroniza-
tion optimizations have a large impact on the performance of our
benchmark applications. Unfortunately, there is no one best policy.
Because the best policy depends on information that is not avail-
able at compile time, the compiler is unable to statically choose the
best policy.

4 Implementing Dynamic Feedback

The compiler generates code that executes an alternating sequence
of serial and parallel sections. Within each parallel section, the
generated code uses dynamic feedback to automatically choose the
best synchronization optimization policy. The execution starts with
a sampling phase, then continues with a production phase. The
parallel section periodically resamples to adapt to changes in the
best policy. We next discuss the specific issues associated with
implementing this general approach.

4.1 Detecting Interval Expiration

To obtain the optimality results in Section 5, the generated code for
the sampling phase must execute each policy for a fixed sampling
time interval. The production phase must also execute for a fixed
production time interval, although the production intervals are typ-
ically much longer than the sampling intervals. The compiler uses
two values to control the lengths of the sampling and production
intervals: thetarget sampling intervaland thetarget production
interval. At the start of each interval, the generated code reads a
timer to obtain the starting time. As it executes, the code periodi-
cally polls the timer: it reads the timer, computes the difference of
the current time and the starting time, then compares the difference
with the target interval. The comparison enables the code to de-
tect when the interval has expired. Several implementation issues
determine the effectiveness of this approach:

� Potential Switch Points: In general, it is possible to switch
policies only at specificpotential switch pointsduring the
execution of the program. The rate at which the potential
switch points occur in the execution determines the minimum
polling rate, which in turn determines how quickly the gen-
erated code responds to the expiration of the current interval.

In all of our benchmark applications, each parallel section
executes a parallel loop. A potential switch point occurs at
each iteration of the loop, and the generated code tests for
the expiration of the current interval each time it completes
an iteration. In our benchmark applications, the individual
iterations of the loops are small enough so that each proces-
sor can respond reasonably quickly to the expiration of the
interval.



� Polling Overhead: The polling overhead is determined in
large part by the overhead of reading the timer. Our cur-
rently generated code uses the timer on the Stanford DASH
machine. The overhead of accessing this timer is approxi-
mately 9 microseconds, which is negligible compared with
the sizes of the iterations of the parallel loops in our bench-
mark applications.

� Synchronous Switching:The generated code switches poli-
cies synchronously. When an interval expires, each proces-
sor waits at a barrier until all of the other processors detect
that the interval has expired and arrive at the barrier. This
strategy ensures that all processors use the same policy dur-
ing each sampling interval. The measured overhead therefore
accurately reflects the overhead of the policy. Synchronous
switching also avoids the possibility of interference between
incompatible policies.1

One potential drawback of synchronous switching is that each
processor must wait for all of the other processors to detect
the expiration of the current interval before it can proceed
to the next interval. This effect can have a significant neg-
ative impact on the performance if one of the iterations of
the parallel loop executes for a long time relative to the other
iterations and to the sampling interval. The combination of
an especially bad policy (for example, a synchronization op-
timization policy that serializes the computation) and itera-
tions of the loop that execute for a significant time relative to
the sampling interval can also cause poor performance.

� Timer Precision: The precision of the timer places a lower
bound on the size of each interval. The timer must tick at
least once before the interval expires. In general, we do
not expect the precision of the timer to cause any problems.
Our generated code uses target sampling intervals of at least
several milliseconds in length. Most systems provide timers
with at least this resolution.

All of these issues combine to determine theeffective sampling
interval, or the minimum time from the start of the interval to the
time when all of the processors detect that the interval has expired
and proceed to the next interval. The theoretical analysis in Sec-
tion 5 formulates some of the optimality results in terms of the
effective sampling interval.

4.2 Switching Policies

During the sampling phase, the generated code must switch quickly
between different synchronization optimization policies. The cur-
rent compiler generates three versions of each parallel section of
code. Each version uses a different synchronization optimization
policy.

The advantage of this approach is that the code for each pol-
icy is always available, which enables the compiler to switch very
quickly between different policies. The currently generated code
simply executes aswitch statement at each parallel loop iteration
to dispatch to the code that implements the current policy.

The potential disadvantage is an increase in the size of the gen-
erated code. Table 1 presents the sizes of the text segments for
several different versions of our benchmark applications. These

1This potential problem does not arise when using dynamic feedback to choose
the best synchronization optimization policy. All of the synchronization optimiza-
tion policies are compatible: it is possible to concurrently execute different versions
without affecting the correctness of the computation. We expect that in other applica-
tions of dynamic feedback, however, the different policies may be incompatible and
the concurrent execution of different versions may cause the computation to execute
incorrectly.

data are from the object files of the compiled applications before
linking and therefore include code only from the applications —
there is no code from libraries. The Serial version is the original
serial program, the Original version uses the Original synchroniza-
tion optimization policy and the Dynamic version uses dynamic
feedback. In general, the increases in the code size are quite small.
This is due, in part, to an algorithm in the compiler that locates
closed subgraphs of the call graph that are the same for all opti-
mization policies. The compiler generates a single version of each
method in the subgraph, instead of one version per synchronization
optimization policy.

Application Version Size (bytes)
Serial 25; 248

Barnes-Hut Original 31; 152

Dynamic 33; 648

Serial 36; 832

Water Original 46; 960

Dynamic 50; 784

Serial 36; 064

String Original 43; 616

Dynamic 45; 664

Table 1: Executable Code Sizes (bytes)

We also considered using dynamic compilation [3, 11, 24] to
produce the different versions of the parallel sections as they were
required. Although this approach would reduce the amount of code
present at any given point in time, it would significantly increase
the amount of time required to switch policies in the sampling
phases. This alternative would therefore become viable only for sit-
uations in which the sampling phases could be significantly longer
than our set of benchmark applications would tolerate.

