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1. Introduct ion 
IDEOSY is an experiment in the use of a formal 

semantics as the basis for a programming system and in 
the use of an ideographic language as the primary means 
of user-computer communication. The important charac- 
teristics of our system are that it uses an ideographic syn- 
tax, has a syntax-directed editor, supports the definition 
of various equivalence properties and the proofs of such 
equivalence, and has an interpreter. It currently runs on 
Apollo workstations and on VAXes running Berkeley 

UNIX ~ using any of a variety of high-resolution color 
displays. 

Our formalism is based on Milner's Calculus of Com- 
municating Systems (CCS) [1]. We have found CCS to 
be a convenient formalism for describing programs and 
have even used it for describing the UNIX operating sys- 
tem [2]. Its algebraic properties are very useful for build- 
ing descriptions out of components and for proving the 
equivalence of descriptions. Since CCS is an operational 
semantics, we may directly interpret descriptions written 
in CCS. 

The idea behind using an ideographic interface such 
as ours is that  a graphically suggestive language will aid 
the process of translating one's intuitive idea of a 
program's structure into a formal description. Our 
language, IDCCS (for Ideographie Calculus of Communi- 
cating Systems), was described in a previous paper [3]. It 
uses ideographs (pictures) to represent the various ele- 
ments and operators of CCS. This Orientation, i.e. the 
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use of ideographs instead of words, is the cornerstone of 
our system. It allows rapid interaction between the user 
and the system, as the user may quickly manipulate 
descriptions by selecting ideographs representing its com- 
ponents. This ability to work with a formal description 
graphically is exploited not only in the editor but in the 
proof-aider and interpreter as well. 

In the next few sections we first introduce the editor 
and the language. We discuss the concept of equivalence 
in CCS and then cover the support for formal reasoning 
in IDEOSY. This is followed by a discussion about the 
use of our interpreter. Finally, we discuss current limita- 
tions, extensions and future developments. 

2. The  Editor  
We describe the editor of IDEOSY with the help of 

an example, trying as much as possible to show what the 
actual screen looks like. The editor can be used in two 
basic ways: to construct an expression in a top-down 
fashion, i.e. starting from scratch, and to modify an exist- 
ing expression. 

We illustrate the top-down part  first by showing how 
we insert the definition of the agent named P below into 
the system and, in particular, how the defining behavior 
expression is constructed. The expression defines the 
behavior of P as that  of an agent which can either exe- 
cute a sequence of two communication actions (named a 
and b) and then terminate or execute an action named c 
and then reproduce its behavior. 
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The symbol 

stands for an agent identifier. Juxtaposed boxes define, 
in the syntax of IDCCS, an "exclusive or" of the alterna- 
tives enclosed in each box. The symbols 



are ideographs for input and output actions, respectively. 
Actions arranged diagonally from upper left to lower 
right define a sequential execution of those actions. 
Finally, the symbol: 

is an ideograph for a "null agent", i.e. an agent that does 
not perform any action, but represents the termination of 
,an agent. 

To define our expression, we inform the editor that 
we wish to define a process and provide a name for it {in 
this case P) .  At this point, the editor displays the sym- 
bol below: 

The "bowl" symbol is the start symbol in the IDCCS 
grammar as well as the non-terminal symbol (and ideo- 
graph) for a process. An expression is constructed by 
repeatedly replacing a non-terminal symbol with the 
right-hand side of a production of the IDCCS grammar. 
We specify which production we wish to apply by select- 
ing ("picking") it from a menu of ideographs, which 
varies according to the type of non-terminal selected for 
replacement. Assuming that the "exclusive or" ideograph 
is selected, the picture below is displayed. 

We must now "expand" the two bowl symbols in 
each alternative of the "or". Assume we expand the one 
on the left first. Since we want to produce a sequential 
expression, we select the corresponding ideograph and 
obtain the picture: 

At this point, we replace the bowl symbol with the sym- 
bol for a null process and obtain: 

By proceeding analogously with the right side of the "or" 
we obtain the expression we wanted. 

Besides the top-down expansion of non-terminals, it 
is possible to replace any construct that appears in an 
expression (i.e. any terminal, non-terminal, sub- 
expression, or the whole expression) with a construct of 
the same syntactic type. Summarizing, to replace one 
construct with another, one 

(1) selects the construct to be replaced from the expres- 
sion on the screen (possibly the whole expression); 

(2) picks the replace command (it is a button always on 
the screen); 

(3) identifies the new construct (the system will produce 
an error message if the new construct is not of the 
correct type). 

