
Building Resilient Systems Using
Acceptability-Oriented Computing

Martin Rinard
MIT Laboratory for Computer Science

Cambridge, MA 021139

Abstract— With the aid of several examples, we outline an
approach that developers can use to help ensure that the program
executes in an acceptable way. Developers using this approach
use a set of acceptability properties to define an acceptability
envelope for the program. They then develop a set of acceptability
monitoring and enforcement mechanisms that detect impending
acceptability violations and respond by taking action to ensure
that the program remains within its acceptability envelope.
Potential benefits of this approach include the ability to build
more adaptive software systems that resiliently recover from
errors and the ability to more productively combine a variety
of software components to build an acceptable system.

I. I NTRODUCTION

With the aid of several examples, we present a new perspec-
tive on building software systems that we call acceptability-
oriented computing. A developer practicing acceptability-
oriented computing first identifies simple properties that the
program must satisfy to be acceptable. Together, these prop-
erties define anacceptability envelope, or a region of the
potential executions that the computation must remain within
to be acceptable. The developer then augments the program
with components that detect impending acceptability viola-
tions, then react to those violations by taking actions to ensure
that the program stays within its acceptability envelope.

There are several mechanisms that a developer can use to
enforce the acceptability properties. Black box mechanisms
monitor and potentially change the inputs and the outputs, but
do not interfere with the execution of the program itself. Gray
box mechanisms leave the code of the program unchanged
but may read and write the data structures of the program or
intercept procedure and system calls. White box mechanisms
augment the program with code and new data that monitors
and potentially affects its execution.

The goal of acceptability-oriented computing is to build
more resilient computing systems that can tolerate, adapt to,
and recover from errors. Instead of requiring developers to
build perfect software, acceptability-oriented computing may
help developers to build more reliable systems out of partially
faulty components.

Because acceptability-oriented computing allows programs
to continue executing even after an error, it may be one way
to build long-lived systems that sustain damage, but continue
to execute and satisfy the needs of their clients and users.

II. EXAMPLE

We next present a simple example. The goal of this example
is to illustrate how to apply the basic concepts of acceptability-
oriented computing to a simple map program. This program
maps names to numbers. It accepts as input a sequence of
commands on the standard input stream and produces its
output as a sequence of numbers on the standard output stream.
It accepts three commands:put name num , which creates a
mapping fromname to num; get name , which retrieves the
num that name maps to; andrem name, which removes the
mapping associated withname. In response to each command,
it writes the appropriatenumonto the standard output: forput
commands it writes out the number from the new mapping,
for get commands it writes out the retrieved number, and for
rem commands it writes out the number from the removed
mapping.

Figure 1 presents the code for the core procedures that im-
plement each command in the program. We have omitted the
definitions of several constants (LEN, N, andM) and auxiliary
procedures. The complete code for all of the examples in this
paper is available at
www.cag.lcs.mit.edu/ ∼rinard/paper/oopsla03/code .

The program maintains a hash table that stores the map-
pings. Each bin in the table contains a list of entries; each
entry contains a mapping from onename to one num. The
bin procedure uses a hash code for thename (computed by
thehash function) to associate names to bins. The procedures
alloc and free manage the pool of entries in the table,
while the find procedure finds the entry in the table that
holds the mapping for a givenname.

A. Acceptability Properties

To practice acceptability-oriented computing, the developer
must first identify the acceptability properties that are impor-
tant in the context in which the program will be used. Let
us assume that we identify the following two acceptability
properties:

• Output Sanity: The program must return either zero or
a number between the minimum and maximum numbers
put into the table. A program may trivially satisfy this
acceptability property by always returning zero. It is
expected, however, that the program will attempt to return
the same number for each command that a completely
correct implementation would return.



struct {
int _value;
int _next;
char _name[LEN];

} entries[N];

#define next(e) entries[e]._next
#define name(e) entries[e]._name
#define value(e) entries[e]._value

#define NOENTRY 0x00ffffff
#define NOVALUE 0

int end(int e) { return (e == NOENTRY); }

int table[M], freelist;

int alloc() {
int e = freelist;
freelist = value(e);
return e;