Finally, it is possible for the compiler to generate a single ver-
sion of the code that can use any of the three synchronization opti-
mization policies. The idea is to generate a conditional acquire or
release construct at all of the sites that may acquire or release a lock
in any of the synchronization optimization policies. Each site has
a flag that controls whether it actually executes the construct; each
acquire or release site tests its flag to determine if it should acquire
or release the lock. In this scenario, the generated code switches
policies by changing the values of the flags. The advantage of this
approach is the guarantee of no code growth; the disadvantage is
the residual flag checking overhead at each conditional acquire or
release site.

4.3 Measuring the Overhead

To choose the policy with the least overhead, the generated code
must first measure the overhead. The compiler instruments the code
to collect three measurements:

� Locking Overhead: The generated code computes the lock-
ing overhead by counting the number of times that the com-
putation acquires and releases a lock. This number is com-
puted by incrementing a counter every time the computation
acquires a lock. The locking overhead is simply the time
required to acquire and release a lock times the number of
times the computation acquires a lock.

� Waiting Overhead: The current implementation uses spin
locks. The hardware exports a construct that allows the com-
putation to attempt to acquire a lock; the return value indi-
cates whether the lock was actually acquired. To acquire a
lock, the computation repeatedly executes the hardware lock



acquire construct until the attempted acquire succeeds. The
computation increments a counter every time an attempt to
acquire a lock fails. The waiting overhead is the time re-
quired to attempt, and fail, to acquire a lock times the number
of failed acquires.

� Execution Time: The amount of time that the computation
spends executing code from the application. This time is
measured by reading the timer when a processor starts to ex-
ecute application code, then reading the timer again when
the processor finishes executing application code. The pro-
cessor then subtracts the first time from the second time, and
adds the difference to a running sum. As measured, the ex-
ecution time includes the waiting time and the time spent
acquiring and releasing locks. It is possible to subtract these
two sources of overhead to obtain the amount of time spent
performing useful computation.

Together, these measurements allow the compiler to evaluate the
total overhead of each synchronization optimization policy. The
total overhead is simply the lock overhead plus the waiting over-
head divided by the execution time. The total overhead is therefore
always between zero and one. The compiler uses the total over-
head to choose the best synchronization optimization policy — the
policy with the lowest overhead is the best.

One potential concern is the instrumentation overhead. Our ex-
perimental results indicate that this overhead has little or no effect
on the performance. We measure the overhead by generating ver-
sions of the applications that use a single, statically chosen, syn-
chronization optimization policy. We then execute these versions
with the instrumentation turned on and the instrumentation turned
off. The performance differences between the instrumented and
uninstrumented versions are very small, which indicates that the
instrumentation overhead has little or no impact on the overall per-
formance.

4.4 Choosing Sampling and Production Intervals

The sizes of the target sampling and production intervals can have
a significant impact on the overall performance of the generated
code. Excessively long sampling intervals may degrade the perfor-
mance by executing non-optimal versions of the code for a long
time. But if the sampling interval is too short, it may not yield an
accurate measurement of the overhead. In the worst case, an inac-
curate overhead measurement may cause the production phase to
use the wrong synchronization optimization policy.

We expect the minimum absolute length of the sampling inter-
val to be different for different applications. In practice, we have
had little difficulty choosing default values that work well for our
applications. In fact, it is possible to make the target sampling inter-
vals very small for all of our applications — the minimum effective
sampling intervals are large enough to provide overhead measure-
ments that accurately reflect the relative overheads in the produc-
tion phases.

To achieve good performance, the production phase must be
long enough to profitably amortize the cost of the sampling phase.
In practice, we have found that the major component of the sam-
pling cost is the time spent executing the non-optimal versions.
Section 5 presents a theoretical analysis that characterizes how long
the production phase must be relative to the sampling phase to
achieve an optimality result. In our current implementation of dy-
namic feedback, the length of the parallel section may also limit
the performance. Our current implementation always executes a
sampling phase at the beginning of each parallel section. If a par-
allel section does not contain enough computation for a production

phase of the desired length, the computation may be unable to suc-
cessfully amortize the sampling overhead. It should be possible
to eliminate this potential problem by generating code that allows
sampling and production intervals to span multiple executions of
the parallel phase. This code would still maintain separate sam-
pling and production intervals for each parallel section, but allow
the intervals to contain multiple executions of the section.

In practice, we have had little difficulty choosing target produc-
tion intervals that work well for our applications. All of our ap-
plications perform well with target production intervals that range
from five to 1000 seconds.

4.5 Early Cut Off and Policy Ordering

In many cases, we expect that the individual sources of overhead
with be either monotonically nondecreasing or monotonically non-
increasing across the set of possible implementations. The lock-
ing overhead, for example, never increases as the policy goes from
Original to Bounded to Aggressive. The waiting overhead, on the
other hand, should never decrease as the policy goes from Original
to Bounded to Aggressive. These properties suggest the use of an
early cut off to limit the number of sampled policies. If the Aggres-
sive policy generates very little waiting overhead or the Original
policy generates very little locking overhead, there is no need to
sample any other policy.

It may therefore be possible to improve the sampling phase by
trying extreme policies first, then going directly to the production
phase if the overhead measurements indicate that no other policy
would do significantly better. It may also be possible to improve
the sampling phase by ordering the policies. The generated code
could sample a given policy first if it has done well in the past. If
the measured overhead continued to be acceptable, the generated
code could go directly to the production phase.

5 Theoretical Analysis

In this section, we present a theoretical analysis of the worst-case
performance of dynamic feedback. We compare dynamic feedback
with an hypothetical, unrealizable algorithm that always uses the
best policy.