The construct to be replaced (step (1)) is selected by 
picking any point within the smallest rectangle that 
encloses it (an operation called range picking). For exam- 
ple, in the expression below: 

the dashed rectangle defines the area within which we 
must pick in order to select the sub-expression: 

On the left we now have a construction formed by the 
ideograph for an action followed by the bowl. Assuming 
that we expand the action symbol first, we have to choose 
among the types of action (input or output). By choosing 
an input action and naming it a, we obtain the picture: 

By repeating the procedure above for the bowl symbol 
appended to the input action just created, we can create 
an output action named b and obtain the picture: 

Terminal symbols (which are enclosed in rectangles) are a 
particular case and define a range on their own (so that 
in the picture above we would have to pick within the  
rectangle but outside the terminals, otherwise one of the 
terminals would he selected). 

The replacing construct is selected (step (3)) by 
either picking it from an expression on the screen (by 
range picking) or selecting a definition among those 
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known by the system. 

The rules that define which construct is range-picked 
in each case are non-ambiguous but not always immedi- 
ate. However, the flexibility introduced by replace sur- 
passes its drawbacks: for example, the "deletion" of a 
construct from an expression is a particular case of 
replacement and is actually implemented as a "derived 
operator" of replace (note that the system will not allow 
the deletion of a construct from an expression if the 
resulting expression is structurally incorrect). 

3. CCS Equivalence Relations 

In CCS, a number of equivalence relations are 
defined on behavior expressions: identity (-~), direct 
equivalence (~_), strong congruence (~.~), observation 
equivalence (~)  and failure equivalence (_~.). The 
equivalence relations differ in how refined a partition they 
determine on the set of behavior expressions: stronger 
relations determine more refined partitions and smaller 
equivalence classes, thus imposing stronger conditions for 
two behavior expressions to be considered equivalent. 
The relations were listed above in decreasing order of 
"strength", in the sense that each relation implies all the 
following ones: 

= C  ~ C ~ C ~ C ~  

Some equivalence relations are congruences, i.e. are 
such that when "two expressions are equivalent (with 
respect to that equivalence) then each expression can be 
replaced by the other in any operator context (typically, 
as s part of a more complex expression) without altering 
the meaning of the the entire expression. This is not true 
of all the equivalence relations defined in CCS. Those 
which are congruences are particularly useful. They 
allow the definition of "equations" (more properly, equa- 
tional laws) between classes of processes (represented by 
behavior expressions). Examples of (simple) equational 
laws, expressed in IDCCS syntax, are: 

which define, respectively, the commutativity of the "or" 
operator and the possibility of eliminating null operands 
from an "or". 

The equations can be used to apply semantics- 
preserving syntactic transformations to behavior expres- 
sions, for example to simplify an expression, or, more gen- 
erally, to put an expression in a form which is "useful" 
for further reasoning. In the following, we refer to such 
equations simply as "rules". In IDCCS syntax rules are 
pairs of expressions which (in general) include non- 
terminal symbols of the grammar (possibly named) and 
therefore identify "classes" (not to be confused with 
equivalence classes) of expressions. 

4. Support  for Formal Reasoning 

Rules such as those listed above constitute the basic 
knowledge IDEOSY has about CCS semantics: the system 
represents the equivalence relations defined on CCS 
behavior expressions as a list of rules appropriate for each 
equivalence relation. The system can apply the rules it 
knows and thus perform all the repetitive, and usually 
quite complicated, work involved in reasoning about CCS 
definitions. The user is then free to concentrate on more 
"strategic" decisions. Moreover, the system can support 
the user's decisions by detecting which of the rules it 
knows are relevant, i.e. could be applied in each case. A 
few basic rules are "hardwired" in IDEOSY. Any other 
rule which is found to be generally useful can be inserted 
in the system at any time. 

A rule is inserted by using the editor of the previous 
section. For rules, the syntax that guides the editor is 
that of an equation, i.e. two expressions related by some 
equivalence symbol. For example, if one wanted to insert 
one of the rules shown above, the first picture displayed 
after the user picked the desired type of equivalence 
would be: 

With this, the "editor" is telling the user (1) which type 
of equivalence the property being defined refers to, and 
(2) that the user has to define the two expressions. 

When the editor is used to edit a rule, the user is 
allowed to name non-terminals. For example, in the two 
examples of rules shown above the commutativity of the 
"or" operator and the elimination of null operands from 
or's were defined by appropriately naming by P and Q 
the non-terminal symbols for processes (the bowls). The 
system interprets non-terminals in rules as "syntactical 
variables", i.e. as representatives of all the expressions 
they can generate via the applications of the productions 
of the grammar. 

