
Incremental Deterministic Planning

Ştefan ANDREI
National University of Singapore,

School of Computing,
E-mail: andrei@comp.nus.edu.sg

Wei-Ngan CHIN
National University of Singapore,

School of Computing,
E-mail: chinwn@comp.nus.edu.sg

Martin RINARD
MIT, Department of Electrical

Engineering and Computer Science,
E-mail: rinard@lcs.mit.edu

Abstract

We present a new planning algorithm that formulates
the planning problem as a counting satisfiability problem in
which the number of available solutions guides the planner
deterministically to its goal. In comparison with existing
planners, our approach eliminates backtracking and sup-
ports efficient incremental planners that add additional sub-
formulas without the need to recompute solutions for previ-
ously provided subformulas. Our experimental results show
that our approach is competitive with existing state-of-the-
art planners that formulate the planning problem as a satis-
fiability problem, then solve the satisfiability problem using
specialized off-the-shelf satisfiability solvers such as zChaff.

1 Background

Planning is one of the most studied problems in artifi-
cial intelligence. A planning problem is solved by a plan-
ner, which takes as input a description of an initial state,
a goal, and the possible actions that can be performed in
a given world. The output of the planner is a sequence of
actions which, when executed in any world satisfying the
initial state, will achieve the desired goal.

A planning problem can be viewed as a reachability anal-
ysis problem. Given a setA of actions, a state s is reachable
from some initial state s0 if there is a sequence of actions
in A that defines a path from s0 to s. Reachability analysis
consists of analyzing which states can be reached from s0

in some number of steps and how to reach them. Reacha-
bility can be computed exactly through a reachability tree
or a reachability graph, but these data structures lead to an
algorithm with exponential complexity.

This exponential complexity motivated the introduction
of the planning graph [1], a data structure that provides an
efficient way to estimate the set of propositions possibly
reachable from an initial state under some set of actions.
Planning graphs have polynomial size and can be built in

polynomial time. But because the planning graph provides
only an approximation of the reachability tree, algorithms
that use the planning graph may need to backtrack to find
a solution [2], which again leads to exponential time com-
plexity in the worst case.

Researchers have also developed algorithms that formu-
late the planning problem as a propositional satisfiability
problem [3–5], then use an off-the-shelf satisfiability solver
to obtain a solution. Recent improvements in the perfor-
mance of general purpose algorithms for propositional sat-
isfiability provide the ability to scale up to relatively large
planning problems [6, 7].

1.1 Our Approach

This paper presents a new planning algorithm. Like stan-
dard SAT-based algorithms, our technique is based on re-
ducing the plan graph to a SAT problem. But instead of
then using a standard SAT solver, we instead use a counting
SAT solver, which provides the number of distinct satisfy-
ing assignments for the given propositional formula.

Our technique uses two key insights to completely elim-
inate the need for backtracking. The first insight is based on
a property of the SAT encoding of the plan graph — specif-
ically, it turns out that, at each choice point in the solution
extraction algorithm, knowing the number of possible satis-
fying assignments for each choice makes it possible to find
a distinguished choice that dominates all other choices in
the sense that if any of the choices contains a solution to the
planning problem, then the distinguished choice must also
contain a solution. Obviously, a planner that always chooses
the distinguished choice has no need to backtrack — it will
always deterministically find a plan if such a plan exists.

The second insight is that the use of a counting SAT
solver rather than a SAT solver provides the information re-
quired to find the distinguished choice. The end result is that
we are able to reduce the planning problem to a SAT prob-
lem, then use a counting SAT solver to obtain a determinis-
tic planner that 1) never backtracks, and 2) is guaranteed to

1

find a solution to the planning problem if one exists.
Moreover, the use of counting SAT in this context pro-

vides an additional benefit. Counting SAT enables the use
of efficient incremental algorithms. In general, the planner
produces a related sequence of related SAT problems as it
finds the plan. Instead of starting anew for each problem
in the sequence, our incremental counting SAT solver can
instead exploit the structure that the current and previous
problems share to efficiently and incrementally update the
solution to a previous problem to obtain a new solution to
the current problem. Our results show that this approach
can dramatically increase the efficiency of the solver.

We have implemented a planner based on this approach
and used it to obtain solutions to a variety of planning prob-
lems. Our results show that this approach can produce a
planner that executes more efficiently than existing SAT-
based approaches (which backtrack at choice points).

1.2 Planning graph

Briefly, a planning graph is a directed layered graph,
where arcs are permitted only from one layer to the next.
Nodes in level 0 of the graph correspond to the set P0 of
propositions (or facts, literals, fluents) denoting the initial
state of a planning problem. To search for a solution, the
planning graph is iteratively expanded for the next level.
Level 1 contains two layers: an action level A1 (set of ac-
tions whose preconditions are nodes in P0) and a proposi-
tion level P1 (union of P0 and effects of A1). A plan Π with
k levels is a sequence of sets of actions Π =< π1, π2, ...,
πk >, with πi ⊆ Ai, ∀ i = 1, 2, ..., k. Actions from πi

can be executed in parallel, in the sense that their execution
order is immaterial. Two actions a1 and a2 are dependent if
(i) a1 deletes a precondition of a2 or (ii) a1 deletes an effect
of a2 or (iii) a2 deletes a precondition of an effect of a1.
Two actions a1 and a2 from level Ai are mutex if either (i)
a1 and a2 are dependant or (ii) if a precondition of a1 is mu-
tex with a precondition of a2. Two propositions p1 and p2

from Pi are mutex (i.e., mutually exclusive) if every action
in Pi that has p1 as an effect is mutex with every action that
produces p2, and there is no action in Ai that produces both
p1 and p2. In fact, when constructing the planning graph,
propositions and actions monotonically increase from one
level to the next, while mutex pairs monotonically decrease.
This implies that it is likely for the solution to have more
parallel actions close to the last generated level rather than
the first levels.