We start by observing that if there is no constraint on how fast
the overhead of each policy may change, it is impossible to obtain
a meaningful optimality result for any sampling algorithm — the
overhead of each policy may change dramatically right after the
sampling phase. We therefore impose the constraint that changes
in the overheads of the different policies are bounded by an expo-
nential decay function. We also assume that the values measured
during the sampling phase accurately reflect the actual overheads at
the start of the production phase. Finally, we assume each produc-
tion phase executes to completion, although it is possible to relax
this assumption.

The worst case for the dynamic feedback algorithm relative to
the optimal algorithm occurs when more than one policy has the
lowest overhead during the sampling phase. In this case, the dy-
namic feedback algorithm must arbitrarily select one of the sam-
pled policies with the lowest overhead for the production phase.
The maximum difference between the performance of the dynamic
feedback algorithm and the performance of the optimal algorithm
occurs when the overhead of the selected policy increases at the
maximum bounded rate and the overheads of the other policies de-
crease at the maximum bounded rate. We analyze this scenario to
derive a conservative bound on the worst-case performance of the
dynamic feedback algorithm relative to the optimal algorithm.



We next establish some notation. The variableS is the effective
sampling interval,P is the length of the production interval and
p0; � � � ; pN�1 are theN different policies. The computation starts
with a sampling phase. During this phase, the dynamic feedback
algorithm executes each of theN policies for the sampling interval
S to derive overhead measurementsv0; � � � ; vN�1 for each of the
N policies. The overhead is the proportion of the total execution
time spent executing lock constructs or waiting for other processors
to release locks. The overhead therefore varies between zero (if
the computation never executes a lock construct) and one (if the
computation performs no useful work). In the worst case, multiple
policies have the same overheadv during the sampling phase, and
v is the lowest sampled overhead.

Without loss of generality, we assume that the dynamic feed-
back algorithm executes policyp0 during the production interval.
We also assume that, at any timet during the production phase, the
policy overheads are bounded above by the exponential decay func-
tion 1+(v�1)e��t (here� is the rate of decay). In the worst case,
the overhead functiono0(t) of policy p0 actually hits this bound:

o0(t) = 1 + (v � 1)e��t (1)

We define the amount of useful work performed by a given pol-
icy pi over given period of timeT by:

WorkTi =

Z T

0

(1� oi(t))dt (2)

The dynamic feedback algorithm performs the following amount
of work during the production phase:

WorkP0 =
(1� v)

�
(1� e

��P ) (3)

Our worst-case analysis conservatively assumes that no useful work
at all takes place during the sampling phase. For the dynamic feed-
back algorithm,WorkP0 is therefore the total amount of useful work
performed during theSN + P units of time that make up the sam-
pling and production phases.

We now turn our attention to the optimal algorithm. When it
begins executing, multiple policies have the same lowest overhead
v. We assume that, at any timet during the firstP time units,
the policy overheads are bounded below by the exponential decay
functionve��t.

In the worst case, the overhead function of one of the policies,
say policyp1, actually hits the bound:

o1(t) = ve
��t (4)

In this case the optimal algorithm will execute policyp1 for the
first P time units, and the total useful work performed during this
interval is:

WorkP1 = P �
v

�
(1� e

��P ) (5)

We make the conservative assumption that, for the nextSN time
units, the optimal algorithm executes a policy with no overhead at
all — in other words, that it performsSN units of work during this
time period.

We now compare the amounts of work performed by the worst-
case dynamic feedback algorithm and the best case optimal algo-
rithm over the time periodP + SN :

WorkP+SN1 �WorkP+SN0 = SN + P +
1

�
e
��P �

1

�
(6)

We next discuss the conditions under which we can obtain a
guaranteed performance bound for the dynamic feedback algorithm
relative to the optimal algorithm. We start by defining a precise way
to compare policies:

Definition 1 Policypi is at most� worse than policypj over a time
intervalT if WorkTi �WorkTj � T�.

Given a decay rate�, an effective sampling intervalS, a num-
ber of policiesN and a desired performance bound�, Definition 1
yields the following inequality, which determines if it is possible
to choose a production intervalP such that the dynamic feedback
algorithm is guaranteed to be most� worse than the optimal algo-
rithm. If so, the inequality also characterizes the values ofP that
are guaranteed to deliver the desired performance.

(1� �)P +
1

�
e
��P � (�� 1)SN +

1

�
(7)

Conceptually, several things are happening in this inequality. First,
the production intervalP must be long enough to successfully amor-
tize the sampling timeSN . Second, the production intervalP
must be short enough so that the dynamic feedback algorithm de-
tects policy overhead changes quickly enough to avoid executing
an inefficient policy for a long time. In other words, the inequality
boundsP both below and above. Finally, the decay rate� must be
small enough so that the dynamic feedback algorithm can perform
enough work relative to the optimal algorithm to obtain the bound.

In some cases, it is impossible to choose aP that satisfies the
conditions. If it is possible to choose such aP , the inequality iden-
tifies afeasible regionin whichP is guaranteed to satisfy the con-
ditions. Figure 3 graphically illustrates the range of feasible values
for the production intervalP using the following example values:
S = 1:0, N = 2, � = 0:065 and� = 0:5. The inequality also pro-
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Figure 3: Feasible Region for Production IntervalP

vides insight into various relationships. As� increases, the range
of feasible values forP also increases. AsS increases, the range
of feasible values forP decreases.

We next show how to determine the optimal value ofP un-
der our worst-case assumptions. We define the optimal value for
P as the value that minimizes the worst-case difference in work
performed per unit time by the optimal and dynamic feedback al-
gorithms. Equation 8 defines this difference.

WorkP+SN1 �WorkP+SN0

P + SN
=

SN + P + 1

�
e��P � 1

�

P + SN
(8)

Finding the root of the first derivative and solving forP yields
the following equation. The valuePopt that satisfies this equation



is the optimal value ofP . It is possible to use numerical methods
to solve forPopt.

e
��P (P + SN +

1

�
) =

1

�
(9)

For the example values used in Figure 3, the optimal value ofP is
Popt � 7:25.

