
Credible Compilation with Pointers

Martin C. Rinard and Darko Marinov

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

frinard,marinovg@lcs.mit.edu

Abstract

This paper presents the formal foundations and architec-
tural design of a credible compiler, or a compiler that, in ad-
dition to a transformed program, produces a proof that the
transformed program correctly implements the original in-
put program. In our design, programs are represented using
a standard low-level intermediate form based on control-
ow
graphs. The compiler is structured as a set of components.
Each component performs a speci�c transformation and pro-
duces a proof that the transformation is correct. Typically,
the correctness proof will consist of two subproofs: a sub-
proof that the analysis of the input program produced a cor-
rect result, and a subproof that establishes a simulation re-
lation between the original and transformed programs. The
paper presents two logics, one for each kind of subproof, and
shows that the logics are sound.

A novel and important feature of our framework is its
simultaneous support for both formal reasoning and sophis-
ticated compiler transformations that deal with the program
and the target machine at a very low level. In particular,
our logics allow the compiler to prove the correctness of low-
level optimizations such as register allocation and instruc-
tion scheduling even in the presence of potentially aliased
pointers into the memory of the machine.

1 Introduction

Today, compilers are black boxes. The programmer gives
the compiler a program, and the compiler spits out an in-
scrutable bunch of bits. Until the programmer runs the
program, he or she has no idea if the compiler has compiled
the program correctly. Even running the program o�ers no
guarantees | compiler errors may show up only for certain
inputs. So the programmer must simply trust the compiler.

We propose instead to build a compiler that automat-
ically generates a proof that it compiled the program cor-
rectly. The compiler is structured as a set of components;
each component transforms the program to bring it closer
to the �nal compiled result. Whenever a component runs,
it generates a proof that the transformed program produces

the same result as the program that it was given. A com-
piler driver links these components together to obtain the
full compiler. After each transformation, the driver uses a
simple automated proof checker to verify that the transfor-
mation preserved the semantics of the program. We call
a compiler that generates these proofs a credible compiler,
because it produces veri�able evidence that it is operating
correctly.

This paper presents the formal foundations and architec-
tural design of a credible compiler for standard imperative
languages such as C. It de�nes a standard program repre-
sentation that the di�erent components can use to commu-
nicate, and introduces logics that the components can use to
prove the correctness of their analysis results and transfor-
mations. A novel and important feature of our framework
is its simultaneous support for both formal reasoning and
sophisticated compiler transformations that deal with the
program and the target machine at a very low level. In par-
ticular, our logics allow the compiler to prove the correct-
ness of low-level optimizations such as register allocation
and instruction scheduling even in the presence of poten-
tially aliased pointers into the memory of the machine.

This low-level support is required if the compiler is to
generate good code for languages with low-level constructs
such as C pointers. But we believe that it is essential even
for more disciplined languages such as ML and Java. Even
though these languages provide a safe, restricted memory
model at the source level, standard compiler optimizations
such as induction variable elimination produce code that ac-
cesses memory directly in an unstructured way. So compil-
ers for these languages must deal with a low-level memory
model, even if the language presents a high level memory
model to the programmer.

2 Compiler Development Problems

At �rst glance, it may seem that credible compilation is de-
signed to solve the problem of unreliable compilers. But
the fact is that production-quality compilers are very reli-
able. They very infrequently generate incorrect code, and
are some of the most reliable software tools available. This
reliability is understandable given the consequences of an in-
correct compilation. Because the output is unreadable, fail-
ures are silent | in practice, the programmer can recognize
a failed compilation only by observing an incorrect program
execution. Because a programmer developing a program is
typically struggling with his or her own programming errors,
compiler errors can make it almost impossible to debug the
program | every time the program executes incorrectly, the

programmer must contend with the possibility that the er-
ror is not in his or her program at all! Programmers who
encounter one of the relatively few errors in existing com-
pilers have been known to spend days trying to isolate the
cause of a single incorrect execution.

The real problem is the large development time and e�ort
required to deliver a compiler with the necessary extreme
level of reliability. The result is that production-quality
compilers are almost always many years old and close to ob-
solete. They fail to incorporate the results of recent research
and typically support only old versions of old languages.
Consider, for example, the lag time for the development of
Java compilers. Even though the language de�nition and
interpreters have been widely available for years, reasonable
compilers are only now starting to become available. And
the quality of the generated code is far below that of ma-
ture compilers for previous-generation languages such as C,
even though the mature compilers do not use recently devel-
oped compiler techniques that would signi�cantly increase
the performance of the generated code.

The di�culty of compiler development has also signi�-
cantly limited progress in computer architecture. The latest
Intel microprocessors are still built to execute code gener-
ated by compilers that are many years old, even though it is
clear that the combination of an advanced VLIW architec-
ture and sophisticated compiler would both perform better
and use less silicon area. In fact, architects have produced
technically superior microprocessors such as the Intel i860
only to see them fail in the marketplace because of a lack of
compiler support. More recently, the Intel IA-64 is report-
edly delayed, in part, because of the di�culty of developing
an e�ective compiler for the architecture. Finally, the lack
of e�ective compiler support for advanced architectural fea-
tures such as the Intel MMX also limits the ability of the
computer industry to deliver the bene�ts of advanced hard-
ware.

3 Impact

Credible compilation can fundamentally change the way com-
pilers are built. This change will eliminate many of the
problems that make production-quality compilers lag so far
behind other kinds of software. Here is why:

� Buggier Compilers: A credible compiler
ags its
errors immediately, even before the program �nishes
compiling. Because the compiler fails noisily, compiler
errors do not interfere with the process of debugging
the application | they are cleanly separated from er-
rors in the application. Programmers can therefore
use much less reliable compilers without signi�cantly
complicating the development of the application pro-
grams.

Compiler developers will respond by reducing the re-
liability of their compilers in return for a faster devel-
opment cycle. Compilers will be released much sooner
and with much less testing than would otherwise be
possible, and the frequency of new releases will be
signi�cantly increased. Developers will also be much
more aggressive in their modi�cations to existing com-
pilers. Shipped compilers will therefore track advances
in languages, compiler technology, and computer archi-
tecture much more closely than they do now.

� Open Source Development: Before a developer can
safely integrate a component into a compiler, there

must be some evidence that the component will work.
But there is currently no way to verify the correct-
ness of compiler components. Developers are therefore
typically reduced to relying on the reputation of the
person that produced the component, rather than on
the trustworthiness of the code itself. In practice, this
means that the entire compiler is typically built by a
small, cohesive group of people in a single organization.
The compiler is closed in the sense that these people
must coordinate any contribution to the compiler.

Credible compilation eliminates the need for develop-
ers to trust each other. Anyone can take any com-
ponent, integrate into their compiler, and use it. If a
component operates incorrectly, it is immediately ap-
parent, and the compiler can discard the transforma-
tion. There is no need to trust anyone. The compiler
is now open and anyone can contribute. Instead of re-
lying on a small group of people in one organization,
the e�ort, energy, and intelligence of every compiler
developer in the world can be productively applied to
the development of one compiler.

� Compiler Development: Credible compilation will
make it easier to develop the compiler | errors will
be immediately visible because the purported correct-
ness proof will not check out. The result will be faster
development of an acceptably correct compiler.

4 Example

In this section we present an example that shows how a cred-
ible compiler can prove that it performed a translation cor-
rectly. Figure 1 presents the example program represented
as a control
ow graph. The program contains several as-
signment nodes; for example the node 5 : i i+ x+ y at
label 5 assigns the value of the expression i + x + y to the
variable i and the node 6 : �p 2 � i at label 6 assigns the
value of the expression 2 � i to the variable pointed to by
p. There is also a conditional branch node 4 : br i < 24 .
Control
ows from this node through its outgoing left edge
to the assignment node at label 5 if i < 24, otherwise control

ows through the right edge to the exit node at label 7.

Figure 1: Original Pro-
gram

Figure 2: Program After
Pointer Elimination

Figure 2 presents the program after pointer elimination.
The compiler has replaced the node 6 : �p 2 � i at label

6 with the node 6 : g 2 � i . The goal is to prove that
this particular transformation on this particular program
preserves the semantics of the original program. The goal
is not to prove that the compiler will always transform an
arbitrary program correctly.

To perform this optimization, the compiler did two things:

� Analysis: The compiler determined that p always
points to g at the program point before node 6 exe-
cutes.

� Transformation: The compiler used the analysis in-
formation to transform the program so that it gener-
ates the same result while (hopefully) executing in less
time or space or consuming less power. In our exam-
ple, the compiler replaces �p with g.1

Our approach to proving optimizations correct supports
this basic two-step structure. The compiler �rst proves that
the analysis is correct, then uses the analysis results to prove
that the original and transformed programs generate the
same result. Here is how this approach works in our exam-
ple.

4.1 Proving Analysis Results Correct

In our approach, the compiler uses a generalization of Floyd-
Hoare logic to prove analysis results correct [4, 2].

In our example, the key invariant is that at the point
just before the program executes node 6, it is always true
that p = &g. We represent this invariant as hp = &gi6.
Section 5.3 presents a logic that the compiler can use to
prove such invariants. In e�ect, this logic allows the compiler
to construct proofs by induction on the length of the partial
executions of the program.

The simplest way for the compiler to generate a proof
of hp = &gi6 is for it to generate a set of invariants that
represent the analysis results, then use the logic to prove
that all of the invariants hold. In our example, the compiler
generates the set of invariants that p points to g at every
point in the program except 0.

Conceptually, the compiler proves this set of invariants
by tracing execution paths. The proof is by induction on the
structure of the partial executions of the program. For each
invariant, the compiler �rst assumes that the invariants at
all preceding nodes in the control
ow graph are true. It then
traces the execution through each preceding node to verify
the invariant at the next node. We next present an outline
of the proofs for several key invariants. The compiler can
use the logic presented in Section 5.3 to produce machine-
veri�able versions of these proofs.

� hp = &gi1 because the only preceding node, node 0,
sets p to &g.

� To prove hp = &gi3, �rst assume hp = &gi2. The only
way for control to reach node 3 is from node 2 and node
2 does not change the value of p. Therefore hp = &gi3.

� To prove hp = &gi4, assume hp = &gi3 and hp = &gi6.
Then consider the two preceding nodes, nodes 3 and
6. Because hp = &gi3 and node 3 does not a�ect the
value of p, hp = &gi4. Also, hp = &gi6 so p 6= &p at
node 6, i.e. p does not point to itself, and node 6
cannot change the value of p. Therefore hp = &gi4.

1In the example, we also eliminate the assignment of &g to p at
node 0. In practice, this transformation would be performed by the
dead assignment elimination transformation discussed in Section 7.2.

In this proof we have assumed that the compiler gener-
ates an invariant at almost all of the nodes in the program.
More traditional approaches use fewer invariants, typically
one invariant per loop, then produce proofs that trace paths
consisting of multiple nodes. The logic presented in Sec-
tion 5.3 supports both styles of proofs.

4.2 Proving Transformations Correct

When a compiler transforms a program, there are typically
some externally observable e�ects that it must preserve.
A standard requirement, for example, is that the compiler
must preserve the input/output relation of the program. In
our framework, we assume that the compiler is operating on
a compilation unit such as procedure or method, and that
there are externally observable variables such as global vari-
ables or object instance variables. The compiler must pre-
serve the �nal values of these variables. All other variables
are either parameters or local variables, and the compiler
is free to do whatever it wants to with these variables so
long as it preserves the �nal values of the observable vari-
ables. The compiler may also assume that the initial values
of the observable variables and the parameters are the same
in both cases.