1.3 Existing planners

Graphplan was the the first planner to solve planning
problems using planning graph analysis [1]. Graphplan
broke previous records in terms of raw planning speed, and
has become a popular planning framework. Basically, the
pseudocode of Graphplan [2] is:
for (k = 0, 1, 2, ...) {

expand the planning graph up to level k;

check whether the planning graph satisfies a necessary
condition for plan existence for goal g;

if it does, then call SolExtract(g, k);
}
where SolExtract(g, k) is given by:
{ if k = 0 return the solution;
for (each proposition p in g)

nondeterministically choose an action from level k−1
to achieve p

if (any pair of chosen actions is mutex) do backtrack;
g′ = {preconditions of chosen actions};
recursive call SolExtract(g′, k − 1);

}

Note that if there is a failure at level k during solution ex-
traction, the algorithm will backtrack over the other subsets
of Ak+1. If level 0 is successfully reached, then the corre-
sponding sequence is a solution plan.

SATPLAN [6, 7] uses a similar approach, but there are
some differences as well (SATPLAN takes as input a set
of axiom schemas, while Graphplan takes as input a set of
STRIPS-like operators).

1.4 Our contribution

To summarize, the contributions of this paper are:
• we provide an automatic way to avoid backtracking

while searching for a plan. This is based on considering a
harder problem than SAT, namely the counting SAT prob-
lem;
• our approach considers one more piece of informa-

tion, called the increment, so that we can deterministically
choose the proper action for the plan extraction. In fact, we
shall exploit the monotony of mutex actions from one level
to the next. In other words, when searching for a solution
plan, by doing less actions at the first levels and more ac-
tions at the last levels, we can ensure that a solution of the
planning graph is actually a solution of the planning prob-
lem, too;
• the technique is applied incrementally, namely we con-

sider the satisfiability of the new added subformulas without
repeating the satisfiability of the former subformulas;
• the experimental results show that our counting SAT

solver is comparable to the state-of-the-art SAT solvers that
have been adopted by the existing planners.

1.5 Our running example

To illustrate our technique, we choose as running exam-
ple the “dinner-date” example from [8]. Its specification can
be made using STRIPS-like domains:
Initial state: (and (garbage) (cleanHands) (quiet))
Goal: (and (dinner) (present) (not (garbage)))
Actions:
cook: precondition (cleanHands)

: effect (dinner)
wrap: precondition (quiet)

: effect (present)

2

carry: precondition
: effect (and (not garbage)) (not (cleanHands)))

dolly: precondition
: effect (and (not garbage)) (not (quiet)))

In this example, it is supposed that someone has ini-
tially cleanHands, while the house has garbage and
is quiet. There are four possible actions: cook (re-
quires cleanHands and achieves dinner), wrap (re-
quires quiet and produces present), carry (has no
precondition, but it has two effects: removes garbage, and
negates cleanHands), and dolly (with no precondition,
but she may remove the garbage and negates quiet).
The planning graph up to level 1 is given in Figure 1 [8].
Action names are surrounded by boxes and horizontal dou-
ble lines demote maintainance actions. Thin, curved lines
between actions and propositions at a single level denote
mutex relations.

¬dinner

carry

cleanH

dolly

garb

wrap

cook

quiet

garb

¬dinner

¬present

¬garb

¬quiet

dinner

present

cleanH

P0 A1 P1

¬present

quiet

¬cleanH

Figure 1. The dinner-date planning graph (levels 0, 1)

Obviously, we have two pairs of mutex actions: carry
with cook, and dolly with wrap. Moreover, there ex-
ist two mutex pairs of propositions at level 1, namely ¬
cleanH (shortcut for¬ cleanHands) with dinner, and
quiet with present. It is easy to check that all propo-
sitions from the goal are possible at level 1, since they are
not mutex with each other. Thus, there is a chance that a
plan exists. Graphplan will consider two sets of actions:
{carry, cook, wrap} and {dolly, cook, wrap}. Un-
fortunately, none of these sets of actions is a solution since
carry is mutex with cook while dolly is mutex with
wrap. Because the solution extraction fails, Graphplan will
extend planning graph with one more level.

Next section shows a general technique to automatically
decide whether it is necessary to extend the planning graph
or to provide a solution plan. The idea is to construct a
propositional formula F such that there exists a plan iff F
is satisfiable.

2 A SAT encoding of the planning problem

The architecture of a typical planner has a compiler
(which guesses a plan length, and generates a propositional
formula), a simplifier (which shrinks the propositional for-
mula by applying techniques such as unit clause propaga-
tion and pure literal elimination), a solver (which finds a
truth assignment of the propositional formula), and a de-
coder (which gives a solution plan).