}

void free(e) { value(e) = freelist; freelist = e; }

int hash(char name[]) {
int i, h;
for (i = 0, h = 0; name[i] != ’\0’; i++) {

h *= 997; h += name[i]; h = h % 4231;
}
return h;

}

int bin(char name[]) { return hash(name) % M; }
int find(char name[]) {

int b = bin(name), e = table[b];
while (!end(e) && strcmp(name, name(e)) != 0)

e = next(e);
return e;

}

int rem(char name[]) {
int e = find(name);
if (!end(e)) {

int val = value(e), b = bin(name);
table[b] = next(e);
name(e)[0] = ’\0’; free(e);
return val;

} else return NOVALUE;
}

int put(char name[], int val) {
int e = alloc();
value(e) = val; strcpy(name(e), name);
int p = find(name);
if (!end(p)) free(p);
int b = bin(name);
next(e) = table[b]; table[b] = e;
return val;

}

int get(char name[]) {
int e = find(name);
if (end(e)) return NOVALUE;
else return value(e);

}

Fig. 1. Implementation of Map Core Procedures

• Continued Execution: The program must continue to
execute so that as many of its mappings as possible
remain accessible to its client. Presumably, the program
will exist in a context in which potentially degraded
but continuous execution is important, perhaps because
it is used in a system that controls unstable physical
phenomena and degraded execution is clearly preferable
to stopping the program.

Both of these acceptability properties fall short of requiring
perfect execution. Indeed, if the acceptability properties are
too stringent, they may be so difficult to implement that the
acceptability monitoring and enforcement mechanisms provide
little additional benefit.

B. Output Monitoring and Rectification

Some inputs can cause the program in our example to pro-
duce outputs that are outside of the minimum and maximum
numbers passed to the program. For example, the following
input:

put x 10
put y 11
rem y
put x 12
rem x
get x

causes the program to produce the output10 11 11 12
12 2 instead of10 11 11 12 12 0 (a 0 returned from
a get command indicates that there is no mapping associated
with the name). The problem is that thefree procedure,
when invoked by theput procedure to remove the entry that
implements the map fromx to 10 , puts the entry on the free
list but does not remove the entry from the table.

The standard way to fix this problem is to debug the
program and fix the error. But unless the developer produces
perfect software, there will always be undetected errors that
may make the program execute unacceptably. And changing
complex systems to remove known errors is a notoriously
risky activity — the developer may get the change wrong or
the change may have a negative impact on other parts of the
program that actually depend on the presence of the error for
their own correct execution.

We instead discuss an approach that uses an external compo-
nent to enforce our first acceptability property, namely, that any
output must either 1) be between the minimum and maximum
values inserted into the mapping, or 2) be 0. The code in
Figure 2 enforces this property by creating two filters. The
first filter (the extract procedure) processes the input to
determine the next command. The other filter (therectify
procedure) processes the output to record the minimum and
maximum values put into the table. It uses these values to
ensure that all outputs forget and rem commands are
either between the minimum and maximum or 0; we call this
activity rectification. The first filter uses thechannel stream
to pass the command information to the second filter. The
main procedure sets up the channels, creates the two filters,
and starts the core. Figure 3 presents the resulting process
structure.



void extract(int fd) {
char cmd[LEN], name[LEN];
int val;
while (scanf("%s", cmd) != EOF) {

if (strcmp(cmd, "put") == 0) {
if (scanf("%s %d", name, &val) == 2) {

printf("%s %s %d\n", cmd, name, val);
fflush(stdout);
write(fd, "p", 1);
fsync(fd);

}
} else if (scanf("%s", name) == 1) {

printf("%s %s\n", cmd, name);
fflush(stdout);
write(fd, cmd, 1);
fsync(fd);

}
}

}

void rectify(int fd) {
int val;
char c;
static int min = MAXINT;
static int max = 0;
while (scanf("%d", &val) != EOF) {

read(fd, &c, 1);
if (c == ’p’) {

if (val < min) min = val;
if (max < val) max = val;

} else {
if (val < min) val = 0;
if (val > max) val = 0;