In our example, the only requirement is that the trans-
formation must preserve the �nal value of the global variable
g. The compiler proves this property by proving a simula-
tion correspondence between the original and transformed
programs. To present the correspondence, we must be able
to refer, in the same context, to variables and node labels
from the two programs. We adopt the convention that all
entities from the original program P will have a subscript
of P , while all entities from the transformed program T will
have a subscript of T . So iP refers to the variable i in the
original program, while iT refers to the variable i in the
transformed program.

In our example, the compiler proves that the transformed
program implements the original program in the following
sense: for every execution of the transformed program T
that reaches the �nal node 7T , there exists an execution of
the original program P that reaches the �nal node 7P such
that (gP at 7P) = (gT at 7T). We call such a correspondence
a simulation invariant, and write it as hgP i7P � hgT i7T . In
Section 5.4 we present a logic that the compiler can use to
prove simulation invariants.

The compiler typically generates a set of simulation in-
variants, then uses the logic to construct a proof of the cor-
rectness of all of the simulation invariants. The proof is by
induction on the length of the partial executions of the orig-
inal program. We next outline how the compiler can use
this approach to prove hgP i7P � hgT i7T . First, the compiler
is given that hgP i0P � hgT i0T | in other words, the values
of gP and gT are the same at the start of the two programs.
The compiler then generates the following simulation invari-
ants:

� hgP i1P � hgT i1T

� h(gP ; iP)i2P � h(gT ; iT)i2T

� h(gP ; iP ; xP)i3P � h(gT ; iT ; xT)i3T

� h(gP ; iP ; xP ; yP)i4P � h(gT ; iT ; xT ; yT)i4T

� h(gP ; iP ; xP ; yP)i5P � h(gT ; iT ; xT ; yT)i5T

� h(gP ; iP ; xP ; yP)i6P � h(gT ; iT ; xT ; yT)i6T

� hgP i7P � hgT i7T

The key invariants are hgP i7P � hgT i7T at the end of
the program, h(gP ; iP ; xP ; yP)i6P � h(gT ; iT ; xT ; yT)i6T and
h(gP ; iP ; xP ; yP)i4P � h(gT ; iT ; xT ; yT)i4T . We next outline
the proofs of these invariants. The compiler can use the
logic presented in Section 5.4 to produce machine-veri�able
versions of these proofs. The proof relies on the property
that since pP points to gP , �pP = gP at 6P .

� To prove h(gP ; iP ; xP ; yP)i4P�h(gT ; iT ; xT ; yT)i4T , �rst
assume h(gP ; iP ; xP ; yP)i6P � h(gT ; iT ; xT ; yT)i6T and
h(gP ; iP ; xP)i3P�h(gT ; iT ; xT)i3T . There are two paths
to 4T :

{ Control
ows from 6T to 4T , with (gT at 4T) =
(2 � iT at 6T). The corresponding path in P
is from 6P to 4P , with (�pP at 4P) = (2 � iP
at 6P). The analysis proofs showed that (pP at
6P) = &g, so (�pP at 6P) = (gP at 6P). The as-
sumed simulation invariant h(gP ; iP ; xP ; yP)i6P�
h(gT ; iT ; xT ; yT)i6T allows us derive (2�iP at 6P) =
(2 � iT at 6T) and hence verify a correspondence
between the values of (gP at 4P) and (gT at 4P);
namely that they are equal. Because 6P does not
change iP , xP , or yP and 6T does not change iT ,
xT , or yT , corresponding variables at 4P and 4T
also have the same value.

{ Control
ows from 3T to 4T . The corresponding
path in P is from 3P to 4P , so we can apply the
assumed simulation invariant h(gP ; iP ; xP)i3P �
h(gT ; iT ; xT)i3T to derive (gP at 4P) = (gT at
4T), (iP at 4P) = (iT at 4T), and (xP at 4P) =
(xT at 4T). Also, nodes 3P and 3T set the vari-
ables yP and yT , respectively, to the same value,
namely 2, and so (yP at 4P) = (yT at 4T).

� To prove h(gP ; iP ; xP ; yP)i6P�h(gT ; iT ; xT ; yT)i6T , as-
sume h(gP ; iP ; xP ; yP)i5P � h(gT ; iT ; xT ; yT)i5T . The
only path to 6T goes from 5T , with (iT at 6T) = (iT
at 5T) + (xT at 5T) + (yT at 5T). The corresponding
path in P goes from 5P to 6P , with (iP at 6P) = (iP
at 5P) + (xP at 5P) + (yP at 5P). We can apply the
assumed h(gP ; iP ; xP ; yP)i5P � h(gT ; iT ; xT ; yT)i5T to
derive (iP at 5P) + (xP at 5P) + (yP at 5P) = (iT at
5T) + (xT at 5T) + (yT at 5T), and therefore (iP at
6P) = (iT at 6T). Since 5P does not change gP , xP ,
or yP and 5T does not change gT , xT , or yT we can
derive (gP at 6P) = (gT at 6T), (xP at 6P) = (xT at
6T) and (yP at 6P) = (yT at 6T).

� To prove hgP i7P�hgT i7T , �rst assume that simulation
invariant h(gP ; iP ; xP ; yP)i4P�h(gT ; iT ; xT ; yT)i4T holds.
For each path to 7T in T , we must �nd a correspond-
ing path in P to 7P such that the values of gP and
gT are the same in both paths. The only path to 7T
goes from 4T to 7T when iT � 24. The corresponding
path in P goes from 4P to 7P when iP � 24. Be-
cause h(gP ; iP ; xP ; yP)i4P � h(gT ; iT ; xT ; yT)i4T , con-
trol
ows from 4P to 7P whenever control
ows from
4T to 7T . The simulation invariant h(gP ; iP ; xP ; yP)i4P�
h(gT ; iT ; xT ; yT)i4T also implies that the values of gP
and gT are the same in both cases.

5 Logical Foundations

In this section we present the logical foundations of credible
compilation. We formally de�ne a program representation

based on control
ow graphs and de�ne an operational se-
mantics for this representation. We present the logic used to
prove standard invariants and show that this logic is sound.
We also present the logic used to prove simulation invariants
and show that this logic is sound.

5.1 Program Representation

In this section we de�ne a simple standard program repre-
sentation based on control
ow graphs. We use it to present
the major ideas and concepts in the remainder of the paper.
We expect that a practical implementation would require a
more elaborate representation, although the representation
would be quite similar to the one we present here. One
additional issue is that some components may need to op-
erate on program representations that are specialized for
the speci�c analysis and transformation. These components
would contain translators between the standard and special-
ized representations.

We start with expressions e and conditions c. For sim-
plicity we assume the program computes on integer values;
we denote the set of integers by z 2 Z. We also assume a set
of variables V with addresses chosen from a set of locations
L � Z.

We use C-style syntax &v to denote the address of vari-
able v 2 V . The expression v denotes the value of v, i.e.

v
def
= �&v, the value at the address &v. Similarly, �e stands

for the value stored at memory location e. Note that we use
variables in two di�erent ways, depending on the context. In
the expression &v, v identi�es the memory location whose
address is taken. In all other expressions, v denotes the
value stored at that location. The correct meaning should
be clear from the context.

The abstract syntax in Figure 3 de�nes the set of ex-
pressions e. �, � and � represent, respectively, arithmetical,
relational and logical operators, and � ranges over all binary
operators used.

e ::= zj&vjvje�ej � ej � ejtruejfalseje�eje�ej:e

� ::= +j � j � j=j% � ::== j 6= j > j � j < j �
� ::= ^j _ j) j , � ::= �j�j�

Figure 3: Grammar for Expressions

In some cases, we interpret an expression e as a condition
c whose value is true or false. We adopt the C convention
that a condition is true if its value is not zero, and false if
its value is zero. In the expression grammar above, true is
1 and false is 0.

Each control
ow graph is composed of a set of nodes.
Each node has its own label; these labels are used to deter-
mine the
ow of control between nodes. Each node is one of
the following types:

� Assignment: An assignment node s : w e t has
its label s, left hand side w, an expression e and a la-
bel t. The left hand side w can be either a variable v
or an expression �e0, where e0 evaluates to a memory
location. The notation &w denotes the syntactic elim-
ination of one level of dereferencing. If w � v, then
&w is de�ned to be &v; if w � �e0, then &w is de�ned
to be e0. Here � denotes syntactic equivalence. When
the assignment node executes, it evaluates &w and e
and stores the value of e in the memory location &w.
Execution continues at the node whose label is t.

� Conditional Branch: A conditional branch node s :
br c t1 t2 has its label s, a condition c and two labels
t1 and t2. When the node executes, it evaluates c. If c
is true, execution continues at the node whose label is
t1. Otherwise, execution continues at the node whose
label is t2.

� Nop: A nop node s : nop t has its label s and another
label t. When the node executes, execution continues
at the node whose label is t.

� Exit: The exit node sx : exit is the last node in the
graph.

There is a unique entry node with label s0 and a unique exit
node with label sx. We require that there be a path from
the entry node to the exit node, and that no two distinct
nodes have the same label.

We use the notation that s : w e t is true if there
exists an assignment node with label s, left hand side w,
expression e and label t in the control
ow graph, and false
otherwise. Also, s : br c t1 t2 is true if there is a conditional
branch node in the control
ow graph with label s, condition
c, and labels t1 and t2 in the program, and false otherwise,
and similarly for nop and exit nodes. We use this notation
to de�ne the set of predecessors of a node in the control
ow
graph:

De�nition 1 Given a label t, the set of predecessors of t
is the set of all labels of nodes from which control may
ow
directly to t:

pred(t) = fsjs : w e tg [fsjs : nop tg [

fsjs : br c t t0g [fsjs : br c t0 tg

We require that the entry node s0 have no predecessors, i.e.,
pred(s0) = ;. Also note that the exit node has no successors,
i.e. for all s, sx 62 pred(s).

5.2 Operational Semantics

We next present a simple operational semantics for control

ow graphs. The semantics uses con�gurations hs;mi, which
consist of the label s of the next node to execute and a
memory m : L ! Z that maps memory locations to their
values.

The environment function a : V ! L maps variables to
the addresses in memory where their values are stored. We
impose two restrictions on this function. First, for all v,
a(v) 6= 0, i.e., none of the variables is mapped to location
0.2 Second, we require the environment function a to be
injective, i.e., di�erent variables are stored in di�erent loca-
tions. This requirement ensures that &v1 = &v2 if and only
if v1 and v2 are syntactically equal, i.e., v1 � v2.

Given an expression e and a memory m, m(e) denotes
the value of e when evaluated in the context of the memory
m. The rules in Figure 4 de�ne the expression evaluation
function m(e). We assume that the expression �e always
evaluates to a valid value, i.e. m(e) 2 L.

