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We present Konure, a new system that uses active learning to infer models of applications that retrieve
data from relational databases. Konure comprises a domain-specific language (each model is a program in
this language) and associated inference algorithm that infers models of applications whose behavior can be
expressed in this language. The inference algorithm generates inputs and database contents, runs the ap-
plication, then observes the resulting database traffic and outputs to progressively refine its current model
hypothesis. Because the technique works with only externally observable inputs, outputs, and database con-
tents, it can infer the behavior of applications written in arbitrary languages using arbitrary coding styles (as
long as the behavior of the application is expressible in the domain-specific language). Konure also imple-
ments a regenerator that produces a translated Python implementation of the application that systematically
includes relevant security and error checks.
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1 INTRODUCTION

Progress in human societies is cumulative—each new generation builds on technology, knowledge,
and experience accumulated over previous generations. Software collectively comprises one valu-
able store of human knowledge and experience as concretely realized in applications and software
components. But there is currently no easy way to extract this knowledge and experience from its
original context to productively deploy it into the new contexts that inevitably arise as societies
evolve over time.

We present a new approach that uses active learning to infer models that capture the functional-
ity of applications, specifically, the core functionality of the commands implemented in the target
applications or components. These models comprise a mobile reification of the original function-
ality that can then be regenerated to obtain a new, clean version of the functionality specialized
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for immediate deployment into new languages, systems, or contexts. The regeneration can also
improve the functionality by (1) discarding coding errors, (2) automatically inserting security
and/or privacy checks into the regenerated code, and/or (3) improving the performance by apply-
ing optimizations appropriate for the new platform or context. In the longer term, active learning
plus regeneration may also enable new development methodologies that work with simple proto-
type implementations as (potentially noisy) specifications, then use regeneration to automatically
obtain clean, efficient implementations specialized for the specific context into which they will be
deployed.

Applications that access databases are ubiquitous in computing systems. Such applications
translate commands from the application domain into operations on the database, with the ap-
plication constructing strings that it then passes to the database to implement the operations. Web
servers, which accept HTTP commands from web browsers and interact with back-end databases
to retrieve relevant data, are one particularly prominent example of such applications. These ap-
plications are written in a range of languages, often quickly become poorly understood legacy
software, and, because they are typically directly exposed to Internet traffic, have been a promi-
nent target for security attacks [13, 18, 37, 45, 46, 52, 53, 59]. Such applications therefore comprise
a particularly compelling target for active learning plus regeneration.

1.1 Konure

We present a new system, Konure, that implements active learning plus regeneration for appli-
cations that retrieve data from relational databases. Konure systematically constructs database
contents and application inputs, runs the application with the database and inputs, then observes
the resulting database traffic and outputs to infer a model of application behavior.
Domain-Specific Language: To make the inference problem tractable, Konure works with a
domain-specific language (DSL) that (1) captures common application behavior and (2) supports
a hierarchical inference algorithm that progressively explores application behavior to infer the
model. The inference algorithm (conceptually) maintains a current hypothesis as a sentential form
of the grammar that defines the DSL. At each step it selects a nonterminal in this sentential form,
constructs inputs and database contents that enable it to determine the one production to apply to
this nonterminal that is consistent with the behavior of the application, configures the database,
runs the application, then observes the resulting database traffic and outputs to refine the hypoth-
esis by applying the inferred production to the nonterminal. Although we designed the DSL to be
an internal representation that is invisible to users, it is straightforward to provide direct access
to the DSL so users may write programs directly in the DSL.
The Black Box Approach: Konure treats the program as a black box, collecting only the exter-
nally observable behavior (inputs, outputs, and database traffic) of the program. This black box
approach allows Konure to work directly with programs that would be difficult to analyze oth-
erwise, such as programs that are obfuscated, built with complicated frameworks, or written in
multiple languages.
Guarantees: If the application conforms to one of the models defined by the DSL, then the algo-
rithm is guaranteed to (1) terminate and (2) produce an inferred program that correctly models
the full core functionality of the application. Because Konure interacts with the application only
via its inputs, outputs, and observed database interactions, it can infer and regenerate applications
written in any language or in any coding style or methodology.
Benefits: Because the model captures core application functionality, it can help developers ex-
plore and better understand this functionality. Konure can also regenerate the application into a
potentially different language and systematically apply coding patterns and additional checks that
are known to be safe. Konure therefore targets several use cases: (1) security and/or performance
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through safe regenerated code, (2) portability to new platforms, (3) reverse engineering, and (4)
program understanding.

1.2 Key Inferrability Properties

The design of the Konure DSL, together with its associated top-down inference algorithm, is a
central contribution of this article. We next outline several key properties of the design that enable
inferrability via active learning.

In general, programs contain statements linked together by control and data flow. To promote
control-flow inferrability, each statement in the DSL executes a query that is directly observ-
able in the intercepted database traffic. All control flow is tied directly to the query results—If
statements test if their query retrieves empty data; For statements iterate over all rows that their
query retrieves, with all iterations independent. These properties help Konure generate a focused,
tractably small sequence of inputs and database contents that (1) finds and traverses all relevant
control-flow paths and (2) completely resolves each For loop with a single execution of two or
more iterations.

To promote data flow inferrability, all data flows directly from either input parameters or re-
trieved query results to executed queries or outputs. Konure infers the data flow by matching
concrete values in executed queries or outputs against the input parameter or retrieved query re-
sult with the same value. Konure eliminates potential data flow ambiguities by populating the
input parameters and database contents with appropriately distinct concrete values.

The DSL is designed to enable the formulation of all properties of interest as quantifier-free
SMT formulas. Konure leverages this property to construct inputs and databases that explore all
relevant control-flow paths and deliver the distinct values that enable Konure to infer the data
flow.

1.3 Experimental Results

We present case studies applying Konure to five applications: Fulcrum Task Manager [2], Kandan
Chat Room [4], Enki Blogging Application [1], Blog [3], and a student registration application de-
veloped by an independent evaluation team to test SQL injection attack detection and nullification
techniques. Our results show that Konure is able to successfully infer and regenerate commands
that these applications use to retrieve data from the database.

1.4 Contributions

This article makes the following contributions:

• Inference Algorithm: It presents a new algorithm for inferring the behavior of database-
backed applications. Conceptually, the algorithm works with hypotheses represented as
sentential forms of the grammar of Konure DSL. At each stage the algorithm systematically
constructs database contents and application inputs, runs the application, and observes the
resulting database traffic and outputs to resolve a selected nonterminal in the current hy-
pothesis. This approach enables Konure to work effectively with unbounded model spaces
to infer models that capture the core functionality of the target class of applications.

• DSL Design: It presents a DSL for capturing specific computational patterns typically im-
plemented by database-backed applications. The inference algorithm and DSL are designed
together to enable an effective active learning algorithm that leverages the structure of the
DSL to iteratively refine hypotheses represented as sentential forms in the DSL grammar.
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Fig. 1. The Konure architecture, including a transparent proxy interposed between the application and the

database to observe the generated database traffic.

• Soundness and Completeness: It presents a key theorem that states that if the behavior
of the application conforms to the DSL, then the inference algorithm infers a program that
correctly captures the full core functionality of the application.

• Regeneration: It shows how to regenerate new versions of the application that implement
safe computational patterns and contain appropriate safety and security checks. The regen-
erator encapsulates the knowledge required to work effectively in the target domain and
can eliminate coding errors that lead to incorrect application behavior or security vulnera-
bilities.

• Experimental Results: It presents results using Konure to infer and regenerate com-
mands written in Ruby on Rails and Java. The results highlight Konure’s ability to infer
and regenerate robust, safe Python implementations of commands originally coded in other
languages.

2 EXAMPLE

We next present an example that illustrates how Konure infers and regenerates a database-backed
application. The example is a student registration system adapted from an application written by
an independent evaluation team hired by an agency of the United States government to evaluate
techniques for detecting and nullifying SQL injection attacks. The application was written in Java
and interacts with a MySQL database [84] via JDBC [65].
Command: The application implements the following command: “liststudentcourses -s s -p
p”, where the input parameter s denotes student ID and p denotes password. The application first
checks whether the student with ID s has password p in the database. If so, the application displays
the list of courses for which this student has registered, along with the teacher for each course.
Database: The database contains: (1) a student table, which contains student ID (primary key),
first name, last name, and password; (2) a teacher table, which contains teacher ID (primary key),
first name, and last name; (3) a course table, which contains course ID (primary key), name, course
number, and teacher ID; and (4) a registration table, which contains student ID and course ID.
First Execution: The Konure inference algorithm configures an empty database, then executes
the application with the command “liststudentcourses -s 0 -p 1,” which sets input parame-
ters s and p to 0 and 1, respectively. Konure uses a transparent proxy (Figure 1) to observe the re-
sulting database traffic, which the proxy collects as the concrete trace of the execution (Figure 3(a)).
The query uses the constant ‘0’, which comes from the input parameter s , and retrieves no data
from the (empty) database. For this execution, the application produces no output.

Based on this information, Konure rewrites the concrete trace to replace concrete values (such
as ‘0’) with origin locations, which identify the source of each value. The result is a corresponding
abstract trace (Figure 3(b)). This abstract trace contains a query q1 that selects all columns from
the student table. The selection criterion is that the student ID must equal the input parameter
s . Konure derives the origin locations by matching concrete values in the concrete trace against
input values and values in the database.
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Fig. 2. The Konure active learning algorithm iteratively refines its hypothesis to infer the application.

Fig. 3. First execution trace.

Fig. 4. Grammar for the Konure DSL.

Konure DSL: Figure 4 presents the (abstract) grammar for the Konure DSL. A program consists
of a sequence of Query statements potentially terminated by an If or For statement. An If statement
does not test an arbitrary condition—it instead only tests if the Query in the condition retrieves
empty or nonempty data. Similarly, a For statement does not iterate over an arbitrary list—it instead
iterates over the rows in its Query, executing its else clause if its Query retrieves zero rows. These
restrictions (among others, Section 3.1) are key to the inferrability of the DSL.
First Production: The first execution generated a single query (Figure 3(a)). Konure determines
if this query came from a Seq, If, or For statement as follows: Working with the abstract trace in
Figure 3(b), Konure generates three sets of constraints. Each set specifies input parameters and
database contents. The first set specifies that the query retrieves zero rows. The second specifies
that the query retrieves at least one row. The third specifies that the query retrieves at least two
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Fig. 5. Second execution trace.

Fig. 6. Hypothesis after resolving the topmost Prog nonterminal to an If statement.

rows. Konure invokes an SMT solver to obtain a context for each set of constraints. Each context
identifies inputs and database values that satisfy the constraints.