}
printf("%d\n", val);
fflush(stdout);

}
}

int main(int argc, int *argv[]) {
int input[2], output[2], channel[2];

pipe(input);
pipe(channel);
pipe(output);

if (fork() == 0) {
dup2(input[1], 1);
extract(channel[1]);

} else if (fork() == 0) {
dup2(input[0], 0);
dup2(output[1], 1);
execv(argv[1], argv+1);
fprintf(stderr,

"io: execv(%s) failed\n", argv[1]);
} else {

dup2(output[0], 0);
rectify(channel[0]);

}
}

Fig. 2. Black-Box Implementation of Min/Max Output Monitoring and
Rectification

command
extractor

map
core

min/max
filter

input

input

filtered
output

output

command
channel

Fig. 3. Process Structure for Black-Box Implementation of Min/Max Output
Monitoring and Rectification

When the output filter detects an out of bounds, it replaces
the result with 0. Another acceptability enforcement compo-
nent would simply replace the result with the minimum or
maximum value. This approach might be preferable when any
value in the table is acceptable, especially for a usage context
in which the program maps names to resource numbers, and
any of the resources are acceptable. An example might be
a batch processing facility that uses the program to map
symbolic machine names to the network addresses of the
machines.

The code in Figure 2 uses a black-box approach. It processes
the input and output streams, but leaves the execution of the
program unchanged. Much of the code in this approach is
devoted to implementing the input and output interposition
mechanisms. A white-box approach typically requires less
code because the relevant parts of the computation are more
easily accessible from inside the address space of the computa-
tion. The drawback is that the white-box code must execute in
a more complex and presumably less well understood context.
It is also vulnerable to interference from the original program.

Figure 4 presents a white-box implementation of the accept-
ability enforcement mechanism. We have augmented themain
procedure to maintain the minimum and maximum values put
into the mapping and to coerce out of bounds values to 0.
The code implements the same functionality as the black-box
code in Figure 2, but because it is implemented within the
input and output processing code in themain procedure, it
is substantially smaller. As should be the case, the filter code
is added around the edges of the core — it does not appear
within the procedures (put , get , rem) that implement the
primary functionality.

A primary consideration when implementing combined in-
put and output filters is the mechanism that the filters use to
communicate. The black-box implementation in Figure 2 uses
a Unix pipe to carry the extracted command information to
the output filter. The white-box implementation in Figure 4
uses variables. Other potential mechanisms include network
connections and shared memory segments.



int main(int argc, char *argv[]) {
char cmd[LEN], name[LEN];
unsigned val;
static int min = MAXINT;
static int max = 0;
initialize();
while (scanf("%s", cmd) != EOF) {

val = 0;
if (strcmp(cmd, "put") == 0) {

if (scanf("%s %u", name, &val) == 2) {
put(name, val);
/* record min and max */
if (val < min) min = val;
if (max < val) max = val;

}
} else if (strcmp(cmd, "get") == 0) {

if (scanf("%s", name) == 1) {
val = get(name);

}
} else if (strcmp(cmd, "rem") == 0) {

if (scanf("%s", name) == 1) {
val = rem(name);

}
}
/* enforce acceptability property */
if (val < min) val = 0;
if (val > max) val = 0;
printf("%u\n", val);
fflush(stdout);

}
}

Fig. 4. White-Box Implementation of Min/Max Output Monitoring and
Rectification

C. Data Structure Repair

Running out of memory is an uncommon situation, and
many programs fail to check for it. Our example program
is no exception. Thealloc procedure in Figure 1 assumes
that there is always a free entry to return to the caller. The
put procedure assumes that it always gets a valid entry back
from the alloc procedure. If the client allocates too many
entries from the table and the free list is empty, the program
simply continues, using the invalid index. The result is that
the program may crash, violating our second acceptability
property of continued execution.

Further investigation reveals another consistency problem.
The following input causes the core to infinite loop while
processing theget g command:

put a 1
put c 2
put a 3
put e 4
get g

The cause of the infinite loop is a circularity in one of the lists
of entries.