The operational semantics is de�ned using a transition
function! which maps each con�guration hs;mi to its suc-
cessor con�guration hs0;m0i. The successor con�guration is
obtained by executing the node at label s in the context of

2To make the
ow-insensitive pointer analyses in Section 6.3.1 pro-
duce meaningful results, location 0 must have the special behavior
that reading from location 0 always gives 0, while writing to location
0 does not change the memory.

m(&v) = a(v)
m(& � e) = m(e)
m(v) = m(a(v))
m(�e) = m(m(e))

m(z) = z
m(true) = true
m(false) = false
m(�e) = �m(e)
m(:e) = :m(e)

m(e1�e2) = m(e1)�m(e2)

Figure 4: Evaluating Expressions in Memory m

memorym. Figure 5 presents the rules that de�ne the tran-
sition function. We assume two disjoint sets of variables:
local variables and externally observable variables. In the
initial memory m0, local variables have value 0 and observ-
able variables have arbitrary values. The initial value of
variable v is denoted v0, i.e. m0(&v) = v0.

s : w e t;m(&w) 6= 0
hs;mi ! ht;m[m(&w) 7! m(e)]i

s : w e t;m(&w) = 0
hs;mi ! ht;mi

s : nop t
hs;mi ! ht;mi

s : br c t1 t2;m(c)
hs;mi ! ht1;mi

s : br c t1 t2;:m(c)
hs;mi ! ht2;mi

Figure 5: Operational Semantics

We use the operational semantics to de�ne the concept
of a partial execution of a control
ow graph. A partial
execution starts at the entry node in the graph, and executes
part of the computation.

De�nition 2 A partial execution of a control
ow graph is
a sequence of con�gurations hs0;m0i ! � � � ! hsn;mni in
which each con�guration hsi+1;mi+1i is the successor of the
preceding con�guration hsi;mii in the sequence.

5.3 Standard Invariants

We next present the logic that the compiler uses to prove
that its analysis results are correct. The logic consists of a
set of proof rules; these rules are a version of Floyd-Hoare
proof rules adapted for control
ow graphs. The rules oper-
ate on several types of invariants:

� hiis: the condition i is always true at the program
point before the execution of the node whose label is
s.

� shiit: the condition i is always true at the program
point before the execution of the node whose label is
t, if control
owed directly to t from s.

� hiis � t: the condition i is always true at the program
point before the execution of the node whose label is
s, if control will
ow next to t.

The proof rules assume a set I of invariants; we require
that invariants of the form shiit or hiis � t do not appear
in I. We also assume the existence of a logic for proving
standard relationships between integers such as z < z + 1
and x < 4 ^ y < 3) x+ y < 7.

5.3.1 Substitution in the Presence of Pointers

In standard proof systems for reasoning about programs,
the inference rule for assignment statements uses a simple
substitution. If our programs did not contain pointers, the
proof rules would model assignment statements by simply
replacing the variable on the left hand side of the assignment
with the expression on the right hand side.

This approach fails in the presence of pointers because
of the possibility of aliasing. We therefore de�ne a general-
ization of substitution which may produce multiple results.
Each result is conditioned on an aliasing context that charac-
terizes the relevant aliasing relationships. The substitution
relation ife=wgjc

:
= i0 states that when w is replaced by e in

the invariant i, the result is a new invariant i0 if the set of
aliasing relationships in the condition c hold. The aliasing
relationships in c are expressed using points-to conditions of
the form p = &x, which states that p must point to x for
the substitution result to be valid. Conversely, the condition
p 6= &x states that p must not point to x for the result to be
valid. Figure 6 presents the inference rules that de�ne the
substitution relation. The relation is de�ned inductively on
the structure of expressions.

The main rules are 9, 10 and 11. The �rst two are rules
for substitution if the points-to condition is satis�ed in an
aliasing context and conversely if it is not satis�ed. Rule 11
is used for case analysis, which allows results from di�erent
aliasing contexts to be combined in a single expression that
lists the result for each context. We call this new kind of
expression a partial conditioned expression. The grammar
for partial conditioned expressions is:

l ::= c?ejl; l

Note that the conditions in a partial conditioned expression
may not cover all of the possible cases, i.e. for c1?e1; : : : ; cn?en,
c1 _ : : : _ cn may not be equivalent to true. We de�ne the
value of a partial conditioned expression in memory m as:

m(c?e)=

�
m(e) : m(c)
? : otherwise

m(l1; l2)=

�
m(l1) : m(l1) 6= ?
m(l2) : m(l1) = ?

where ? represents unde�ned value. Partial conditioned
expressions are generated by substitution rules, and do not
appear in assignment nodes in the program. We also do
not allow partial conditioned expressions to be used in the
invariants and aliasing contexts. Rules 12 and 13 de�ne the
substitution relation for partial conditioned expressions. We
also de�ne notation for the common case of a two-element
list with inverted conditions:

c?e1 : e2
def
= c?e1;:c?e2

Binary operators distribute over the cases in partial con-
ditioned expressions:

(c?e0)�e=c?(e0�e)
(l1; l2)�e=(l1�e); (l2�e)

In this section, we presented the basic substitution rules.
Section 6.1 presents several derived rules, which are cus-
tomized for speci�c cases of w (which is of one of two forms:
v or �e) and the aliasing condition (which either holds or
does not hold). These derived rules are clearer and enable
shorter substitution proofs.

zfe=wgjc
:
= z (1)

truefe=wgjc
:
= true (2)

falsefe=wgjc
:
= false (3)

&vfe=wgjc
:
= &v (4)

e1fe=wgjc
:
= e0

1

�e1fe=wgjc
:
= �e0

1 (5)

e1fe=wgjc
:
= e0

1

:e1fe=wgjc
:
= :e0

1 (6)

e1fe=wgjc
:
= e0

1; e2fe=wgjc
:
= e0

2

e1�e2fe=wgjc
:
= e0

1�e
0

2 (7)

�&vfe=wgjc
:
= e0

1

vfe=wgjc
:
= e0

1 (8)

e1fe=wgjc
:
= e0

1; c) (e0

1 = &w ^ e0

1 6= 0)
�e1fe=wgjc

:
= e (9)

e1fe=wgjc
:
= e0

1; c) (e0

1 6= &w _ e0

1 = 0)
�e1fe=wgjc

:
=�e0

1 (10)

e0fe=wgjc1
:
= e1; e

0fe=wgjc2
:
= e2

e0fe=wgjc1 _ c2
:
= c1?e1; c2?e2 (11)

c1fe=wgjc
:
= c0

1; e1fe=wgjc
:
= e0

1

c1?e1fe=wgjc
:
= c0

1?e
0

1 (12)

l1fe=wgjc
:
= l01; l2fe=wgjc

:
= l02

l1; l2fe=wgjc
:
= l01; l

0

2 (13)

Figure 6: Proof Rules for Substitution

5.3.2 Proof Rules for Standard Invariants

Figure 7 presents the proof rules for standard invariants. Be-
cause the proof rules work with control
ow graphs instead
of structured programs, they propagate expressions across
edges in the graph instead of through structured control

ow statements.

5.3.3 Aliasing Invariants

In general, the correctness of code transformations may de-
pend on the aliasing relationships at various points in the
program. The compiler must therefore prove that its pointer

pred(t) 6= ;; 8s 2 pred(t): I ` shiit
I ` hiit (14)

s : nop t; I ` hiis � t
I ` shiit (15)

s : w e t; ife=wgjc
:
= i0;

I ` hcis � t; I ` hi0is � t
I ` shiit (16)

s : br c t1 t2; I ` hc) iis � t1
I ` shiit1 (17)

s : br c t1 t2; I ` h:c) iis � t2
I ` shiit2 (18)

I ` hiis
I ` hiis � t (19)

hi0is 2 I; i0) i
I ` hiis � t (20)

i
I ` hiis (21)

Figure 7: Proof Rules for Standard Invariants

analysis results are correct if it is to prove that the transfor-
mation is correct.

To prove that the pointer analysis results are correct, the
compiler �rst generates invariants that represent the pointer
analysis results. For example, an invariant of the form p =
&x states that p must point to x, while an invariant of the
form p = &x _ p = &y states that p must point to either x
or y. Similarly, p = &x ^ q = &y states that p must point
to x and q must point to y. Aliasing invariants, as well as
the other invariants, can be arbitrary expressions as long
as they do not include partial conditioned expressions. The
compiler then uses the proof rules in Figure 7 to prove that
these invariants are correct.

There are many research results that deal with proving
properties of programs that use pointers. The basic idea of
our approach is similar to that of Morris [7]. The di�erence
in that our logic allows the compiler to generate proofs only
for those aliasing contexts that actually hold in the program.
This property reduces the size of the proofs that the compiler
must generate.

5.3.4 Soundness of Proof Rules for Substitution

We next show that the proof rules for substitution in Fig-
ure 6 are sound. More precisely, we show that if c holds
before the assignment statement w e and ife=wgjc

:
= i0,

then i0 has the same value before the statement as i does
after. The proof is omitted for brevity of presentation.

Theorem 1 Assume a proof of ife=wgjc
:
= i0 and a partial

execution hs0;m0i ! � � � ! hs;m
0i ! ht;mi such that s :

w e t. Then m0(c) is true implies m0(i0) = m(i).

5.3.5 Soundness of Proof Rules for Standard Invariants

We next present a key soundness theorem: that if there
exists a proof of all of the invariants in I, then the invariants

correctly re
ect the relationships during the execution of the
program. We state a lemma used in the theorem and the
theorem itself without proofs.

Lemma 1 Assume for all hi1is1 2 I, I ` hi1is1. Also as-
sume a proof of I ` hiis�t and a partial execution hs0;m0i !
� � � ! hs;mi such that I ` hi0is implies m(i0) is true. Then
m(i) is true.

Theorem 2 Assume for all standard invariants hiis 2 I,
I ` hiis. Then I ` hiit and hs0; m0i ! � � � ! ht;mi implies
m(i) is true.

5.4 Simulation Invariants

We next present the logic that the compiler uses to prove
simulation invariants between two programs P and T . For
purposes of presentation, we adopt the convention that P
is the original program and T is the transformed program,
although of course the logic imposes no constraint on the
origin of the two programs. We assume that P and T are
two disjoint control
ow graphs with entry nodes sP0 and sT0
and initial memories mP

0 and mT
0 , respectively.

We also assume sets of memory locations correspond-
ing to externally observable variables foP1 ; : : : ; o

P
n g of P and

foT1 ; : : : ; o
T
ng of T . Corresponding variables have the same

values at the start of the program | i.e., mP
0 (o

P
i) = mT

0 (o
T
i)

for 1 � i � n. We require the data layout of the observable
variables to be the same in both programs. More precisely,
we de�ne a(oPi) = a(oTi) for 1 � i � n.

Simulation invariants consist of two partial simulation
invariants that together express a simulation relationship
between the partial executions of the programs. For exam-
ple, hc1; e1is1 � hc2; e2is2 is true if for all partial executions
of T that reach s2 with the condition c2 true, there exists a
partial execution of P that reaches s1 with c1 true such that
e1 = e2. Like the logic for standard invariants presented in
Section 5.3, the logic for simulation invariants uses multiple
labels to express how the
ow of control a�ects relationships
between the two programs.

De�nition 3 A partial simulation invariant p has the form
hc; eit, shc; eit or hc; eis � t, where c is a condition and e is
an expression.

We adopt the convention that a partial simulation invari-
ant of the form heit, sheit, or heis � t denotes, respectively,
htrue; eit, shtrue; eit, or htrue; eis � t.

De�nition 4 A simulation invariant has the form p1 � p2,
where p1 and p2 are partial simulation invariants.

Figures 8, 9, and 10 present the proof rules. Each proof
propagates the partial simulation invariants against the
ow
of control through the two programs. Eventually, the partial
simulation invariants reach program points where it is pos-
sible to terminate the proof by applying rule 22 or rule 23.
The rules in Figure 9 propagate the partial simulation in-
variant from the original program; the rules in Figure 10
propagate the partial simulation invariant from the trans-
formed program.

The proof rules all refer to a set I of invariants. In gen-
eral, this set will contain both standard invariants of the
form hcis and simulation invariants of the form hc1; e1is1 �
hc2; e2is2. We require that it does not contain simulation in-
variants whose partial simulation invariants are of the form
shc; eit or hc; eis � t.