In the example the third set of constraints is unsatisfiable, because the query accesses the pri-
mary key and there is atmost one row for each value of the primary key. The first and second sets of
constraints are satisfiable and therefore produce viable contexts. Konure executes the application
in each of these contexts. Figures 3(a) and 5(a) present the recorded concrete traces; Figures 3(b)
and 5(b) present the corresponding abstract traces. These traces indicate that the observable behav-
ior of the application differs depending on whether the first Query retrieves no rows (Figures 3(a)
and 3(b)) or at least one row (Figures 5(a) and 5(b)). Konure concludes that the first Query comes
from an If statement and produces the first hypothesis in Figure 6. This hypothesis corresponds to
applying an If production to the topmost Prog nonterminal.
Intuition: Recall that, in the Konure DSL (Figure 4), there are four potential productions to apply
for each Prog nonterminal: Prog := ϵ , Prog := Seq, Prog := If, and Prog := For. Konure resolves
each Prog nonterminal in turn by applying the appropriate production. For the topmost Prog non-
terminal, applying the ϵ production would result in an empty program, which is incorrect, because
the program has produced nonempty traces (Figures 3 and 5). Applying the Seq production would
result in a program that does not condition on the results of the first query (q1 in Figures 3(b)
and 5(b)), which is incorrect, because the program behavior differs in the first two traces—the
program terminates immediately after the first query in the first trace (Figure 3) but continues
execution after the first query in the second trace (Figure 5). Applying the For production would
result in a program that iterates over the rows retrieved by the first query, which is incorrect, be-
cause the query retrieves at most one row, making iterations unobservable. The If production is
the only production that is consistent with the observed program behavior.
Second Production: Konure next resolves the P1 nonterminal in the first hypothesis. Working
with the abstract trace in Figure 5(b), Konure generates three sets of constraints that (1) force the
first query (q1) to retrieve at least one row (this constraint forces the application to execute the
then branch of the topmost If statement) and (2) force the second query (q2) to retrieve no rows,
at least one row, and at least two rows, respectively. Once again, the first two sets of constraints
produce viable contexts; the third is unsatisfiable.

Figure 5(a) presents the trace from the execution in which the second query retrieves no rows;
Figure 7(a) presents the trace from the execution in which the second query retrieves at least
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Fig. 7. Third execution trace.

Fig. 8. Hypothesis after resolving P1 (Figure 6).

one row. Because the traces differ (similarly to the above First Production), Konure resolves the
nonterminal P1 to an If statement. Figure 8 presents the resulting hypothesis.
Intuition: As with the topmost Prog nonterminal, the P1 nonterminal (Figure 6) also has four
potential productions: Prog := ϵ , Prog := Seq, Prog := If, and Prog := For. For P1, applying the
ϵ production would result in a program with an empty then branch (Figure 6), which is incor-
rect, because the program has produced traces that perform actions after the first query (q1 in
Figures 5(b) and 7(b)) retrieves nonempty data (Figures 5 and 7). Applying the Seq production to
P1 would result in a program that does not condition on the results of the first query in P1 (q2 in
Figures 5(b) and 7(b)), which is incorrect, because the program behavior differs in the second and
the third traces—the program terminates immediately after the second query in the second trace
(Figure 5) but continues execution after the second query in the third trace (Figure 7). Applying
the For production to P1 would result in a program that iterates over the rows retrieved by the
first query in P1, which is incorrect, because the query retrieves at most one row, making itera-
tions unobservable. The If production is the only production that is consistent with the observed
program behavior.
Third Production: Konure next resolves the P3 nonterminal. Working with the abstract trace
produced by the previous step (Figure 7(b)), Konure generates constraints that force the applica-
tion to execute P3, once again with zero, at least one, or at least two rows retrieved by the first
query in P3 (q3 in Figure 7(b)). The solver generates viable contexts for all three sets of constraints.
For the context with at least two rows retrieved, Konure collects the trace in Figure 9.

In this execution the third query retrieves two rows. The Konure loop detection algorithm ex-
amines the trace, detects the repetitive pattern in the last four queries, concludes that the applica-
tion iterates over all of the rows retrieved from the third query, and resolves P3 to a For statement.
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Fig. 9. Concrete trace from an execution to resolve P3 (Figure 8). The third query retrieves two rows. The

final four queries are generated by a loop that iterates over the retrieved two rows.

Fig. 10. Hypothesis after resolving P3 (Figure 8).

For this execution the application also produces the id and teacher_id columns from the re-
trieved rows of the course table as output. The updated hypothesis (Figure 10 ) therefore contains
a Print statement that prints these values.
Intuition: As with the previous Prog nonterminals, the P3 nonterminal (Figure 8) also has four
potential productions: Prog := ϵ , Prog := Seq, Prog := If, and Prog := For. For P3, applying the
ϵ production would result in a program with an empty inner then branch (Figure 8), which is
incorrect, because the program has produced traces that perform actions after the second query
(q2 in Figure 7(b)) retrieves nonempty data (Figures 7 and 9). Applying the Seq production to P3

would result in a program that does not condition on the results of the first query in P3 (q3 in
Figure 7(b)), which is incorrect, because the program behavior differs in the third and the fourth
traces—the program terminates immediately after the third query in the third trace (Figure 7)
but continues execution after the third query in the fourth trace (Figure 9). The remaining two
potential productions are If and For. To choose the appropriate production, Konure obtains an
execution where the third query retrieves at least two rows (Figure 9). In this execution, the third
query retrieves two rows, followed by two repetitions of a set of two queries. Because the row
count matches the repetition count, the trace is consistent with a potential For statement that
iterates over the rows retrieved by the third query. We designed the Konure DSL to restrict certain
repetitive queries in the program (more details in Section 3.1), so this repetition is plausible only
when P3 resolves to a For statement.
Regeneration: Konure proceeds as above, systematically targeting and resolving nonterminals
in the hypothesis, until all of the nonterminals are resolved and it has inferred a model of the com-
mand. It can then regenerate the command, inserting security/safety checks as desired. Our cur-
rent Konure implementation regenerates Python code using a standard SQL library to perform the
database queries. This regeneration eliminates a seeded SQL injection attack vulnerability present
in the original program.
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Noisy Specifications: Because the active learning algorithm, guided by the DSL, tends to gen-
erate contexts that conform to common use cases, Konure can work productively with pro-
grams that contain obscure corner-case bugs not exercised during the inference [54, 66]. The SQL
injection attack vulnerability present in the original Student Registration application but discarded
in the regeneration is an example of just such an obscure corner case bug. We view such programs
as noisy specifications. Given the known challenges developers face when attempting to deliver
correct programs, we consider the ability of Konure to work successfully with such noisy speci-
fications as a significant advantage of the overall approach.
Developer Understanding: In a deployed system, we expect that developers would be given
examples and documentation that outline the Konure DSL and the model of computation. We
expect that this information, along with experience using Konure, would enable developers to
work productively with Konure using programs written in their language of choice.

3 DESIGN

Inference Algorithm Overview: Konure infers two aspects of the program. First, starting from
a concrete trace intercepted by the proxy (Figure 1), Konure locates the concrete values and infers
their origin locations. To infer the origin locations, Konure keeps track of the concrete values
that are available when the program performs each SQL query. To disambiguate different origin
locations that happen to hold the same concrete value in an execution, Konure adopts a demand-
driven approach. With the origin locations inferred, Konure constructs an abstract trace.

Second, starting from the unstructured sequences of queries in traces, Konure infers the un-
derlying control flow in the program. This inference algorithm is constructive [12]—instead of
enumerating candidate solutions, the algorithm constructs the solution progressively every time
Konure finds an interesting behavior of the application. During inference, Konure maintains a
hypothesis of what is currently known about the program. The hypothesis is (conceptually) repre-
sented as a sentential form in the Konure DSL, with nonterminals denoting hidden parts that are
left to infer. The algorithm starts with a Prog nonterminal as its initial hypothesis, then progres-
sively resolves Prog nonterminals until it completely infers the program. The algorithm resolves
each of the Prog nonterminals by applying an appropriate production, that is, applying one of Prog
:= ϵ , Prog := Seq, Prog := If, and Prog := For (Figure 4). Konure chooses the appropriate produc-
tion based on three (potential) executions of the program, forcing a specific query to retrieve zero
rows, at least one row, and at least two rows, respectively. These three executions are sufficient
for Konure to uniquely determine the correct production for the current Prog nonterminal. The
inference proceeds by expanding nonterminals until it obtains a complete program. As Konure
recursively traverses the paths through the program as expressed in the DSL, it maintains path
constraints that lead to the next part of the program to infer. Instead of maintaining the current
hypothesis as an explicit sentential form, Konure represents the hypothesis implicitly in the data
structures and recursive structure of the inference algorithm as it executes.

3.1 Konure Domain-specific Language

Konure infers application functionality that can be expressed in the Konure DSL.

3.1.1 DSL Overview. We design the Konure DSL to precisely capture the programs that our
technique works with. A goal here is to balance between expressiveness and inferrability. We
outline the expressiveness in this section and defer the discussion on inferrability to Sections 3.1.3
and 3.1.4.

The Konure DSL captures a range of data retrieval applications that work with an external
database. A user runs an application through interfaces such as command line arguments or HTTP
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requests. When the application runs, it sends SQL queries to the database, which retrieves data as
requested. For many real-world applications, such as forums, blogs, and inventory management
systems, a significant part of their core functionality is dedicated to retrieving data in this form.
In practice, many of these applications have multiple commands that access different parts of the
database. In this research, we infer one command at a time, and we refer to each command as a
program.

Many of these programs share an interesting pattern: The data flow often manifests as SQL
queries, and the control flow largely depends on the query results. As an example of conditional
statements that depend on query results, a programmay first look up a user’s name in the database
and then execute one of two branches, that is, (1) if the user does not exist, then print an error and
terminate or (2) if the user exists, then perform more queries to look up more information. As an
example of loops that depend on query results, a program may first retrieve a list of articles in the
database, then repeatedly perform the same action on each of these articles. When a program’s
control flow largely depends on the database queries, the database traffic during program execution
may reveal much information about the program functionality. The Konure DSL is designed to
capture data retrieval programs that have this common pattern.

3.1.2 DSL Definition. We present the grammar for the Konure DSL in Figure 4. Each query in
this DSL performs an SQL select operation that retrieves data from specified columns in specified
tables. Our current DSL supports SQL where clauses that select rows in which one column has the
same value as another column (Col = Col) or the same value as a value in the context (Col = Orig).
Selecting frommultiple tables corresponds to an SQL join operation. The query stores the retrieved
data in a unique variable (y) for later use. All variables must be defined before they are used.

The control flow in the DSL is directly tied to queries and their results. An If statement first
performs a query to retrieve data. If the query retrieves nonempty data, it enters the then branch,
otherwise the else branch. A For statement likewise first performs a query. If the query retrieves
nonempty data, the loop body executes once for each row retrieved by the query. If the query
retrieves empty data, execution enters the else branch.

To enable the Konure inference algorithm to effectively distinguish If statements from Seq
statements, Konure requires the two branches of each If statement to start with queries that have
different skeletons (or one of the branches must be empty). To facilitate effective loop detection,
Konure requires the first query after any query that may retrieve multiple rows to have a skeleton
that is distinct from all subsequent queries. Konure also requires that the program have no nested
loops.

The outcomes of executing a program consists of a concrete trace, which consists of the inter-
cepted SQL queries, and the output values produced by Print statements. Each Print statement is
associated with a query and only prints values retrieved by its query.

To formally define the Konure DSL, we first define skeletons (Definition 3.1), then describe the
externally observable part of a program (Definition 3.2), and finally define the DSL as a subset
of programs in Prog (Figure 4) that satisfy two additional restrictions (Definition 3.3 and Defini-
tion 3.4). For readability, we present Definition 3.2 and Definition 3.3 here only at a high level and
postpone their formalization to Section 4.