Once a rule is acquired, it is associated by the sys- 
tem with all of the terminal symbols that appear in it. 
Thus in the example above, the rule is associated with 
the symbol: 



(being a property of the "or" operator), while in the case 
of the "NIL-elimination" rule mentioned above, the rule 
is associated with both the symbols 

When the user wants to transform an expression, he 
or she can obtain a list of the rules applicable to sub- 
expressions by just picking a (terminal) symbol from the 
expression. The system scans the set of rules associated 
with the symbol and attempts to unify the expression on 
the left side of each rule with the expression on the 
screen. The terminal symbol originally picked determines 
the context (i.e. the sub-expression) with which the 
unification is attempted. During the unification, the syn- 
tactical variables present in the right side of the rule are 
bound to sub-expressions of the expression on the screen. 
Each rule that unifies successfully is then displayed on 
the screen as an ideograph on the menu. At this point 
the user can select a rule to apply. The system will 
replace the left side of the rule with the right side in the 
expression on the screen using the bindings established 
during the unification to determine the new expression. 

Besides performing all the transformation work, 
IDEOSY also keeps track of the user's activity in 
transforming expressions (i.e. in applying transformation 
rules) and displays on the screen the "history" of such 
activity in the form of a tree (the proof tree). Each node 
of the tree represents a stage in the proof reached 
through the transformation of an expression. Every time 
the user applies a new rule, the system creates a new 
node which is a child of the current node, and labels the 
arc between the two nodes with the identifier of the type 
of equivalence used in the transformation. An arc labeled 
by an equivalence symbol means that the nodes at the 
two extremes of the arc are equivalent with respect to 
that equivalence (and thus with respect to all weaker 
equivalences). Every node also has associated with it all 
the information necessary to reactivate the stage it 
represents. The nodes of the displayed tree are thus also 
ideographs that allow the user to move around in the 
proof by retrieving any previous stage. 

5. T h e  I n t e r p r e t e r  

The last part of IDEOSY we describe is an environ- 
ment in which CCS expressions are interpreted in an 
operational sense, i.e. are considered as defining actual 
executing modules. The interpreter subsystem consists of 
two main components: a CCS interpreter and a user 
interface. The interpreter simulates the concurrent exe- 
cution of "processes" defined by CCS behavior expres- 
sions; in particular, it considers the composition operator 
of CCS as defining an execution environment in which 
communication channels are set up between 

complementary ports of processes. The user interface, 
based on the IDCCS graphical syntax, allows a user to 
interact (to "communicate") with the executing agents: 
the user is considered an observer, in the CCS sense, of 
the agents. In addition, the execution can be stopped at 
desired points and the "state" of the executing system 
can be displayed. 

Beside being a tool for executing CCS specifications 
in IDEOSY, the interpreter was designed and developed 
for the purpose of investigating possible implementations 
of any language based on a port-oriented communication 
scheme. For this reason, the interpreter is conceived as 
an "abstract machine" whose structure is defined by the 
data-structures used in the interpreter and whose 
machine language is defined as a (very small) set of basic 
operations in terms of which the whole interpreter is 
implemented. These basic operations, which essentially 
update entries in tables, can be summarized as follows. A 
communication between two processes is implemented by 
evaluating an expression (the one being sent), updating 
the local environment of the receiving process and, 
finally, updating the "instruction pointers" of the two 
processes. The CCS composition operator is interpreted 
as a "create-process" primitive which provokes the alloca- 
tion of new process descriptors. Private communication 
channels are allocated by the interpreter to implement 
the CCS restriction operator (an operator used to restrict 
the visibility of ports). 

The user can start the interpreter at almost any 
point within an IDEOSY session. It will interpret the 
current expression (roughly, the expression currently 
displayed). Usually, the current expression is a composi- 
tion of processes. The user at the "console" of the sys- 
tem is viewed as a process with two ports named user-in 
and user-out. The two ports can be used to communicate 
with the executing processes (i.e. to observe them). To 
do this, those processes that need to communicate with 
the user must have corresponding ports named user-in 
and user-out: 

user-in is used to input values from the user. 

user-out is used to output values to the user. 

On the screen, two fields identify the two ports, as in 
the picture below. 

The user-in and user-out actions are treated in an 
asymmetrical way by the interpreter. When a process 
tries to execute a user-in (user-out) action, the interpreter 
lets the user decide whether or not to "accept" the com- 
munication (communications are synchronized in CCS). 
A message appears on the user-in (user-out) field on the 
screen saying which process is trying to execute an input 
(output) action from (to) the user. At this point, the user 
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can provide a value (accept the value being output) or 
refuse the communication. In the second case, the action 
is put back in the corresponding queue in the action table 
and the execution proceeds with another action. 