The proof rules illustrate a key di�erence between the
treatment of the original and transformed programs. Rule 29
requires that the simulation invariant hold on all paths in
the transformed program. Rule 24 requires only that the
simulation invariant hold on one path in the original pro-
gram. This di�erence re
ects the asymmetry in the implicit
quanti�ers of the simulation invariant, which is true if for all
paths in the transformed program, there exists a path in the
original program that satis�es the appropriate conditions.

5.4.1 The Simulation Condition

To prove that the transformed program implements the orig-
inal program, the compiler generates a set of invariants I
and a proof of each invariant. We require one of the invari-
ants to state that the transformed program preserves the
values of the externally observable variables. We formalize
this concept as follows:

De�nition 5 A transformed program T implements an orig-
inal program P if there exists a set of invariants I such that

� for all standard invariants hiis 2 I, I ` hiis,

� for all simulation invariants hc1; e1is1� hc2; e2is2 2 I,
I ` hc1; e1is1 � hc2; e2is2, and

� simulation invariant h(oP1 ; : : : ; o
P
n)is

P
x�h(o

T
1 ; : : : ; o

T
n)is

T
x

2 I, where foP1 ; : : : ; o
P
n g and foT1 ; : : : ; o

T
ng are sets of

corresponding externally observable variables, sPx is the
exit node in P , and sTx is the exit node in T .

5.4.2 Standard Form Proofs of Simulation Invariants

We next introduce the concept of a standard form for proofs
of simulation invariants. This standard form simpli�es the
presentation of the soundness proofs. We also expect the
compiler to generate proofs in standard form, although there
is of course no requirement that it do so.

A standard form proof has the following structure. Each
leaf in the proof tree is a use of rule 22 or 23. Along each
path in the proof tree from the leaves towards the root, the
proof �rst uses rules 24 through 28 to propagate the partial
simulation invariant from the original program through the
program. Note that in this phase of the proof tree, each rule
use has exactly one child. Next, uses of rules 29 through 35
appear on the path. These uses propagate the partial simu-
lation invariant from the transformed program T . Because
the proof must verify the simulation invariant for all paths
in the transformed program, uses of rule 29 will have one
child for each predecessor of the corresponding node in the
control
ow graph.

De�nition 6 A proof of a simulation invariant is in stan-
dard form if all uses of rules 24 through 28 precede all uses
of rules 29 through 35.

Theorem 3 If I ` p1 � p2, then there exists a proof of
I ` p1 � p2 that is in standard form.

5.4.3 Soundness of Proof Rules for Simulation Invariants

We next show that the proof rules for simulation invariants
are sound. We �rst state two lemmas, then the theorem.

Lemma 2 Assume that for all hiis 2 I, I ` hiis and for all
hc1; e1is1�hc2; e2is2 2 I, I ` hc1; e1is1� hc2; e2is2. Assume
a standard form proof of I ` hc1; e1is1�p, whose last rule is

one of 22, 23 or 29, and p = hc2; e2is2 or p = hc2; e2is2 � t.
Also assume a partial execution hsT0 ;m

T
0 i ! � � � ! hs2; m2i

such that m2(c2) is true. If p = hc2; e2is2�t, also assume that
I ` hc; eis � hc0; e0is2 and m2(c

0) is true implies that there

exists a partial execution hsP0 ; m
P
0 i ! � � � ! hs;mi such that

m(c) is true and m(e) = m2(e
0). Then there exists a partial

execution hsP0 ; m
P
0 i ! � � � ! hs1;m1i such that m1(c1) is

true and m1(e1) = m2(e2).

Lemma 3 Assume that for all hiis 2 I, I ` hiis and for
all hc1; e1is1 � hc2; e2is2 2 I, I ` hc1; e1is1 � hc2; e2is2. As-
sume a standard form proof of I ` hc1; e1is1 � hc2; e2is2 � t,
and a partial execution hsT0 ;m

T
0 i ! � � � ! hs2;m2i such

that m2(c2) is true. Also assume that I ` hc; eis� hc0; e0is2
and m2(c

0) is true implies that there exists a partial exe-

cution hsP0 ;m
P
0 i ! � � � ! hs;mi such that m(c) is true

and m(e0) = m2(e). Then there exists a partial execution

hsP0 ;m
P
0 i ! � � � ! hs1;m1i such that m1(c1) is true and

m1(e1) = m2(e2).

Theorem 4 Assume that for all hiis 2 I, I ` hiis and for
all hc1; e1is1�hc2; e2is2 2 I, I ` hc1; e1is1�hc2; e2is2. Then
for all standard form proofs of I ` hc1; e1is1 � hc2; e2is2
and for all partial executions hsT0 ;m

T
0 i ! � � � ! hs2; m2i

such that m2(c2) is true, there exists a partial execution

hsP0 ;m
P
0 i ! � � � ! hs1;m1i such that m1(c1) is true and

m1(e1) = m2(c2).

6 Proving Aliasing Invariants

This section describes several methods that use the given
logics to prove aliasing invariants. We also present an ex-
ample that shows a proof of an invariant which is not an
aliasing invariant, but depends on the results of the pointer
analysis. We start by introducing the following additional
notation for points-to relationships. Let p be an arbitrary
expression that evaluates to a memory location, v be a vari-
able and S = fv1; : : : ; vng be a set of variables. We then
de�ne the following notation for points-to relationships:

p 7!v
def
= p = &v

p 7!S
def
= p 7!v1 _ : : : _ p 7!vn

p 67!S
def
= :(p 7!S)

We also extend the substitution rules to the new type of
conditions as follows:

pfe=wgjc
:
= p0

p 7!Sfe=wgjc
:
= p0 7!S

6.1 Derived Rules

Figure 6 presents the basic rules for substitution in the pres-
ence of pointers. To shorten the substitution proofs, we de-
rive several rules from the basic rules. We �rst add new rules
to the logics for substitution, standard invariants and simu-
lation invariants. Figure 11 shows the new rules for rewriting
expressions. The logics remain provably sound after adding
these rules. Figure 12 presents additional substitution rules.
All of these rules are derived from the basic rules for substi-
tution and the new rules for rewriting. There are two forms
of each rule: one for w � v and one for w � �e. The deriva-
tion proofs of these rules are generated in a straightforward

((oP1 ; : : : ; o
P
n) = (oT1 ; : : : ; o

T
n) ^ c2)) (c1 ^ e1 = e2)

I ` hc1; e1is
P
0 � hc2; e2is

T
0

base (22)

I ` hi1is1; I ` hi2is2; hc
0

1; e
0

1is1 � hc
0

2; e
0

2is2 2 I;
(i2 ^ c2)) c0

2; (i1 ^ i2 ^ c2 ^ e
0

1 = e0

2)) (c1 ^ e1 = e2)
I ` hc1; e1is1 � hc2; e2is2 � t

induction (23)

Figure 8: Simulation Invariant Base and Induction Proof Rules

9s 2 pred(t): I ` shc; eit� p
I ` hc; eit� p

orig-pred (24)

s : nop t; I ` hc; eis� p
I ` shc; eit� p

orig-nop (25)

s : w e0 t; cfw=e0gjc0

1

:
= c1; efw=e

0gjc0

2

:
= e1;

I ` hc0

1 ^ c
0

2is; I ` hc1; e1is� p
I ` shc; eit� p

orig-assign (26)

s : br c0 t1 t2; I ` hc ^ c
0; eis� p

I ` shc; eit1 � p
orig-brtrue (27)

s : br c0 t1 t2; I ` hc ^ :c
0; eis� p

I ` shc; eit2 � p
orig-brfalse (28)

Figure 9: Proof Rules for the Original Program P

pred(t) 6= ;; 8s 2 pred(t): I ` p� shc; eit
I ` p� hc; eit

trans-pred (29)

s : nop t; I ` p� hc; eis � t
I ` p� shc; eit

trans-nop (30)

s : w e0 t; cfw=e0gjc0

1

:
= c1; efw=e

0gjc0

2

:
= e1;

I ` hc0

1 ^ c
0

2is; I ` p� hc1; e1is � t
I ` p� shc; eit

trans-assign (31)

s : br c0 t1 t2; I ` p� hc ^ c
0; eis � t1

I ` p� shc; eit1
trans-brtrue (32)

s : br c0 t1 t2; I ` p� hc ^ :c
0; eis � t2

I ` p� shc; eit2
trans-brfalse (33)

I ` p� hc1; eis � t; I ` p� hc2; eis � t; c) c1 _ c2
I ` p� hc; eis � t trans-case (34)

I ` p� hc; eis
I ` p� hc; eis � t

trans-step (35)

Figure 10: Proof Rules for the Transformed Program T

way; an example is shown in Figure 13. We write the infer-
ence rules used in the proof trees to the right of the line sep-
arating antecedents and consequents. The numbers refer to
the presented rules. L stands for logic for proving standard
relationships between integers, A means by assumption, and
D stands for one of the derived, unlabeled rules.

e1fe=wgjc
:
= e00

1 ; c) e0

1 = e00

1

e1fe=wgjc
:
= e0

1 (36)

e1fe=wgjc
0 :
= e0

1; c) c0

e1fe=wgjc
:
= e0

1 (37)

I ` hi0is; i0) i
I ` hiis (38)

Figure 11: Rules for Rewriting Expressions

6.2 Example

Figure 14 shows a program that we use to illustrate the log-
ics. Observe that, no matter what the condition at node
0 is, x + y = 8 at node 7. To �nd this out, the com-
piler must perform a relational attributes points-to anal-
ysis, which tracks points-to relationships between groups of
pointers. At node 5, we have the precise information that
(p 7!x^q 7!y)_ (p 7!y^q 7!x). The alternative is to use an
independent attributes analysis, which records the points-to
relationships for each pointer independently of other point-
ers. An independent attributes analysis would generate the
result that (p 7!x_ p 7!y)^ (q 7!x_ q 7!y) at node 5. Note
that this result does not provide enough information to de-
termine that x + y = 8 at node 7. Our logics are powerful
enough to prove results generated by both kinds of analysis.

Figure 15 presents invariant that a relational attributes
analysis generates for this example. The �rst invariant,
h(p 7!x^ q 7!y) _ (p 7!y ^ q 7!x)i5, is a pure aliasing invari-
ant. Figures 16 through 18 show the proof tree for this in-
variant. We omit the proof trees denoted �3 and �4; these
proof trees are identical to the proof trees denoted �1 and
�2, respectively, except that x and y are switched. Note that
details of some steps involving rewrite rules are omitted from
this tree.

The second invariant hx+ y = 8i7 does not refer to point-
ers directly, but the presence of pointers complicates its
proof. Figure 22 shows the proof tree for this invariant.
In one of the leaves of this tree, we use the aliasing invari-
ant to apply the induction step rule. It is possible to prove
hx+ y = 8i7 without separating out the aliasing informa-
tion. However, dividing the analysis into two steps, the �rst
of which deals only with aliasing, is a natural way for the
compiler to reason in the presence of pointers.

6.3 Proving Results of Points-To Analyses

In the previous section, we showed how to prove the results
of a relational attributes analysis correct. Such a result can
be generated with a
ow-sensitive (but potentially quite in-
e�cient) data
ow analysis. Independent attributes analyses
provide a more e�cient but less precise alternative.