Definition 3.1. The skeleton of a program P ∈ Prog is a program that is syntactically identical to
P except for replacing syntactic components derived from the Orig nonterminal (Figure 4) with
an empty placeholder �. For reference, we present the syntax for skeleton programs in Appen-
dix A. We write S for the set of skeleton programs. For readability, we shall denote Prog elements
(Figure 4) with uppercase letters, except for variables such as x ,y, and denote S elements with
lowercase letters.
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We shall write πSP for the skeleton of program P ∈ Prog; it is defined as follows:

πSϵ = ϵ

πS (Q P ) = πSQ πSP

πS (if Q then P1 else P2) = if πSQ then πSP1 else πSP2

πS (for Q do P1 else P2) = for πSQ do πSP1 else πSP2

πS (y ← select C where E ; print O ) = � ← select C where πSE ; print �

πStrue = true

πS (E1 ∧ E2) = πSE1 ∧ πSE2

πS (C1 = C2) = (C1 = C2)

πS (C = O ) = (C = �),

where P , P1, P2 ∈ Prog,Q ∈ Query,C,C1,C2 ∈ Col, E,E1,E2 ∈ Expr,O ∈ Orig, andy ∈ Variable.We
use an overline, as in C and O , to denote a list.

Clearly, for any program P ∈ Prog, we have πSP ∈ S.

Definition 3.2. For any program P ∈ Prog, P̃ is the semantically equivalent program obtained
from P by discarding unreachable branches in If and For statements, downgrading For statements
with empty loop bodies or loop bodies that execute at most once to If statements, and down-
grading If statements with an unreachable branch or two semantically equivalent branches to Seq
statements. We present the algorithms for this code transformation in Section 4.1.

Definition 3.3. For any program P ∈ Prog, T(P ) is the set of queries in P that retrieve at least two
rows in some execution.1 R(P ) is the set of all queriesQ in P with two subsequent queriesQ1 and
Q2 such thatQ1 immediately followsQ in the program,Q1 does not appear as the first query of an
else branch of an If or For statement, Q2 occurs after Q1 in the program, and Q1 and Q2 have the
same skeleton. D(P ) is a predicate that is true if and only if the two branches of all conditional
statements in P start with queries with different skeletons (or one of the branches is empty). We
formally define the functions T(·), R(·), and D(·) in Section 4.2.

Definition 3.4 (The Konure DSL). We define the Konure DSL as the set of programs K ⊂ Prog
defined as:

K = {P̃ | P ∈ Prog,T(P̃ ) ∩ R(P̃ ) = ∅,D(P̃ ) = true}.
The first restriction, T(P̃ ) ∩ R(P̃ ) = ∅, states that if a query may retrieve multiple rows from the
database, then the next query does not share a skeleton with any other subsequent query in the
program. This restriction facilitates loop detection by eliminating repeated queries that do not
come from iterations of the same loop (Section 3.2.2).2 The second restriction,D(P̃ ) = true, states
that the two branches of any If statement in P̃ must start with queries with different skeletons
(or one of the branches must be empty). Intuitively, this restriction enables Konure to efficiently
distinguish Seq from If statements (Section 4).

We present several immediate extensions to K in Section 5.

Because of the focused expressive power of the Konure DSL, it is possible to decide all relevant
conditions statically, rewrite P to P̃ , and determine if P̃ ∈ K. Note that because programs P ∈ K
may reference values using distinct but semantically equivalent variables,K is not a true canonical

1A query will never retrieve more than one row if, for example, it selects rows that have a specific primary key value.
2Our implemented Konure prototype deploys a more sophisticated loop detection algorithm that enables it to relax this
restriction.
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form, i.e., there may be distinct but semantically equivalent programs inK. It is possible, however,
to eliminate such equivalences by replacing each variable with the first semantically equivalent
variable to occur in the program. This transformation is implementable with an SMT solver and
eliminates distinct but semantically equivalent programs to deliver a true canonical form for the
Konure DSL.

3.1.3 Design Rationale. The DSL captures a wide range of applications that display data from a
database by retrieving data based on inputs and database contents. Meanwhile, these applications
are restrictive enough to be inferred efficiently.

Because the DSL directly ties the control flow to query results, Konure can effectively observe
the control flow execution by observing the database traffic (Figure 1). For example, the student
registration program in Section 2 enters two different branches in the first two executions, which
is inferrable by comparing the two corresponding traces (Figures 3 and 5).

Another benefit of tying the control flow to query results in the DSL is that Konure can effec-
tively force the program to execute down certain paths. Konure achieves this goal by carefully
choosing values for the inputs and the database so, when Konure executes the program, the rele-
vant queries retrieve appropriate numbers of rows that lead to the path. For example, to force the
student registration program (Section 2) to enter a (potential) branch unvisited by the first execu-
tion (Figure 3), Konure solves for a set of new input and database values to guarantee that, in the
second execution, the first query retrieves at least one row (Figure 5).

3.1.4 Expressiveness and Limitations. Konure works well with programs whose behavior con-
forms to the Konure DSL, though the programs themselves can be implemented in any lan-
guage or in any coding style or methodology. Two key properties of the Konure DSL are that
(1) the data flow manifests as database queries, which are directly observable in the database traf-
fic, and (2) the control flow is directly tied to the query results. Konure takes advantage of these
properties to actively explore various paths in the program. The outcome is an accurate inferred
model of the program, and the inference algorithm does not require an analysis of the source code
or the binary of the program.

The Konure inference algorithmmay not extend well to infer unknown conditional expressions
or arithmetic calculations in the program that are not directly observable. Example programs in-
clude online-shopping applications, whose core functionality often involve numeric calculations
that are not implemented as database query expressions. We discuss unsupported programs in
Section 6.2. In general, Konure is not designed to infer programs that cannot be captured by an
inferrable DSL.

However, it is straightforward to extend Konure to support applications with SQL queries that
involve relational comparisons (besides equality andmembership checks), simple arithmetics, con-
stants, or aggregate functions. It is straightforward because (1) we use an SMT solver that supports
solving constraints involving these operators, and (2) the operators are directly present in the in-
tercepted SQL queries. Because experience with SMT solvers in other contexts shows that these
solvers readily support formulas with these kinds of operators and constraints, we do not antici-
pate any significant performance issues with this extension. It is also possible to extend Konure to
access not only the database traffic, but also other runtime or descriptive information of the pro-
gram. For example, one could first statically extract all of the constant values used in the program
(binary or source code), then take advantage of these known constants while inferring conditional
checks. Another way to extend Konure is to incorporate domain knowledge about computations
that are well known, widely used, and easy to reason about in the solver. Example computations
include standard string manipulations (such as concatenation, splitting, and capitalizing), date and
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time conversions, and number translations. We anticipate that adding these features would require
only relatively small changes to the overall framework of the inference algorithm.

3.2 Konure Inference Algorithm

We present the Konure inference algorithm (Algorithm 1) for a program P that implements a
single command. For programs with multiple commands, Konure uses Algorithm 1 to infer each
command in turn.

Recall that, conceptually, the Konure inference algorithmworkswith hypotheses represented as
sentential forms of the DSL grammar. The algorithm systematically constructs inputs and database
contents, runs the program, and observes the resulting database traffic and outputs to resolve a
selected nonterminal in the current hypothesis.

Algorithm 1 configures an empty database, sets the parameters to distinct values, invokes Al-
gorithm 2 to run the program and obtain an initial trace, then invokes Algorithm 6 to recursively
infer the program. The inference algorithm works with deduplicated annotated traces t that record
one iteration of each executed loop, so the structure of the trace matches the corresponding path
through the program.

3.2.1 Notation. Before presenting the algorithms, we first define the relevant terminologies and
notation, including contexts, origin locations, concrete traces, abstract traces, annotated traces, and
path constraints.

Definition 3.5. A context σ = 〈σI ,σD ,σR〉 ∈ Context contains value mappings for the input pa-
rameters (σI ∈ Input), database contents (σD ∈ Database), and results retrieved by database queries
(σR ∈ Result):

σ ∈ Context = Input × Database × Result

σI ∈ Input = Variable → Value

σD ∈ Database = Table → Z>0 → Column→ Value

σR ∈ Result = Variable → Z>0 → Table → Column→ Value

Value = Int ∪ String.

The input context σI maps input parameter variables x ∈ Variable to concrete values. The database
context σD maps database locations (identified by a table name, a row number, and a column name)
to concrete values. The results context σR maps each query result variable y ∈ Variable to a list of
rows, with each value in each row identified by the table and column from which it was retrieved.

Example 1. In Section 2, the first execution of the program (Figure 3) uses the following context:

σ1 = 〈{s : ‘0’,p : ‘1’}, {student : ∅, teacher : ∅, course : ∅, registration : ∅}, ∅〉.
This context sets input parameters s and p to 0 and 1, respectively, and sets all database tables to
empty. The second execution (Figure 5) uses the following context:

σ2 = 〈{s : ‘5’,p : ‘6’},
{student : {1 : {id : ‘5’, password : ‘2’, firstname : ‘3’, lastname : ‘4’}},
teacher : ∅, course : ∅, registration : ∅}, ∅〉.

This context sets input parameters s and p to ‘5’ and ‘6’, respectively, and sets the student table
to contain one row whose column id equals the input s .

Definition 3.6. An origin location O ∈ Orig in a program P ∈ Prog is an occurrence of a variable
x or a column y.Col in a query result y.
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Definition 3.7. For an origin location O ∈ Orig and a context σ = 〈σI ,σD ,σR〉 ∈ Context, σ (O )
denotes the result from looking upO in σ . Specifically, for an input parameter x ∈ Variable, σ (x ) =
σI (x ). For a query result variable y ∈ Variable, table t ∈ Table, and column c ∈ Column, σ (y.t .c ) =
σR (y) (t ) (c ). When a program references a query result variable that holds multiple rows, they are
referenced as a list.

For a query Q ∈ Query, SQLσ (Q ) denotes the concrete query Q in SQL syntax:

SQLσ (y ← select C where E ; print O ) = SELECT C FROM Join(C,E) WHERE SQLσ (E)

SQLσ (true) = true

SQLσ (E1 ∧ E2) = SQLσ (E1) AND SQLσ (E2)

SQLσ (C1 = C2) = (C1 = C2)

SQLσ (C = O ) =

{
C = σ (O ) if σ (O ) is a value
C IN σ (O ) if σ (O ) is a list,

whereC,C1,C2 ∈ Col, E,E1,E2 ∈ Expr,O ∈ Orig, andy ∈ Variable. We use an overline, as inC and
O , to denote a list. The Join(C,E) operation collects the relevant tables in C to construct corre-
sponding SQL JOIN operations, using the checks in E to construct the relevant ON expressions.
σ (Q ) denotes the result from evaluatingQ in σ . EvaluatingQ involves replacing origin locations

inQ with their values in σI and σR , rewriting the query in SQL syntax (SQLσ (Q )), then performing
the SQL query on σD . The query result contains an ordered list of rows. |σ (Q ) | denotes the number
of rows in σ (Q ). Q .y denotes the variable that stores the retrieved data. σ [Q .y �→ z] denotes the
new context after updating σR to map Q .y to z. When the new content z is empty, we shall write
σ for σ [Q .y �→ ∅].