6 Experimental Results

This section presents experimental results that characterize how
well dynamic feedback works for three benchmark applications.
The applications are Barnes-Hut [4], a hierarchical N-body solver,
Water [38], which simulates water molecules in the liquid state,
and String [19], which builds a velocity model of the geology be-
tween two oil wells. Each application is a serial C++ program
that performs a computation of interest to the scientific comput-
ing community. Barnes-Hut consists of approximately1500 lines
of code, Water consists of approximately1850 lines of code, and
String consists of approximately2050 lines of code. We used our
prototype compiler to parallelize each application. This paralleliza-
tion is completely automatic — the programs contain no pragmas
or annotations, and the compiler performs all of the necessary anal-
yses and transformations. To compare the performance impact of
the different synchronization optimization policies, we used com-
piler flags to obtain four different versions of each application. One
version uses the Original policy, another uses the Bounded policy,
another uses the Aggressive policy, and the final version uses dy-
namic feedback.

We report results for the applications running on a16 processor
Stanford DASH machine [25] running a modified version of the
IRIX 5.2 operating system. The programs were compiled using the
IRIX 5.3 CC compiler at the -O2optimization level.

6.1 Barnes-Hut

Table 2 presents the execution times for the different versions of
Barnes-Hut. Figure 4 presents the corresponding speedup curves.
All experimental results are for an input data set of16; 384 bod-
ies. The static versions (Original, Bounded and Aggressive) exe-
cute without the instrumentation required to compute the locking
or waiting overhead. The Dynamic version (the version that uses
dynamic feedback), must contain this instrumentation because it
uses the locking and waiting overhead measurements to determine
the best synchronization optimization policy.2

Version Processors
1 2 4 8 12 16

Serial 147:8 — — — — —
Original 217:2 111:6 56:59 32:61 20:76 15:64

Bounded 191:7 97:25 49:22 26:98 19:62 15:12

Aggressive 149:9 76:30 37:81 21:88 15:57 12:87

Dynamic 158:3 80:37 41:00 24:27 17:22 13:85

Table 2: Execution Times for Barnes-Hut (seconds)

2Strictly speaking, the Dynamic version only needs to execute instrumented code
during the sampling phase. But because the instrumentation overhead does not sig-
nificantly affect the performance, the production phase simply executes the same in-
strumented code as the best version in the previous sampling phase. This approach
inhibits code growth by eliminating the need to generate instrumented and uninstru-
mented versions of the code.
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Figure 4: Speedups for Barnes-Hut

For this application, the synchronization optimization policy
has a significant impact on the overall performance, with the Ag-
gressive version significantly outperforming both the Original and
the Bounded versions. The performance of the Dynamic version is
quite close to that of the Aggressive version.

Table 3 presents the locking overhead for the different versions
of Barnes-Hut. The execution times are correlated with the locking
overhead. For all versions except Dynamic, the number of executed
acquire and release constructs (and therefore the locking overhead)
does not vary as the number of processors varies. For the Dynamic
version, the number of executed acquire and release constructs in-
creases slightly as the number of processors increases. The num-
bers in the table for the Dynamic version are from an eight proces-
sor run.

Version Executed Acquire Absolute Locking
And Release Pairs Overhead (seconds)

Original 15; 471; 682 77:4

Bounded 7; 744; 033 38:7

Aggressive 49; 152 0:246

Dynamic 72; 050 0:360

Table 3: Locking Overhead for Barnes-Hut

Although the absolute performance varies with the synchro-
nization optimization policy, the performance of the different ver-
sions scales at approximately the same rate. This indicates that the
synchronization optimizations introduced no significant false ex-
clusion. The reason that this application does not exhibit perfect
speedup is that the compiler is unable to parallelize one section of
the computation. At large numbers of processors the serial execu-
tion of this section becomes a bottleneck [33].

To investigate how the overheads of the different policies change
over time, we produced a version of the application with small tar-
get sampling and production intervals. We instrumented this ver-
sion to print out the measured overhead at the end of each sampling
interval. Figure 5 presents this data from an eight processor run in
the form of a time series graph for the main computationally in-
tensive parallel section, the FORCES section. Our benchmark ex-
ecutes the FORCES section two times. The gap in the time series
lines corresponds to the execution of a serial section of the code.
Figure 5 shows that the measured overheads stay relatively stable
over time.
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Figure 5: Sampled Overhead for the Barnes-Hut FORCES Section
on Eight Processors

We next discuss the characteristics of the application that relate
to the minimum effective sampling interval for the FORCES sec-
tion. The computation in this section consists of a single parallel
loop. Table 4 presents the mean section size, the number of iter-
ations in the parallel loop, and the mean iteration size. The mean
section size is the mean execution time of the FORCES section in
the serial version, and is intended to measure the amount of use-
ful work in the section. Because the generated code checks for the
expiration of sampling and production intervals only at the gran-
ularity of the loop iterations, the sizes of the loop iterations have
an important impact on the size of the minimum effective sampling
interval.

Mean Section Size Number of Iterations Mean Iteration Size
69.14 seconds 16,384 4.2 milliseconds

Table 4: Statistics for the Barnes-Hut FORCES Section

We used the version with small target sampling and production
intervals to measure the minimum effective sampling intervals for
each of the different synchronization optimization policies. In this
version, the sampling and production intervals are as small as pos-
sible given the application characteristics — in other words, the
actual intervals are the same length as the minimum effective sam-
pling intervals. We instrumented this version to measure the length
of each actual sampling interval, and used the data to compute the
mean minimum effective sampling interval for each policy. Table 5
presents the data from an eight processor run. As expected, the
mean minimum effective sampling intervals are larger than but still
roughly comparable in size to the mean loop iteration size. The
differences in the mean minimum effective sampling intervals are
correlated with the differences in lock overhead. As the lock over-
head increases, the amount of time required to execute each itera-
tion also increases. Because none of the versions have significant
waiting overhead, the increases in the amount of time required to
execute each iteration translate directly into increases in the mean
minimum effective sampling interval.