Let LP be the propositional logic over the finite set of
atomic formulae (propositional variables) V = {X1, ...,
Xn}. A literal L is an atomic formula A (positive literal)
or its negation ¬A (negative literal), and denote V(L) =
V(L) = A. Any function S : V → {0, 1} is an assignment
(or, model) and it can be uniquely extended in LP to F . Any
propositional formulae F ∈ LP can be translated into the
conjunctive normal form (CNF): F = (L1,1∨ ... ∨L1,n1)∧
... ∧(Ll,1∨ ... ∨Ll,nl

), where Li,j are literals and l ≥ 1. We
shall use the set representation {{L1,1, ..., L1,n1}, ..., {Ll,1,
..., Ll,nl

}} to denote F . Any finite disjunction of literals is
a clause and a formula in CNF is called a clausal formula.
A formula F is called satisfiable iff there exists a structure
S for which S(F) = 1. A formula F is called unsatisfiable
(or contradiction) iff F is not satisfiable. We denote by
the empty clause (i.e., the one without any literal). A unit
clause has only one literal.

There are many ways of generating the CNF formula for
a planning problem [2]. One way is to consider the follow-
ing five types of formulas: 1) the initial state is encoded
as the conjunctive of fluents that hold and the negation of
those that do not hold; 2) the set of goal states is encoded
as the conjunction of fluents that must hold in the last state;
3) the A =⇒ P, E axioms: given an applicable action, its
preconditions must hold at that step, and its effects will hold
at the next step; 4) the explanatory frame axioms: if a flu-
ent changes, then one of the actions that have that fluent in
its effects has been executed; 5) the complete exclusion ax-
ioms: only one action occurs at each step. These five sets
of formulas encode the planning problem P having a goal
with n actions to propositional satisfiability [5]; that is, the
CNF formula is satisfiable iff there exists a solution plan of
length n to P. Since only one action occurs at each level,
this is also called linear SAT-encoding.

There exist variations of the above encoding, with the
possibility of doing more than one action at each level, for
example by considering classical frame axioms which state
what fluents are left unchanged by a given action [9]. In this
case, exclusion axioms are unnecessary since the classical
frame axioms combined with A =⇒ P,E axioms ensure
that any two actions occurring at time t lead to identical
world-state at time t + 1.

Another variation refers to exclusion. Instead of com-
plete exclusion axioms, only the conflict exclusion axioms
[10] may be added (two actions conflict if one’s precondi-
tion is inconsistent with the other’s effect).

Another possible SAT encoding was shown in [4], i.e.,
the planning graph can be automatically converted into a

3

CNF formula by considering the initial state and goal encod-
ing, mutex of conflicting actions, actions imply their pre-
conditions, and each fact implies the disjunction of all oper-
ators (actions, facts) from the previous levels. Among all the
existing SAT-encoding, it seems this latter one is the most
efficient because of the CNF formula size. As mentioned
in [4], this encoding is more efficient than Graphplan-based
encodings when considering larger benchmark instances.
However, this SAT-encoding is not complete, in the sense
that not every solution of the SAT formula corresponds to
a solution to a solution of the planning problem. Because
of the lake of axioms of kind ‘actions imply their effects’,
the SAT solutions may contain spurious actions. In fact, this
matter was solved in [5], where the extraction function can
simply delete actions from the solution those effects do not
hold.

For efficiency reasons, we consider the SAT encoding
from [4] and illustrate how it works for the dinner-date ex-
ample [8]. Even if this SAT encoding is an incomplete one,
there exist different ways to find the proper solution (details
in Section 4). The fact that the planning graph having one
level cannot lead to a solution can be automatically done
by checking the satisfiability of a CNF formula which en-
codes the given problem. Let us denote by V1 = {X1,
X2, ..., X14} the set of propositional variables which cor-
responds to garbage, cleanHands, quiet, dinner,
present (from level 0), carry, dolly, cook, wrap,
garbage, cleanHands, quiet, dinner, present
(from level 1), respectively. The initial state corresponds
to the formula: { {X1}, {X2}, {X3}, {X4}, {X5} }. The
goal for the first level is: { {X10}, {X13}, {X14} }. For
example, by considering the ‘actions imply their precon-
ditions’ axioms, we get the clauses {X2, X8}, {X3, X9},
by considering the mutex between actions axioms we
get {X6, X8}, {X7, X9}, and by considering ‘each fact
implies the disjunction of all operators’ axioms we get
{X6, X7, X10}, {X8, X13}, and {X9, X14}.

¬quiet

¬garb

¬present

¬dinner

garb

quiet

wrap

dolly

carry

dinner

cook

¬quiet

¬garb

¬cleanH

dinner

present

P2A2P1

¬present

¬dinner

quiet

cleanH

garb

¬cleanH

cleanH

present

Figure 2. The dinner-date planning graph (level 2)

We denote by F1 the CNF formula containing all the pre-
vious clauses. Since F1 is unsatisfiable, there is no solu-
tion for the planning graph having only one level. Figure
2 shows the planning graph extended with one more level
of actions and facts. In fact, we can do a binary search on
instantiations of various sizes in order to find the smallest
level for which a solution is found [4] (e.g. if the optimal
plan length is 5 , the search can proceed for plans of length
2, 4 (no plan found), 8 (plan found), 6 (plan found) and fi-
nally 5.