Printσ (Q ) denotes the output from Q : if Q is of the form “y ← select C where E ; print O”,

then Printσ (Q ) = σ [y �→ σ (Q )](O ), where C ∈ Col, E ∈ Expr, and O ∈ Orig.

Example 2. Following the notation in Example 1, we have σ1 (s ) = ‘0’, σ1 (p) = ‘1’, σ2 (s ) = ‘5’,
and σ2 (p) = ‘6’. Let Q1 be the first inferred query in Figure 6, that is,

Q1 = y1 ← select student.id, student.password, student.firstname, student.lastname

where student.id = s ; print [].

We have concrete queries3:

SQLσ1
(Q1) = SELECT * FROM student WHERE id = ‘0’,

SQLσ2
(Q1) = SELECT * FROM student WHERE id = ‘5’.

Moreover, σ1 (Q1) = ∅ and |σ1 (Q1) | = 0, consistent with the first example execution
(Figure 3(a)). Also, σ2 (Q1) contains the row in the student table: σ2 (Q1) = ({student.id :
‘5’, student.password : ‘2’, student.firstname : ‘3’, student.lastname : ‘4’}). The row
count |σ2 (Q1) | = 1 is consistent with the second example execution, where the first query is
configured to retrieve at least one row (Figure 5(a)).

Definition 3.8. We denote the concrete trace from executing a program P ∈ Prog in context
σ ∈ Context as σ (P ) ∈ CTrace (Figure 11(a)). A concrete trace consists of the intercepted SQL traf-
fic, specifically, the queries CQuery* and corresponding retrieved rows CData*. Clearly, for any

3For brevity, we do not spell out the columns in the SELECT clause and the tables in the WHERE clause.
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Fig. 11. Grammars for concrete and abstract traces.

queryQ ∈ Query, expression E ∈ Expr, and context σ ∈ Context, we have SQLσ (Q ) ∈ CQuery and
SQLσ (E) ∈ CExpr.

Figure 12 presents the rules for executing a program to obtain a concrete trace. We shall write
[q

d
] for the concrete trace (q d ) ∈ CTrace. We write ·@ · to denote concatenating two lists into a

list.

Remark. In addition to producing a trace of database traffic, the program execution also pro-
duces outputs (CVal*) from evaluating Print statements with Print · (·). As presented, our algorithm
(and associated soundness proof) does not work with Print statements. Our implemented Konure
prototype infers Print statements by correlating values that appear in the output with values ob-
served in the database traffic. Recall that in the Konure DSL, each Print statement is associated
with a query and only prints values retrieved by its query. This restriction enables Konure to
associate each Print statement with its corresponding query.

Example 3. Following the notation in Example 1 and Example 2, let Q2 be the second inferred
query in Figure 8, that is,

Q2 = y2 ← select student.id, student.password, student.firstname, student.lastname

where student.id = s ∧ student.password = p ; print [].

Let hypothetical program

P ′ = if Q1 then Q2 else ϵ,

then executing P ′ in σ1 would produce concrete trace:

σ1 (P ′) =

[
SELECT * FROM student WHERE id = ‘0’

∅

]
.
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Fig. 12. Semantics for executing a program using a context to obtain a concrete trace.

Executing P ′ in σ2 would produce concrete trace:

σ2 (P ′) =
⎡⎢⎢⎢⎢⎣
SELECT * FROM student WHERE id = ‘5’, SELECT * FROM student WHERE id = ‘5’ ∧ password = ‘6’

( {student.id : ‘5’, student.password : ‘2’, student.firstname : ‘3’, student.lastname : ‘4’}), ∅

⎤⎥⎥⎥⎥⎦ .
These two concrete traces are consistent with the two example traces in Figure 3(a) and

Figure 5(a), respectively. So far, the hypothetical program P ′ is consistent with the observed be-
havior of the example program (Section 2). However, the third context in the example would cause
P ′ to behave inconsistently (Figure 7).

Definition 3.9. P denotes the black box executable of a program P ∈ Prog, i.e., executing P
in context σ ∈ Context produces the concrete trace σ (P ). Note that Konure does not access the

source code of P when it executes P .

Definition 3.10. An abstract trace is the list of queries, along with their results, that Konure
generates from a concrete trace after replacing concrete values with their origin locations and
replacing SQL syntax with the syntax of abstract traces (Figure 11(b)). An abstract trace contains
abstract queries (AQuery∗) and row counts for each query (r ∗). The main modifications from a con-
crete trace are to replace each concrete value by its origin location and to summarize the retrieved
data with row counts.

To infer the origin locations, Konure maintains a context, which keeps track of the concrete
values available at each origin location in the input and result components. One complication
is the possibility that two distinct origin locations may hold the same concrete value in an ex-
ecution. When such ambiguities occur, Konure adopts a demand-driven approach to obtain an
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Fig. 13. Grammar for loop layout trees.

unambiguous origin location (Section 3.4). With the origin locations inferred, it is straightforward
to rewrite the trace syntax as an abstract trace.

Example 4. Following the notation in Example 3, the abstract trace for σ1 (P ′) is the same as
Figure 3(b), with a row count 0. The abstract trace for σ2 (P ′) is the same as Figure 5(b), with row
counts 1, 0.

Definition 3.11. A query-result pair (Q, r ) has a query Q ∈ Query and an integer r ∈ Z≥0 that
counts the number of rows retrieved by Q during execution. Converting an abstract trace into a
list of query-result pairs is straightforward.

Example 5. Following the notation in Example 3, the abstract trace for σ1 (P ′) converts into the
following list of query-result pairs: e1 = (Q1, 0). The abstract trace for σ2 (P ′) converts into the
following list of query-result pairs: e2 = (Q1, 1), (Q2, 0).

Definition 3.12. A loop layout tree for a program P ∈ Prog is a tree that represents information
about the execution of loops (Figure 13). Each node in the loop layout tree is a query-result pair
that corresponds to a query in P . Each node represents whether a loop in P iterates over the
corresponding query multiple times. In particular, when a loop in P iterates over a query multiple
times, the query’s corresponding node in the loop layout tree has multiple subtrees, with each
subtree corresponding to an iteration of the loop. We convert a list of query-result pairs into a
loop layout tree in DetectLoops, which we discuss below.

Example 6. Following the notation in Example 3, the loop layout tree for P ′ executing in σ1 is:

l1 = (Q1, 0)→ Nil.

The loop layout tree for P ′ executing in σ2 is:

l2 = (Q1, 1)→ ((Q2, 0)→ Nil).

Let Q3,Q4,Q5 be the inferred queries for the third, fourth, and fifth queries in Figure 9, respec-
tively. Let hypothetical program

P ′′ = if Q1 then {if Q2 then {for Q3 do {Q4 Q5} else ϵ } else ϵ } else ϵ .
Let σ3 be the context for producing the example trace in Figure 9. When executing P ′′ in σ3, the
queries Q1,Q2,Q3 retrieve one, one, and two rows, respectively. The loop that iterates over Q3

is repeated twice. Let r41, r51 be the row counts for Q4,Q5 in the first iteration of the loop. Let
r42, r52 be the row counts forQ4,Q5 in the second iteration of the loop. The loop layout tree for P ′′

executing in σ3 is:

l3 = (Q1, 1)→ ((Q2, 1)→ ((Q3, 2)�((Q4, r41)→ ((Q5, r51)→ Nil),

(Q4, r42)→ ((Q5, r52)→ Nil)))).

Definition 3.13. An annotated trace is an ordered list of annotated query tuples. Each tuple, de-
noted as 〈Q, r , λ〉, has three components obtained from a query Q ∈ Query. The first component
is the queryQ . The second component is the number of rows retrieved byQ during an execution.
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The third component is the annotated information of whether a loop was found to iterate over data
retrieved byQ . If such loop was found, then λ is a nonnegative integer that indicates the iteration
index. If no such loop was found, then λ = NotLoop. Each path from the root of the loop layout
tree to a leaf generates a corresponding annotated trace.

Example 7. Following the notation in Example 6, executing P ′ in σ1 results in an annotated trace:

t1 = 〈Q1, 0,NotLoop〉.
Executing P ′ in σ2 results in an annotated trace:

t2 = 〈Q1, 1,NotLoop〉, 〈Q2, 0,NotLoop〉.
Executing P ′′ in σ3 results in two annotated traces:

t31 =〈Q1, 1,NotLoop〉, 〈Q2, 1,NotLoop〉, 〈Q3, 2, 1〉, 〈Q4, r41,NotLoop〉, 〈Q5, r51,NotLoop〉,
t32 =〈Q1, 1,NotLoop〉, 〈Q2, 1,NotLoop〉, 〈Q3, 2, 2〉, 〈Q4, r42,NotLoop〉, 〈Q5, r52,NotLoop〉.

Definition 3.14. A path constraintW = (〈Q1, r1, s1〉, . . . , 〈Qn , rn , sn〉), consists of a sequence of
queries Q1, . . . ,Qn ∈ Query, row count constraints r1, . . . , rn , and Boolean flags s1, . . . , sn . Each
ri specifies the range of the number of rows in a query result, denoted as one of (= 0), (≥ 1), or
(≥ 2). Each si is true if a loop iterates over the corresponding retrieved rows and false otherwise.

Example 8. In Section 2, the first execution does not impose any path constraints,

W1 = Nil.

Following the notation in Example 6, the path constraint specifying that Q1 retrieves at least one
row is:

W2 = 〈Q1, ≥ 1, false〉.
The path constraint specifying that Q1,Q2 each retrieves at least one row is:

W3 = (〈Q1, ≥ 1, false〉, 〈Q2, ≥ 1, false〉).
Before knowing whether a loop iterates over the results of Q3, the path constraint specifying that
Q1,Q2,Q3 retrieve at least one, at least one, and at least two rows, respectively, is:

W4 = (〈Q1, ≥ 1, false〉, 〈Q2, ≥ 1, false〉, 〈Q3, ≥ 2, false〉).
After knowing that a loop iterates over the results of Q3, the path constraint specifying that
Q1,Q2,Q3,Q4 each retrieves at least one row is:

W5 = (〈Q1, ≥ 1, false〉, 〈Q2, ≥ 1, false〉, 〈Q3, ≥ 1, true〉, 〈Q4, ≥ 1, false〉).

Definition 3.15. We define the � operator as follows:

r � (= 0) =

{
true if r = 0
false otherwise

r � (≥ 1) =

{
true if r ≥ 1
false otherwise

r � (≥ 2) =

{
true if r ≥ 2
false otherwise,

where r ∈ Z≥0.

Definition 3.16. A context σ ∈ Context satisfies a path constraint W = (〈Q1, r1, s1〉, . . . ,
〈Qn , rn , sn〉) if (1) a sequence of contexts σ1, . . . ,σn ∈ Context are updated according to the
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Fig. 14. Check if two expressions are identical except for equivalent variables with respect to a path con-

straint.

evaluation of the queries Q1, . . . ,Qn in σ and (2) |σi (Qi ) | � ri for all i = 1, . . . ,n. Specifically, the
context sequence satisfies σ1 = σ and for all i = 1, . . . ,n − 1:

σi+1 =

{
σi [Qi .y �→ σi (Qi )] if si = false or |σi (Qi ) | = 0
σi [Qi .y �→ σi (Qi )[ki ]] if si = true and |σi (Qi ) | ≥ 1,

for some integer ki such that if |σi (Qi ) | ≥ 1, then 1 ≤ ki ≤ |σi (Qi ) |. We call σn the context after
updating σ withW .