It is possible to view both the presence of circularities
in the data structure and the inappropriate response to an
empty free list as violations of an internal acceptability prop-
erty that requires the data structures to be consistent. With
this perspective, the appropriate response is to augment the
program with a component that detects and eliminates any
inconsistencies. We identify two consistency properties: 1)

there is exactly one reference to each element of theentries
array (these references are implemented as indices stored in
the freelist , table array, andnext and value fields
of the entries), and 2) the free list is not empty.

Figure 5 presents a procedure,repair , that detects
and repairs any violations of these two data structure
consistency properties. Therepair procedure first in-
vokes repairValid to replace all invalid references with
NOENTRY. The procedure then invokesrepairTable ,
which ensures that all entries in lists in the table have at
most one incoming reference from either an element of the
table array or thenext field of some entry reachable from
the table array. This property ensures that each element of
table refers to a distinctNOENTRY-terminated list and that
different lists contain disjoint sets of entries. Finally,repair
invokesrepairFree to collect all of the entries with refer-
ence count 0 (and that are therefore not in the table) into the
free list. If the free list remains empty (because all entries are
already in the table), the procedurechooseFree chooses an
arbitrary entry and inserts it into the free list, ensuring that
freelist refers to a valid entry. It then removes this entry
from the table. The repair algorithm maintains a reference
count ref[e] for each entrye and uses this count to guide
its repair actions. We anticipate that the data structure repair
algorithm will be invoked before each call toput , get , or
rem. This invocation will ensure that these procedures can
rely on the data structures to be consistent when they execute.

1) Specification-Driven Repair:We have presented a man-
ual implementation of the data structure repair algorithm. We
have also developed an approach that accepts a specification
of data structure repair properties, then automatically produces
a repair algorithm. The advantages of this approach is that it
avoids coding difficulties (the need to always check for illegal
references, out of bounds array accesses, and cyclic structures)
that can complicate the manual development of code that can
repair arbitrarily corrupted data structures.

2) Obscured Errors: There is an issue associated with
techniques (such as data structure repair) that help the system
recover from errors. Specifically, these techniques hide errors
and reduce the need to address the errors. In the best case, this
property helps the system to execute more successfully and
acceptably. This property is especially useful when there is no
prospect of external intervention, and potentially quite useful
even when there is an organization responsible for the system’s
health. But it may also result in a situation in which the system
is mostly broken, its functionality is degraded, but no repairs
are performed. In general, this situation is not amenable to
a technical solution. It instead requires discipline on the part
of those responsible for the maintenance of the system. To
help the maintainers understand what is going on, our data
structure repair algorithm logs each repair action tostderr .
The resulting log may make it easier to become aware of and
investigate any errors.

3) Key Properties:The repair algorithm has several prop-
erties:

• Heuristic Structure Preservation: When possible, the
algorithm attempts to preserve the structure it is given.
In particular, it has no effect on a consistent data structure



int valid(int e) { return (e >= 0) && (e < N); }
void repairValid() {

int i;
if (!valid(freelist)) freelist = NOENTRY;
for (i = 0; i < M; i++)

if (!valid(table[i])) table[i] = NOENTRY;
for (i = 0; i < N; i++)

if (!valid(next(i))) next(i) = NOENTRY;
}

static int refs[N];
void repairTable() {

static int last = 0; int i, e, n, p;
for (i = 0; i < N; i++) refs[i] = 0;
for (i = 0; i < M; i++) {

p = table[i];
if (end(p)) continue;
if (refs[p] == 1) {

fprintf(stderr,
"t[%d] null (%d)\n", i, p);

table[i] = NOENTRY; continue;
}
refs[p] = 1; n = next(p);
while (!end(n)) {

if (refs[n] == 1) {
fprintf(stderr,

"n(%d) null (%d)\n", p, n);
next(p) = NOENTRY; break;

}
refs[n] = 1; p = n; n = next(n);