In this section we present a general schema for proving
results of points-to analyses correct. We �rst introduce a
normal form for writing the aliasing invariants. The normal

c) v1 � v2
v1fe=v2gjc

:
= e

c) v1 6� v2
v1fe=v2gjc

:
= v1

c) e0 7!v
vfe=�e0gjc

:
= e

c) e0 67!v
vfe=�e0gjc

:
= v

e1fe=vgjc
:
= e0

1; c) e0

1 7!v
�e1fe=vgjc

:
= e

e1fe=vgjc
:
= e0

1; c) e0

1 67!v
�e1fe=vgjc

:
=�e0

1

e1fe=�e2gjc
:
= e0

1; c) (e0

1 = e2 ^ e
0

1 6= 0)
�e1fe=�e2gjc

:
= e

e1fe=�e2gjc
:
= e0

1; c) (e0

1 6= e2 _ e
0

1 = 0)
�e1fe=�e2gjc

:
=�e0

1

c) v1 � v2
v1 7!Sfe=v2gjc

:
= e 7!S

c) v1 6� v2
v1 7!Sfe=v2gjc

:
= v1 7!S

c) e0 7!v
v 7!Sfe=�e0gjc

:
= e 7!S

c) e0 67!v
v 7!Sfe=�e0gjc

:
= v 7!S

Figure 12: Derived Rules for Substitution

4&vfe=�e0gjc
:
= &v

Ac) e0 67!v
Lc) (e0 6= &v _ e0 = 0)
9�&vfe=�e0gjc

:
=�&v Lc) �&v = v

36�&vfe=�e0gjc
:
= v

8vfe=�e0gjc
:
= v

Figure 13: Example Proof of Derived Rule

true) p � p
D

p 7!xf&x=pgjp � p
:
= &x 7!x true) true = &x 7!x

36
p 7!xf&x=pgjtrue

:
= true

Figure 16: Proof Tree �1 for p 7!xf&x=pgjtrue
:
= true

p 7!xf&y=qgjtrue
:
= p 7!x q 7!yf&y=qgjtrue

:
= true

7p 7!x^ q 7!yf&y=qgjtrue
:
= p 7!x

p 7!yf&y=qgjtrue
:
= p 7!y q 7!xf&y=qgjtrue

:
= false

7p 7!y ^ q 7!xf&y=qgjtrue
:
= false

7
(p 7!x^ q 7!y) _ (p 7!y ^ q 7!x)f&y=qgjtrue

:
= p 7!x

Figure 17: Proof Tree �2 for (p 7!x^ q 7!y) _ (p 7!y ^ q 7!x)f&y=qgjtrue
:
= p 7!x

�2

true
21I ` htruei2
14I ` htruei2 � 5

�1 I ` htruei1 � 2 I ` htruei1 � 2
16I ` 1hp 7!xi2
14I ` hp 7!xi2
19I ` hp 7!xi2 � 5

16I ` 2h(p 7!x^ q 7!y) _ (p 7!y ^ q 7!x)i5
�4

true
21I ` htruei4
14I ` htruei4 � 5

�3 I ` htruei3 � 4 I ` htruei3 � 4
16I ` 3hp 7!yi4
14I ` hp 7!yi4
19I ` hp 7!yi4 � 5

16I ` 4h(p 7!x^ q 7!y) _ (p 7!y ^ q 7!x)i5
14I ` h(p 7!x^ q 7!y) _ (p 7!y ^ q 7!x)i5

Figure 18: Proof Tree for I ` h(p 7!x^ q 7!y) _ (p 7!y ^ q 7!x)i5

p 7!xf3=�qg
jq 7!x

:
= p 7!x

y = 3f3=�qg
jq 7!x

:
= y = 3

p 7!x?y = 3f3=�qg
jq 7!x

:
= p 7!x?y = 3

p 7!yf3=�qg
jq 7!x

:
= p 7!y

x = 3f3=�qg
jq 7!x

:
= true

p 7!y?x = 3f3=�qg
jq 7!x

:
= p 7!y?true

p 7!x?y = 3; p 7!y?x = 3f3=�qg
jq 7!x

:
= p 7!x?y = 3; p 7!y?true

p 7!xf3=�qg
jq 7!y

:
= p 7!x

y = 3f3=�qg
jq 7!y

:
= true

p 7!x?y = 3f3=�qg
jq 7!y

:
= p 7!x?true

p 7!yf3=�qg
jq 7!y

:
= p 7!y

x = 3f3=�qg
jq 7!y

:
= x = 3

12p 7!y?x = 3f3=�qg
jq 7!y

:
= p 7!y?x = 3

13p 7!x?y = 3; p 7!y?x = 3f3=�qg
jq 7!y

:
= p 7!x?true; p 7!y?x = 3

11p 7!x?y = 3; p 7!y?x = 3f3=�qgjq 7!x _ q 7!y
:
= q 7!x?(p 7!x?y = 3; p 7!y?true); q 7!y?(p 7!x?true; p 7!y?x = 3

Figure 19: Proof Tree �1 for p 7!x?y = 3; p 7!y?x = 3f3=�qgjq 7!y _ q 7!x
:
= c

xf5=�pgjp 7!x
:
= 5 yf5=�pgjp 7!x

:
= y

7x+ yf5=�pgjp 7!x
:
= 5 + y 8f5=�pgjp 7!x

:
= 8

7
x+ y = 8f5=�pgjp 7!x

:
= y = 3

xf5=�pgjp 7!y
:
= x yf5=�pgjp 7!y

:
= 5

7x+ yf5=�pgjp 7!y
:
= x+ 5 8f5=�pgjp 7!y

:
= 8

7
x+ y = 8f5=�pgjp 7!y

:
= x = 3

11
x+ y = 8f5=�pgjp 7!x _ p 7!y

:
= p 7!x?y = 3; p 7!y?x = 3

Figure 20: Proof Tree �2 for x+ y = 8f5=�pgjp 7!x _ p 7!y
:
= p 7!x?y = 3; p 7!y?x = 3

p 7!x_ p 7!yf3=�qgjtrue
:
= p 7!x_ p 7!y I ` htruei5 � 6

h(p 7!x^ q 7!y) _ (p 7!y ^ q 7!x)i5 2 I;
((p 7!x^ q 7!y) _ (p 7!y ^ q 7!x))) p 7!x_ p 7!y

20I ` hp 7!x_ p 7!yi5 � 6
16I ` 5hp 7!x_ p 7!yi6
14I ` hp 7!x_ p 7!yi6
19I ` hp 7!x_ p 7!yi6 � 7

Figure 21: Proof Tree �3 for I ` hp 7!x_ p 7!yi6 � 7

�2 �3

�1

h(p 7!x^ q 7!y) _ (p 7!y ^ q 7!x)i5 2 I;
((p 7!x^ q 7!y) _ (p 7!y ^ q 7!x)))

q 7!x _ q 7!y
I ` hq 7!x _ q 7!yi5 � 6

h(p 7!x^ q 7!y) _ (p 7!y ^ q 7!x)i5 2 I;
((p 7!x^ q 7!y) _ (p 7!y ^ q 7!x)))

q 7!x?(p 7!x?y = 3; p 7!y?true); q 7!y?(p 7!x?true; p 7!y?x = 3)
I ` hq 7!x?(p 7!x?y = 3; p 7!y?true); q 7!y?(p 7!x?true; p 7!y?x = 3)i5 � 6

20I ` 5hp 7!x?y = 3; p 7!y?x = 3i6
14I ` hp 7!x?y = 3; p 7!y?x = 3i6
19I ` hp 7!x?y = 3; p 7!y?x = 3i6 � 7

16I ` 6hx+ y = 8i7
14I ` hx+ y = 8i7

Figure 22: Proof Tree for I ` hx+ y = 8i7

Figure 14: Example Program with Pointers

I=fh(p 7!x^ q 7!y) _ (p 7!y ^ q 7!x)i5; hx+ y = 8i7g

Figure 15: Invariants for Example Program with Pointers

form is de�ned by the following grammar:

n ::= v 7!Sj&v 7!Sjv � v0jtruejfalsej:njn^njn_njn?n; n?n

The key property of this form is the absence of explicit deref-
erencing | all invariants state the points-to relationships
using expressions of the form v 7!S.

To simplify the proof rules, we assume that the control-

ow graph has been converted to a simpli�ed form in which
all pointer assignments are of one of the following four basic
assignment types:

v0 &v00 (address-of assign)
v0 v00 (copy assign)
v0 �v00 (load assign)
�v0 v00 (store assign)

More complex assignments can be transformed, using ad-
ditional temporary variables, into sequences of these basic
assignments.

Figure 23 presents the proof rules for proving points-to
invariants for the four basic assignment types. The primary
issue is ensuring that all of the points-to invariants are main-
tained in normal form during substitution. The potential
problem occurs when substituting an expression of the form
�v00 in for a variable v in v 7!S. The standard substitution
would generate an invariant with dereferencing. The rules
avoid this outcome by constructing two levels of points-to ex-
pressions. The �rst level is of the form v00 7!fv1; : : : ; vng and
speci�es all the variables to which v00 may point. The next
level speci�es, for each variable vi, the variables to which vi
may point. Figure 24 presents sketches of the derivations of
the rules in Figure 23.

6.3.1 Flow-Insensitive Analyses

The
ow-sensitive analyses discussed so far produce an anal-
ysis result for each point in the program. Flow-insensitive
analyses such as Steensgaard's or Andersen's analysis [10, 1],
on the other hand, produce a single analysis result that is
valid at all points in the program. Flow-insensitive analyses
are typically more e�cient than
ow-sensitive analyses, but
provide less precise results.

It is possible to use the rules from the last section to
prove the results of
ow-insensitive pointer analyses correct,
but the correctness proofs are longer than they need to be.
This section presents a set of derived rules that can be used
to shorten the correctness proofs. In both Steensgaard's and
Andersen's analysis, the result can be represented using the
following subset of the normal form:

n0 ::= v 7!Sj&v 67!Sjv � v0jv 6� v0jtruejfalsejn0 ^ n0

The di�erence from the full normal form is that there is
no explicit disjunction, i.e. we have either a condition that
evaluates to true or false or a conjunct of the form v1 ! S1^
: : : ^ vn 7!Sn. The implicit disjunction is present in v 7!S.
Note that the results of a
ow-sensitive, but independent
attributes analysis, can also be written in this form.

We �rst show one alternative for
ow-insensitive anal-
yses. The main idea is that since a
ow-insensitive result
is the same at all program points, each program point can
have the same invariant i as its analysis result. We then
use induction on the structure of the control
ow graph to
derive the following rule:

I ` hiis0; 8s
0 : w e t:((ife=wgjc

:
= i0); i) c; i) i0)

I ` hiis

This rule states that an invariant i holds at every program
point s if it holds at the entry node s0 and all assignment
nodes preserve the invariant. To prove that an invariant i
holds at the entry node, we use the following rule:

ifv1;0; v2;0; : : : ; vn;0=v1; v2; : : : ; vngjc
:
= i0; c; i0

I ` hiis0

This rule allows us to simultaneously substitute all the ob-
servable variables with their initial values, and then show
that the condition generated is provably true.

The two previous rules are an extension to the logic for
the standard invariants, and they do not a�ect the substi-
tution logic. We next present several substitution rules that
are specialized for proving results of
ow-insensitive pointer
analyses. Figure 25 presents the rules and Figure 26 shows
derivations of some of the rules.

The last rule in Figure 25 is designed to eliminate case
analysis for the kind of invariants that Steensgaard's anal-
ysis produces. More speci�cally, for an assignment of the
form �v0 v00 in a context in which v0 may point to v,
Steensgaard's analysis produces a result in which v and v00

point to the same set of variables.
For Andersen's analysis, we need the following meta rule

involving set inclusion for the last rule in Figure 25 to be
generally useful.

p 7!S0; S0 � S
p 7!S

Note that because the proof rules always produce sets S that
consist of a �nite set of variables, it is always possible for
the proof checker to determine set inclusion by examining
the representations of the sets.