A context σ ∈ Context always satisfies the trivial path constraintW = Nil.

Example 9. Following the notation in Example 1, Example 6, and Example 8, we have:

(1) σ1 satisfiesW1 but does not satisfyW2,W3,W4,
(2) σ2 satisfiesW1,W2 but does not satisfyW3,W4, and
(3) σ3 satisfiesW1,W2,W3,W4.

These results are consistent with how the example in Section 2 chooses contexts to infer each
production.

Definition 3.17. Origin locationsO1,O2 ∈ Orig are equivalent with respect to path constraintW ,
denoted asO1 ≡W O2, if for any context σ ∈ Context that satisfiesW ,O1,O2 hold the same values
in the context after updating σ withW .

Example 10. Following the notation in Example 2, Example 3, and Example 8, we have:

s ≡W2 y1.student.id, p �W2 y1.student.password,

s ≡W3 y2.student.id, p ≡W3 y2.student.password.

Definition 3.18. Expressions E1,E2 ∈ Expr are identical except for equivalent variables with re-
spect to path constraint W , denoted as E1 �W E2, if all of their corresponding origin locations
are equivalent with respect toW and all of the remaining components are syntactically identical
(Figure 14).

Queries Q1,Q2 ∈ Query are identical except for equivalent variables with respect to path con-
straintW and variables Y1,Y2, denoted as Q1 �W ,Y1,Y2 Q2, if the following conditions hold:

(1) Q1 = y1 ← select C where E1 ; print O1,
(2) Q2 = y2 ← select C where E2 ; print O2, and
(3) E ′1 �W E2, where E ′1 is the expression obtained from E1 after replacing all occurrences of

variables in Y1 with their counterparts in Y2.
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ALGORITHM 1: Infer an executable program

Input: P is the executable of a program P ∈ K.
Output: Program equivalent to P .

1: procedure Infer( P )
2: σ ← Database empty, input parameters distinct

3: t ← GetTrace( P ,Nil,σ )

4: return InferProg( P ,Nil, t )
5: end procedure

Informally, two queries are identical except for equivalent variables when, after renaming vari-
ables and removing Print statements, the queries are syntactically identical except for the use of
different but equivalent origin locations.

Example 11. Following the notation in Example 3 and Example 8, letQ ′2 be an alternative second
inferred query in Figure 8, that is,

Q ′2 = y2 ← select student.id, student.password, student.firstname, student.lastname

where student.id = y1.student.id ∧ student.password = p ; print [],

then Q2 �W2,Nil,Nil Q
′
2.

Definition 3.19. An annotated trace t = 〈Q1, r1, λ1〉, . . . , 〈Qn , rn , λn〉 is consistent with path con-
straintW , denoted as t ∼W , if the path specified inW is not longer than t , each query in t matches
the corresponding query inW , and each row count in t matches the corresponding requirement
inW :

t ∼ Nil = true

t ∼ (〈Q ′1, r ′1, s ′1〉 , . . . , 〈Q ′m , r ′m , s ′m〉) =m ≤ n ∧
(
∀i = 1, . . . ,m : ri � r ′i ∧Qi �Wi ,Yi ,Y

′
i
Q ′i
)
,

where Wi = (〈Q ′1, r ′1, s ′1〉, . . . , 〈Q ′i−1, r ′i−1, s ′i−1〉) contains the first (i − 1) constraint tuples in W ,
Yi = (Q1.y, . . . ,Qi−1.y) is the list of variables defined by the first (i − 1) queries in t , and Y ′i =
(Q ′1.y, . . . ,Q

′
i−1.y) is the list of variables defined by the queries inWi .

Example 12. Following the notation in Example 7 and Example 8, we have t1 ∼W1, t2 ∼W1,
t31 ∼W1, t32 ∼W1, t1 �W2, t2 ∼W2, t31 ∼W2, t32 ∼W2, t1 �W3, t2 �W3, t31 ∼W3, t32 ∼W3, t1 �
W4, t2 �W4, t31 ∼W4, t32 ∼W4, t1 �W5, and t2 �W5.

If we additionally have, for example, r41 = 0, r42 = 1, and r52 = 3, then t31 �W5 and t32 ∼W5.

3.2.2 Algorithm. We next present the Konure inference algorithm, which works with the black
box executable of a program (Algorithm 1). Konure executes the program using carefully chosen
contexts that match certain path constraints. Each time the program runs, it produces a concrete
trace, from which Konure constructs an abstract trace and then an annotated trace (Algorithm 2).
Conceptually, Konure follows annotated traces to traverse paths in the program, assuming that
the program belongs to the Konure DSL (Section 3.1). Konure recursively infers the program
by choosing the appropriate production to resolve each nonterminal of the DSL program (Algo-
rithm 6).
Infer: Algorithm 1 takes an executable program P . It first configures an initial context σ where
all database tables are empty and the input parameters are distinct. It then invokes GetTrace,

which executes P in context σ and returns an initial annotated trace t . Finally, Infer invokes the
main Konure inference algorithm, InferProg, to infer P .
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ALGORITHM 2: Execute a program and deduplicate the trace according to a path constraint

Input: P is the executable of a program P ∈ K.
Input: W is a path constraint.
Input: σ is a context that satisfiesW .

Output: Annotated trace t , t ∼W , from executing P with σ .

1: procedure GetTrace( P ,W ,σ )

2: e ← Execute( P ,σ )
3: l ← DetectLoops(e)
4: t ←MatchPath(l ,W )
5: return t
6: end procedure

Example 13. In Section 2, Konure invokes Infer to infer the example program. To execute
the program for the first time, Konure uses the initial context in variable σ , which equals σ1

in Example 1. The resulting trace (Figure 3) is converted into an annotated trace, variable t , which
equals t1 in Example 7.

GetTrace: Algorithm 2 takes an executable program P , path constraintW , and context σ as

parameters. It first invokes Execute, which runs P in context σ to obtain the flat list e of query-

result pairs converted from the concrete trace that P generates when it runs. It then invokes
DetectLoops, which runs the Konure loop detection algorithm to produce the loop layout tree l .
Finally, MatchPath generates an annotated trace that corresponds to a path through l consistent
with the path constraintW .

Execute: The Execute procedure takes an executable program P and a context σ =
〈σI ,σD ,σR〉 ∈ Context. It first populates the database with contents specified in σD and then exe-

cutes P with input parameters specified in σI . It collects the outputs and database traffic, i.e., the
concrete trace σ (P ) (Figure 1). Execute converts the concrete trace into an abstract trace, converts
the abstract trace into a list of query-result pairs, then returns this list of pairs.

Example 14. In Section 2, when Konure executes the program for the first time, it invokes
Execute with context σ1 (Example 1). Execute configures the database to empty and runs the
program with inputs ‘0’ and ‘1’. This execution results in the first concrete trace (Figure 3(a)),
which equals σ1 (P ′) in Example 3. Execute converts the concrete trace into an abstract trace,
described in Example 4, and then into a list of query-result pairs that equals e1 in Example 5.

DetectLoops: Algorithm 3 takes a list of query-result pairs and constructs a loop layout tree.
(1) If the first query retrieves r ≥ 2 rows, DetectLoops checks if the skeleton of the second query is
repeated exactly r times in the tail of the trace. If the repetitions match, DetectLoops determines
that a loop iterates over the first query in the trace, splits the trace into r segments that each
correspond to an iteration of the loop, recursively constructs a loop layout tree for each segment,
and then inserts the recursively constructed loop layout trees as the children of the first query.
(2) In all other scenarios, DetectLoops determines that no loop iterates over the first query in
the trace, recursively constructs a loop layout tree for the tail of the trace, and then inserts the
recursively constructed loop layout tree as the child of the first query of the trace.

Example 15. Following the notation in Example 5 and Example 6, we haveDetectLoops(e1) = l1
and DetectLoops(e2) = l2. Let e3 be the list of query-result pairs resulting from executing P ′′

in σ3 (Example 6), that is, e3 = (Q1, 1), (Q2, 1), (Q3, 2), (Q4, r41), (Q5, r51), (Q4, r42), (Q5, r52), then
DetectLoops(e3) = l3.
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ALGORITHM 3: Loop detection algorithm

Input: e is either Nil or a nonempty list of query-result pairs (Q1, r1) , . . . , (Qn , rn ).
Output: Loop layout tree constructed from e .
1: procedure DetectLoops(e)
2: if e = Nil then

3: return Nil
4: end if

5: (Q1, r1) , . . . , (Qn , rn ) ← e
6: a ← empty list
7: for j ← 2, 3, . . . ,n do � Identify repetitions
8: if πSQ j = πSQ2 then

9: Append j to a
10: end if

11: end for

12: if r1 ≤ 1 or r1 � len(a) then � Did not find repetitions caused by any loops that iterate over Q1

13: e ′ ← (Q2, r2) , . . . , (Qn , rn )
14: l ← DetectLoops(e ′)
15: return (Q1, r1) → l
16: else � Found a loop that iterates over Q1

17: Append n + 1 to a
18: for j ← 1, 2, . . . , r1 do

19: b ← a[j]
20: c ← a[j + 1] − 1
21: e ′ ← (Qb , rb ) , . . . , (Qc , rc )
22: lj ← DetectLoops(e ′)
23: end for

24: return (Q1, r1) �(l1, . . . , lr1 )
25: end if

26: end procedure

MatchPath: Algorithm 4 takes a loop layout tree and a path constraint. The procedure first
calls GetAnnotatedTrace to convert the loop layout tree into a set of annotated traces that
each contains at most one iteration of any loop. MatchPath then picks an annotated trace that is
consistent with the given path constraint.

Example 16. Following the notation in Example 6 and Example 7, we have GetAnnotated-
Trace(l1) = {t1}, GetAnnotatedTrace(l2) = {t2}, and GetAnnotatedTrace(l3) = {t31, t32}.
Note that the annotated traces t31 and t32 each contains only one iteration of the loop, even though
this loop is repeated multiple times.

Following the notation in Example 8, we have MatchPath(l1,W1) = t1, MatchPath(l2,W2) =
t2, MatchPath(l3,W3) = t31 (or t32, depending on the order in which MatchPath enumerates the
traces returned from GetAnnotatedTrace), and MatchPath(l3,W4) = t31 (or t32).

If we additionally have, for example, r41 = 0, r42 = 1, and r52 = 3, then MatchPath(l3,W5) = t32.
In this case t31 can no longer be returned, because t31 �W5 (Example 12).