}
}

}

void chooseFree() {
static int last = 0; int i, n, p;
fprintf(stderr, "freelist = %d\n", last);
n = last; last = (last + 1) % N;
name(n)[0] = ’\0’; value(n) = NOENTRY;
freelist = n;
for (i = 0; i < M; i++) {

p = table[i];
if (end(p)) continue;
if (p == freelist) {

fprintf(stderr,
"t[%d]=%d (%d)\n", i, next(p), p);

table[i] = next(p); return;
}
n = next(p);
while (!end(n)) {

if (n == freelist) {
fprintf(stderr,

"n(%d)=%d (%d)\n", p, next(n), n);
next(p) = next(n); return;

}
p = n; n = next(n);

}
}

}

void repairFree() {
int i, f = NOENTRY;
for (i = 0; i < N; i++)

if (refs[i] == 0) {
next(i) = value(i); value(i) = f; f = i;

}
if (end(f)) chooseFree();
else freelist = f;

}

void repair() {
repairValid(); repairTable(); repairFree();

}

Fig. 5. Data Structure Repair Implementation

and attempts to preserve, when possible, the starting
linking structure of inconsistent data structures. The re-
paired data structure is therefore heuristically close to the
original inconsistent data structure.

• Continued Execution: When the free list is empty, the
repair algorithm removes an arbitrary entry from the
table and puts that entry into the free list. This action
removes the entry’s mapping; the overall effect is to eject
existing mappings to make way for new mappings. In this
case the repair algorithm converts failure into somewhat
compromised but ongoing execution. Because the repair
algorithm also eliminates any cycles in the table data
structure, it may also eliminate infinite loops in thefind
procedure.

This example illustrates several issues one must consider
when building components that detect impending acceptability
violations and enforce acceptability properties:

• Acceptability Property: The developer must first de-
termine the acceptability property that the component
should enforce. In our example, the acceptability property
captures aspects of the internal data structures that are
directly related to the ability of the core to continue
to execute. Note that the acceptability property in our
example is partial in that it does not completely char-
acterize data structure consistency — in particular, it
does not attempt to enforce any relationship between the
values in the entries and the structure of the lists in the
table data structure. In a fully correct implementation,
of course, the hash code of each active entry’s name
would determine the list in which it is a member. The
fact that the acceptability property is partial increases the
likelihood that the developer will be able to successfully
implement it.

• Monitoring: The monitoring component in our example
simply accesses the data structures directly in the address
space of the core to find acceptability violations. In
general, we expect the specific monitoring mechanism to
depend on the acceptability property and on the facilities
of the underlying system. We anticipate the use of a
variety of mechanisms that allow the monitor to access
the address space of the core processes (examples include
the Unix mmapand ptrace interfaces), to trace the
actions that the program takes, or to monitor its inputs,
outputs, procedure calls, and system calls.

• Enforcement: A white-box application of data structure
repair would insert calls to therepair procedure at crit-
ical places in the core program, for example just before
the put , get , and rem procedures in our example. It
is also possible to wait for the core to fail, catch the
resulting exception, apply data structure repair in the
exception handler, then restart the application from an
appropriate place.
A gray-box implementation might use the Unixptrace
interface ormmapto get access to the address space(s)
of the core process(es). All of these mechanisms update
the data structures directly in the address space of the
core, heuristically attempting to preserve the information



present in the original inconsistent data structure.
In general, we expect that enforcement strategies will
attempt to perturb the state and behavior as little as possi-
ble. We anticipate the use of a variety of mechanisms that
update the internal state of the core, cancel impending
core actions or generate incorrectly omitted actions, or
change the inputs or outputs of the core, components
within the core, or the underlying system.

• Logging Mechanism: Our example simply prints out to
stderr a trace of the instructions that it executes to
eliminate inconsistencies. In general, we anticipate that
the logging mechanism will vary depending on the needs
of the application and that some developers may find
it desirable to provide more organized logging support.
Note also that logging is useful primarily for helping to
provide insight into the behavior of the system. The log
may therefore be superfluous in situations where it is
undesirable to obtain this insight or it is impractical to
investigate the behavior of the system.