Let us denote by X15, X16, ..., X23 the propositional
variables which corresponds to carry, dolly, cook,
wrap, garbage, cleanHands, quiet, dinner,
present, all from level 2. The new set of variables is
now V2 = V1∪ { X15, X16, ..., X23 }. Let us denote
by F2 the CNF formula which encode the planning graph
up to level 2. Obviously, F2 contains F1, except the goal
clauses, and the following new clauses { {X19}, {X22},
{X23} } (the goal for the second level), {X11, X17},
{X12, X18} (the ‘actions imply their preconditions’ ax-
ioms), {X15, X17}, {X16, X18} (the mutex between ac-
tions axioms), {X10, X15, X16, X19}, {X13, X17, X22},
and {X14, X18, X23} (‘each fact implies the disjunction of
all operators’ axioms)

Since the old goal has been removed, we insert to F2

the unit clauses which corresponds to the new goal: {X19},
{X22}, {X23}. This time F2 is satisfiable, so we have to
look for solutions by considering all the 12 possible disjunc-
tions for the goal of level 2, namely {carry2, dolly2,
¬garb1 } × {cook2, dinner1 } × {wrap2, present1

}. Eventually, by running the procedure solExtract(),
a solution will be found. Note that the solution extraction
procedure may need to do backtracking in order to get the
desired solution. The next section shows a different alterna-
tive by proposing a deterministic approach for solving the
planning problem using counting satisfiability.

3 Incremental counting SAT

A counting problem P determines how many solutions
exist, not just an answer “Yes/No” like a decision problem.
The problem of counting the number of truth assignments
(denoted by #SAT) was proved to be #P-complete [11].
The #P-complete problems are at least as hard as NP-
complete problems. In fact, the class #P includes NP ,
and, in turn, is included in PSPACE .

For a finite set A, |A| denotes the number of elements of
A. Z, N and N+ denote the set of integers, positive integers,
and the set of strict positive integers, respectively.

Notation 3.1 Let C1, ..., Cs be clauses over V (s ≥ 1). We
denote:
a) mV (C1, ..., Cs) = |{A | A ∈ V − V(C1∪ ... ∪Cs)}|;
b) difV (C1, ..., Cs) = 0 if (∃ i, j ∈ {1, ..., s}, i 6= j, such
as ∃ L ∈ Ci and L ∈ Cj) or (∃ i ∈ {1, ..., s}, such as
Ci =); otherwise, difV (C1, ..., Cs) = 2mV (C1,...,Cs);

4

c) the determinant of the set of clauses {C1, ..., Cs}
is detV (C1, ..., Cs) = 2|V | −

s∑
j=1

(−1)j+1 · ∑
1≤i1<...<ij≤s

difV (Ci1 , ..., Cij);

In other words, the above notation says that mV (C1, ...,
Cs) denotes the number of atomic formulae from V which
do not occur in C1∪ ... ∪Cs. The positive integer number
difV (C1, ..., Cs) is 0 iff there is a literal in one of the argu-
ment’s clause and its opposite in another clause or one of
the clauses is the empty one. The integer detV (C1, ..., Cs)
is a sign-alternated sum of difV (). If F = {C1, ..., Cs}, we
may denote mV (C1, ..., Cs) as mV (F), difV (C1, ..., Cs)
as difV (F) and detV (C1, ..., Cs) as detV (F). In fact, the
determinant of a clausal formula coincides with the num-
ber of truth assignments of that formula. Given F ∈ LP
over V , there exist detV (F) truth assignments for F. Obvi-
ously, knowing detV (F), the SAT problem can be solved,
too. That is, F is satisfiable iff detV (F) 6= 0.

For example, let us consider F = {C1, C2, C3}, where
V = {p, q, r} and C1 = {p, q}, C2 = {q, r}, C3 = {p, r}.
Then mV (C1) = 1, mV (C1, C2) = 0, and so on. Thus,
difV (C1) = 2, difV (C1, C2) = 0, and so on. Therefore,
detV (F) = 23− (21 + 21 + 21) + 20 = 3. It follows that
F is satisfiable and has detV (F) = 3 (distinct) truth assign-
ments.
Incremental computation: Since detV (F) may contain an
exponential number of difV ()’s depending on the number
of clauses of F , whenever a new clause C is added, it is
better to compute only the difV ()’s which contain C and
not the whole difV ()’s corresponding to F ∪ {C}. Next,
the increment of a given clausal formula F with an arbitrary
clause C is defined.

Notation 3.2 If F = {C1, ..., Cl} is an arbitrary clausal
formula over V and C is an arbitrary clause over V , then

incV (C,F) =
l∑

s=0
(−1)s+1 · ∑

1≤i1<...<is≤l

difV (C, Ci1 , ...,

Cis) is called the increment of F with clause C.

The increment is a negative integer representing the num-
ber of truth assignments which have to be added or sub-
tracted from the previous value of the determinant.

In the following, the main result of this section is pre-
sented. It allows the computation of the determinant of a
new clausal formula using the already computed determi-
nant of the old clausal formula. Moreover, the incremen-
tal computation of the determinant of a formula containing
new clauses is optimal. That is, no new difV ()’s expres-
sions are computed in the new incremental expression, that
is incV (C, F), except the ones which would have been cre-
ated in the non-incremental approach.