The user thus can control the execution of processes 
by either providing (authorizing) or not providing (not 
authorizing) input (output) to (from) the processes. 
Another tool the user can use to control the execution is 
a special type of action called a checkpoint, represented in 
IDCCS syntax by a black rectangle, as in the expression 
below. 

A checkpoint is a signal for the interpreter that it 
must display the state of the system. Checkpoints are 
treated like any other action internally and inserted in a 
special entry always present in the action table. When 
the scheduler selects that entry (and when there is a 
checkpoint action in the corresponding queue) an IDCCS 
expression which represents the system at that moment is 
constructed and displayed. Checkpoints can be inserted 
in expressions anywhere an action is legal, so that the 
user can make the system stop and display its state at 
strategic instants (e.g., to check which alternative of an 
"or" has been selected in non-deterministic programs, 
right before a composition is executed to follow the crea- 
tion of processes, etc.). 

6. Conc lus ions  

IDEOSY has proved to be especially interesting to us 
because it combines topics of theoretical interest, e.g. the 
study of the formalisms used for the description of pro- 
grams, with topics of much more practical interest, e.g. 
the ergonomics of the user interface. An important test 
of IDEOSY will be its use in the development of a 
description of a large program. This test will be made as 
we continue the work started in [2], this time writing our 
description in IDCCS rather than CCS and taking advan- 
tage of the reasoning facilities provided by IDEOSY to 
help validate our work. As described in [2], we are inves- 
tigating extensions to the semantics of CCS. One of 
these led to the definition of a new formalism [4] based on 
CCS but slightly different from CCS in the meaning of 
ports. The new formalism is still based on the basic CCS 
notion of agents that communicate via ports, and its con- 
structs can be represented pictorially by the same syntax 
(IDCCS) developed for cCS: only the set of equational 
laws change, and with them the meanings of some of the 
ideographic constructs. 

Although we do not have space here for an extensive 
treatment of the principles on which the pictorial syntax 

of IDCCS is based, it should be observed that IDCCS 
expressions are designed to take advantage of the possi- 
bilities offered by high-resolution screens and fast graph- 
ics hardware {for example, it is time-consuming to draw 
them on paper by hand). IDCCS syntax is also designed 
to generate expressions which are self-explanatory and 
which keep a recognizable shape no matter how complex 
they become. 

The system we have described is the latest of several 
versions implemented over the past many months and is 
currently rather inefficient, due to the fact that it is 
implemented using a machine-independent graphics pack- 
age (SGP [5]) which does not take full advantage of the 
hardware we are using. 

We are developing several improvements for 
IDEOSY. One is to extend the interface so as to allow 
context-dependent operators. Another, which we are 
working on currently, is the extension of the flexibility of 
the user-interface, in particular with regard to the rule- 
definition language. Currently, the rules that can be 
inserted in the system can only define properties of 
binary operators. We are working on a generalization of 
an IDEOSY interface which will allow the definition of 
n-ary properties and will include the possibility of 
defining rules whose applicability depends on syntactical 
and semantic properties of expressions (e.g., names of 
ports, equality of expressions, etc.). The problem is syn- 
tactical and consists of finding a pictorial representation 
of indexed families of objects and conditions consistent 
with the rest of IDCCS and IDEOSY. 

Another development of a syntactical/pictorial 
nature on which we are also working is giving the user 
the ability to define derived operators, i.e. new operators 
defined in terms of the primitive ones of CCS. The pri- 
mary difficulty with this addition is finding a method by 
which the user may define and use new (non-trivial) ideo- 
graphs without having to resort to two-dimensional pars- 
ing. 

Other developments we are planning have to do with 
enhancing the capabilities of the system. These are in 
two main directions: (1) improvements to proof aiding 
and insertion of proof-checking capabilities in the 
environment, and (2) increased capabilities of the inter- 
preter and of the editor. We plan to give the user the 
capability of defining sequences of rule applications 
("strategies") possibly conditioned by the structure of 
expressions. This will make the user able to define, for 
example, "simplifiers" tailored on classes of expressions 
and will save the task of specifying every single step of 
expression transformations. A proof-checker will eventu- 
ally be built on top of the machinery currently available 
to a user and will have as its main functions: (1) 
automating the more tedious portions of proofs, (2) pro- 
viding independent verification of steps in manual proofs, 
and (3) "looking for" applicable strategies and proofs. 
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