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Abstract

As parallel machines become part of the mainstream com-
puting environment, compilers will need to apply synchro-
nization optimizations to deliver efficient parallel software.
This paper describes a new framework for synchronization
optimizations and a new set of transformations for pro-
grams that implement critical sections using mutual exclu-
sion locks. These transformations allow the compiler to
move constructs that acquire and release locks both within
and between procedures and to eliminate acquire and release
constructs.

The paper also presents a new synchronization algorithm,
lock elimination, for reducing synchronization overhead. This
optimization locates computations that repeatedly acquire
and release the same lock, then uses the transformations to
obtain equivalent computations that acquire and release the
lock only once. Experimental results from a parallelizing
compiler for object-based programs illustrate the practical
utility of this optimization. For three benchmark programs
the optimization dramatically reduces the number of times
the computations acquire and release locks, which signifi-
cantly reduces the amount of time processors spend acquir-
ing and releasing locks. For one of the three benchmarks, the
optimization always significantly improves the overall per-
formance. Depending on the number of processors executing
the computation, the optimized version runs between 2.11
and 1.83 times faster than the unoptimized version. For one
of the other benchmarks, the optimized version runs between
1.13 and 0.96 times faster than the unoptimized version,
with a mean of 1.08 times faster. For the final benchmark,
the optimization reduces the overall performance.

1 Introduction

The characteristics of future computational environments
ensure that parallel computing will play an increasingly im-
portant role in many areas of computer science. As small-
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scale shared-memory multiprocessors become a commodity
source of computation, customers will demand the efficient
parallel software required to fully exploit the parallel hard-
ware. The growth of the World-Wide Web will provide a
new distributed computing environment with unprecedented
computational power and functionality. Parallel comput-
ing will continue to play a crucial role in delivering max-
imum performance for scientific and engineering computa-
tions. The increasing use of multiple threads as an effec-
tive program construction technique (used, for example, in
user interface systems and multi-threaded servers [9, 2, 15])
demonstrates that parallelism is not just for performance —
it can also increase the expressive power of a language.

Efficient synchronization is one of the fundamental re-
quirements of effective parallel computing. The tasks in
fine-grain parallel computations, for example, need fast syn-
chronization for efficient control of their frequent interac-
tions. Efficient synchronization also promotes the develop-
ment of reliable parallel software because it allows program-
mers to structure programs as a set of synchronized opera-
tions on fine-grain objects. This development methodology
helps programmers overcome the challenging problems (non-
deterministic behavior, deadlock, etc.) that complicate the
development of parallel software.

Given the central role that efficient synchronization plays
in parallel computing, we expect that future compilers will
apply a wide range of synchronization optimizations. This
paper takes a first step towards that goal by presenting a
new transformation framework and set of specific transfor-
mations for programs that contain synchronization opera-
tions. It also describes a novel synchronization optimiza-
tion algorithm called lock elimination. This optimization is
designed for programs that use mutual exclusion locks to
implement critical sections. Lock elimination drives down
the locking overhead by coalescing multiple critical sections
that acquire and release the same lock multiple times into
a single critical section that acquires and releases the lock
only once. This algorithm provides a concrete example of
how the transformations enable meaningful optimizations.

Finally, this paper presents experimental results that
demonstrate the practical utility of lock elimination. These
experimental results come from a compiler that automati-
cally parallelizes object-based programs written in a subset
of serial C++. Because this compiler uses a new analysis
technique called commutativity analysis [17], it automati-
cally inserts synchronization constructs into the generated
parallel code to make operations execute atomically. The
significant performance improvements that synchronization



optimizations deliver in this context illustrates their impor-
tance in achieving good parallel performance.
This paper makes the following contributions:

e It presents a new set of basic synchronization transfor-
mations. These synchronization transformations pro-
vide the solid foundation that a compiler requires to
effectively apply synchronization optimizations.

e It presents a novel optimization algorithm, lock elimi-
nation, that a parallelizing compiler can use to reduce
the synchronization overhead.

e It presents experimental results that characterize the
performance impact of applying the lock elimination
optimization in a parallelizing compiler for object-based
programs. These results show that the optimization
has a substantial impact on the performance of three
benchmark programs.

2 The Model of Computation

The framework is designed for programs that consist of a
sequence of parallel and serial phases. Each parallel phase
consists of a set of parallel threads that periodically execute
critical sections. Each critical section may atomically ac-
cess one or more pieces of data shared by multiple threads.
Programs implement critical sections by acquiring a mutual
exclusion lock at the beginning of the critical section, then
releasing the lock at the end of the section.

In practice we expect programmers to mentally associate
mutual exclusion locks with data; each critical section would
then acquire and release the lock associated with the manip-
ulated data. The transformations and framework are inde-
pendent of any such association, however.

3 Program Representation

The synchronization transformations operate on the inter-
procedural control flow graph (ICFG) [16], which consists of
the union of the control flow graphs of the individual proce-
dures. In this representation a procedure call is represented
by two nodes: a call node and a return node. There is an
edge from each call node to the entry node of the invoked
procedure and an edge back from the exit of the invoked
procedure to the corresponding return node. Each node in
the graph has four attributes:

e Type: The type of computation that the node per-
forms. Standard types include:
— acquire (acquire a mutual exclusion lock),
— release (release a mutual exclusion lock),
— assignment (set a variable to a new value),
— call (invoke a procedure),
— return (return from a procedure),

— entry (dummy node at the beginning of a proce-
dure),

— exit (dummy node at the end of a procedure),
— if (flow of control), and

— merge (flow of control).