We next discuss a problem that arises in proving the
results of
ow-insensitive analyses. The main issue is that

ow-insensitive analyses generate the same result for all pro-
gram points, including the initial program point. The analy-
sis result must therefore include an initial value for all point-
ers. These initial values introduce the following problem.
According to the analysis result, any pointer assignment
may access the initial value of the pointer. But it is not

v 7!Sf&v00=v0gjc
:
= v0 � v?&v00 7!S : v 7!S

v 7!Sfv00=v0gjc
:
= v0 � v?v00 7!S : v 7!S

A
def
= v00 7!fv1; : : : ; vng ^ ((v

00 7!v1 ^ v1 7!S) _ : : : _ (v00 7!vn ^ vn 7!S))

c) A
v 7!Sf�v00=v0gjc

:
= A ^ v0 � v?true; v0 6� v?v 7!S

v 7!Sfv00=�v0gjc
:
= v0 7!v?v00 7!S : v 7!S

c) (v0 7!S0 ^&v 67!S0)
v 7!Sfv00=�v0gjc

:
= v 7!S

c) v00 7!S
v 7!Sfv00=�v0gjc

:
= v0 7!v?true : v 7!S

Figure 23: Basic Pointer Assignment Rules

v 7!Sf&v00=v0gjv0 � v
:
= &v00 7!S; v 7!Sf&v00=v0gjv0 6� v

:
= v 7!S; c) (v0 � v _ v0 6� v)

v 7!Sf&v00=v0gjc
:
= v0 � v?&v00 7!S : v 7!S

v 7!Sfv00=v0gjv0 � v
:
= v00 7!S; v 7!Sfv00=v0gjv0 6� v

:
= v 7!S; c) (v0 � v _ v0 6� v)

v 7!Sfv00=v0gjc
:
= v0 � v?v00 7!S : v 7!S

A
def
= v00 7!fv1; : : : ; vng ^ ((v

00 7!v1 ^ v1 7!S) _ : : : _ (v00 7!vn ^ vn 7!S))

v 7!Sf�v00=v0gjA ^ v0 � v
:
=�v00 7!S; v 7!Sf�v00=v0gjv0 6� v

:
= v 7!S;A) ((A ^ v0 � v) _ v0 6� v); (A ^ v0 � v)) �v00 7!S = true

v 7!Sf�v00=v0gjA
:
= A ^ v0 � v?true; v0 6� v?v 7!S

v 7!Sfv00=�v0gjv0 7!v
:
= v00 7!S; v 7!Sfv00=�v0gjv0 67!v

:
= v 7!S; c) (v0 7!v _ v0 67!v)

v 7!Sfv00=�v0gjc
:
= v0 7!v?v00 7!S : v 7!S

v 7!Sfv00=�v0gjv0 67!v
:
= v 7!S; (v0 7!S0 ^&v 67!S0)) v0 67!v

v 7!Sfv00=�v0gjv0 7!S0 ^&v 67!S0 :
= v 7!S

v 7!Sfv00=�v0gjv0 7!v ^ v00 7!S
:
= v00 7!S; v 7!Sfv00=�v0gjv0 67!v

:
= v 7!S;

v00 7!S) ((v00 7!S ^ v0 7!v) _ v0 67!v); (v0 7!v ^ v00 7!S)) v00 7!S = true;
v00 7!S) (v0 7!v ^ v00 7!S?true; v0 7!v?v 7!S) = (v0 7!v?true : v 7!S)

v 7!Sfv00=�v0gjv00 7!S
:
= v0 7!v?true : v 7!S)

Figure 24: Derivations of Basic Pointer Assignment Rules

c) v0 6� v
v 7!Sf&v00=v0gjc

:
= v 7!S

c) v0 � v
v 7!Sf&v00=v0gjc

:
= &v00 7!S

c) v0 6� v
v 7!Sfv00=v0gjc

:
= v 7!S

c) v0 � v
v 7!Sfv00=v0gjc

:
= v00 7!S

c) v0 6� v
v 7!Sf�v00=v0gjc

:
= v 7!S

A0
def
= v00 7!fv1; : : : ; vng ^ v1 7!S ^ : : : ^ vn 7!S

c) v0 � v ^A0

v 7!Sf�v00=v0gjc
:
= true

c) v0 7!S0 ^&v 67!S0 ^ v 7!S
v 7!Sfv00=�v0gjc

:
= true

c) v 7!S ^ v00 7!S
v 7!Sfv00=�v0gjc

:
= true

Figure 25: Rules for Flow-Insensitive Pointer Analyses

A0
def
= v00 7!fv1; : : : ; vng ^ v1 7!S ^ : : : ^ vn 7!S

v 7!Sf�v00=v0gjv0 � v
:
= �v00 7!S v0 � v ^ (A0) v0 � v)

37
v 7!Sf�v00=v0gjv0 � v ^ A0

:
= �v00 7!S (v0 � v ^ A0)) �v00 7!S = true

36v 7!Sf�v00=v0gjv0 � v ^A0 :
= true

v 7!Sfv00=�v0gjv0 67!v
:
= v 7!S (v0 7!S0 ^&v 67!S0 ^ v 7!S)) v0 67!v

37
v 7!Sfv00=�v0gjv0 7!S0 ^&v 67!S0 ^ v 7!S

:
= v 7!S (v0 7!S0 ^&v 67!S0 ^ v 7!S)) v 7!S = true

36
v 7!Sfv00=�v0gjv0 7!S0 ^&v 67!S0 ^ v 7!S

:
= true

v 7!Sfv00=�v0gjv0 67!v
:
= v 7!S v 7!Sfv00=�v0gjv0 7!v

:
= v00 7!S

11v 7!Sfv00=�v0gjv0 67!v _ v0 7!v
:
= v0 67!v?v 7!S : v00 7!S

(v 7!S ^ v00 7!S))
v0 67!v _ v0 7!v

37
v 7!Sfv00=�v0gjv 7!S ^ v00 7!S

:
= v0 67!v?v 7!S : v00 7!S

(v 7!S ^ v00 7!S))
(v0 67!v?v 7!S : v00 7!S) = true

36v 7!Sfv00=�v0gjv 7!S ^ v00 7!S
:
= true

Figure 26: Derivations of Rules for Flow-Insensitive Pointer Analyses

clear where this initial value points. Steensgaard's and An-
dersen's analyses both assume that either the initial value
will never be dereferenced, or that dereferencing the initial
value will never a�ect any other value in the program. In
the absence of any information about the e�ect of deref-
erencing uninitialized pointers, these analyses only provide
information about where pointers may point, not informa-
tion information about where pointers may not point. But
to prove an analysis result, our rules require information
about where pointers may not point.

One way to eliminate this problem is to exploit the spe-
cial behavior of the memory location 0. Namely, a read from
0 always returns 0, and writes to 0 do not change the con-
tent of the location. It is actually practical to deliver an
e�cient implementation on a real machine with this mean-
ing. If each variable is initialized to 0, we can obtain the
required information about where variables may not point
by adding the possibility that each pointer points to the lo-
cation 0. If we extend the de�nition of S to allow 0 2 S

by de�ning v 7! 0
def
= v = 0 and 0 7! S

def
= 0 2 S, we can

use the proof rules presented above to verify the results of
Steensgaard's and Andersen's analyses. This extension also
enables the veri�cation of
ow-sensitive analysis results for
programs that may dereference pointers that are not explic-
itly initialized.

7 Optimization Schemas

We next present examples that illustrate how to prove the
correctness of a variety of standard optimizations.3 Our goal
is to establish a general schema for each optimization. The
compiler would then use the schema to produce a correctness
proof that goes along with each optimization.

7.1 Constant Propagation and Constant Folding

If a variable always has a constant value at a given program
point, the compiler can replace the variable with the con-
stant at that point. This transformation is called constant
propagation. Constant propagation may allow the compiler
to perform additional expression simpli�cations; these trans-
formations are called constant folding. Figures 27 and 28
present an example that we use to illustrate the schema.
This example continues the example introduced in Section 4.
Figure 29 presents the invariants that the compiler generates
for this example.

The key invariant that enables these optimizations is
hxP = 1 ^ yP = 2i5P . It can be proven using the logic for
standard invariants. Figure 30 presents the proof tree for
simulation invariant h(gP ; iP)i6P � h(gT ; iT)i6T . At the leaf
of this proof tree, standard invariant hxP = 1 ^ yP = 2i5P
is used in the application of the induction step rule, rule 23.

7.2 Dead Assignment Elimination

The compiler can eliminate an assignment to a local variable
if that variable is not used after the assignment. The proof
schema is relatively simple: the compiler simply generates
simulation invariants that assert the equality of correspond-
ing live variables at corresponding points in the program.
Figures 31 and 32 present an example that we use to illus-
trate the schema. Figure 33 presents the invariants that the
compiler generates for this example.

3Because none of the examples in this section use pointers, we use
direct expression substitution rather than substitution with partial
conditioned expressions.

Figure 27: Original Pro-
gram P

Figure 28: Program T Af-
ter Constant Propagation
and Constant Folding

I=fhxP = 1 ^ yP = 2i5P ; h(gP ; iP)i5P � h(gT ; iT)i5T ;
h(gP ; iP)i6P � h(gT ; iT)i6T ; hgP i7P � hgT i7T g

Figure 29: Invariants for Constant Propagation and Con-
stant Folding

I ` hxP = 1 ^ yP = 2i5P ; h(gP ; iP)i5P � h(gT ; iT)i5T 2 I;
xP = 1 ^ yP = 2 ^ (gP ; iP) = (gT ; iT))

(gP ; iP + xP + yP) = (gT ; iT + 3)
23I ` h(gP ; iP + xP + yP)i5P � h(gT ; iT + 3)i5T � 6T
26I ` 5P h(gP ; iP)i6P � h(gT ; iT + 3)i5T � 6T
24I ` h(gP ; iP)i6P � h(gT ; iT + 3)i5T � 6T
31I ` h(gP ; iP)i6P � 5T h(gT ; iT)i6T
29I ` h(gP ; iP)i6P � h(gT ; iT)i6T

Figure 30: Proof Tree for I ` h(gP ; iP)i6P � h(gT ; iT)i6T

Figure 31: Program P
Before Dead Assignment
Elimination

Figure 32: Program T Af-
ter Dead Assignment Elim-
ination

I=fh(gP ; iP)i4P � h(gT ; iT)i4T ; hiP i5P � hiT i5T ;
hiP i6P � hiT i6T ; hgP i7P � hgT i7T g

Figure 33: Invariants for Dead Assignment Elimination

Note that the set I of invariants contains no standard
invariants. In general, dead assignment elimination requires
only simulation invariants. The proofs of these invariants
are simple; the only complication is the need to skip over
dead assignments. Figure 36, which contains the proof tree
for h(gP ; iP)i4P�h(gT ; iT)i4T , illustrates this situation. Fig-
ures 34 and 35 present the subtrees of the proof.