We next consider the impact of varying the target sampling and
production intervals. For the performance numbers in Table 2, the
target sampling interval was set to ten milliseconds and the target
production interval was set to1000 seconds. This target sampling
interval was small enough to ensure that the minimum effective
sampling interval, rather than the target sampling interval, deter-

Version Mean Minimum Effective Sampling Interval (milliseconds)
Original 10
Bounded 7.8

Aggressive 6.5

Table 5: Mean Minimum Effective Sampling Intervals for the
Barnes-Hut FORCES Section on Eight Processors

mined the length of each actual sampling interval. A target produc-
tion interval of1000 was long enough to ensure that each parallel
section finished before it executed another sampling phase. The ex-
ecution of each parallel section therefore consisted of one sampling
phase and one production phase.

Table 6 presents the mean execution times of the FORCES sec-
tion running on eight processors for several combinations of target
sampling and production intervals. The performance is relatively
insensitive to the variation in the target sampling and production
intervals. Even when the target sampling and production inter-
vals are identical (which means the computation spends approxi-
mately three times as long in the sampling phase as in the produc-
tion phase), the section only runs approximately 20% slower than
with the best combination.

Target Sampling Target Production Interval
Interval 1 second 5 seconds 10 seconds 1000 seconds

0.01 seconds 9.138 9.058 9.058 9.025
0.1 seconds 9.697 9.178 9.122 9.220
1.0 seconds 10.784 9.834 9.726 9.670

Table 6: Mean Execution Times for Varying Production and Sam-
pling Intervals for the Barnes-Hut FORCES Section on Eight Pro-
cessors (seconds)

6.2 Water

Table 7 presents the execution times for the different versions of
Water. Figure 6 presents the corresponding speedup curves. All ex-
perimental results are for an input data set of 512 molecules. The
static versions (Original, Bounded and Aggressive) execute with-
out the instrumentation required to compute the locking or waiting
overhead. The Dynamic version needs the instrumentation to ap-
ply the dynamic feedback algorithm, so this version contains the
instrumentation.

Version Processors
1 2 4 8 12 16

Serial 165:8 — — — — —
Original 184:4 94:60 47:51 28:39 22:06 19:87

Bounded 175:8 88:36 44:28 26:42 21:06 19:50

Aggressive 165:3 115:2 88:45 79:18 75:16 73:54

Dynamic 165:4 88:76 44:29 27:20 21:60 20:54

Table 7: Execution Times for Water (seconds)

For this application, the synchronization optimization policy
has a significant impact on the overall performance. For one pro-
cessor, the Aggressive version performs the best. As the number
of processors increases, however, the Aggressive version fails to
scale, and the Bounded version outperforms both the Aggressive
and the Original versions. As the performance results presented
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Figure 6: Speedups for Water

below indicate, false exclusion causes the poor performance of the
Aggressive version. The performance of the Dynamic version is
very close to the performance of the Bounded version, which ex-
hibits the best performance.

Table 8 presents the locking overhead for the different versions
of Water. For the Original, Bounded and Dynamic versions, the
execution times are correlated with the locking overhead. For all
versions except Dynamic, the number of executed acquire and re-
lease constructs (and therefore the locking overhead) does not vary
as the number of processors varies. For the Dynamic version at
two processors and above, the number of executed acquire and re-
lease constructs is very close to the Bounded version, with a slight
increase as the number of processors increases. At one proces-
sor, the Dynamic version executes approximately the same number
of acquire and release constructs as the Aggressive version. The
numbers in the table for the Dynamic version are from an eight
processor run.

Version Executed Acquire Absolute Locking
And Release Pairs Overhead (seconds)

Original 4; 200; 448 21:0

Bounded 2; 099; 200 10:5

Aggressive 1; 577; 980 7:9

Dynamic 2; 119; 840 10:6

Table 8: Locking Overhead for Water

We instrumented the parallel code to determine why Water does
not exhibit perfect speedup. Figure 7 presents thewaiting propor-
tion, which is the proportion of time spent in waiting overhead.3

These data were collected using program-counter sampling to pro-
file the execution [16, 23]. This figure clearly shows that waiting
overhead is the primary cause of performance loss for this applica-
tion, and that the Aggressive synchronization optimization policy
generates enough false exclusion to severely degrade the perfor-
mance.

Water has two computationally intensive parallel sections: the
INTERF section and the POTENG section. Figures 8 and 9 present

3More precisely, the waiting proportion is the sum over all processors of the amount
of time that each processor spends waiting to acquire a lock held by another processor
divided by the execution time of the program times the number of processors executing
the computation.
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Figure 7: Waiting Proportion for Water
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Figure 8: Sampled Overhead for the Water INTERF Section on
Eight Processors
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time series graphs of the measured overheads of the different syn-
chronization optimization policies. For the INTERF section, the
generated code would be the same for the Bounded and Aggres-
sive policies. The compiler therefore does not generate an Aggres-
sive version, and the sampling phases execute only the Original and
Bounded versions. A similar situation occurs in the POTENG sec-
tion, except that in this case, the code would be the same for the
Original and Bounded versions. As for Barnes-Hut, the overheads
are relatively stable over time. The gaps in the time series graphs
correspond to the executions of other serial and parallel sections.