MakePathConstraint: The MakePathConstraint procedure takes an annotated trace pre-
fix t , a subsequent query Q ∈ Query, and an integer r ∈ Z≥0. The procedure constructs a new
path constraint, W , which specifies that any satisfying context must enable the program to ex-
ecute down the same path as t , then perform query Q and retrieve a certain number of rows as
specified by r . In particular, if r = 0, then Q is required to retrieve zero rows. If r = 1 or r = 2,
then Q is required to retrieve at least r rows. More concretely, for each annotated query tuple
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ALGORITHM 4: Pick an annotated trace that is consistent with a path constraint

Input: l is a loop layout tree.
Input: W is a path constraint.
Output: Annotated trace constructed from l that is consistent withW .
1: procedure MatchPath(l ,W )
2: for t in GetAnnotatedTrace(l ) do

3: if t = Nil then

4: continue

5: end if

6: if t ∼W then

7: return t
8: end if

9: end for

10: return Nil
11: end procedure

Input: l is a loop layout tree.
Output: Set of annotated traces constructed from l .
12: procedure GetAnnotatedTrace(l )
13: if l = Nil then

14: return {Nil }
15: else if l = (Q, r ) → l ′ then

16: return { 〈Q, r ,NotLoop
〉
@ t | t ∈ GetAnnotatedTrace(l ′) }

17: else if l = (Q, r ) �
(
l ′1, l
′
2, . . . , l

′
r

)
then � r ≥ 2

18: return ∪r
i=1{ 〈Q, r , i〉 @ t | t ∈ GetAnnotatedTrace(l ′i ) }

19: end if

20: end procedure

ALGORITHM 5: Obtain a deduplicated annotated trace that satisfies a path constraint

Input: P is the executable of a program P ∈ K.
Input: W is a path constraint.
Output: The first component represents the satisfiability ofW . When satisfiable, the second component is

an annotated trace t where t ∼W .
1: procedure SolveAndGetTrace( P ,W )
2: σ ← Solve(W )
3: if σ = Unsat then

4: return false,Nil
5: else

6: t ← GetTrace( P ,W ,σ )
7: return true, t
8: end if

9: end procedure

〈Qi , ri , λi 〉 in t , the procedure adds 〈Qi , r
′
i , s
′
i 〉 to the path constraint where r ′i = {

(= 0) if ri = 0
(≥ 1) if ri ≥ 1 and

s ′i = true if and only if previous recursions of InferProg chose the production “Prog := For” for
the corresponding query. The procedure then adds 〈Q, r ′, false〉 to the path constraint where

r ′ = {
(= 0) if r = 0
(≥ 1) if r = 1
(≥ 2) if r = 2

.
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ALGORITHM 6: Recursively infer a subprogram

Input: P is the executable of a program P ∈ K.
Input: s1 is a prefix of an annotated trace.
Input: s2 is a suffix of an annotated trace.
Output: Subprogram equivalent to P ’s subprogram after trace s1.

1: procedure InferProg( P , s1, s2)
2: if s2 = Nil then return ϵ � Prog � ϵ
3: end if

4: k ← The length of s1
5: Q ← The first query in s2
6: for i = 0, 1, 2 do

7: Wi ←MakePathConstraint(s1,Q, i)

8: ( fi , ti ) ← SolveAndGetTrace( P ,Wi )
9: if fi then � Satisfiable

10: ti,1 ← ti [1, . . . , (k + 1)] � New trace prefix
11: ti,2 ← ti [(k + 2), . . .] � New trace suffix
12: end if

13: end for

14: if f2 and found loop on the last query in t2,1 then

15: bt ← InferProg( P , t2,1, t2,2)

16: if f0 then bf ← InferProg( P , t0,1, t0,2)
17: elsebf ← ϵ
18: end if

19: return “for Q do bt else bf ” � Prog � For
20: else if f0 and f1 and ((t0,2 = Nil and t1,2 � Nil) or (t0,2 � Nil and t1,2 = Nil) or

the first queries in t0,2 and t1,2 have different skeletons) then

21: bt ← InferProg( P , t1,1, t1,2)

22: bf ← InferProg( P , t0,1, t0,2)
23: return “if Q then bt else bf ” � Prog � If
24: else

25: if f0 thenb ← InferProg( P , t0,1, t0,2)

26: elseb ← InferProg( P , t1,1, t1,2)
27: end if

28: return “Q b” � Prog � Seq
29: end if

30: end procedure

Example 17. Following the notation in Example 6 and Example 8, we have:

MakePathConstraint(Nil,Q1, 1) =W2,

MakePathConstraint(〈Q1, 1,NotLoop〉,Q2, 1) =W3,

MakePathConstraint((〈Q1, 1,NotLoop〉, 〈Q2, 1,NotLoop〉),Q3, 2) =W4.

InferProg: Algorithm 6 implements the main Konure inference algorithm. This algorithm re-
cursively explores all relevant paths through the program, resolving Prog nonterminals as they

are (conceptually) encountered. Algorithm 6 takes as parameters the executable P of the pro-
gram to infer and a split annotated trace consisting of a prefix s1 that corresponds to an explored
path through the program and a suffix s2 from the remaining unexplored part of the program.
The first Query Q in s2 is generated by the next Prog nonterminal to resolve. Konure therefore

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 18. Publication date: January 2021.



Active Learning for Inference and Regeneration of Applications that Access Databases 18:25

determines whether the query Q was generated by a Seq, If, or For statement, then recurses to
infer the remaining parts of the program.

Konure makes this determination by examining three deduplicated annotated traces t0, t1, and
t2. All of these traces are from executions that follow the same path to Q as s1. In the execution
that generated t0,Q retrieves zero rows, in the execution that generated t1,Q retrieves at least one
row, and in the execution that generated t2,Q retrieves at least two rows. If Konure detects a loop
in t2 over the rows that Q retrieves, it infers that Q was generated by a For statement (line 14 in
Algorithm 6). Otherwise, it examines t0 and t1 to determine ifQ was generated by an If statement
(line 20 in Algorithm 6) or a Seq statement (line 24 in Algorithm 6)—conceptually, if the queries
that follow Q in t0 and t1 differ, then Q is generated by an If statement, otherwise it is generated
by a Seq statement.

Konure obtains traces t0, t1, and t2 by using MakePathConstraint to construct three path
constraintsW0,W1, andW2, then using an SMT solver to obtain contexts σ0, σ1, and σ2 that cause

P to produce (deduplicated annotated) traces t0, t1, and t2 (Algorithm 5). IfWi is satisfiable, then
ti ∼Wi .

Example 18. Consider the first execution of the example program in Section 2. Infer in-
vokes GetTrace with context σ1 (Example 13). The initial path constraint is W1 = Nil (Exam-
ple 8). GetTrace invokes Execute with σ1, resulting in the list of query-result pairs e1 (Ex-
ample 14). Recall from Example 15 that DetectLoops(e1) = l1. Recall from Example 16 that
MatchPath(l1,W1) = t1. Hence, t1 is the initial annotated trace obtained from GetTrace.

Infer then invokes InferProg with trace prefix Nil and trace suffix t1. The first query in t1 isQ1

(Example 7). InferProg invokes MakePathConstraint three times, constructing three different
path constraints. The first path constraint specifies that Q1 retrieves zero rows:

MakePathConstraint(Nil,Q1, 0) = 〈Q1,= 0, false〉.

The second path constraint specifies that Q1 retrieves at least one row:

MakePathConstraint(Nil,Q1, 1) = 〈Q1, ≥ 1, false〉.

The third path constraint specifies that Q1 retrieves at least two rows:

MakePathConstraint(Nil,Q1, 2) = 〈Q1, ≥ 2, false〉.

InferProg then invokes SolveAndGetTrace to determine if these path constraints are satisfiable
and, if so, obtain the corresponding annotated traces. In the example (Section 2), the first path
constraint results in the annotated trace t1. The second path constraint results in the annotated
trace t2 (Example 7). The third path constraint is not satisfiable. Based on these results, InferProg
applies the “Prog := If” production to resolve the topmost Prog nonterminal.

Intuition: InferProg implements the core recursion of the Konure inference algorithm. For any
program P ∈ K, each Prog nonterminal in the abstract syntax tree of P corresponds to a recursive
call to InferProg as follows: Each step of the recursion resolves a Prog nonterminal by apply-
ing the appropriate production, that is, one of Prog := ϵ , Prog := Seq, Prog := If, and Prog := For
(Figure 4). The appropriate production is the (only) one that is consistent with the incoming trace,
s1 @ s2, as well as three other potential traces, t0, t1, and t2. InferProg recurses only after col-
lecting sufficient information to uniquely determine the correct production for the current Prog
nonterminal. As a result, this recursion does not need to backtrack.

Note that all of the traces used in InferProg are deduplicated annotated traces. Because each
annotated trace corresponds to a path through the program AST, the length of the annotated trace
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is bounded by the code size of P . Because each recursive call to InferProg consumes a tuple in the
incoming trace (s1 @ s2), the number of recursive calls to InferProg is bounded by the maximum
length of annotated traces, which is bounded by the size of P . Although K can express arbitrarily

large programs, each program has a finite code size. Hence, Infer( P ) terminates for any program
P ∈ K. We present these properties in Section 4.

3.3 Path Constraint Solver

Solve takes a path constraintW and uses an SMT solver to solve for a context σ ∈ Context that
satisfiesW . The procedure returns a satisfying σ if it exists and returns “Unsat” otherwise.

Like many database test data generation approaches [26, 44, 75, 77, 78, 81], Solve uses a row-
based approach to translate path constraints into SMT formulas. For each query Qi in W that
is required to retrieve at least one or at least two rows, Solve generates variables that model the
required number of rows of the relevant tables. It then generates constraints that require the values
of these variables to satisfy the selection criteria of Qi . It also generates constraints that require
primary keys to be unique.

For each queryQi that is required to retrieve zero rows, Solve generates constraints that ensure
that none of the values in the relevant tables satisfy the selection criteria of Qi . If Qi occurs in a
loop, the constraints only enforce thatQi retrieves zero rows in at least one iteration of the loop (as
opposed to always retrieving zero rows). Here, loop iterations map easily to the rows of unknown
variables, because loops in the Konure DSL are designed to iterate over rows of data.

3.4 Origin Location Disambiguation

Recall that an origin locationO ∈ Orig in a program P ∈ Prog is an occurrence of a variable x or a
column referencey.Col in P . Concrete traces contain intercepted queries executed by the program.
In these intercepted queries, the origin locations have been replaced by the corresponding concrete
values from the execution. When Konure converts concrete traces into abstract traces, it restores
the origin locations by matching concrete values across query results and input parameters to
translate the concrete values back into their corresponding origin locations.

Because Konure uses a general SMT solver to obtain contexts σ that satisfy specified path
constraintsW , the contexts may introduce ambiguity by coincidentally generating the same value
in different input parameters or database locations. This ambiguity shows up as different origin
locations O1 and O2 that both contain the same concrete value to translate. Konure resolves the
ambiguity as follows:

• Konure first asks the solver if it is possible to reproduce the path to the ambiguous concrete
value with the additional constraint thatO1 andO2 hold disjoint values. If so, the resulting
execution resolves the ambiguity.

• Otherwise, Konure asks the solver if it is possible to reproduce this path with the additional
constraint thatO1 holds a value not inO2. If not, the values inO1 are a subset of the values
in O2. Konure similarly uses the solver to determine if the values in O2 are a subset of the
values inO1. IfO1 andO2 are subsets of each other, they hold the same values and Konure
can use either origin location.

• Otherwise, there exists an execution in which O1 has at least one value v not in O2 (or
vice versa). Konure asks the solver to produce a context that generates this execution. The
resulting execution in this context resolves the ambiguity—if the valuev ever appears in the
same location as the concrete value, then Konure usesO1 as the origin location, otherwise
it uses O2.
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Fig. 15. Check if two programs are identical except for equivalent variables.