(gP) = (gT)) (gP ; 0) = (gT ; 0)
22I ` h(gP ; 0)i1P � h(gT ; 0)i1T
26I ` 1P h(gP ; iP)i2P � h(gT ; 0)i1T
24I ` h(gP ; iP)i2P � h(gT ; 0)i1T
26I ` 2P h(gP ; iP)i3P � h(gT ; 0)i1T
24I ` h(gP ; iP)i3P � h(gT ; 0)i1T
26I ` 3P h(gP ; iP)i4P � h(gT ; 0)i1T
24I ` h(gP ; iP)i4P � h(gT ; 0)i1T
35I ` h(gP ; iP)i4P � h(gT ; 0)i1T � 4T
31I ` h(gP ; iP)i4P � 1T h(gT ; iT)i4T

Figure 34: Proof Tree �1 for I ` h(gP ; iP)i4P �

1T h(gT ; iT)i4T

hiP i6P � hiT i6T 2 I;
iP = iT) (2 � iP ; iP) = (2 � iT ; iT)

23I ` h(2 � iP ; iP)i6P � h(2 � iT ; iT)i6T � 4T
26I ` 6P h(gP ; iP)i4P � h(2 � iT ; iT)i6T � 4T
24I ` h(gP ; iP)i4P � h(2 � iT ; iT)i6T � 4T
31I ` h(gP ; iP)i4P � 6T h(gT ; iT)i4T

Figure 35: Proof Tree �2 for I ` h(gP ; iP)i4P �

6T h(gT ; iT)i4T

�1 �2
29I ` h(gP ; iP)i4P � h(gT ; iT)i4T

Figure 36: Proof Tree for I ` h(gP ; iP)i4P � h(gT ; iT)i4T

7.3 Branch Movement

Our next optimization moves a conditional branch from the
top of a loop to the bottom. The optimization is legal if
the loop always executes at least once. This optimization is
di�erent from all the other optimizations we have discussed
so far in that it changes the control
ow. Figure 37 presents
the program before branch movement; Figure 38 presents
the program after branch movement. Figure 39 presents
the set of invariants that the compiler generates for this
example.

Figure 42 presents the proof tree for I ` hiP i5P �hiT i5T .
One of the paths that the proof must consider is the path in
the transformed program T from 1T to 5T . The correspond-
ing path in P that is used to prove I ` hiP i5P � hiT i5T is
the path from 1P through 4P to 5P . The fact that the loop
executes at least once shows up as a true condition in the
partial simulation invariant for P that is propagated from
5P back to 1P . This enables the use of rule 22 at the leaf of
the proof tree. Figure 41 presents the branch of the proof
tree for this path.

7.4 Induction Variable Elimination

Our next optimization eliminates the induction variable i
from the loop, replacing it with g. The correctness of this
transformation depends on the invariant hgP = 2 � iP i4P .
Figure 43 presents the program before induction variable

Figure 37: Program P Be-
fore Branch Movement

Figure 38: Program T Af-
ter Branch Movement

I = fhiP i5P � hiT i5T ; hiP i6P � hiT i6T ; hgP i7P � hgT i7T g

Figure 39: Invariants for Branch Movement

hiP i6P � hiT i6T 2 I;
iT < 24 ^ iP = iT) (iP < 24 ^ iP = iT)

23I ` hiP < 24; iP i6P � hiT < 24; iT i6T � 4T
26I ` 6P hiP < 24; iP i4P � hiT < 24; iT i6T � 4T
24I ` hiP < 24; iP i4P � hiT < 24; iT i6T � 4T
27I ` 4P hiP i5P � hiT < 24; iT i6T � 4T
24I ` hiP i5P � hiT < 24; iT i6T � 4T
31I ` hiP i5P � 6T hiT < 24; iT i4T
29I ` hiP i5P � hiT < 24; iT i4T
35I ` hiP i5P � hiT < 24; iT i4T � 5T
32I ` hiP i5P � 4T hiT i5T

Figure 40: Proof Tree �1 for I ` hgP i5P � 4T hgT i5T

(gP) = (gT)) 0 < 24 ^ 0 = 0
22I ` h0 < 24; 0i1P � h0i1T
26I ` 1P hiP < 24; iP i4P � h0i1T
24I ` hiP < 24; iP i4P � h0i1T
27I ` 4P hiP i5P � h0i1T
24I ` hiP i5P � h0i1T
35I ` hiP i5P � h0i1T � 5T
31I ` hiP i5P � 1T hiT i5T

Figure 41: Proof Tree �2 for I ` hgP i5P � 1T hgT i5T

�1 �2
29I ` hiP i5P � hiT i5T

Figure 42: Proof Tree for I ` hgP i5P � hgT i5T

elimination; Figure 44 presents the program after induction
variable elimination. Figure 45 presents the set of invariants
that the compiler generates for this example. These invari-
ants characterize the relationship between the eliminated in-
duction variable iP from the original program and the vari-
able gT in the transformed program. Figure 46 presents the
proof tree for I ` h2 � iP i4P � hgT i4T ; Figure 47 presents
the proof tree for I ` hgP i7P � hgT i7T .

Figure 43: Program P
Before Induction Variable
Elimination

Figure 44: Program T
After Induction Variable
Elimination

I=fhgP = 2 � iP i4P ; h2 � iP i5P � hgT i5T ;
h2 � iP i4P � hgT i4T ; hgP i7P � hgT i7T g

Figure 45: Invariants for Induction Variable Elimination

h2 � iP i5P � hgT i5T 2 I; 2 � iP = gT) 2 � (iP + 3) = gT + 6
23I ` h2 � (iP + 3)i5P � hgT + 6i5T � 4T
26I ` 5P h2 � iP i6P � hgT + 6i5T � 4T
24I ` h2 � iP i4P � hgT + 6i5T � 4T
31I ` h2 � iP i4P � 5T hgT i4T
29I ` h2 � iP i4P � hgT i4T

Figure 46: Proof Tree for I ` h2 � iP i4P � hgT i4T

I ` hgP = 2 � iP i4P ; h2 � iP i4P � hgT i4T 2 I;
gP = 2 � iP ^ gT � 48 ^ 2 � iP = gT) (iP � 24 ^ gP = gT)

23I ` hiP � 24; gP i4P � hgT � 48; gT i4T � 7T
26I ` 4P hgP i7P � 4T hgT � 48; gT i4T � 7T
24I ` hgP i7P � hgT � 48; gT i4T � 7T
31I ` hgP i7P � 4T hgT i7T
29I ` hgP i7P � hgT i7T

Figure 47: Proof Tree for I ` hgP i7P � hgT i7T

7.5 Loop Unrolling

The next optimization unrolls the loop once. Figure 48
presents the program before loop unrolling; Figure 49 presents
the program after unrolling the loop. Note that the loop un-
rolling transformation preserves the loop exit test; this test
can be eliminated by the branch elimination optimization
discussed in Section 7.6.

Figure 50 presents the set of invariants that the compiler
generates for this example. Note that, unlike the simulation
invariants in previous examples, these simulation invariants
have conditions. The conditions are used to separate dif-
ferent executions of the same node in the original program.

Figure 48: Program P Be-
fore Loop Unrolling

Figure 49: Program T Af-
ter Loop Unrolling

I=fhgP%12 = 0 _ gP%12 = 6i4P ; hgT%12 = 0i4T ;
hgP%12 = 0; gP i5P � hgT i2T ; hgT%12 = 6i3T ;
hgP%12 = 6; gP i4P � hgT i3T ;
hgP%12 = 6; gP i5P � hgT i5T ;
hgP%12 = 0; gP i4P � hgT i4T g

Figure 50: Invariants for Loop Unrolling

Some of the time, the execution at node 4P corresponds to
the execution at node 4T , and other times to the execu-
tion at node 3T . The conditions in the simulation invariants
identify when, in the execution of the transformed program,
each correspondence holds. For example, when gP%12 = 0,
the execution at 4P corresponds to the execution at 4T ;
when gP%12 = 6, the execution at 4P corresponds to the
execution at 3T .

Figure 51 presents the proof tree for I ` hgP i7P�hgT i7T .
Loop unrolling is a transformation which replicates code.
In an inverse transformation that would shrink code, the
key component of the correctness proofs would be the case
analysis rule, rule 34.

7.6 Branch Elimination

We continue with our example by eliminating the branch
in the middle of the loop at node 3P . Figure 52 presents
the program before the branch is eliminated. The key prop-
erty that allows the compiler to remove the branch is that
gP%12 = 6 ^ gP � 48 at 3P , which implies that gP < 48 at
3P . In other words, the condition in the branch is always
true. Figure 53 presents the program after the branch is
eliminated. Figure 54 presents the set of invariants that the
compiler generates for this example.

Figure 55 presents the proof tree for I ` hiP i5P�hiT i5T .
The path that proof must consider in the transformed pro-
gram T is from 2P to 5P . The corresponding path in P that
is used to prove I ` hiP i5P � hiT i5T is the path from 2T
to 3T to 5T . The loop in the original program P always
exits from 4P , not 3P . This fact shows up because the stan-
dard invariant hgP%12 = 0 ^ gP < 48i2P implies the condi-
tion gP +6 < 48 from the partial simulation invariant for P
at 2P .

8 Termination Anomalies

Throughout the paper so far, we have required that the
transformed program simulate the original program in the

hgP%12 = 0; gP i4P � hgT i4T 2 I;
gT � 48 ^ gP = gT) gP � 48 ^ gP = gT

23I ` hgP � 48; gP i4P � hgT � 48; gT i4T � 7T
28I ` 4P hgP i7P � hgT � 48; gT i4T � 7T
24I ` hgP i7P � hgT � 48; gT i4T � 7T
33I ` hgP i7P � 4T hgT i7T

hgP%12 = 6; gP i4P � hgT i3T 2 I;
gT � 48 ^ gP = gT) gP � 48 ^ gP = gT

23I ` hgP � 48; gP i4P � hgT � 48; gT i3T � 7T
28I ` 4P hgP i7P � hgT � 48; gT i3T � 7T
24I ` hgP i7P � hgT � 48; gT i3T � 7T
33I ` hgP i7P � 3T hgT i7T

29I ` hgP i7P � hgT i7T

Figure 51: Proof Tree for I ` hgP i7P � hgT i7T

Figure 52: Program P Be-
fore Branch Elimination

Figure 53: Program T Af-
ter Branch Elimination

I=fhgP%12 = 0 ^ gP < 48i2P ; hgP%12 = 6 ^ gP � 48i3P ;
hgP%12 = 6 ^ gP < 48i5P ; hgP%12 = 0 ^ gP � 48i4P ;
hgP i2P � hgT i2T ; hgP i5P � hgT i5T ; hgP i3P � hgT i5T ;
hgP i4P � hgT i4T ; hgP i7P � hgT i7T g

Figure 54: Invariants for Branch Elimination

I ` hgP%12 = 0 ^ gP < 48i2P ; hgP i2P � hgT i2T 2 I;
gP%12 = 0 ^ gP < 48 ^ gP = gT)
gP + 6 < 48 ^ gP + 6 = gT + 6

23I ` hgP + 6 < 48; gP + 6i2P � hgT + 6i2T
26I ` 2P hgP < 48; gP i3P � hgT + 6i2T
24I ` hgP < 48; gP i3P � hgT + 6i2T
27I ` 3P hgP i5P � hgT + 6i2T
24I ` hgP i5P � hgT + 6i2T
35I ` hgP i5P � hgT + 6i2T � 5T
31I ` hgP i5P � 2T hgT i5T
29I ` hgP i5P � hgT i5T

Figure 55: Proof Tree for I ` hgP i5P � hgT i5T

sense that for every execution in the transformed program
that reaches the exit node, there exists an execution in the
original program that reaches the exit node such that the
values of the observable variables are the same. There is,
however, an anomaly associated with this notion of simu-
lation. What happens if the transformed program contains
an in�nite loop? Then the transformed program implements
any program. One can imagine that programmers might like
to have stronger guarantees; in particular they might like the
guarantee that if the original program terminates, then so
does the transformed program.

