
IDEOSY

An Ideographic and Interactive Program Description Sys tem ~

Alessandro Giacalone, Martin C. Rinard, and Thomas W. Doeppner Jr.

Department of Computer Science
Brown University

Providence, Rhode Island 02912

1. Introduct ion
IDEOSY is an experiment in the use of a formal

semantics as the basis for a programming system and in
the use of an ideographic language as the primary means
of user-computer communication. The important charac-
teristics of our system are that it uses an ideographic syn-
tax, has a syntax-directed editor, supports the definition
of various equivalence properties and the proofs of such
equivalence, and has an interpreter. It currently runs on
Apollo workstations and on VAXes running Berkeley

UNIX ~ using any of a variety of high-resolution color
displays.

Our formalism is based on Milner's Calculus of Com-
municating Systems (CCS) [1]. We have found CCS to
be a convenient formalism for describing programs and
have even used it for describing the UNIX operating sys-
tem [2]. Its algebraic properties are very useful for build-
ing descriptions out of components and for proving the
equivalence of descriptions. Since CCS is an operational
semantics, we may directly interpret descriptions written
in CCS.

The idea behind using an ideographic interface such
as ours is that a graphically suggestive language will aid
the process of translating one's intuitive idea of a
program's structure into a formal description. Our
language, IDCCS (for Ideographie Calculus of Communi-
cating Systems), was described in a previous paper [3]. It
uses ideographs (pictures) to represent the various ele-
ments and operators of CCS. This Orientation, i.e. the

tThis work w~s partially supported by the Nationtl Science Foundation ultder
grant MCS 8121806 and by the Office of Naval Research and the Defense Advaaced
Reeearch Projects Agency under contract N00014-83-K-0146 and ARPA order No.
4786.

~UNIX is a trademark of Bell Laboratories.

use of ideographs instead of words, is the cornerstone of
our system. It allows rapid interaction between the user
and the system, as the user may quickly manipulate
descriptions by selecting ideographs representing its com-
ponents. This ability to work with a formal description
graphically is exploited not only in the editor but in the
proof-aider and interpreter as well.

In the next few sections we first introduce the editor
and the language. We discuss the concept of equivalence
in CCS and then cover the support for formal reasoning
in IDEOSY. This is followed by a discussion about the
use of our interpreter. Finally, we discuss current limita-
tions, extensions and future developments.

2. The Editor
We describe the editor of IDEOSY with the help of

an example, trying as much as possible to show what the
actual screen looks like. The editor can be used in two
basic ways: to construct an expression in a top-down
fashion, i.e. starting from scratch, and to modify an exist-
ing expression.

We illustrate the top-down part first by showing how
we insert the definition of the agent named P below into
the system and, in particular, how the defining behavior
expression is constructed. The expression defines the
behavior of P as that of an agent which can either exe-
cute a sequence of two communication actions (named a
and b) and then terminate or execute an action named c
and then reproduce its behavior.

<=
I ~ ")

Ir- -ll

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1984 ACM 0-89791-131-8/84/0400/0015500.75

The symbol

stands for an agent identifier. Juxtaposed boxes define,
in the syntax of IDCCS, an "exclusive or" of the alterna-
tives enclosed in each box. The symbols

are ideographs for input and output actions, respectively.
Actions arranged diagonally from upper left to lower
right define a sequential execution of those actions.
Finally, the symbol:

is an ideograph for a "null agent", i.e. an agent that does
not perform any action, but represents the termination of
,an agent.

To define our expression, we inform the editor that
we wish to define a process and provide a name for it {in
this case P) . At this point, the editor displays the sym-
bol below:

The "bowl" symbol is the start symbol in the IDCCS
grammar as well as the non-terminal symbol (and ideo-
graph) for a process. An expression is constructed by
repeatedly replacing a non-terminal symbol with the
right-hand side of a production of the IDCCS grammar.
We specify which production we wish to apply by select-
ing ("picking") it from a menu of ideographs, which
varies according to the type of non-terminal selected for
replacement. Assuming that the "exclusive or" ideograph
is selected, the picture below is displayed.

We must now "expand" the two bowl symbols in
each alternative of the "or". Assume we expand the one
on the left first. Since we want to produce a sequential
expression, we select the corresponding ideograph and
obtain the picture:

At this point, we replace the bowl symbol with the sym-
bol for a null process and obtain:

By proceeding analogously with the right side of the "or"
we obtain the expression we wanted.

Besides the top-down expansion of non-terminals, it
is possible to replace any construct that appears in an
expression (i.e. any terminal, non-terminal, sub-
expression, or the whole expression) with a construct of
the same syntactic type. Summarizing, to replace one
construct with another, one

(1) selects the construct to be replaced from the expres-
sion on the screen (possibly the whole expression);

(2) picks the replace command (it is a button always on
the screen);

(3) identifies the new construct (the system will produce
an error message if the new construct is not of the
correct type).