There is also a summary type (described below in Sec-
tion 4.1) that represents the computation of several
nodes. All release, acquire, call, return, assignment
and summary nodes have a single incoming and a sin-
gle outgoing edge. All entry and merge nodes have a
single outgoing edge; all exit and if nodes have a single
incoming edge.

e Expressions: One or more expressions representing
the computation associated with the node. For ex-
ample, the expression for an acquire or release node
specifies the lock to acquire or release, and a call node
has one expression for each parameter.

e Read Set: A conservative approximation of the set
of variables that the node’s computation reads. In
general, the compiler may have to use an interproce-
dural pointer or alias analysis to compute a reason-
ably precise read set [6, 21, 10]. In restricted contexts
the compiler may be able to use simpler algorithms.
Our prototype compiler, for example, is designed for
object-based programs [17]. Because these programs
use references to objects instead of pointers, it is pos-
sible to extract a reasonable read set directly from the
expressions in the node.

e Write Set: A conservative approximation of the set
of variables that the node’s computation writes.

Figure 1 contains an example ICFG. The different shapes
correspond to nodes of different types. To simplify the fig-
ure, we omit the expressions, read sets and write sets of the
nodes.

Each parallel program may contain several thread cre-
ation sites. The number of threads created is, in general,
not known statically. Each thread creation site has an ICFG
that represents the sequential computations of the threads
that are created at that site. Each ICFG therefore represents
a sequential computation that may execute in parallel with
other sequential computations. The program is represented
as the union of the ICFGs for all of the thread creation sites.

4 Transformations

4.1 Abstraction Transformations

Because the synchronization transformations deal primar-
ily with the movement and manipulation of synchronization
nodes, it is appropriate for the compiler to use an abstract,
simplified representation of the actual computation in the
ICFG. The compiler can therefore apply several transforma-
tions that replace concrete representations of computation
with more abstract representations. The end result is a sim-
pler ICFG, which improves the performance and function-
ality of the synchronization optimization algorithms. The
transformations are as follows:

e Node Abstraction: A connected set of assignment,
if or summary nodes with a single incoming edge and
a single outgoing edge is replaced by a single summary
node. Figure 2 presents this transformation.

e Procedure Abstraction: The invocation of a proce-
dure that consists only of assignment, if or summary
nodes is replaced with a single node summarizing the
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Figure 1: ICFG Example

execution of the procedure. Figure 3 presents this
transformation.’

In both cases the read set and write set of the new sum-
mary node are, respectively, the union of the read sets and
the union of the write sets of the set of summarized nodes.
The compiler can apply these transformations both at the
beginning of the optimization phase before any other trans-
formations, and during intermediate steps of the optimiza-
tion phase as they become enabled.

Figure 2: Node Abstraction Transformation

4.2 Lock Cancellation

If a computation releases a lock, then immediately reac-
quires the same lock, it is possible to reduce the lock over-

Mt is straightforward to extend this transformation to abstract
sets of mutually recursive procedures.
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Figure 3: Procedure Abstraction Transformation

head by eliminating the adjacent release and acquire. A sim-
ilar situation occurs when the computation acquires, then
immediately releases a lock. The conditional lock cancel-
lation transformations in Figures 4 and 5 start with two
adjacent release and acquire nodes and introduce a new if
node that tests if the nodes acquire and release the same
lock. If so, the transformed ICFG simply skips the acquire
and release.

The compiler may be able to detect statically that the
acquire and release manipulate the same lock. This is clearly
the case, for example, if the expressions in the acquire and
release are the same. In this case the compiler can simply
eliminate the two nodes as illustrated in Figure 6. In effect,
these transformations combine one of the conditional lock
cancellation transformations with dead code elimination.
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Figure 4: Conditional Lock Cancellation Transformation
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Figure 5: Conditional Lock Cancellation Transformation

Figure 6: Lock Cancellation Transformations

It is not usually the case that the original ICFG con-
tains adjacent acquire and release nodes that manipulate
the same lock. Our experimental results indicate, however,
that when combined with the lock movement transforma-
tions described below in Section 4.3, the lock cancellation
transformations can significantly reduce the number of exe-
cuted acquires and releases.

4.3 Lock Movement

The lock movement transformations move an acquire or re-
lease node across an adjacent node. There are two dual
transformations — one for acquire nodes and one for release
nodes. Figure 7 presents the transformation that moves an
acquire node A against the flow of control across an adjacent
node N. The transformation introduces new acquire nodes
before N, removes the original acquire node A, and intro-
duces new release nodes on all of the edges out of N except
the one that led to A. In effect, the transformed code moves
N into the critical section that started with A in the original
code. The release nodes ensure that the original successor
of A is the only successor of N that is in the newly enlarged
critical section.
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Figure 7: Acquire Lock Movement Transformation
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To ensure that the new acquire nodes do not introduce
deadlock, we require that, in the original code, N can never
be part of a critical section. We formalize this requirement
by introducing the concept of an acquire-exposed node.

Definition 1 A node is acquire-exposed if there may exist
a path to that node from an acquire node and the path does
not go through a release node that releases the lock that the
acquire node acquires.

It is illegal to move an acquire node A across an acquire-
exposed node N.

The original acquire node A has an expression e and read
set r. The new acquire nodes have expression e’ and read
sets si,...,Sn; the new release nodes have expression e and
read sets 71, ..., 7. The expression e’ may differ from e be-
cause it is evaluated before N executes rather than after N
executes. The expression manipulations required to trans-
form e to ¢’ may involve performing variable substitutions
to undo the parameter bindings when moving a node out of
a procedure and replacing variables with corresponding ex-
pressions when moving across an assignment node. If there
are multiple edges out of N, the compiler must also ensure
that the expressions in the new nodes always denote a valid
lock.

The read sets in the new acquire nodes may differ from
the original read set because they summarize how a new
expression, e’, reads variables. Even if the new expressions
are identical, the new read sets may differ from the original



read set and from each other because the expressions may
be evaluated in different contexts.

In some cases the compiler may be unable to apply the
transformation because it cannot generate the new expres-
sion or read sets. This may happen, for example, if N may
write variables that A reads. There are also potential com-
plications if the transformation would move an acquire out
of a procedure into a new naming context. Appendix A
specifies the cases that the compiler must handle.