Theorem 3.1 Let F = {C1, ..., Cl} be a clausal for-
mula over V and let F ′ = {Cl+1, ..., Cl+k}, k ≥ 1,
be a clausal formula over V . Then detV (F ∪ F ′) =
detV (F)+ incV (Cl+1, F)+ incV (Cl+2, F ∪ {Cl+1})+ ...
+incV (Cl+k, F ∪ {Cl+1}∪ ... ∪{Cl+k−1}).

Considering the notations from Theorem 3.1, we de-
note incV (F ′, F) = incV (Cl+1, F)+ incV (Cl+2, F ∪
{Cl+1})+ ... +incV (Cl+k, F ∪ {Cl+1}∪ ... ∪{Cl+k−1}).
The next corollar points out some situations when the com-
putation of the determinant and the increment can be speed
up.

Corollary 3.1 Let F = {C1, ..., Cl} be a clausal formula
over V . Then:
a) if A is a new atomic variable, A /∈ V , then
detV ∪{A}({A}, F) = detV ∪{A}({A}, F) = detV (F) and
incV ∪{A}({A}, F) = incV ∪{A}({A}, F) = −detV (F);
b) if V ′ = {X1, ..., Xm} is a set of atomic variables, m ∈
N+, X1, ..., Xm /∈ V , then detV ∪V ′(F) = 2m· detV (F)
and incV ∪V ′(C, F) = 2m· incV (C,F).

4 Incremental deterministic planning

In the following, we shall describe our approach for the
dinner-date example. By simply computing the determinant
as shown in the previous section, we get detV1(F1) = 0,
and detV2(F2) = 172. We immediately deduce that F1 is
unsatisfiable and F2 is satisfiable. It implies there are no
solutions at level 1 and there might be some solutions at
level 2. To check that, one way is to verify which of the
12 candidate solutions are solutions of the planning prob-
lem, i.e., the elements of the cartesian product {carry2,
dolly2, ¬garb1 } × {cook2, dinner1 } × {wrap2,
present1}. Since each of these cases refer to addition
of exactly three unit clauses to F2, the computation time
of the corresponding determinants/increments can be done
efficiently. These are:
• F

(1)
2 = {{X15}, {X17}, {X18}} ∪ F2, incV2(F

(1)
2) =

−172, so detV2(F
(1)
2) = 0;

• F
(2)
2 = {{X15}, {X17}, {X14}} ∪ F2, incV2(F

(2)
2) =

−172, so detV2(F
(2)
2) = 0;

• F
(3)
2 = {{X15}, {X13}, {X18}} ∪ F2, incV2(F

(3)
2) =

−132, so detV2(F
(3)
2) = 40;

• F
(4)
2 = {{X15}, {X13}, {X14}} ∪ F2, incV2(F

(4)
2) =

−132, so detV2(F
(4)
2) = 40;

• F
(5)
2 = {{X16}, {X17}, {X18}} ∪ F2, incV2(F

(5)
2) =

−172, so detV2(F
(5)
2) = 0;

• F
(6)
2 = {{X16}, {X17}, {X14}} ∪ F2, incV2(F

(6)
2) =

−132, so detV2(F
(6)
2) = 40;

• F
(7)
2 = {{X16}, {X13}, {X18}} ∪ F2, incV2(F

(7)
2) =

−172, so detV2(F
(7)
2) = 0;

• F
(8)
2 = {{X16}, {X13}, {X14}} ∪ F2, incV2(F

(8)
2) =

−132, so detV2(F
(8)
2) = 40;

• F
(9)
2 = {{X10}, {X17}, {X18}} ∪ F2, incV2(F

(9)
2) =

−144, so detV2(F
(9)
2) = 28;

• F
(10)
2 = {{X10}, {X17}, {X14}} ∪ F2, incV2(F

(10)
2) =

−152, so detV2(F
(10)
2) = 20;

• F
(11)
2 = {{X10}, {X13}, {X18}} ∪ F2, incV2(F

(11)
2) =

−152, so detV2(F
(11)
2) = 20;

5

• F
(12)
2 = {{X10}, {X13}, {X14}} ∪ F2, incV2(F

(12)
2) =

−172, so detV2(F
(12)
2) = 0;

This SAT encoding ensures that F
(1)
2 , F

(2)
2 , F

(5)
2 , F

(7)
2

and F
(12)
2 do not correspond to solutions of the planning

problem (because they are unsatisfiable formulas). How-
ever, the formulas F

(9)
2 , F

(10)
2 and F

(11)
2 correspond to sat-

isfiable SAT formulas, but they do not lead to solutions of
the planning problem. Since a classical SAT solver can only
answer with ‘Yes/No’ regarding the satisfiability of a given
CNF formula, it is impossible to detect using a SAT solver
that F

(9)
2 , F

(10)
2 and F

(11)
2 cannot lead to solutions of the

planning problem.
To the best of our knowledge, there are two traditional

ways to eliminate the incorrect (spurious) solutions:
• consider a richer SAT encoding, by including the

A =⇒ E axioms. However, this approach may lead to large
SAT formulas;
• consider the above SAT encoding, but when the plan-

ning graph is created, special dummy “maintain” actions are
also created [12]. Then, if a fact holds at time i, then it must
either be added by an action at time i − 1, or maintained
by the corresponded maintain action at time i − 1. This
approach was successfully used in Blackbox [7].