4 SOUNDNESS PROOF

In this section, we first outline the structure of a soundness proof for the core Konure inference
algorithm (Algorithm 1) and then provide the full proof. The proof is structured as follows: Sec-
tions 4.1 and 4.2 elaborate on the transformation and the functions that are used to define K in
Section 3.1 (Definition 3.4). Section 4.3 proves Theorem 1. Section 4.4 proves Theorem 2. Section 4.5
proves Theorem 3 and Theorem 4. Section 4.6 proves Theorem 5.

Definition 4.1. Programs P1, P2 ∈ Prog are identical except for equivalent variables, denoted as
P1 � P2, if they have the same control structures and if all of the corresponding queries are identical
except for equivalent variables with respect to the paths that reach these queries (Figure 15).

Informally, two programs are identical except for equivalent variables when, after renaming
variables and removing Print statements, the programs are syntactically identical except for the
use of different but equivalent origin locations.

To simplify the presentation, when the context is clear, we write P1 � P2 as a shorthand for
P1 �W ,Y1,Y2 P2 and write Q1 � Q2 as a shorthand for Q1 �W ,Y1,Y2 Q2. By default, we keep track of
W ,Y1,Y2 by traversing the program in the same manner as in Figure 15.

Definition 4.2. For a program P ∈ Prog and a context σ ∈ Context, σ � P ⇓exec e denotes evalu-
ating P in σ to obtain a list of query-result pairs e . Figure 16 defines this evaluation.
σ � P ⇓loops l denotes evaluating P in σ to obtain a loop layout tree l . Figure 17 defines this

evaluation.

Definition 4.3. For programs P , P ′ ∈ Prog and annotated trace t , we use the notation P
t−→ P ′ to

denote that traversing the AST of P from top to bottom, by following the row counts in t , leads to
a subtree P ′. Figure 18 defines this traversal.
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Fig. 16. Semantics for executing a program using a context to directly obtain a list of query-result pairs.

Fig. 17. Semantics for executing a program using a context to obtain a loop layout tree.
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Fig. 18. Traverse a program by following an annotated trace to obtain a subprogram

Fig. 19. Traverse a loop layout tree by following an annotated trace to obtain a subtree

For loop layout trees l , l ′ and annotated trace t , we use the notation l
t
↪−→ l ′ to denote that travers-

ing l from top to bottom, by following the row counts and loop iteration numbers in t , leads to a
subtree l ′. Figure 19 defines this traversal.

Definition 4.4. A path constraintW is derived from a program P ∈ Prog if one of the following
holds:

(1) W = Nil.
(2) W = 〈Q ′, r ′, s ′〉, P � ϵ , and Q ′ �Nil,Nil,Nil F(P ), where F(P ) is the first query in P . We for-

mally define the function F(·) in Section 4.2.
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(3) W = (〈Q ′1, r ′1, s ′1〉, . . . , 〈Q ′m , r ′m , s ′m〉), where m ≥ 2, and there exists an annotated trace t
such that:
(a) P

t−→ ϵ ,
(b) t ∼W ′, where W ′ = (〈Q ′1, r ′1, s ′1〉, . . . , 〈Q ′m−1, r ′m−1, s ′m−1〉, 〈Q ′m , r ′, s ′m〉) for some row

constraint r ′, and
(c) for all i = 1, . . . ,m − 1, s ′i = true if and only if the corresponding element in P is a

for-construct.

Definition 4.5. The size of a program P ∈ Prog is denoted as ‖P ‖ and defined as the number of
times that the AST of P applies a production to expand a “Prog” nonterminal:

‖ϵ ‖ = 1

‖Q P ‖ = 1 + ‖P ‖
‖if Q then P1 else P2‖ = 1 + ‖P1‖ + ‖P2‖
‖for Q do P1 else P2‖ = 1 + ‖P1‖ + ‖P2‖,

where P , P1, P2 ∈ Prog and Q ∈ Query.

Proposition 4.6 (Solver). For any path constraintW , the procedure Solve(W ) returns a context
σ ∈ Context if and only ifW is satisfiable.

Rationale. The path constraint solver outlined in Section 3.3 asks the SMT solver a ques-
tion that is equisatisfiable as the existence of a satisfying context. Since the logical formulas are
quantifier-free and involve only equality checks, their satisfiability is efficiently decidable [20]. �

Proposition 4.7 (Disambiguation). For any program P ∈ K and context σ ∈ Context, if σ �
P ⇓exec e , Execute( P ,σ ) = e ′, and e = ((Q1, r1), . . . , (Qn , rn )), then e ′ = ((Q ′1, r1), . . . , (Q ′n , rn )),
where Qi � Q ′i for any i = 1, . . . ,n.

Rationale. The disambiguation procedure (Section 3.4) asks the SMT solver a question that
equivalently encodes the relationship between origin locations. By Proposition 4.6, we ob-
tain a correct list of query-result pairs after disambiguating the traces obtained from program
execution. �

This proposition states that, after Konure executes the program as a black box and obtains an
abstract trace, the resulting list of query-result pairs is equivalent to the outcome from evaluating
the source code as in Figure 16.

Theorem 1 (Loop Detection). For any program P ∈ K and context σ ∈ Context, if σ � P ⇓exec e
and σ � P ⇓loops l , then DetectLoops(e ) = l .

Proof Sketch. By induction on the derivation of P . We present a full proof in Section 4.3. �

This theorem states that DetectLoops correctly identifies repetitions in the trace caused by
loops in a program in K. In particular, the algorithm produces a loop layout tree, same as the
outcome of extracting loop information from the program’s source code.

Theorem 2 (Trace-Code Correspondence). For any program P ∈ K, path constraint W
that is derived from P , context σ ∈ Context that satisfies W , and annotated trace t , if t =

GetTrace( P ,W ,σ ), then there exists a loop layout tree l ′ such that:

(1) σ � P ⇓loops l ′,
(2) t ∼W ,

(3) P
t−→ ϵ ,
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(4) l ′
t
↪−→ Nil, and

(5) l ′ and the variable l are identical except for equivalent variables.

Proof Sketch. By induction on the derivation of P . We present a full proof in Section 4.4. �

This theorem states that GetTrace correctly extracts from the program execution an annotated
trace that corresponds to a path through the program AST. This property ensures that the length
of the annotated trace is bounded by the code size of the program in K. This annotated trace also
corresponds to a path through the loop layout tree, which enables the core inference algorithm
to identify the location of loops in the trace. This annotated trace also satisfies the given path
constraint. This property is nontrivial, because when the program executes multiple iterations of
a loop, not all of the iterations are required to satisfy the path constraint.

Theorem 3 (Core Recursion). For any programs P ∈ Prog and P ′ ∈ K and annotated traces t , t ′,

if P ′
t ′−→ P and P

t−→ ϵ, then P � InferProg( P ′ , t ′, t ).

Proof Sketch. The proof first performs case analysis of the relationship between the possible
first production in P , properties of the path constraintsWi , and values fi , ti, j from the executions

of P ′ in Algorithm 6 to show that Algorithm 6 chooses the correct first production in P . The
proof then proceeds by induction on the productions applied to derive P . We present a full proof
in Section 4.5. �

This theorem states that each recursive call to InferProg correctly returns a subprogram of the
final AST.

Theorem 4 (Soundness of Inference). For any program P ∈ K, P � Infer( P ).

Proof Sketch. The proof first shows that the initial trace t at line 3 of Algorithm 1 satisfies

P
t−→ ϵ . The rest of the proof follows from Theorem 3. We present a full proof in Section 4.5. �

This theorem states our main soundness claim: If a program belongs to K, then Konure infers
the correct program.

Theorem 5 (Complexity). For any program P ∈ K, the execution of Infer( P ) calls the
InferProg procedure at most ‖P ‖ times.

Proof Sketch. By induction on the derivation of P . We present a full proof in Section 4.6. �

Intuition: Each recursive call to InferProg constructs a subprogram for P ∈ K. The algorithm
does not need to backtrack, because it never makes an incorrect hypothesis choice. Each step is
conclusive—only one nonterminal expansion is possible. The algorithm also does not involve an
equivalence check.

The inference algorithm terminates when it has fully constructed the AST of P . More concretely,
the number of recursive calls to InferProg is linear in the size of the given program. Critically,
this number of executions is bounded by the size of the source code of P , not by the number of
iterations that any loop executes. It works because any loop’s iterations are independent from each
other (Figure 4).

We prove Theorems 2 through 5 only for programs P ∈ K (and without reasoning about Print

statements). However, the proofs rely only on the black box execution of P in Execute( P ,σ ).
The soundness properties therefore hold for arbitrary programs written in arbitrary languages as
long as the program’s externally observable behavior is equivalent to that of some program P ∈ K.
We will discuss these implications in Section 5.
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ALGORITHM 7: Iteratively simplify code until reaching a fixed point

Input: P is a program in Prog.
Output: Succinct form of P .
1: procedure Trim(P )
2: while true do

3: (s, P ′) ← TrimOnce(P ,Nil)
4: if ¬s then

5: return P ′

6: end if

7: P ← P ′

8: end while

9: end procedure

4.1 The Trim Transformation

This section presents the transformation that obtains P̃ , which we introduce in Section 3.1 to
define the Konure DSL,K (Definition 3.4). Recall from Section 3.1 that, for any program P ∈ Prog,
P̃ is the program after discarding unreachable code in P . The reachability properties facilitate the
soundness proof in Section 4.5 and enable a concise way to characterize complexity in Section 4.6.
In Section 5, we will extend our soundness results to programs not inK, such as programs in Prog
that may contain unreachable code.

Algorithm 7 presents the Trim transformation that obtains P̃ , P̃ = Trim(P ), which simplifies P
by iteratively discarding unreachable branches with TrimOnce (Algorithm 8).

The TrimOnce procedure takes an initial program, P ∈ Prog, and a path constraint, W . The
procedure returns a tuple of two components. The first component is a Boolean value that indicates
whether the transformation alters P . The second component is the transformed program. If P is
empty, then TrimOnce returns the empty program. If the top-most nonterminal symbol of P is
Seq, TrimOnce first recursively simplifies the tail of the sequence and then uses the simplified tail
to construct a new Seq. If the top-most nonterminal of P is If or For, TrimOnce first recursively
simplifies the subprograms and then simplifies the current control construct if possible. To perform
these checks, TrimOnce updates the path constraint W and calls Solve (Section 3.3) to check
reachability.

We show that the Trim transformation terminates (Theorem 6) with an equivalent program
(Theorem 7) with no unreachable code (Proposition 4.24).

4.1.1 Termination of Trim. To show termination, we define a measure of code size and show
that the TrimOnce transformation decreases the code size.