Figure 8 presents the lock release transformation that
moves a release node R with the flow of control across an
adjacent node N. This transformation is the dual of the lock
acquire transformation. In effect, the lock release trans-
formation moves N into the critical section that originally
ended with R. As for the acquire lock movement transfor-
mation, we require that N not be acquire-exposed. If there
are multiple edges into N, the compiler must verify that all
of the expressions in the new nodes always denote a valid
lock. As for the acquire lock movement transformation, the
compiler may be unable to apply the release transforma-
tion because it can not generate the new expression or read
sets. Appendix A specifies the cases that the compiler must
handle.
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Figure 8: Release Lock Movement Transformation

In principle, both transformations are reversible. When
used in the other direction (moving acquires with the flow
of control and releases against the flow of control), they
have the effect of reducing the size of the critical section.
It is therefore possible to use the transformations to min-
imize the sizes of the critical sections, which may increase
the amount of available parallelism in the program. There is
one additional requirement: to ensure that the computation
in the original critical sections still executes atomically, the
transformations must not move a node out of a critical sec-
tion if the node reads a variable that other parallel threads
may write or writes a variable that other parallel threads
may access.

5 Lock Elimination

The goal of the lock elimination algorithm is to reduce the
number of times the computation releases and acquires locks.
The basic idea is to identify a computation that contains
multiple critical sections that acquire and release the same
lock, then transform the computation so that it contains
one large critical section that acquires and releases the lock
only once. Because the transformed computation acquires
and releases the lock fewer times, it generates less lock over-
head.

Given a region over which to eliminate synchronization
constructs, the algorithm uses the lock movement transfor-
mation to increase the sizes of critical regions that acquire

and release the same lock until they are adjacent in the
ICFG. It then uses the lock cancellation transformation to
eliminate adjacent release and acquire nodes. The end result
is a single larger critical section that encompasses all of the
computation between the start of the first critical section
and the end of the last critical section.

5.1 False Exclusion

An overly aggressive lock elimination algorithm may intro-
duce false exclusion. False exclusion may occur when a pro-
cessor holds a lock during an extended period of computa-
tion that was originally part of no critical section. If another
processor attempts to execute a critical section that uses
the same lock, it must wait for the first processor to release
the lock even though the first processor is not executing a
computation that needs to be in a critical section. False ex-
clusion may therefore reduce the performance by decreasing
the amount of available concurrency.

The amount of false exclusion in a given parallel execu-
tion depends on information such as the dynamic interleav-
ing of the parallel tasks and the relative execution times of
pieces of the ICFG. This information is, in general, unavail-
able at compile time. For the same computation it may even
be different in different executions. The lock elimination al-
gorithm therefore addresses the issue of false exclusion us-
ing a heuristic false exclusion policy. This policy limits the
subgraphs of the ICFG to which the algorithm applies the
lock elimination algorithm. The policy considers each pro-
cedure in turn to determine if it should apply the algorithm
to the subgraph of the ICFG containing that procedure and
all procedures that it (transitively) invokes. It only applies
the algorithm to a subgraph if the subgraph satisfies the
false exclusion policy. The current compiler supports three
different policies:

e Original: Never apply the algorithm.

¢ Bounded: Apply the algorithm only if the subgraph
contains no interprocedural cycles. The idea is to limit
the potential severity of any false exclusion by limiting
the amount of time the computation holds any given
lock.

e Aggressive: Always apply the algorithm.

5.2 The Lock Elimination Algorithm

The basic idea behind the lock elimination algorithm is to
find an acquire node and a release node, find a path in
the ICFG along which they can move until they are adja-
cent, then use lock cancellation transformations to eliminate
them. A by-product of the sequence of transformations is
a set of new acquire and release nodes introduced on edges
that lead into and out of the path. The algorithm performs
the following steps:

e Apply False Exclusion Algorithm: The algorithm
performs a depth-first traversal of the call graph. At
each node of the call graph the algorithm considers the
subgraph reachable from that node in the call graph.
If this subgraph satisfies the false exclusion policy, the
algorithm invokes the lock elimination algorithm on
the procedure corresponding to that node.



¢ Reachability Tree: The lock elimination algorithm

chooses a release node and an acquire node, then com-
putes the reachability tree for each node. The reacha-
bility tree contains the set of edges to which the algo-
rithm can move the acquire or release node using the
lock movement transformations. It also contains the
new expressions and read sets computed in the lock
movement transformations. Figure 9 contains an ex-
ample reachability tree for an acquire node. In this
figure the edges in the reachability tree are shaded.
Figure 10 contains an example reachability tree for a
release node. These figures omit the expressions and
read sets in the reachability trees.

Reachability Tree Intersection: Given two reacha-
bility trees, the algorithm next checks if they intersect
and have the same expression at an edge where they
intersect. If so, it is possible to move the acquire and
release nodes to be adjacent in the ICFG. Note that
it may be possible to move a release node and an ac-
quire node to be adjacent even though neither node’s
reachability tree reaches the other node. This may oc-
cur, for example, if it is necessary to move the nodes
out of invoked procedures into a common caller proce-
dure. Figure 11 contains an example of this situation.
It identifies the intersection edge using a thick line.

Movement Paths: If the trees intersect, the algo-
rithm follows the edges in the reachability trees to ob-
tain paths from the release and acquire nodes to the
intersection edge. The acquire and release can move
along these paths to become adjacent. Figure 12 shows
the movement paths in our example.

Transformation: To apply the transformation, the
algorithm eliminates the original acquire and release
nodes, then introduces new acquire and release nodes
into edges that lead into and out of the two move-
ment paths. In effect, the algorithm applies all of
the lock movement and cancellation transformations
in one step to move all of the nodes in the path into
the enlarged critical section. Figure 13 presents the
transformed ICFG in our example. It identifies the
new acquire and release nodes using thick boxes.