Our alternative is different from these two traditional ap-
proaches. Instead, a counting SAT solver can use the num-
ber of truth assignments to decide which solution to select.
For example, we shall use the information that the determi-
nants of F

(9)
2 , F

(10)
2 and F

(11)
2 are among the smallest out

of 12 determinants. In this way, we are showing an efficient
way to deterministically identify a solution plan using the
determinants. So, coming back to our example, instead of
doing ‘generate and test’ of all the 12 possible candidates,
we consider first:
incV2({X15}, F2) = −100, so detV2({{X15}}∪F2) = 72;
incV2({X16}, F2) = −100, so detV2({{X16}}∪F2) = 72;
incV2({X10}, F2) = −112, so detV2({{X10}}∪F2) = 60;

In order to get the solution directly, we shall choose the
cases having the maximum increment/determinant, e.g. ei-
ther {X15} or {X16} which corresponds for carry2 or
dolly2, respectively. Assuming that we choose carry2,
we compute the increments/determinants corresponding to
cook2 and dinner1:
incV2({X17}, {{X15}} ∪ F2) = −72, so determinant is 0;
incV2({X13}, {{X15}}∪F2) = 0, so its determinant is 72;

According to the same strategy, we choose {A13} as
the solution and continue with the third set of the cartesian
product, namely {wrap2, present1}. Now, we continue
with incV2({X18}, {{X13}, {X15}}∪F2) = −32, so its de-
terminant is 40; or incV2({X14}, {{X13}, {X15}} ∪ F2) =
−32, so its determinant is 40.

Since both determinants have the same value, it is likely
that any of them may actually correspond to a solution of
the planning problem. Because dinner1 and present1

are effects of cook1 and wrap1, we get either
< {cook1}, {carry2, wrap2} > or
< {cook1, wrap1}, {carry2} >

as the first two solutions for the planning problem. Of
course, if we have chosen initially dolly2 as an action,
by doing a similar strategy, we get the solutions:

< {wrap1}, {dolly2, cook2} >
and

< {cook1, wrap1}, {dolly2} >.
Next, we shall prove two results which allow us to

choose deterministically a solution among the set of all so-
lutions of the planning problem.

Lemma 4.1 Let Fi be the CNF formula over Vi corre-
sponding to level i of a planning graph, and let f (i) be a
variable of the goal corresponding to the goal of level i, and
f (i) → {a(i)

1 , ..., a
(i)
n , f (i−1)} be the implication of a fact

of level i to actions of level i and a fact of level i− 1. Then
detVi

(Fi ∪ {a(i)
k }) > detVi

(Fi ∪ {f (i−1)}), ∀ k ∈ 1, n.

In fact, if we consider that actions a
(i)
1 , ..., a

(i)
n are all the

actions related to facts f (i) and f (i−1), then the converse of
Lemma 4.1 holds, too. In other words, Lemmas 4.1 and 4.2
ensure that when searching for a solution, it is necessary to
consider the determinant having the maximum value among
the actions of level i and facts from level i− 1.

Lemma 4.2 Let Fi be the CNF formula over Vi corre-
sponding to level i of a planning graph, and let {a(i)

1 , ...,
a
(i)
n } be the set of actions of level i, and f (i−1) be a fact of

level i− 1 such that f (i) → a
(i)
1 ∨ ...∨a

(i)
n ∨ f (i−1) is a ‘fact

implies operators’ axiom.
If {a(i)

j } ∪ F does not lead to a solution of the planning
problem, for all j ∈ {1, ..., n}, then f (i−1) ∪ F does not
lead to a solution, too.

Here is our deterministic procedure
detSolExtract(g, k, Fk, Sk) for solution extrac-
tion, where g is the number of positive facts in the goal,
k is the number of levels, Fk is the SAT-encoding corre-
sponding to level k, and Sk is the space of solution plan,
i.e., Sk = {op(1)

1 , ..., op
(1)
k1
}× ... ×{op(g)

1 , ..., op
(g)
kg
}.

detSolExtract(g, k, Fk, Sk)
for (i = 0; i ≤ g; i + +) {

let kj ∈ {1, ..., ki} such that incVk
({X(i)

j }, F ′k) has

the maximum value, where X
(i)
j is the propositional

variable corresponding to op
(i)
kj

;

F ′k = F ′k ∪ {{X(i)
j }};

choose op
(i)
kj

as part of the solution plan;
}

Note that procedure detSolExtract() never back-
tracks. It will provide the plan Π =< π1, ..., πk >, ac-
cording to the “as late as possible” strategy. The increment
can decide the actions executed at a given step. In other
words, when searching for a solution plan, our strategy will
find a solution which corresponds to less actions at the first
levels and more actions at the last levels.