We note one other aspect that this example illustrates.
The problem in our example arose because the core (like
many other software systems) handled a resource limitation
poorly. Data structure repair enables continued execution with
compromised functionality. But because no system can support
unlimited resource allocation, even the best possible imple-
mentation must compromise at some point on the functionality
that it offers to its clients if it is to continue executing.

D. Input Monitoring and Rectification

Our example program uses fixed-size character arrays to
hold the name in each entry, but does not check for input
names that are too large to fit in these arrays. It may therefore
fail when presented with input names that exceed the array
size. This basic problem is the source of buffer overruns, a
common and notorious security vulnerability. The enormous
incentive to eliminate buffer overruns combined with their
continued presence in many software systems bears witness to
the difficulty of eradicating these errors using standard means.

An acceptability-oriented approach might instead interpose
a filter on the input. This filter would monitor the input
stream to detect and eliminate overly long inputs. Figure 6
presents the code for just such a filter. The filter truncates any
token (where a token is a contiguous sequence of non-space
characters) too long to fit in thename arrays from Figure 1.
Using the Unix pipe mechanism to pass the input through this
filter prior to its presentation to the core ensures that no token
long enough to overflow these arrays makes it through to the
core.

Note that this mechanism keeps the program within its
acceptability envelope by filtering out unacceptable inputs —
in effect, protecting the program from a hostile environment.

In general, acceptability monitoring and enforcement tech-
niques may involve any combination of the inputs, outputs,
state, timing, and behavior of the computation. Some may
relate the state and the outputs; others may relate the inputs
and the timing of responses from the system. There is no limit
to the

int main(int argc, char *argv[]) {
int count = 0, c = getchar();
while (c != EOF) {

if (isspace(c)) count = -1;
if (count < LEN-1) { putchar(c); count++; }
else fprintf(stderr,

"character %c discarded\n", (char) c);
if (c == ’\n’) fflush(stdout);
c = getchar();

}
}

Fig. 6. Token Length Filter Implementation

III. O PPORTUNISTIC ANDSYSTEMATIC APPLICATIONS

We anticipate that developers will use acceptability-oriented
computing in two distinct ways. Systematic applications will
integrate an acceptability-oriented perspective throughout the
development process, from the requirements analysis phase
through implementation and maintenance. Acceptability prop-
erties that do not involve aspects of the the internal im-
plementation will be identified during requirements analysis.
Acceptability properties that involve aspects of the internal
implementation will be identified during the design phase. In
both cases, the acceptability property monitoring and enforce-
ment activities will be part of the mainstream development
activities.

Opportunistic acceptability-oriented computing, on the other
hand, enables developers to compensate for errors as they
arise. Instead of embarking on the complex process of lo-
calizing and eliminating the error, the developer will instead
simply develop mechanisms that detect the manifestation of
the error and adjust the state or behavior to compensate for
its presence.

Acceptability-oriented computing has a good incremental
adoption path. Developers can deploy it gradually within
limited parts of the system and to address a small set of ac-
ceptability properties, then incrementally grow the deployment
to include more parts and properties of the system. There is no
need to change all at once to a new development environment,
methodology, or language.

IV. CONCLUSION

Software engineering has been dominated by the aspiration
to produce software that is as close to perfect as possible, with
little or no provision for automated error recovery. We discuss
an alternate approach that augments the program with layers
of partial and potentially redundant acceptability monitoring
and enforcement components. This approach helps the system
adapt to recover from the inevitable errors that occur in every
large software system. It may also make it possible to build
resilient systems that continue to execute productively even
after they take an incorrect action or sustain damage. Finally,
it may help organizations to prioritize their development
processes to focus their efforts on the most important aspects
of the system, reducing the amount of engineering resources
required to build the system and enabling a broader range of
individuals to contribute productively to its development.



ACKNOWLEDGEMENTS

I would like to thank Tim Kay, Daniel Jackson, Butler
Lampson, and the members of my research group, in particular
Brian Demsky and Karen Zee, for many interesting and useful
discussions on the subject of this paper.

REFERENCES

[1] A. V. Aho, R. Sethi, and J. Ullman.Compilers: Principles, Techniques,
and Tools. Addison-Wesley, Reading, MA, second edition, 1986.