Repetition: The algorithm repeatedly eliminates ac-
quire and release nodes until there are no such nodes
whose reachability trees intersect. Figure 14 shows the
final transformed ICFG.

number of nodes and C'is the complexity of computing
the new expression and read sets for a single lock move-
ment. The first modification is to remove all adjacent
acquire and release nodes with the same expression
before testing all pairs of acquire and release nodes
for a possible lock elimination. The second modifica-
tion is to only test an acquire or release node for a
possible lock elimination if it is connected to a non-
synchronization node.

The first observation is that each lock elimination trans-
formation inserts at least one non-synchronization node
into a critical section and takes no nodes out of critical
sections. The algorithm therefore performs at most
n + 1 iterations. We next consider the amount of
work done per iteration. The algorithm considers at
most 2 synchronization nodes per edge of the origi-
nal ICFG in the pairs of tested acquire and release
nodes. The total number of tested pairs is therefore
at most O(e?). For each pair the algorithm performs
at most O(max(e,nC)) work. To construct the reach-
ability trees, the algorithm must visit at most O(e)
edges, computing the new expression and read sets at
most O(n) times. It is possible to fold the reachability
tree intersection into the reachability tree construc-
tion. The movement path and transformations can
also be computed and performed in O(e) time. Each
iteration therefore takes O(max(e,nC)) time, and the
total running time is O(ne” max(e,nC)). We expect
that, in practice, the number of synchronization nodes
will be small relative to the number of edges and nodes
in the ICFG, and the running time will be substantially
faster than this upper bound might suggest.

Because of the symbolic variable substitution, it is pos-
sible for the computations of the new expressions and
read sets to generate expressions that are exponentially
larger than the original expressions in the graph. We
expect that, in practice, few programs will contain lock
expressions that elicit this behavior.

e No Introduced Deadlock: The lock elimination al-
gorithm has the same effect as performing multiple
lock movement and lock cancellation transformations.
Because neither of these two transformations introduce
deadlock (the key property is that they do not move ac-
quire or release nodes past acquire-exposed nodes), the
lock elimination algorithm does not introduce dead-
lock.

Appendix B contains a precise specification of the lock
elimination algorithm. We next briefly discuss a few of its
properties.

6 Experimental Results

We have implemented a lock elimination algorithm in the
context of a parallelizing compiler for serial object-based
programs. The compiler uses commutativity analysis [17] to
extract the concurrency in the program. It views the com-
putation as consisting of a sequence of operations on objects,
then analyzes the program to determine if operations com-
mute (two operations commute if they generate the same
result regardless of the order in which they execute). If
all of the operations in a given computation commute, the
compiler can automatically generate code that executes the

e Termination: Because the lock movement transfor-
mations introduce new acquire and release nodes, it
may not be completely obvious that the algorithm al-
ways terminates. Intuitively, the termination argu-
ment is that the transformations always increase the
sizes of the critical sections. Clearly, the critical sec-
tions can get no bigger than the entire ICFG. There-
fore, the algorithm must terminate.

¢ Running Time: It is easy to see that, with two minor operations in parallel. The generated code uses mutual ex-
modifications, an upper bound on the running time of clusion locks to ensure that operations execute atomically.
the lock elimination algorithm is O(ne® max(e,nC)), Even though the parallel execution may change the order

where e is the number of edges in the ICFG, n is the in which the operations are performed relative to the serial
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Figure 13: Result of a Single Lock Elimination Step

computation (which may violate the data dependences), the
fact that all operations commute guarantees that all par-
allel executions generate the same final result as the serial
execution.

The compiler exploits the structure present in the object-
based programming paradigm to use a significantly simpli-
fied lock elimination algorithm. In this paradigm each oper-
ation accesses only the local variables, the parameters and
the object that it operates on. The compiler also controls
the association of locks with data and the placement of the
acquire and release constructs in operations. It exploits this
control to simplify the data structures used in the implemen-
tation of the lock elimination algorithm — the implemented
algorithm operates on the call graph and control flow graph
for each procedure rather than on an explicit ICFG.

We report performance results for three automatically
parallelized scientific applications: the Barnes-Hut hierar-
chical N-body solver [1], the Water code [19] and the String
code [8]. Barnes-Hut simulates the trajectories of a set of
interacting bodies under Newtonian forces; it consists of ap-
proximately 1500 lines of C++ code. Water simulates the
interaction of water molecules in the liquid state; it consists
of approximately 1850 lines of C++ code. String constructs
a two-dimensional discrete velocity model of the geological
medium between two oil wells; it consists of approximately
2050 lines of C++ code. The performance of the serial C++
versions of Barnes-Hut and Water is slightly better than the
performance of highly optimized parallel C versions from
the SPLASH-2 benchmark set [19] running on one proces-
sor. The performance of the serial C++ version of String is
approximately 1% slower than the original C version.
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Figure 14: Final Result of Lock Elimination Algorithm

S

N

6.1 Methodology

The compiler currently supports all three false exclusion
policies described in Section 5.1. We generated three in-
strumented versions of each application; each version uses
a different false exclusion policy. We evaluated the perfor-
mance of each version by running it on a 16-processor Stan-
ford DASH machine [11].

6.2 Barnes-Hut

We evaluate the overhead of each false exclusion policy by
running the three automatically parallelized versions on one
processor and comparing the execution time with the ex-
ecution time of the sequential program. The performance
results in Table 1 show that the lock elimination algorithm
has a significant impact on the overall performance. With-
out lock elimination, the original parallel version runs ap-
proximately two times slower than the serial version. Lock
elimination with the Bounded policy reduces the lock over-
head, and the Aggressive policy virtually eliminates it. The
table presents the number of executed acquire and release
pairs for each of the different versions; these numbers corre-
late closely with the execution times. The table also presents
the number of static acquire and release constructs for each
version; this is the number of these constructs in the code.