One option is to require also that the original program
simulate the transformed program. If the two programs sim-
ulate each other, the transformed program terminates if and
only if the original program terminates. And if they termi-
nate, they terminate with identical values in corresponding
observable values. We anticipate that this will be a good
solution in practice.

There is, however, a potential anomaly associated with
this approach. The logics for proving simulation invariants
are based on notions of partial correctness. For some pro-
grams, it is impossible to use the logic to prove that they
simulate each other, even if they both terminate with the
same result. Consider the two programs in Figures 57 and
56 that compute g = 48. Using the logic presented in Sec-
tion 5.4, it is not possible to prove that the closed form
program in Figure 57 implements the iterative program in
Figure 56. Roughly speaking, the problem is that the logic
cannot prove that the loop in the iterative program termi-
nates.

Figure 56: Iterative Pro-
gram to Compute g = 48

Figure 57: Closed Form
Program to Compute g =
48

We do not anticipate that this anomaly will prove to be
a problem in practice, because the overwhelming majority
of compiler transformations do not eliminate or introduce
loops. If it does turn out to be a problem in practice, the
solution is to augment the logic so that it can prove that
loops terminate.

9 Code Generation

In principle, we believe that it is possible to produce a proof
that the �nal object code correctly implements the original
program. For engineering reasons, however, we designed the
proof system to work with a standard intermediate format
based on control
ow graphs. The parser, which produces
the initial control
ow graph, and the code generator, which
generates object code from the �nal control
ow graph, are
therefore potential sources of uncaught errors. We believe
it should be straightforward, for reasonable languages, to
produce a standard parser that is not a serious source of
errors. It is not so obvious how the code generator can be
made simple enough to be reliable.

Our goal is make the step from the �nal control
ow
graph to the generated code be as small as possible. Ideally,
each node in the control
ow graph would correspond to
a single instruction in the generated code. To achieve this
goal, it must be possible to express the result of complicated,
machine-speci�c code generation algorithms (such as regis-
ter allocation and instruction selection) using control
ow
graphs. After the compiler applies these algorithms, the �-
nal control
ow graph would be structured in a stylized way
appropriate for the target architecture. The code generator
for the target architecture would accept such a control
ow
graph as input and use a simple translation algorithm to
produce the �nal object code.

With this approach, we anticipate that code generators
can be made approximately as simple as proof checkers. We
therefore anticipate that it will be possible to build standard
code generators with an acceptable level of reliability for
most users. However, we would once again like to emphasize
that it should be possible to build a framework in which the
compilation is checked from source code to object code.

In the following two sections, we �rst present an ap-
proach for a simple RISC instruction set, then discuss an
approach for more complicated instruction sets.

9.1 A Simple RISC Instruction Set

For a simple RISC instruction set, the key idea is to in-
troduce special variables that the code generator interprets
as registers. The control
ow graph is then transformed so
that each node corresponds to a single instruction in the
generated code. We �rst consider assignment nodes.

� If the destination variable is a register variable, the
source expression must be one of the following:

{ A non-register variable. In this case the node cor-
responds to a load instruction.

{ A constant. In this case the node corresponds to
a load immediate instruction.

{ A single arithmetic operation with register vari-
able operands. In this case the node corresponds
to an arithmetic instruction that operates on the
two source registers to produce a value that is
written into the destination register.

{ A single arithmetic operation with one register
variable operand and one constant operand. In
this case the node corresponds to an arithmetic
instruction that operates on one source register
and an immediate constant to produce a value
that is written into the destination register.

� If the destination variable of an assignment node is a
non-register variable, the source expression must con-
sist of a register variable, and the node corresponds to
a store instruction.

It is possible to convert assignment nodes with arbitrary
expressions to this form. The �rst step is to
atten the
expression by introducing temporary variables to hold the
intermediate values computed by the expression. Additional
assignment nodes transfer these values to the new temporary
variables. The second step is to use a register allocation
algorithm to transform the control
ow graph to �t the form
described above.

We next consider conditional branch nodes. If the con-
dition is the constant true or false, the node corresponds to
an unconditional branch instruction. Otherwise, the condi-
tion must compare a register variable with zero so that the
instruction corresponds either to a branch if zero instruction
or a branch if not zero instruction.

9.2 More Complex Instruction Sets

Many processors o�er more complex instructions that, in
e�ect, do multiple things in a single cycle. In the ARM in-
struction set, for example, the execution of each instruction
may be predicated on several condition codes. ARM instruc-
tions can therefore be modeled as consisting of a conditional
branch plus the other operations in the instruction. The x86
instruction set has instructions that assign values to several
registers.

We believe the correct approach for these more complex
instruction sets is to let the compiler writer extend the possi-
ble types of nodes in the control
ow graph. The semantics
of each new type of node would be given in terms of the
base nodes in standard control
ow graphs. We illustrate
this approach with an example.

For instruction sets with condition codes, the program-
mer would de�ne a new variable for each condition code and
new assignment nodes that set the condition codes appro-
priately. The semantics of each new node would be given
as a small control
ow graph that performed the assign-
ment, tested the appropriate conditions, and set the appro-
priate condition code variables. If the instruction set also
has predicated execution, the control
ow graph would use
conditional branch nodes to check the appropriate condition
codes before performing the instruction.

Each new type of node would come with proof rules au-
tomatically derived from its underlying control
ow graph.
The proof checker could therefore verify proofs on control

ow graphs that include these types of nodes. The code
generator would require the preceding phases of the com-
piler to produce a control
ow graph that contained only
those types of nodes that translate directly into a single in-
struction on the target architecture. With this approach, all
complex code generation algorithms could operate on con-
trol
ow graphs, with their results checked for correctness.

10 Related Work

Most existing research on compiler correctness has focused
on techniques that deliver a compiler guaranteed to oper-
ate correctly on every input program [6, 5]; we call such a
compiler a totally correct compiler. A credible compiler, on
the other hand, is not necessarily guaranteed to operate cor-
rectly on all programs | it merely produces a proof that it
has operated correctly on the current program.

In the absence of other di�erences, one would clearly pre-
fer a totally correct compiler to a credible compiler. After
all, the credible compiler may fail to compile some programs
correctly, while the totally correct compiler will always work.
But the totally correct compiler approach imposes a signif-
icant pragmatic drawback: it requires the source code of
the compiler, rather than its output, to be proved correct.
So programmers must express the compiler in a way that
is amenable to these correctness proofs. In practice this
invasive constraint has restricted the compiler to a limited
set of source languages and compiler algorithms. Although
the concept of a totally correct compiler has been around
for many years, there are, to our knowledge, no totally cor-
rect compilers that produce close to production-quality code
for realistic programming languages. Credible compilation
o�ers the compiler developer much more freedom. The com-
piler can be developed in any language using any methodol-
ogy and perform arbitrary transformations. The only con-
straint is that the compiler produce a proof that its result
is correct.

The concept of credible compilers has also arisen in the
context of compiling synchronous languages [3, 9]. Our ap-
proach, while philosophically similar, is technically much dif-
ferent. It is designed for standard imperative languages and
therefore uses drastically di�erent techniques for deriving
and expressing the correctness proofs.

We often are asked the question \How is your approach
di�erent from proof-carrying code [8]?"4 In our view, cred-
ible compilers and proof-carrying code are orthogonal con-
cepts. Proof-carrying code is used to prove properties of one
program, typically the compiled program. Credible compil-
ers establish a correspondence between two programs: an
original program and a compiled program. Given a safe pro-
gramming language, a credible compiler will produce guar-
antees that are stronger than those provided by typical ap-
plications of proof-carrying code. So, for example, if the
source language is type safe and a credible compiler pro-
duces a proof that the compiled program correctly imple-
ments the original program, then the compiled program is
also type safe.

But proof-carrying code can, in principle, be used to
prove properties that are not visible in the semantics of the
language. For example, one might use proof-carrying code
to prove that a program does not execute a sequence of in-
structions that may damage the hardware. Because most
languages simply do not deal with the kinds of concepts
required to prove such a property as a correspondence be-
tween two programs, credible compilation is not particularly
relevant to these kinds of problems.

11 Conclusions

Most research on compiler correctness has focused on obtain-
ing a compiler that is guaranteed to generate correct code
for every input program. This paper presents a less ambi-
tious, but hopefully much more practical approach: require
the compiler to generate a proof that the generated code
correctly implements the input program. Credible compila-
tion, as we call this approach, gives the compiler developer
maximum
exibility, helps developers �nd compiler bugs,
and eliminates the need to trust the developers of compiler
passes.

4Proof-carrying code is code augmented with a proof that the code
satis�es safety properties such as type safety or the absence of array
bounds violations.

This paper presents logics that a compiler can use to
prove that its transformations are correct, and provides ex-
amples that illustrate how the proofs would work for several
standard transformations. The logics support the standard
two-phase approach to optimization: there is a logic that
the compiler can use to prove that its analysis results are
correct, and a logic that the compiler can use to prove that
the transformed program correctly implements the original
program.

12 Acknowledgment

The authors would like to thank Radu Rugina for many
interesting discussions about pointer analysis, including the
discussion that led to the �rst version of the proof rules for

ow-insensitive analyses.

References

[1] Lars Ole Andersen. Program Analysis and Specializa-
tion for the C Programming Language. PhD thesis,
DIKU, University of Copenhagen, May 1994.

[2] K. Apt and E. Olderog. Veri�cation of Sequential and
Concurrent Programs. Springer-Verlag, 1997.

[3] A. Cimatti, F. Giunchiglia, P. Pecchiari, B. Pietra,
J. Profeta, D. Romano, P. Traverso, and B. Yu. A
provably correct embedded veri�er for the certi�cation
of safety critical software. In Proceedings of the 9th
International Conference on Computer Aided Veri�ca-
tion, pages 202{213, Haifa, Israel, June 1997.

[4] R. Floyd. Assigning meanings to programs. In
J. Schwartz, editor, Proceedings of the Symposium in
Applied Mathematics, number 19, pages 19{32, 1967.

[5] Wolfgang Goerigk. Towards Rigorous Compiler Imple-
mentation Veri�cation. In Rudolf Berghammer and
Friedemann Simon, editors, Proc. of the 1997 Work-
shop on Programming Languages and Fundamentals of
Programming, pages 118 { 126, Avendorf, Germany,
November 1997.

[6] J. Guttman, J. Ramsdell, and M. Wand. VLISP: a
veri�ed implementation of scheme. Lisp and Symbolic
Computing, 8(1{2):33{110, March 1995.

[7] J. M. Morris. A general axiom of assignment. In
M. Broy and G. Schmidt, editors, Theoretical Foun-
dations of Programming Methodology, pages 25{34. D.
Reidel Publishing, 1982.

[8] G. Necula. Proof-carrying code. In Proceedings of
the 24th Annual ACM Symposium on the Principles of
Programming Languages, pages 106{119, Paris, France,
January 1997.

[9] A. Pnueli, M. Siegal, and E. Singerman. Translation
validation. In Proceedings of the 4th International Con-
ference on Tools and Algorithms for the Construction
and Analysis of Systems, Lisbon, Portugal, March 1998.

[10] Bjarne Steensgaard. Points-to analysis in almost linear
time. In Proceedings of the 23rd Annual ACM Sympo-
sium on the Principles of Programming Languages, St.
Petersburg Beach, FL, January 1996.