The construct to be replaced (step (1)) is selected by
picking any point within the smallest rectangle that
encloses it (an operation called range picking). For exam-
ple, in the expression below:

the dashed rectangle defines the area within which we
must pick in order to select the sub-expression:

On the left we now have a construction formed by the
ideograph for an action followed by the bowl. Assuming
that we expand the action symbol first, we have to choose
among the types of action (input or output). By choosing
an input action and naming it a, we obtain the picture:

By repeating the procedure above for the bowl symbol
appended to the input action just created, we can create
an output action named b and obtain the picture:

Terminal symbols (which are enclosed in rectangles) are a
particular case and define a range on their own (so that
in the picture above we would have to pick within the
rectangle but outside the terminals, otherwise one of the
terminals would he selected).

The replacing construct is selected (step (3)) by
either picking it from an expression on the screen (by
range picking) or selecting a definition among those

16

known by the system.

The rules that define which construct is range-picked
in each case are non-ambiguous but not always immedi-
ate. However, the flexibility introduced by replace sur-
passes its drawbacks: for example, the "deletion" of a
construct from an expression is a particular case of
replacement and is actually implemented as a "derived
operator" of replace (note that the system will not allow
the deletion of a construct from an expression if the
resulting expression is structurally incorrect).

3. CCS Equivalence Relations

In CCS, a number of equivalence relations are
defined on behavior expressions: identity (-~), direct
equivalence (~_), strong congruence (~.~), observation
equivalence (~) and failure equivalence (_~.). The
equivalence relations differ in how refined a partition they
determine on the set of behavior expressions: stronger
relations determine more refined partitions and smaller
equivalence classes, thus imposing stronger conditions for
two behavior expressions to be considered equivalent.
The relations were listed above in decreasing order of
"strength", in the sense that each relation implies all the
following ones:

= C ~ C ~ C ~ C ~

Some equivalence relations are congruences, i.e. are
such that when "two expressions are equivalent (with
respect to that equivalence) then each expression can be
replaced by the other in any operator context (typically,
as s part of a more complex expression) without altering
the meaning of the the entire expression. This is not true
of all the equivalence relations defined in CCS. Those
which are congruences are particularly useful. They
allow the definition of "equations" (more properly, equa-
tional laws) between classes of processes (represented by
behavior expressions). Examples of (simple) equational
laws, expressed in IDCCS syntax, are:

which define, respectively, the commutativity of the "or"
operator and the possibility of eliminating null operands
from an "or".

The equations can be used to apply semantics-
preserving syntactic transformations to behavior expres-
sions, for example to simplify an expression, or, more gen-
erally, to put an expression in a form which is "useful"
for further reasoning. In the following, we refer to such
equations simply as "rules". In IDCCS syntax rules are
pairs of expressions which (in general) include non-
terminal symbols of the grammar (possibly named) and
therefore identify "classes" (not to be confused with
equivalence classes) of expressions.

4. Support for Formal Reasoning

Rules such as those listed above constitute the basic
knowledge IDEOSY has about CCS semantics: the system
represents the equivalence relations defined on CCS
behavior expressions as a list of rules appropriate for each
equivalence relation. The system can apply the rules it
knows and thus perform all the repetitive, and usually
quite complicated, work involved in reasoning about CCS
definitions. The user is then free to concentrate on more
"strategic" decisions. Moreover, the system can support
the user's decisions by detecting which of the rules it
knows are relevant, i.e. could be applied in each case. A
few basic rules are "hardwired" in IDEOSY. Any other
rule which is found to be generally useful can be inserted
in the system at any time.

A rule is inserted by using the editor of the previous
section. For rules, the syntax that guides the editor is
that of an equation, i.e. two expressions related by some
equivalence symbol. For example, if one wanted to insert
one of the rules shown above, the first picture displayed
after the user picked the desired type of equivalence
would be:

With this, the "editor" is telling the user (1) which type
of equivalence the property being defined refers to, and
(2) that the user has to define the two expressions.

When the editor is used to edit a rule, the user is
allowed to name non-terminals. For example, in the two
examples of rules shown above the commutativity of the
"or" operator and the elimination of null operands from
or's were defined by appropriately naming by P and Q
the non-terminal symbols for processes (the bowls). The
system interprets non-terminals in rules as "syntactical
variables", i.e. as representatives of all the expressions
they can generate via the applications of the productions
of the grammar.