Table 2 presents the execution times for the different par-
allel versions running on a variety of processors; Figure 15
presents the corresponding speedup curves. The speedups
are calculated relative to the serial version of the code, which



Version Execution | Execution | Acquire/Release Pairs
Time Time Executed Static
Overhead x10°%

Serial 143.5 — — —
Original 287.7 50% 15,537 3
Bounded 208.6 31% 7,777 3

Aggressive 148.6 3% 82 2

Table 1: Locking Overhead for Barnes-Hut (16384 bodies)
on a Single Processor

executes with no lock or parallelization overhead. 2 All ver-
sions scale well, which indicates that the compiler was able
to effectively parallelize the application. Although the ab-
solute performance varies with the false exclusion policy,
the performance of the different parallel versions scales at
approximately the same rate. This indicates that the lock
elimination algorithm introduced no significant false exclu-
sion.

Processors
1 2 4 8 12 16
Serial 143.5 — — — — —
Original 287.7 146.3 82.2 41.0 29.2 24.2
Bounded 208.6 108.8 56.3 31.1 21.8 17.7
Aggressive 148.6 78.3 38.9 21.8 16.0 13.2

Version

Table 2: Execution Times for Barnes-Hut (16384 bodies)
(seconds)
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Figure 15: Speedups for Barnes-Hut (16384 bodies)

6.3 Water

Table 3 presents the execution statistics for the single pro-
cessor runs of Water. With no lock elimination, the syn-
chronization overhead is 17% over the original serial version.
Lock elimination with the Bounded and Aggressive policies
drives the overhead down substantially. As expected, the

2The speedup is the running time of the serial version divided by
the running time of the parallel version. The speedup curves plot
the speedup as a function of the number of processors executing the
parallel version.

number of executed acquire and release constructs is corre-
lated with the execution times.

Version Execution | Execution | Acquire/Release Pairs
Time Time Executed Static
Overhead %103
Serial 159.5 — — —
Original 193.3 17% 4,200 3
Bounded 176.0 9% 2,100 5
Aggressive 168.7 5% 1,578 5

Table 3: Locking Overhead for Water (512 molecules) on a
Single Processor

Table 4 presents the execution times for the different par-
allel versions running on a variety of processors; Figure 16
presents the corresponding speedup curves. The Original
and Bounded versions initially perform well (the speedup
over the sequential C++ version at eight processors is close
to five). But both versions fail to scale beyond twelve pro-
cessors. The Aggressive version fails to scale well at all.

Processors
Version 1 2 4 8 12 16
Serial 159.5 — — — — —
Original 193.3 105.5 54.3 36.3 33.4 30.1
Bounded 176.0 93.5 48.3 33.4 30.6 31.5
Aggressive 168.6 121.9 97.7 | 84.7 81.0 81.8

Table 4: Execution Times for Water (512 molecules)
(seconds)
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Figure 16: Speedups for Water (512 molecules)

We instrumented the parallel code to determine the source
of the performance loss. Figure 17 presents the contention
proportion, which is the proportion of the time that pro-
cessors spend waiting to acquire a lock held by another
processor.> This figure clearly shows that lock contention
is the primary cause of performance loss for this applica-
tion, and that the Aggressive false exclusion policy generates
enough false exclusion to severely degrade the performance.

3More precisely, the contention proportion is the sum over all pro-
cessors of the amount of time that each processor spends waiting to
acquire a lock held by another processor divided by the execution
time times the number of processors executing the computation.
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6.4 String

Table 5 presents the execution statistics for the single pro-
cessor runs of String. For this application, the Bounded
false exclusion policy generates the same parallel code as
the Original policy. We therefore report performance re-
sults for only the Original and Aggressive policies. With no
lock elimination, the synchronization overhead is 6% over
the original serial version. Lock elimination with the Ag-
gressive policy reduces the overhead to 2%. As expected,
the number of executed acquire and release constructs is
correlated with the execution times.

Version Execution | Execution | Acquire/Release Pairs
Time Time Executed Static
Overhead
Serial 31.94 — — —
Original 34.17 6% 374,776 1
Aggressive 32.66 2% 764 2

Table 5: Locking Overhead for String (small well) on a
Single Processor

Processors
Version 1 2 4 8 12 16
Serial 31.94 — — — — —
Original 34.17 | 17.57 8.61 5.61 4.75 4.33
Aggressive | 32.66 | 32.09 | 32.98 | 34.74 | 35.69 | 38.96

Table 6: Execution Times for String (small well) (seconds)

Table 6 presents the execution times for the different par-
allel versions running on a variety of processors; Figure 18
presents the corresponding speedup curves. The Original
version initially performs well (the speedup over the sequen-
tial C version at eight processors is close to six) but it does
not scale beyond eight processors. The maximum speedup is
7.2 on 16 processors. The Aggressive version fails to scale at
all: the Aggressive false exclusion policy serializes the entire
computation.

Figure 19 presents the contention proportion for this ap-
plication. This figure shows that lock contention is the pri-
mary cause of performance loss for this application, and that
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Figure 18: Speedups for String (small well)

it generates enough false exclusion to severely degrade the
performance.
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Figure 19: Contention Proportion for String (small well)

These results indicate that the correct false exclusion
policy differs from program to program. A production sys-
tem could therefore choose a default policy, but allow the
programmer to override the default to obtain better perfor-
mance. We are also exploring the possibility of using profile
data or dynamic feedback to allow the compiler or generated
code to automatically choose the correct false exclusion pol-

icy.

7 Related Work

The closest related work is our own previous research on
techniques to reduce lock overhead in automatically par-
allelized object-based programs [5]. This research used a
monolithic algorithm that depends heavily on the restric-
tions of the object-based programming paradigm and the
fact that the compiler controls the placement of the acquire
and release constructs. The algorithm is formulated as a set
of conditions on the call graph. If the call graph meets the
conditions, the compiler can omit the automatic insertion
of synchronization constructs into some of the procedures.
There is no clearly identified set of transformations, the al-
gorithms are only capable of increasing the sizes of the crit-



ical sections, and they work only at the granularity of entire
procedures.