6

5 Experimental results

Among the existing SAT-based planners, it seems that the
SatPlan 2004, a planner developed by Henry Kautz and his
team is the most efficient one. The SatPlan 2004 took first
place for optimal deterministic planning [7]. This planner is
based on one of the fastest SAT solvers, namely zChaff [13].
This section is devoted to two comparisons:
• the incremental approach versus the non-incremental

approach and
• our counting SAT solver against some state-of-the-art

SAT solvers (including zChaff). Our comparison uses ran-
domly generated clausal formulae and some common plan-
ning examples.

The first experiment compares the incremental approach
versus non-incremental approach. We consider the addition
of two new clauses, i.e., Cl+1 and Cl+2, to the clausal for-
mula F = {C1, ..., Cl} over V = {X1, ..., Xn}. Our
testing instances refer to different values for (n, l), where
n and l denote the number of variables and clauses, respec-
tively. Let us denote by New, Old, Inc1, and Inc2 the
time needed (in seconds) for computing the exact values
of detV (F∪ {Cl+1}∪ {Cl+2}), detV (F), incV (Cl+1, F),
and incV (Cl+2, F∪ {Cl+1}). Table 1 presents the results.

(n, l) New Old Inc1 Inc2

(10, 20) 0.16 0.06 0.01 0.05
(15, 25) 0.37 0.13 0.11 0.21
(20, 40) 3.32 2.48 0.39 0.41
(25, 45) 2.18 1.50 0.16 0.71
(30, 60) 7.70 6.03 0.83 1.28
(40, 75) 11.64 8.77 1.42 2.19
(50, 100) 39.26 33.57 0.67 5.66
(100, 200) 2147 1992 144 30.48

Table 1. Incremental versus non-incremental

Definitely, once we know detV (F), it is more con-
venient to compute only incV (Cl+1, F) and incV (Cl+2,
F∪ {Cl+1}), rather than evaluating detV (F∪ {Cl+1}∪
{Cl+2}). Actually, the time needed for computing
detV (F∪ {Cl+1}∪ {Cl+2}) is approximately equal to
the time consumed by the computation of detV (F),
incV (Cl+1, F), and incV (Cl+2, F∪ {Cl+1}) together. For
the first line of Table 1, we may see that the incremental
computation is more efficient that non-incremental compu-
tation because 0.01+ 0.05 is less than 0.16.

The second experiment is devoted to an approximate
evaluation of the determinant of a clausal formula. Our
counting SAT solver (called CoSAT) has two variations,
namely a complete one (which returns the exact number of
truth assignments) and an approximate one (which returns
a lower bound for the number of truth assignments). The
complete variation cannot work in a reasonable amount of
time for large CNF formulas, while the approximate varia-
tion works for large CNF formulas. Table 2 shows the exe-
cution times of the approximated variation of CoSAT.

Existing tools (such as state of the art SAT solvers) for
solving NP−complete problems may offer fast answers

and/or incomplete answers for particular subclasses of in-
puts. As mentioned in [13], GRASP [14] has been devel-
oped as a combination of two main strategies: the Davis-
Putnam (DP) backtrack search and heuristic local search.
zChaff [13] is based almost exclusively on the DP search
algorithm. We run GRASP, zChaff and CoSAT on a Red
Hat Linux 9.0 Pentium 4, 2.0 GHz processor, using 1 GB of
memory. Table 2 presents the results of this experiment.

GRASP zChaff CoSAT
(n, l) Time Time Time
(900, 2000) 2.21 0.37 0.52
(1000, 2200) 2.82 0.45 0.60
(1100, 2400) 3.6 0.58 0.69
(1200, 2600) 4.42 0.71 0.70
(1300, 2900) 5.78 0.77 0.82
(1500, 3500) 8.74 1.63 1.34
(1750, 4000) 13.51 1.57 1.68
(2000, 5000) 20.34 2.31 2.99
(2500, 6000) 34.3 3.39 3.30
(3000, 7000) 53.32 5.07 4.43

Table 2. CoSAT against GRASP and zChaff

Table 2 demonstrates that our tool is comparable with ex-
isting state-of-the-art SAT solvers for our randomly gener-
ated planning problems. For example, CoSAT outperforms
GRASP with a order of magnitude between 4 and 12. More-
over, CoSAT is comparable with zChaff, and tends to out-
perform it as the size of the input CNF formula increases.
Note that CoSAT solves a harder problem than both SAT
solvers. We also performed a preliminary study involving a
set of planning problems. We compared the number of invo-
cations of the SAT procedure by the classical planner. As-
suming that the backtracking will explore the entire search
tree (procedure SolExtract(g, k)), our approach (proce-
dure detSolExtract(g, k)) can lead to faster SAT-based
planners.

6 Related Work and Conclusions

The counting SAT problem has many applications in the
areas of computer science, including artificial intelligence,
real-time systems, and so on. As mentioned in [15], count-
ing is often the most natural way of verifying equivalence
between two theories. Moreover, it can provide degrees of
how close is a theory by its approximation [16, 17]. Fur-
thermore, counting can provide heuristics for guiding plan-
ning and search, where an estimation of the probability for
a given search would help lead to a goal. The number of
solutions found in a simplified version of the problem de-
scription can then serve as an estimation of this probabil-
ity [18]. There exist complete (i.e. gives the total number
of truth assignments) counting SAT solvers [19–21], but our
tests showed that their execution times are still impractical
for large benchmark planning problems (e.g. rocket, logis-
tic, blockworld). Our use of approximated counting SAT
solver is a step towards resolving this difficulty.