Once a rule is acquired, it is associated by the sys-
tem with all of the terminal symbols that appear in it.
Thus in the example above, the rule is associated with
the symbol:

(being a property of the "or" operator), while in the case
of the "NIL-elimination" rule mentioned above, the rule
is associated with both the symbols

When the user wants to transform an expression, he
or she can obtain a list of the rules applicable to sub-
expressions by just picking a (terminal) symbol from the
expression. The system scans the set of rules associated
with the symbol and attempts to unify the expression on
the left side of each rule with the expression on the
screen. The terminal symbol originally picked determines
the context (i.e. the sub-expression) with which the
unification is attempted. During the unification, the syn-
tactical variables present in the right side of the rule are
bound to sub-expressions of the expression on the screen.
Each rule that unifies successfully is then displayed on
the screen as an ideograph on the menu. At this point
the user can select a rule to apply. The system will
replace the left side of the rule with the right side in the
expression on the screen using the bindings established
during the unification to determine the new expression.

Besides performing all the transformation work,
IDEOSY also keeps track of the user's activity in
transforming expressions (i.e. in applying transformation
rules) and displays on the screen the "history" of such
activity in the form of a tree (the proof tree). Each node
of the tree represents a stage in the proof reached
through the transformation of an expression. Every time
the user applies a new rule, the system creates a new
node which is a child of the current node, and labels the
arc between the two nodes with the identifier of the type
of equivalence used in the transformation. An arc labeled
by an equivalence symbol means that the nodes at the
two extremes of the arc are equivalent with respect to
that equivalence (and thus with respect to all weaker
equivalences). Every node also has associated with it all
the information necessary to reactivate the stage it
represents. The nodes of the displayed tree are thus also
ideographs that allow the user to move around in the
proof by retrieving any previous stage.

5. T h e I n t e r p r e t e r

The last part of IDEOSY we describe is an environ-
ment in which CCS expressions are interpreted in an
operational sense, i.e. are considered as defining actual
executing modules. The interpreter subsystem consists of
two main components: a CCS interpreter and a user
interface. The interpreter simulates the concurrent exe-
cution of "processes" defined by CCS behavior expres-
sions; in particular, it considers the composition operator
of CCS as defining an execution environment in which
communication channels are set up between

complementary ports of processes. The user interface,
based on the IDCCS graphical syntax, allows a user to
interact (to "communicate") with the executing agents:
the user is considered an observer, in the CCS sense, of
the agents. In addition, the execution can be stopped at
desired points and the "state" of the executing system
can be displayed.

Beside being a tool for executing CCS specifications
in IDEOSY, the interpreter was designed and developed
for the purpose of investigating possible implementations
of any language based on a port-oriented communication
scheme. For this reason, the interpreter is conceived as
an "abstract machine" whose structure is defined by the
data-structures used in the interpreter and whose
machine language is defined as a (very small) set of basic
operations in terms of which the whole interpreter is
implemented. These basic operations, which essentially
update entries in tables, can be summarized as follows. A
communication between two processes is implemented by
evaluating an expression (the one being sent), updating
the local environment of the receiving process and,
finally, updating the "instruction pointers" of the two
processes. The CCS composition operator is interpreted
as a "create-process" primitive which provokes the alloca-
tion of new process descriptors. Private communication
channels are allocated by the interpreter to implement
the CCS restriction operator (an operator used to restrict
the visibility of ports).

The user can start the interpreter at almost any
point within an IDEOSY session. It will interpret the
current expression (roughly, the expression currently
displayed). Usually, the current expression is a composi-
tion of processes. The user at the "console" of the sys-
tem is viewed as a process with two ports named user-in
and user-out. The two ports can be used to communicate
with the executing processes (i.e. to observe them). To
do this, those processes that need to communicate with
the user must have corresponding ports named user-in
and user-out:

user-in is used to input values from the user.

user-out is used to output values to the user.

On the screen, two fields identify the two ports, as in
the picture below.

The user-in and user-out actions are treated in an
asymmetrical way by the interpreter. When a process
tries to execute a user-in (user-out) action, the interpreter
lets the user decide whether or not to "accept" the com-
munication (communications are synchronized in CCS).
A message appears on the user-in (user-out) field on the
screen saying which process is trying to execute an input
(output) action from (to) the user. At this point, the user

18

can provide a value (accept the value being output) or
refuse the communication. In the second case, the action
is put back in the corresponding queue in the action table
and the execution proceeds with another action.

The user thus can control the execution of processes
by either providing (authorizing) or not providing (not
authorizing) input (output) to (from) the processes.
Another tool the user can use to control the execution is
a special type of action called a checkpoint, represented in
IDCCS syntax by a black rectangle, as in the expression
below.