This paper, on the other hand, describes a general set
of transformations for programs that use mutual exclusion
locks to implement critical sections. This flexible set of
transformations enables the movement and cancellation of
acquire and release constructs both within and across pro-
cedures. Because the transformations apply in either direc-
tion, they can be used either to increase or to decrease the
sizes of the critical regions.

The lock elimination algorithm in this paper is formu-
lated as a reachability problem in the ICFG rather than as
a set of conditions on a call graph. While the two algo-
rithms yield identical results in the context of our prototype
compiler, formulating the problem as a reachability problem
means that the new algorithm inherits all of the advantages
of the basic transformations. In particular, the new algo-
rithm is more flexible and applies to explicitly parallel pro-
grams that already contain synchronization constructs. It
is possible to apply the optimization both within and across
procedures, rather than only at the granularity of proce-
dures. The formulation also removes the dependence on the
compiler’s ability to control the placement of the synchro-
nization constructs.

7.1 Parallel Loop Optimizations

Previous synchronization optimization research has focused
almost exclusively on parallel loops in scientific computa-
tions [13]. The natural implementation of a parallel loop
requires two synchronization constructs: an initiation con-
struct to start all processors executing loop iterations, and
a barrier construct at the end of the loop. The majority
of synchronization optimization research has concentrated
on removing barriers or converting barrier synchronization
constructs to more efficient synchronization constructs such
as counters [20]. Several researchers have also explored opti-
mizations geared towards exploiting more fine-grained con-
currency available within loops [4]. These optimizations au-
tomatically insert one-way synchronization constructs such
as post and wait to implement loop-carried data depen-
dences.

The transformations and algorithms presented in this
paper address a different problem. They are designed to
optimize mutual exclusion synchronization, not barrier syn-
chronization or post/wait synchronization. We believe, how-
ever, that would be possible and worthwhile to combine both
classes of optimizations into a single unified synchronization
optimization framework.

7.2 Analysis of Explicitly Parallel Programs

The transformations presented in this paper operate on ex-
plicitly parallel programs. Other researchers have investi-
gated the issues associated with performing standard serial
compiler analyses and optimizations in the presence of ex-
plicit concurrency [3, 14]. Our research is orthogonal to this
research in the sense that it focuses on optimization opportu-
nities that appear only in explicitly parallel programs rather
than on the significant challenges associated with applying
standard optimizations to parallel programs.

7.3 Concurrent Constraint Programming

The lock movement transformations are reminiscent of trans-
formations from the field of concurrent constraint program-
ming that propagate tell and ask constructs through the
program [18]. The goal is to make tells and corresponding
asks adjacent in the program. This adjacency enables an
optimization that removes the ask construct. A difference is
the asymmetry of asks and tells: the optimization that elim-
inates the ask leaves the tell in place. The lock cancellation
transformation, of course, eliminates both the acquire and
the release.

7.4 Efficient Synchronization Algorithms

Other researchers have addressed the issue of synchroniza-
tion overhead reduction. This work has concentrated on
the development of more efficient implementations of syn-
chronization primitives using various protocols and waiting
mechanisms [7, 12].

The research presented in this paper is orthogonal to
and synergistic with this work. Lock elimination reduces
the lock overhead by reducing the frequency with which the
generated parallel code acquires and releases locks, not by
providing a more efficient implementation of the locking con-
structs.

8 Conclusion

As parallel computing becomes part of the mainstream com-
puting environment, compilers will need to apply synchro-
nization optimizations to deliver efficient parallel software.
This paper describes a new framework for synchronization
optimizations, a new set of transformations for programs
that implement critical sections using mutual exclusion locks,
and a new synchronization optimization algorithm for re-
ducing synchronization overhead in such programs. Experi-
mental results from a parallelizing compiler for object-based
programs illustrate the practical utility of this optimization.
For three benchmark programs the optimization dramati-
cally reduces the number of times the computations acquire
and release locks, which significantly reduces the amount
of time processors spend acquiring and releasing locks. For
one of the three benchmarks, the optimization always sig-
nificantly improves the overall performance. Depending on
the number of processors executing the computation, the
optimized version runs between 2.11 and 1.83 times faster
than the unoptimized version. For one of the other bench-
marks, the optimized version runs between 1.13 and 0.96
times faster than the unoptimized version, with a mean of
1.08 times faster. For the final benchmark, the optimization
reduces the overall performance.
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Lock Movement Algorithms

The lock movement algorithms are given an expression e, read set
r and node N with read set ry and write set wy. They compute

the

new expression e’ and read sets r1,...,7m, S1,-.., Sy required

to move a synchronization node with expression e and read set r
across N. There are several potential complications:

o The compiler may be unable to generate the new expression
e’. This may happen, for example, if N writes variables in
the read set r. In this case the compiler cannot apply the
transformation.

e If the algorithm moves an acquire node over a node with
multiple outgoing edges or a release node over a node with
multiple incoming edges, the new expressions may be evalu-
ated in different contexts than the original expression. The
compiler must therefore ensure that the evaluation of the
expressions in the new contexts does not generate an error
and that the new nodes always acquire or release a valid
lock.

In general, the compiler may have to use an interprocedu-
ral pointer or alias analysis to verify that these conditions
hold [6, 21, 10]. In restricted contexts, the compiler may
be able to use simpler algorithms. Our prototype compiler,
for example, is designed for object-based programs. These
programs structure the computation as a sequence of op-
erations on objects. Each object contains a lock. Within
an operation on an object, the expression that denotes the
object’s lock always denotes a valid lock.

o Whenever the new expressions may be evaluated in a dif-
ferent context than the original expression, the new read
sets must reflect the behavior of the expressions in the new
contexts. In general, the compiler may have to use an in-
terprocedural pointer or alias analysis to compute the new
read sets. The structure of the object-based paradigm al-
lows the compiler to use a simpler approach. Expressions in
object-based programs contain only local variables, param-
eters, and references to instance variables of objects. For a
given expression, the read set is simply the set of variables
that appear in the expression. The read set therefore de-
pends only on the expression, not the context in which it
appears.