Tables 9 and 10 present the parallel section statistics for the IN-
TERF and POTENG sections. Tables 11 and 12 present the mean
minimum effective sampling intervals for the two sections. As ex-
pected, the mean minimum effective sampling intervals for all of
the versions except the Aggressive version in the POTENG section
are larger than but still roughly comparable to the corresponding
mean iteration sizes. The mean minimum effective sampling in-
terval for the Aggressive version in the POTENG section is sig-
nificantly larger than for the Original version. We attribute this
difference to the fact that the Aggressive policy serializes much of
the computation, which, as described in Section 4.1, increases the
effective sampling interval.

Mean Section Size Number of Iterations Mean Iteration Size
20.80 seconds 511 40.7 milliseconds

Table 9: Statistics for the Water INTERF Section

Mean Section Size Number of Iterations Mean Iteration Size
16.34 seconds 511 32.0 milliseconds

Table 10: Statistics for the Water POTENG Section

Version Mean Minimum Effective Sampling Interval (milliseconds)
Original 93
Bounded 82

Table 11: Mean Minimum Effective Sampling Intervals for the Wa-
ter INTERF Section on Eight Processors

Version Mean Minimum Effective Sampling Interval (milliseconds)
Original 59

Aggressive 286

Table 12: Mean Minimum Effective Sampling Intervals for the Wa-
ter POTENG Section

For the performance numbers in Table 7, the target sampling
interval was set to ten milliseconds and the target production in-
terval was set to1000 seconds. This combination ensured that the
execution of each parallel section consisted of one sampling phase
and one production phase. Tables 13 and 14 present the execution
times for the INTERF and POTENG sections running on eight pro-
cessors for several combinations of target sampling and production
intervals. For the INTERF section, all of the combinations yield
approximately the same performance. We attribute this uniformity
to the fact that the performance of the two versions in the section
(the Original and Bounded versions) is not dramatically different.

For target production intervals of one and five seconds, the per-
formance of the POTENG section is quite sensitive to the choice of
target sampling interval. There is a dramatic difference in this sec-
tion between the performance of the Aggressive and Original ver-
sions. In this case, one would intuitively expect the performance

Target Sampling Target Production Interval
Interval 1 second 5 seconds 10 seconds 1000 seconds

0.01 seconds 3.669 3.541 3.507 3.552
0.1 seconds 3.733 3.532 3.529 3.566
1.0 seconds 3.713 3.695 3.676 3.673

Table 13: Mean Execution Times for Varying Production and Sam-
pling Intervals for the Water INTERF Section on Eight Processors
(seconds)

Target Sampling Target Production Interval
Interval 1 second 5 seconds 10 seconds 1000 seconds

0.01 seconds 3.32 2.624 2.642 2.649
0.1 seconds 3.072 2.690 2.709 2.724
1.0 seconds 4.184 3.482 3.479 3.489

Table 14: Mean Execution Times for Varying Production and Sam-
pling Intervals for the Water POTENG Section on Eight Processors
(seconds)

to increase with increases in the target production interval and de-
crease with increases in the target sampling interval. We address
the ways in which the data fail to conform to this expectation.

First, the execution times are virtually identical at target pro-
duction intervals of five, ten and1000 seconds. We attribute this
uniformity to the fact that the execution of the POTENG section
always terminates in less than five seconds. Extending the target
production interval beyond five seconds therefore has no effect on
the execution.

Second, the execution times are virtually identical for a target
production interval of5:0 seconds and target sampling intervals of
0:01 and0:1 seconds. We attribute these data to the fact that the
execution of the POTENG section always terminates in less than
five seconds and the fact that the minimum effective sampling in-
terval for the Aggressive policy is greater than0:1 seconds. Both of
the executions in question consist of an Aggressive sampling inter-
val whose length is the same in both executions, an Original sam-
pling interval, then an Original production interval during which
the section completes its execution. Both executions spend almost
identical amounts of time executing the Aggressive and Original
versions.

Finally, the execution time decreases for a target production in-
terval of 1:0 seconds when the target sampling interval increases
from 0:01 seconds to0:1 seconds. The effect is caused by the fact
that the minimum effective sampling interval of the Original ver-
sion is smaller than0:1 seconds, while the minimum effective sam-
pling interval of the Aggressive version is larger than0:1 seconds.
The program therefore spends a larger proportion of the sampling
phase executing the more efficient Original version with a target
sampling interval of0:1 seconds than it does with a target sam-
pling interval of0:01 seconds. An effect associated with the end
of the section exacerbates the performance impact. With a target
sampling interval of0:1 seconds, the section completes after two
sampling phases and two production phases. With a target sam-
pling interval of0:01 seconds, the section performs less compu-
tation in the Original sampling intervals, and it does not complete
until after it has executed a third Aggressive sampling interval. The
net effect of the increase in the target sampling interval is a signifi-
cant reduction in the amount of time spent executing the inefficient
Aggressive sampling intervals.



6.3 String

For String, the Bounded policy produces the same parallel code
as the Original policy. We therefore report performance results
for only the Original, Aggressive and Dynamic policies. Table 15
presents the execution times for the different versions of String.
Figure 10 presents the corresponding speedup curves. All experi-
mental results are for the Big Well input data set. The static ver-
sions (Original and Aggressive) execute without the instrumenta-
tion required to compute the locking or waiting overhead; the Dy-
namic version includes the instrumentation.

Version Processors
1 2 4 8 12 16

Serial 2181:3 — — — — —
Original 2599:0 1289:4 646:7 331:9 223:9 172:3

Aggressive 2337:7 2313:5 2231:9 2244:3 2254:8 2260:9

Dynamic 2363:8 1295:5 653:5 342:5 241:3 194:9

Table 15: Execution Times for String (seconds)
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Figure 10: Speedups for String

For String, the Aggressive policy completely serializes the com-
putation. This version therefore fails to scale at all. The execution
time of the Dynamic version is comparable to the execution time of
the Original version, with a small loss of performance at12 and16
processors.