A checkpoint is a signal for the interpreter that it
must display the state of the system. Checkpoints are
treated like any other action internally and inserted in a
special entry always present in the action table. When
the scheduler selects that entry (and when there is a
checkpoint action in the corresponding queue) an IDCCS
expression which represents the system at that moment is
constructed and displayed. Checkpoints can be inserted
in expressions anywhere an action is legal, so that the
user can make the system stop and display its state at
strategic instants (e.g., to check which alternative of an
"or" has been selected in non-deterministic programs,
right before a composition is executed to follow the crea-
tion of processes, etc.).

6. Conc lus ions

IDEOSY has proved to be especially interesting to us
because it combines topics of theoretical interest, e.g. the
study of the formalisms used for the description of pro-
grams, with topics of much more practical interest, e.g.
the ergonomics of the user interface. An important test
of IDEOSY will be its use in the development of a
description of a large program. This test will be made as
we continue the work started in [2], this time writing our
description in IDCCS rather than CCS and taking advan-
tage of the reasoning facilities provided by IDEOSY to
help validate our work. As described in [2], we are inves-
tigating extensions to the semantics of CCS. One of
these led to the definition of a new formalism [4] based on
CCS but slightly different from CCS in the meaning of
ports. The new formalism is still based on the basic CCS
notion of agents that communicate via ports, and its con-
structs can be represented pictorially by the same syntax
(IDCCS) developed for cCS: only the set of equational
laws change, and with them the meanings of some of the
ideographic constructs.

Although we do not have space here for an extensive
treatment of the principles on which the pictorial syntax

of IDCCS is based, it should be observed that IDCCS
expressions are designed to take advantage of the possi-
bilities offered by high-resolution screens and fast graph-
ics hardware {for example, it is time-consuming to draw
them on paper by hand). IDCCS syntax is also designed
to generate expressions which are self-explanatory and
which keep a recognizable shape no matter how complex
they become.

The system we have described is the latest of several
versions implemented over the past many months and is
currently rather inefficient, due to the fact that it is
implemented using a machine-independent graphics pack-
age (SGP [5]) which does not take full advantage of the
hardware we are using.

We are developing several improvements for
IDEOSY. One is to extend the interface so as to allow
context-dependent operators. Another, which we are
working on currently, is the extension of the flexibility of
the user-interface, in particular with regard to the rule-
definition language. Currently, the rules that can be
inserted in the system can only define properties of
binary operators. We are working on a generalization of
an IDEOSY interface which will allow the definition of
n-ary properties and will include the possibility of
defining rules whose applicability depends on syntactical
and semantic properties of expressions (e.g., names of
ports, equality of expressions, etc.). The problem is syn-
tactical and consists of finding a pictorial representation
of indexed families of objects and conditions consistent
with the rest of IDCCS and IDEOSY.

Another development of a syntactical/pictorial
nature on which we are also working is giving the user
the ability to define derived operators, i.e. new operators
defined in terms of the primitive ones of CCS. The pri-
mary difficulty with this addition is finding a method by
which the user may define and use new (non-trivial) ideo-
graphs without having to resort to two-dimensional pars-
ing.

Other developments we are planning have to do with
enhancing the capabilities of the system. These are in
two main directions: (1) improvements to proof aiding
and insertion of proof-checking capabilities in the
environment, and (2) increased capabilities of the inter-
preter and of the editor. We plan to give the user the
capability of defining sequences of rule applications
("strategies") possibly conditioned by the structure of
expressions. This will make the user able to define, for
example, "simplifiers" tailored on classes of expressions
and will save the task of specifying every single step of
expression transformations. A proof-checker will eventu-
ally be built on top of the machinery currently available
to a user and will have as its main functions: (1)
automating the more tedious portions of proofs, (2) pro-
viding independent verification of steps in manual proofs,
and (3) "looking for" applicable strategies and proofs.

19

7. References
[I] Milner, R.: A Calculus of Communleatlng Sys-

tems, Springer-Verlag, Lect. Notes in Comp. Sci. 92,
1980.

[2] Doeppner, T.W., Jr., Giacalone, A.: A Formal
Definition of the UNIX Operating System, Second
ACM SIGACT-SIGOPS-Symposium on Principles of
Distributed Computing, Montreal, Canada, August
1983.

[3] Giacalone, A., Kovaes, I.D.: IDCCS: An ldeographic
Syntax for CCS, Brown University, Dept. of Com-
puter Science, Tech. Rep. CS-83-05, Feb. 83.

[4] Giacalone, A.: An Approach and Some Experiments
Towards the Support of Formal Specifications in
Integrated Programming Environments, Unpublished
Ph.D. thesis, Brown University, April 1984.

[5] Foley, J.D., van Dam, A.: Fundamenta ls of
Interact ive Compu te r Graphles, Addison Wes-
ley, 1982.

20