Here are the cases that the acquire lock movement algorithm

must handle:

e type(N) = entry. (The acquire node moves out of a callee
towards the caller and can no longer access the local vari-
ables of the callee.) e must contain no local variables (but

may contain parameters); ¢/ = e and $1,...,8, = r. The
compiler may be able to generate more precise read sets for
S1y-+-38n-

e type(N) = exit. (The acquire node moves into a callee
from a caller.) e’ = e. The compiler must verify that e
always denotes a valid lock in all of the new contexts. It
must also generate new read sets si,r1,...,7m to reflect
the variables that e may read in the new contexts. For
object-based programs, $1,71,...,"m =7T.

!

e type(N) = merge (The acquire node moves up into several
different flow of control paths.) ¢ = e and s1,...,8, = .
The compiler may be able to generate more precise read

sets for s1,...,8n.



ing

type(N) = call. (The acquire node moves into the caller of
the procedure that it just moved out of.) ¢/ = e with the
expressions in the call node that denote the values of the
actual parameters substituted in for the corresponding for-
mal parameters in e. If e contains any formal parameters,
s1 = r Ury, otherwise s1 = r. The compiler may be able
to generate a more precise read set s1.

type(N) = return. (The acquire node moves out of a caller
towards a callee). In the new context the acquire node will
no longer have access to the local naming environment of
the caller.) e must contain no local variables or parameters;
e =eand s; =r.

type(N) = summary. If wy Nr = 0, (if the summary writes
no variables that the release reads) ¢/ = e and s1 = r.
Otherwise the transformation can not be applied.

type(N) = assignment. There are several cases:

— The assignment is of the form v = exp, where v is a
local variable. e must not dereference a pointer vari-
able that may point to v; e/ = e with ezp substituted
in for v in e. If e contains at least one occurrence of
v, §$1 = r Ury, otherwise s; = r. The compiler may
be able to generate a more precise read set s1.

— wy Nr = 0. (N writes no variables that the acquire
node may read.) ¢/ = e and s1 = .

— Otherwise the transformation can not be applied.

type(N) = if. (The acquire node moves across a branch.)
The compiler must verify that e always denotes a valid
lock in all of the new contexts. It must also generate
new read sets si,71,...,7m to reflect the variables that e
may read in the new contexts. For object-based programs,
S1yT1yeveyTm =T.

type(N) = acquire or release. The transformation can not
be applied.

The release lock movement algorithm must handle the follow-
cases:

type(N) = entry. (The release node is moving into a pro-
cedure from the caller of the procedure.) e/ = e. The
compiler must verify that e always denotes a valid lock in
all of the new contexts. It must also generate new read sets
r1,...,"m,S1 to reflect the variables that e may read in the
new contexts. For object-based programs, ri,...,7m,s1 =
r.

type(NN) = exit. (The release node is moving out of a callee
towards the caller, and can no longer access the local vari-
ables of the callee.) e must contain no local variables (but
may contain parameters); ¢/ = e and s1,...,$, = r. The
compiler may be able to generate more precise read sets for
S1y.-38n-

type(NN) = merge. ¢’ = e. The compiler must verify that
e always denotes a valid lock in all of the new contexts. It
must also generate new read sets ri,...,7m,s1 to reflect
the variables that e may read in the new contexts. For
object-based programs, ri,...,"m,s1 =7T.

type(N) = call. (The release node is moving out of a caller
towards a callee and no longer has access to the local vari-
ables or parameters of the caller.) e must contain no local
variables or parameters; ¢/ = e and s1 = r.

type(NN) = return. (The release node is moving into a caller
from a callee.) First find the call node that corresponds to
N. None of the nodes in the invoked procedure or any pro-
cedures that it directly or indirectly invokes may write any
of the variables in the call node’s read set. ¢/ = e with the
expressions in the call node that denote the values of the
actual parameters substituted in for the corresponding for-
mal parameters in e. If e contains any formal parameters,
s1 = r Ury, otherwise s; = r. The compiler may be able
to generate more precise read sets.

e type(N) = assignment or type(N) = summary. If wy N
r = 0, (if the assignment or summary writes no variables
that the release reads) e/ = e and s1 = r. Otherwise the
transformation can not be applied.

e type(N) =if. ¢’ = e and s1,...,s, = r. The compiler may
be able to generate more precise read sets for si,...,sn.

e type(N) = acquire or release. The transformation can not
be applied.

B Lock Elimination Algorithm

The lock elimination algorithm uses the following primitives.

e invokedProcedures(p) : the set of procedures directly or
indirectly invoked by procedure p.

e procedure(N) : the procedure that the ICFG node N is in.
e type(N) : the type of the ICFG node N.

e predecessor(N) : the predecessor of N in the ICFG. Only
valid for nodes with one predecessor.

e successor(N) : the successor of N in the ICFG. Ounly valid
for nodes with one successor.

e predecessors(N) :

ICFG.

the set of predecessors of N in the

e successors(N) : the set of successors of N in the ICFG.

e insertNode((Nfyom, Nto),t,(e,r)) : insert a new node into
the ICFG whose type is t, expression is e and read set is r.
There is an edge from Ny, to the new node and an edge
from the new node to N¢,. Remove the edge (Nf,om, Nto)
from the ICFG.

e removeNode(N) : remove node N from the ICFG. Make all
predecessors of N predecessors of the successor of N and
all successors of N successors of the predecessor of N. Only
valid for nodes with one successor and one predecessor.

e (¢/,71,...,7m,S1,...,8n) = acquireTransform(N,e,r) :
computes the new expression e’ and read sets r1,...,rm,s1,
...,Sp that result from moving an acquire node with expres-
sion e and read set r across node N. If the transformation
cannot be applied, ¢/ = €.

o (¢/,r1,...,"m,S1,...,8n) = releaseTransform(N,e,r) :
computes the new expression e’ and read sets r1,...,rm,s1,
.,8n, that result from moving a release node with expres-
sion e and read set r across node N. If the transformation
cannot be applied, ¢/ = e.