Table 16 presents the locking overhead for the different versions
of String. For the Dynamic version at two processors and above, the
number of executed acquire and release constructs is slightly less
than in the Original version. The number also increases slightly as
the number of processors increases. At one processor, the Dynamic
version executes approximately six times fewer acquire and release
constructs than the Original version. The numbers in the table for
the Dynamic version are from an eight processor run.

We instrumented the parallel code to determine why String does
not exhibit perfect speedup. Figure 11 presents the waiting propor-
tion. This figure clearly shows that waiting overhead is the pri-
mary cause of performance loss for this application, and that the
Aggressive synchronization optimization policy generates enough
false exclusion to serialize the computation.

Figure 12 presents time series graphs of the measured over-
heads of the different synchronization optimization policies for the

Version Executed Acquire Absolute Locking
And Release Pairs Overhead (seconds)

Original 30; 286; 596 151:43

Aggressive 2; 313 0:01156

Dynamic 30; 016; 913 150:08

Table 16: Locking Overhead for String
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Figure 11: Waiting Proportion for String
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Figure 12: Sampled Overhead for the String PROJFWD Section on
Eight Processors

Mean Section Size Number of Iterations Mean Iteration Size
801 seconds 28,288 28.3 milliseconds

Table 17: Statistics for the String PROJFWD Section

Version Mean Minimum Effective Sampling Interval
Original 54 milliseconds

Aggressive 260 milliseconds

Table 18: Mean Minimum Effective Sampling Intervals for the
String PROJFWD Section



main computationally intensive parallel section, the PROJFWD sec-
tion. We collected these data by setting the target sampling and
production intervals to one second, then instrumenting the code to
print out the measured overhead at the end of each sampling in-
terval. As for Barnes-Hut and Water, the overheads are relatively
stable over time. The gaps in the time series graphs correspond to
the executions of other serial and parallel sections.

Table 17 presents the parallel section statistics for the PRO-
JFWD section. Table 18 presents the mean minimum effective sam-
pling intervals. The mean minimum effective sampling interval for
the Original version is larger than but roughly comparable to the
iteration size. As in the POTENG section of Water, the Aggressive
version is significantly larger than for the Original version. The
reason is the same: the Aggressive version serializes much of the
computation.

For the performance numbers in Table 15, the target sampling
interval was set to ten milliseconds and the target production in-
terval was set to1000 seconds. This combination ensured that the
execution of each parallel section consisted of one sampling phase
and one production phase. Table 19 presents the execution times
for the PROJFWD section running on eight processors for several
combinations of target sampling and production intervals. As ex-
pected for a section with dramatic efficiency differences between
the versions, the performance increases with increases in the tar-
get production interval and decreases with increases in the target
sampling interval.

Target Sampling Target Production Interval
Interval 1 second 5 seconds 10 seconds 1000 seconds

0:01 seconds 140:6 117:1 114:7 112:54

0:1 seconds 144:7 118:3 114:3 112:69

1:0 seconds 165:5 131:1 121:7 112:96

Table 19: Mean Execution Times for Varying Production and Sam-
pling Intervals for the String PROJFWD Section on Eight Proces-
sors (seconds)

6.4 Discussion

For each application, the best static synchronization optimization
policy is different from that of the other two applications. Further-
more, the performance differences are significant — at16 proces-
sors, the best version of Barnes-Hut is approximately 20% faster
than the worst; for Water, the best is more than three times faster
than the worst; for String, the best is more than ten times faster than
the worst. In all of these cases, dynamic feedback allows the Dy-
namic version to exhibit performance that is not only very close to
that of the best static policy, but also almost always better than that
of the next best static policy. The compiler can therefore automat-
ically generate robust code that performs well in a variety of envi-
ronments, which eliminates the need for the programmer to manu-
ally tune the program to use the best synchronization optimization
policy.

7 Related Work

Many researchers have developed systems that collect information
about the dynamic characteristics of programs, then use that in-
formation to improve the performance. We discuss several ap-
proaches: profiling, dynamic type feedback techniques for improv-
ing the performance of object-oriented languages, adaptive execu-
tion techniques and dynamic techniques for parallelizing loops. We

also discuss dynamic compilation, efficient implementations of par-
allel function calls, and related work in synchronization optimiza-
tion.

7.1 Profiling

Profiling is a standard way to obtain information about the dynamic
characteristics of a program. In this approach, the program is in-
strumented, then executed to collect profiling data. The program
can then be recompiled, with the profiling data used to guide policy
decisions in the compiler.

Profiling has been used in the context of object-oriented lan-
guages to predict the most frequently occurring class of the receiver
object at a given call site [17]. This information is then used to
drive optimizations that inline methods based on predictions about
the class of the receiver. Profiling has also been used to guide de-
cisions to inline procedures in C programs [7], to drive instruction
scheduling algorithms [8], to help place code so as to minimize
the impact on the memory hierarchy [29], to aid in register allo-
cation [28, 39], and to direct the compiler to frequently executed
parts of the program so that the compiler can apply further opti-
mizations [13].

Brewer [5] describes a system that uses statistical modeling to
automatically predict which algorithm will work best for a given
combination of input and hardware platform. The different algo-
rithms are implemented by hand, not automatically generated from
a single specification. The system uses profiling to characterize the
performance of the different algorithms on the different hardware
platforms.

Dynamic feedback differs from profile-based feedback in that it
can adapt dynamically to the current execution environment, rather
than hoping that the environment is similar to the environment in
the profiling run of the program. Dynamic feedback can also ad-
just to changes that occur within a single execution. Profile-based
approaches collect a single aggregate set of measurements for the
entire execution, and can therefore miss environment changes that
take place within a single execution.