[2] A. Alexandrov, M. Ibel, K. Schauser, and C. Scheiman. UFO: A personal
global file system based on user-level extensions to the operating system.
ACM Transactions on Computer Systems, 16(3):207–233, August 1998.

[3] Susan Brilliant, John Knight, and Nancy Leveson. Analysis of faults
in an n-version software experiment.IEEE Transactions on Software
Engineering, SE-16(2), February 1990.

[4] George Candea and Armando Fox. Recursive restartability: Turning
the reboot sledgehammer into a scalpel. InProceedings of the 8th
Workshop on Hot Topics in Operating Systems (HotOS-VIII), pages 110–
115, Schloss Elmau, Germany, May 2001.

[5] Stefano Ceri, Piero Fraternali, Stefano Paraboschi, and Letizia Tanca.
Automatic generation of production rules for integrity maintenance.
ACM Transactions on Database Systems, 19(3), September 1994.

[6] Stefano Ceri and Jennifer Widom. Deriving production rules for
constraint maintenance. InProceedings of 1990 VLDB Conference,
pages 566–577, Brisbane, Queensland, Australia, August 1990.

[7] J. Darley and B. Latane. Bystander intervention in emergencies: Dif-
fusion of responsibility.Journal of Personality and Social Psychology,
pages 377–383, August 1968.

[8] W. Edwards Deming.Out of the Crisis. MIT Press, 2000.
[9] B. Demsky and M. Rinard. Role-based exploration of object-oriented

programs. InProceedings of the 2002 International Conference on
Software Engineering, Orlando, Florida, May 2002.

[10] Brian Demsky and Martin Rinard. Automatic detection and repair of
errors in data structures. InProceedings of the 2003 ACM SIGPLAN
Conference on Object-Ori ented Programming Systems, Languages, and
Applications (OOPSLA ’03), Anaheim, California, November 2003.

[11] Michael D. Ernst, Adam Czeisler, William G. Griswold, and David
Notkin. Quickly detecting relevant program invariants. InInternational
Conference on Software Engineering, pages 449–458, 2000.

[12] Jim Gray and Andreas Reuter.Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[13] G. Haugk, F.M. Lax, R.D. Royer, and J.R. Williams. The 5ESS(TM)
switching system: Maintenance capabilities.AT&T Technical Journal,
64(6 part 2):1385–1416, July-August 1985.

[14] T. Kay and J. Kajiya. Ray tracing complex scenes.Computer Graphics
(Proceedings of SIGGRAPH ’86), 20(4):269–78, August 1986.

[15] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J. Longtier, and J. Irwin. Aspect-oriented programming. InProceedings
of the 11th European Conference on Object-Oriented Programming,
Jyvaskyla, Finland, June 1997.

[16] J. Larus and E. Schnarr. EEL: Machine-independent executable editing.
In Proceedings of the ACM SIGPLAN ’95 Conference on Programming
Language Design and Implementation (PLDI), San Diego, California,
June 1995.

[17] B. Latane and J. Darley. Group inhibition of bystander intervention
in emergencies.Journal of Personality and Social Psychology, pages
215–221, October 1968.

[18] Samiha Mourad and Dorothy Andrews. On the reliability of the
IBM MVS/XA operating system. IEEE Transactions on Software
Engineering, September 1987.

[19] P. Plauger. Chocolate.Embedded Systems Programming, 7(3):81–84,
March 1994.

[20] M. Rinard and D. Marinov. Credible compilation with pointers. In
Proceedings of the Workshop on Run-Time Result Verification, Trento,
Italy, July 1999.

[21] Martin Rinard. Credible compilation. Technical Report MIT-LCS-
TR-776, Laboratory for Computer Science, Massachusetts Institute of
Technology, March 1999.

[22] Susan D. Urban and Louis M.L. Delcambre. Constraint analysis: A
design process for specifying operations on objects.IEEE Transactions
on Knowledge and Data Engineering, 2(4), December 1990.

[23] James Womack, Daniel Jones, and Daniel Roos.The Machine that
Changed the World: the Story of Lean Production. Harper Collins,
1991.