// lockElimination(p) applies the lock elimination algorithm
// to the procedure p.
lockElimination(p){

do {

ps = invokedProcedures (p);
ns = {N : procedure(N) € ps};
NSacq = {N € ns : type(N) = acquire};
nsre; = {IN € ns: type(N) = release};
applied = false;
for all (Nacanrel> € {ns(LCq X nsrel}
if(attemptTransform(Nacq, Nyer, nS))
applied = true;
break;

} while(applied = true);

Figure 20: Lock Elimination Algorithm



// attemptTransform(Nacq, Nyer,ns) attempts to propagate
// and cancel Nqcq and N,.;. To implement the false
// exclusion policy, the transformation must be confined to
// the set of nodes ns.
attemptTransform(Ngcq, Nyer, n8){
// Step 1. Compute the reachability trees, expressions
// and read sets for the acquire and release nodes.
(parentacq,edgesacq, €dacq, vistedacq) =
acquireTraverse (predecessor(Nacq), Nacq, exp(Nacq),
read(Nacq),0,0,0,0,ns);
(parentrel; edgesyer, €dyer, UiStedrel> =
releaseTraverse (N, successor(N,c;), exp(Nyer),
read(Nrel)a ﬂa 07 edaCQa 07 ’I’LS);
// Step 2. Check if the two reachability trees intersect and
// if the acquire and release manipulate the same lock.
if(3 (Nfrom, Nto) € edgesacq N edges,q; :
6d(LCq(U\/vfrom; Nt0>) = edrel((NfTom; NtO))) {
choose any (Nf,om, Nto) € edgesacq N edges, ci;
// Step 3. Find the path in the reachability trees
// from the release node to the acquire node.
path = computePath(Nto, Nacq, parentqcq)U
computePath(Nfyom, Nyel, parent,e;);
// Step 4. Find the edges coming into the path and the
// edges going out of the path. The algorithm will
// insert new acquire nodes on all of the incoming
// edges and new release nodes on all of the outgoing edges.

acq = UNepath(predecessors(N) — (path U {N,¢;})) x {N};

rel = UN€path{N} X (successors(N) — (path U {Nacq}));
// Step 5. Insert new acquire and release nodes.
for all (Ntrom, Nto) € acq do
insertNOde«Nfrom: Nto), acquire, edrel((Nfrom; Nto)));
for all (Ny,om, Nto) € rel do
insertNOde«Nfrom: Nto),release, edrel(<Nfrom7 Nto)));
// Step 6. Remove original acquire and release nodes.
removeNode(Nacq);
removeNode(N,;);
return true;
} else {
return false;
}
}

Figure 21: attemptTransform Algorithm

// computePath computes the path from the node N
// in parent back to Nyinqi-
computePath(N, Nfpnqr, parent){
if(N = Nfinqi) return @
else return {N'} U computePath(parent(N), Nfinq1, parent);

Figure 22: computePath Algorithm

/ acquireTraverse computes the reachability tree for an
/ acquire node. At each step it computes the result of
/ moving the acquire node across another node in the ICFG.
/ The meanings of the variables are as follows:
/ {Nfroms Nto): edge that the traversal reached in the last
/ step. The traversal will next try to move the acquire node
/ back across Nfpom-
/ e and r: expression and read set that result from
/ propagating the acquire node through the ICFG to the
/ edge <Nfrom7Nt0>'
/ parent: partial function from ICFG nodes to ICFG nodes.
/ It records the path back to the acquire node.
/ edges: set of ICFG edges reachable by propagating the
/ acquire node through the ICFG against the flow of control.
/ ed: partial function from ICFG edges to tuples of
// expressions and read sets. For each edge it records the
// expression and read set that would result from propagating
// the acquire node back through the ICFG to that edge.
// visited: set of ICFG nodes already visited by the traversal.
// ms: set of ICFG nodes. To implement the false
// exclusion policy, the tree must stay within this set.
acquireTraverse(Nf,om, Nto,e, T, parent, edges, ed, visited, ns){
edges = edges U {(Nfrom, Nio) };
ed = 6d[<NfTom; NtO) — (6,1")];
if(Nfrom € visited and Nfpopm € ns) {
visited = visited U {Nf,om };
parent = parent[Nfrom — Niol;
// Compute the new expression and read set that result
// from moving the acquire across Nyf,opm,.
(€s71y--yTm,51,--.,5n) = acquireTransform(Nf,om,€,7);
if(e’ £ 6) {
// Record the expression and read set for any
// new release nodes.
for all N; € successors(Nyrom) — {Nto} do
ed = 6d[<Nfrom; Nl) = (B,T‘i>];
for all N; € predecessors(Nfyom) do
(parent, edges, ed, visited) =
acquireTraverse(mem, Ni, e, s;, parent, edges,
ed, visited, ns);

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

}
}

return (parent, edges, ed, visited);

// releaseTraverse computes the reachability tree for a
// release node. Essentially the dual of acquireTraverse.
releaseTraverse(Nfrom, Nio, €, T, parent, edges, ed, visited, ns){
edges = edges U {{Nfrom, Nto)};
ed = edKNfToma NtO) — (8,1">];
if(Nto & visited and N, € ns) {
visited = visited U {N¢o };
parent = parent[Nto — Nfroml;
(e',r1,y...yTm,81,.-.,8n) = releaseTransform(N¢o,e,T);
if(e’ £ ¢) {
for all N; € predecessors(Nto) — {Nfrom} do
ed = ed[(N;, Nto) — (e,7i)];
for all N; € successors(Ny,) do
(tree, ed, visited) =
releaseTraverse(N¢o, N;, €, s;, parent, edges,
ed, visited, ns);
}
}

return (parent, edges, ed, visited);

}

Figure 23: acquireTraverse and releaseTraverse
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