7.2 Adaptive Execution Techniques

Other researchers have recognized the need to use dynamic perfor-
mance data to optimize the execution [9, 35, 36]. These approaches
are based on a set of control variables that parameterize a given al-
gorithm in the implementation. An example of a control variable is
the prefetch distance in an algorithm that prefetches data accessed
by a loop [36]. Typically, the programmer defines the set of ob-
servable variables and a feedback function that uses the observable
variables to produce values for the control variables. Changes in
the values of the observable variables propagate through the feed-
back function to change the control variables, and the program re-
sponds by modifying its behavior. Ideally, the observable variables,
control variables and feedback function are defined so that the pro-
gram maximizes its performance across a range of dynamic envi-
ronments.

While dynamic feedback is similar in spirit to these approaches,
there is an important difference. Dynamic feedback is a general
technique designed to choose between several discrete, and poten-
tially quite different, implementations. Other approaches are de-
signed to tune one or more control variables in the context of a
single algorithm.



7.3 Dynamic Dispatch Optimizations

In object-oriented languages, the method that is invoked at a given
call site depends on the dynamic class of the receiver object. The
same call site may therefore invoke many different methods; the
algorithm that determines which method to invoke is called the
dynamic dispatch algorithm. Researchers have proposed several
adaptive optimizations for improving the efficiency of dynamic dis-
patch. The standard mechanism is to collect data that indicates
which methods tend to be invoked from which call sites, then to
insert a type test that checks for common types first [6].

Dynamic type feedback is designed to direct the compiler's at-
tention to parts of the program that would benefit from optimiza-
tion [20]. Once a method has been optimized, the generated code
continues to collect data that can be used to drive further optimiza-
tions and reverse poor implementation choices. In this sense, dy-
namic feedback is similar to dynamic type feedback in that both
techniques generate code that dynamically adapts to its execution
environment.

7.4 Run-Time Analysis and Speculative Execution

In certain circumstances, a lack of statically available information
may prevent the compiler from parallelizing the program. Several
systems address this problem by parallelizing programs dynami-
cally using information that is available only as the program runs.
The inspector/executor approach dynamically analyzes the values
in index arrays to automatically parallelize computations that ac-
cess irregular meshes [26, 37]. The Jade implementation dynami-
cally analyzes how tasks access data to exploit the concurrency in
coarse-grain parallel programs [34]. Speculative approaches opti-
mistically execute loops in parallel, rolling back the computation if
the parallel execution violates the data dependences [32].

A major difference between dynamic feedback and these run-
time techniques is that dynamic feedback is designed to automati-
cally choose between several implementations that deliver the same
functionality. Each implementation is equally valid, and may very
well perform the best in the current environment. In all of the run-
time techniques, the goal is clearly to parallelize the computation,
but the compiler simply lacks the information necessary to do so.
It must therefore postpone the decision to apply the optimization
until run-time, when the information is available.

7.5 Dynamic Compilation

Dynamic compilation systems enable the generation of code at run
time [3, 11, 24]. Because delaying the compilation until run time
provides the compiler with information about the concrete values
of input parameters, the compiler may be able to generate more
efficient code. Existing research has focused on providing efficient
mechanisms for dynamic compilation.

We see dynamic compilation as one way to generate the differ-
ent implementations that dynamic feedback samples to find a best
implementation. The advantage would be the elimination of poten-
tial code growth — the memory used to hold the generated code
can be deallocated if the code will not be executed for a signifi-
cant period of time. The compiler could dynamically regenerate
the code when the dynamic feedback algorithm needs to sample its
performance.

The major drawback would be the overhead required to per-
form the compilation dynamically. This overhead would become
less of a concern if the program executed sampling phases very
infrequently — the dynamic compilation overhead would be amor-
tized away by the long production phases.

7.6 Synchronization Optimizations

This paper applies dynamic feedback to the problem of choosing
the best synchronization granularity. Our previous research pro-
duced analyses and transformations for reducing the synchroniza-
tion overhead and the different synchronization optimization poli-
cies [10]. Plevyak, Zhang and Chien have developed a similar syn-
chronization optimization technique,access region expansion, for
concurrent object-oriented programs [31]. Because access region
expansion is designed to reduce the overhead in sequential execu-
tions of such programs, it does not address the trade off between
lock overhead and waiting overhead. The goal is simply to mini-
mize the lock overhead.

7.7 Parallel Function Calls

Several researchers have developed efficient implementations for
parallel function calls [15, 27, 30]. These implementations dynam-
ically match the amount of exploited parallelism to the amount of
parallelism available on the parallel hardware platform by select-
ing between an efficient sequential call and a full parallel call. The
selection is based on a dynamic measure of the difference between
the currently exploited and available amounts of parallelism.

8 Conclusion

This paper presents a new technique, dynamic feedback, that en-
ables computations to adapt dynamically to different execution en-
vironments. A compiler that uses dynamic feedback produces sev-
eral different versions of the same source code; each version uses
a different optimization policy. Dynamic feedback automatically
chooses the most efficient version by periodically sampling the per-
formance of the different versions.

We have implemented dynamic feedback in the context of a
parallelizing compiler for object-based programs. The generated
code uses dynamic feedback to automatically choose the best syn-
chronization policy. Our experimental results show that dynamic
feedback enables the compiler to automatically generate code that
exhibits performance comparable to that of code that has been man-
ually tuned to use the best synchronization optimization policy.

We see dynamic feedback as part of a general trend towards
adaptive computing. As the complexity of systems and the capa-
bilities of compilers increase, compiler developers will find that
they can automatically apply a large range of transformations, but
have no good way of statically determining which transformations
will deliver good results when the program is actually executed.
The problem will become even more acute with the emergence of
new computing paradigms such as mobile programs in the Internet.
The extreme heterogeneity of such systems will defeat any imple-
mentation that does not adapt to different execution environments.
Dynamic feedback is one example of the adaptive techniques that
will enable compilers to deliver good performance in modern com-
puting systems.
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