While there has been substantial progress for solving the

7

SAT problem, there are related problems where #SAT is
more useful. A recent example is an application for im-
provement of propositional reasoning. In particular, while
formula caching may have theoretical value in SAT solvers
[22], component caching seems to be more promising when
a #SAT solver is efficiently applied [23, 24].

This paper presents an efficient incremental #SAT-based
planner as an alternative for existing SAT-based planners.
The experimental results demonstrate that our approach is
promising. The paper has laid down a set of underlying
theories and techniques that form the basis for deterministic
incremental planning.

References

[1] A. L. Blum and M. L. Furst, “Fast planning through
planning graph analysis,” in Proceedings of the 14th
International Joint Conference on Artificial Intelli-
gence, 1995, pp. 1636–1642.

[2] M. Ghallab, D. Nau, and P. Traverso, Automated Plan-
ning: Theory and Practice. Morgan Kaufmann Pub-
lishers, Elsevier, 2004.

[3] H. Kautz and B. Selman, “Planning as satisfiability,”
in Proceedings of the Tenth European Conference on
Artificial Intelligence, 1992, pp. 359–363.

[4] ——, “Pushing the envelope: Planning, propositional
logic, and stochastic search,” in Proceedings of the
Thirteenth National Conference on Artificial Intelli-
gence and the Eighth Innovative Applications of Ar-
tificial Intelligence Conference, 1996, pp. 1194–1201.

[5] H. Kautz, D. McAllester, and B. Selman, “Encod-
ing plans in propositional logic,” in Proceedings of
the Fifth International Conference on the Principle of
Knowledge Representation and Reasoning, 1996, pp.
374–384.

[6] H. Kautz and B. Selman, “Unifying SAT-based and
graph-based planning,” in Proceedings of the Sixteenth
International Joint Conference on Artificial Intelli-
gence, 1999, pp. 318–325.

[7] H. Kautz, “SatPlan: Planning as satisfiabil-
ity,” in International Planning Competition at the
14th International Conference on Automated Plan-
ning and Scheduling, 2004. [Online]. Available:
http://www.cs.washington.edu/homes/kautz/satplan/

[8] D. S. Weld, “Recent advances in AI planning,” AI
Magazine, vol. 20, pp. 93–123, 1999.

[9] J. McCarthy and P. J. Hayes, “Some philosophi-
cal problems from the standpoint of artificial intelli-
gence,” pp. 26–45, 1987.

[10] M. D. Ernst, T. D. Millstein, and D. S. Weld, “Au-
tomatic SAT-compilation of planning problems,” in

IJCAI-97, Proceedings of the Fifteenth International
Joint Conference on Artificial Intelligence, 1997, pp.
1169–1176.

[11] L. G. Valiant, “The complexity of enumeration and
reliability problems,” SIAM Journal on Computing,
vol. 8, pp. 410–421, 1979.

[12] H. Kautz, “Private communication,” July 2005.

[13] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang,
and S. Malik, “Chaff: engineering an efficient sat
solver,” in DAC ’01: Proceedings of the 38th confer-
ence on Design automation. ACM Press, 2001, pp.
530–535.

[14] J. Marques-Silva and K. Sakallah, “GRASP: A search
algorithm for propositional satisfiability,” IEEE Trans-
actions on Computers, vol. 48, pp. 506–521, 2000.

[15] R. Dechter and A. Itai, “Finding all solutions if you
can find one,” in Workshop on Tractable Reasoning,
AAAI’92, 1992, pp. 35–39.

[16] R. Dechter and J. Pearl, “Structure identification in re-
lational data,” in The Canadian Artificial Intelligence
Conference, 1992.

[17] B. Sellman and H. Kautz, “Knowledge compilation
using Horn approximation,” in Proceedings of AAAI-
91, 1991.

[18] R. Dechter, “Network-based heuristics for constraint
satisfaction problems,” Artificial Intelligence, vol. 34,
pp. 1–38, 1987.

[19] R. J. B. Jr. and J. D. Pehoushek, “Counting models us-
ing connected components.” in AAAI/IAAI, 2000, pp.
157–162.

[20] S. Andrei, “Counting for satisfiability by inverting res-
olution,” Artificial Intelligence Review, vol. 22, no. 4,
pp. 339–366, 2004.

[21] T. Sang, P. Beame, and H. A. Kautz, “Heuristics for
fast exact model counting.” in SAT, 2005, pp. 226–240.

[22] P. Beame, R. Impagliazzo, T. Pitassi, and N. Segerlind,
“Memoization and DPLL: Formula caching proof sys-
tems,” in Proceedings Eighteenth Annual IEEE Con-
ference on Computational Complexity. IEEE, 2003,
pp. 225–236.

[23] F. Bacchus, S. Dalmao, and T. Pitassi, “DPLL with
caching: A new algorithm for #SAT and Bayesian in-
ference,” in Proceedings 44th Annual Symposium on
Foundations of Computer Science. IEEE, 2003.

[24] T. Sang, F. Bacchus, P. Beame, H. Kautz, and
T. Pitassi, “Combining component caching and clause
learning for effective model counting,” in Seventh In-
ternational Conference on Theory and Applications of
Satisfiability Testing, 2004.

8