Definition 4.8. The branch complexity tuple for a program P ∈ Prog is denoted as B(P ) and de-
fined as a 3-tuple of nonnegative integers, B(P ) = ( f , i, s ) ∈ Z3

≥0. Here, f denotes the number of
for-constructs in P , i denotes the number of if-constructs in P , and s denotes the number of
sequential queries in P :

B(ϵ ) = (0, 0, 0)

B(Q P ) = ( f1, i1, 1 + s1) if B(P )= ( f1, i1, s1)

B(if Q then P1 else P2) = ( f1 + f2, 1 + i1 + i2, s1 + s2) if B(P1)= ( f1, i1, s1),B(P2)= ( f2, i2, s2)

B(for Q do P1 else P2) = (1 + f1 + f2, i1 + i2, s1 + s2) if B(P1)= ( f1, i1, s1),B(P2)= ( f2, i2, s2),

where P , P1, P2 ∈ Prog, Q ∈ Query, and f1, f2, i1, i2, s1, s2 ∈ Z≥0.
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ALGORITHM 8: Trim unreachable branches and simplify control constructs if possible

Input: P is a program in Prog.
Input: W is a path constraint.
Output: Tuple (s, P ′) where P ≡ P ′ and s indicates whether P ′ � P .
1: procedure TrimOnce(P ,W )
2: if P = ϵ then return (false, ϵ )
3: else if P = Q P1 then

4: (s1, P
′
1) ← TrimOnce(P1,W )

5: return (s1,Q P ′1)
6: else if P = if Q then P1 else P2 then

7: if Solve(W @ 〈Q, ≥ 1, false〉) = Unsat then return (true,Q P2)
8: else if Solve(W @ 〈Q,= 0, false〉) = Unsat then return (true,Q P1)
9: end if

10: (s1, P
′
1) ← TrimOnce(P1,W @ 〈Q, ≥ 1, false〉)

11: (s2, P
′
2) ← TrimOnce(P2,W @ 〈Q,= 0, false〉)

12: if P ′1 �W ,Nil,Nil P
′
2 then

13: return (true,Q P ′1)
14: else

15: return (s1 ∨ s2, if Q then P ′1 else P
′
2)

16: end if

17: else if P = for Q do P1 else P2 then

18: if Solve(W @ 〈Q, ≥ 2, true〉) = Unsat then

19: return (true, if Q then P1 else P2)
20: end if

21: (s1, P
′
1) ← TrimOnce(P1,W @ 〈Q, ≥ 1, true〉)

22: if P ′1 = ϵ then

23: return (true, if Q then ϵ else P2)
24: end if

25: if Solve(W @ 〈Q,= 0, true〉) = Unsat then

26: s2 ← (P2 � ϵ )
27: P ′2 ← ϵ
28: else

29: (s2, P
′
2) ← TrimOnce(P2,W @ 〈Q,= 0, true〉)

30: end if

31: return (s1 ∨ s2, for Q do P ′1 else P
′
2)

32: end if

33: end procedure

Definition 4.9. We define a partial order on Z3
≥0 as follows: ( f1, i1, s1) ≤ ( f2, i2, s2) if f1 ≤ f2,

f1 + i1 ≤ f2 + i2, and f1 + i1 + s1 ≤ f2 + i2 + s2.

Proof of partial order. (1) Reflexivity: For any 3-tuple ( f , i, s ) ∈ Z3
≥0, we have f ≤ f , f +

i ≤ f + i , and f + i + s ≤ f + i + s . (2) Antisymmetry: For any 3-tuples ( f1, i1, s1), ( f2, i2, s2) ∈ Z3
≥0

such that ( f1, i1, s1) ≤ ( f2, i2, s2) and ( f2, i2, s2) ≤ ( f1, i1, s1), we have f1 = f2, f1 + i1 = f2 + i2, and
f1 + i1 + s1 = f2 + i2 + s2. (3) Transitivity: For any 3-tuples ( f1, i1, s1), ( f2, i2, s2), ( f3, i3, s3) ∈ Z3

≥0
such that ( f1, i1, s1) ≤ ( f2, i2, s2) and ( f2, i2, s2) ≤ ( f3, i3, s3), we have f1 ≤ f2 ≤ f3, f1 + i1 ≤ f2 +
i2 ≤ f3 + i3, and f1 + i1 + s1 ≤ f2 + i2 + s2 ≤ f3 + i3 + s3. �

Informally, this partial order compares the code complexity of two programs. The first compar-
ison, f1 ≤ f2, compares the number of loop constructs in the programs. The second comparison,
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f1 + i1 ≤ f2 + i2, compares the total number of control constructs in the programs. The third com-
parison, f1 + i1 + s1 ≤ f2 + i2 + s2, compares the total number of queries in the programs.

Proposition 4.10. For any strictly decreasing sequence of branch complexity tuples
( f1, i1, s1), ( f2, i2, s2), . . . ∈ Z3

≥0 such that ( fk+1, ik+1, sk+1) < ( fk , ik , sk ) for all k = 1, 2, . . . ,
the length of the sequence is finite.

Proof. Since f1 + i1 + s1 is finite, there is only a finite number of 3-tuples ( f , i, s ) ∈ Z3
≥0 such

that (0, 0, 0) < ( f , i, s ) < ( f1, i1, s1). �

Lemma 4.11. For any program P ∈ Prog and path constraintW , if TrimOnce(P ,W ) = (false, P ′),
then P ′ = P .

Proof. This proof is by induction on the derivation of P .

Case 1: P = ϵ .
By Algorithm 8, execution enters the branch on line 2. P ′ = ϵ = P .

Case 2: P is of the form “Seq”. P expands to “Q P1”, whereQ corresponds to the Query symbol and
P1 corresponds to the Prog symbol.

By Algorithm 8, execution enters the branch on line 3. Since TrimOnce(P ,W ) =
(false, P ′), s1 = false and P ′ = Q P ′1. By the induction hypothesis, if s1 = false, then
P ′1 = P1. Hence, P ′ = Q P ′1 = Q P1 = P .

Case 3: P is of the form “If”. P expands to “if Q then P1 else P2”, where Q corresponds to the
Query symbol, P1 corresponds to the first Prog symbol, and P2 corresponds to the second
Prog symbol.

By Algorithm 8, execution enters the branch on line 6. Since TrimOnce(P ,W ) =
(false, P ′), execution must not enter the branches on lines 7 or 8. Execution continues
after line 9. By the induction hypothesis, if s1 = false, then P ′1 = P1. Also, if s2 = false,
then P ′2 = P2. Execution must enter the branch on line 14. Since s1 ∨ s2 = false, s1 = s2 =
false. Hence, P ′ = if Q, then P ′1 else P2

′ = if Q, then P1 else P2 = P .
Case 4: P is of the form “For”. P expands to “for Q do P1 else P2”, where Q corresponds to the

Query symbol, P1 corresponds to the first Prog symbol, and P2 corresponds to the second
Prog symbol. The proof is similar to the proof of Case 3. �

Lemma 4.12. For any program P ∈ Prog and path constraintW , if TrimOnce(P ,W ) = (true, P ′),
then B(P ′) < B(P ).

Proof. This proof is by induction on the derivation of P .

Case 1: P = ϵ .
By Algorithm 8, execution enters the branch on line 2. Hence, it is not possible to have

TrimOnce(P ,W ) = (true, P ′).
Case 2: P is of the form “Seq”. P expands to “Q P1”, whereQ corresponds to the Query symbol and

P1 corresponds to the Prog symbol.
By Algorithm 8, execution enters the branch on line 3. Since TrimOnce(P ,W ) =

(true, P ′), s1 = true and P ′ = Q P ′1. By the induction hypothesis, if s1 = true, then
B(P ′1) < B(P1). By Definition 4.8 and Definition 4.9, B(Q P ′1) < B(Q P1). Hence, B(P ′) <
B(P ).

Case 3: P is of the form “If”. P expands to “if Q then P1 else P2”, where Q corresponds to the
Query symbol, P1 corresponds to the first Prog symbol, and P2 corresponds to the second
Prog symbol.

By Algorithm 8, execution enters the branch on line 6.
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Let f1, f2, i1, i2, s1, s2 ∈ Z≥0 such that B(P1) = ( f1, i1, s1) and B(P2) = ( f2, i2, s2).
Case 3.1: Execution enters the branch on line 7.

By Definition 4.8, B(Q P2) = ( f2, i2, 1 + s2). Also, B(if Q, then P1 else P2) =
( f1 + f2, 1 + i1 + i2, s1 + s2). By Definition 4.9, ( f2, i2, 1 + s2) < ( f1 + f2, 1 + i1 +
i2, s1 + s2). Since TrimOnce(P ,W ) = (true, P ′), P ′ = Q P2. Hence, B(P ′) =
B(Q P2) < B(if Q, then P1 else P2) = B(P ).

Case 3.2: Execution enters the branch on line 8. The proof is similar to the proof of
Case 3.1.

Case 3.3: Execution continues after line 9.
By the induction hypothesis, if s1 = true, then B(P ′1) < B(P1). Also, if s2 =
true, then B(P ′2) < B(P2). By Lemma 4.11, if s1 = false, then B(P ′1) = B(P1).
Also, if s2 = false, then B(P ′2) = B(P2). Hence, B(P ′1) ≤ B(P1) and B(P ′2) ≤
B(P2) always hold.
If execution enters the branch on 12, since TrimOnce(P ,W ) = (true, P ′), we
have P ′ = Q P ′1. Let f ′1 , i

′
1, s
′
1 ∈ Z≥0 such that B(P ′1) = ( f ′1 , i

′
1, s
′
1). By Defini-

tion 4.8, B(Q P ′1) = ( f ′1 , i
′
1, 1 + s

′
1). Also, B(if Q, then P1 else P2) = ( f1 +

f2, 1 + i1 + i2, s1 + s2). Since B(P ′1) ≤ B(P1), ( f ′1 , i
′
1, s
′
1) ≤ ( f1, i1, s1). By Defini-

tion 4.9, ( f ′1 , i
′
1, 1 + s

′
1) < ( f1 + f2, 1 + i1 + i2, s1 + s2). Hence, B(P ′) = B(Q P ′1) <

B(if Q, then P1 else P2) = B(P ).
If execution enters the branch on 14, since TrimOnce(P ,W ) = (true, P ′), we
have s1 ∨ s2 = true and P ′ = if Q, then P ′1 else P2

′. Hence, at least one of
B(P ′1) < B(P1) or B(P ′2) < B(P2) holds. By Definition 4.8 and Definition 4.9,
B(if Q, then P ′1 else P

′
2) < B(if Q, then P1 else P2). Hence, B(P ′) < B(P ).

Case 4: P is of the form “For”. P expands to “for Q do P1 else P2”, where Q corresponds to the
Query symbol, P1 corresponds to the first Prog symbol, and P2 corresponds to the second
Prog symbol. The proof is similar to the proof of Case 3. �

Theorem 6 (Trim Terminates). For any program P ∈ Prog, the execution of Trim(P ) terminates.

Proof. By Lemma 4.12, B(P ′) < B(P ) on line 3 as long as s = true. Hence, the value of B(P )
strictly decreases in each iteration of the loop as long as s = true. By Proposition 4.10, after a
finite number of iterations, it is no longer possible to have B(P ′) < B(P ). At this time, s = false
by Lemma 4.12. Execution enters the branch on line 4. The algorithm then terminates. �

Proposition 4.13. For any program P ∈ Prog, Trim(Trim(P )) = Trim(P ).

Proof. For any program P0 ∈ Prog, let P1 = Trim(P0). In the last iteration of the loop in Al-
gorithm 7, variable s = false on line 3. By Lemma 4.11, variable P ′ = P at this time. Since the
algorithm returns P1, we have TrimOnce(P1,Nil) = (false, P1). Let P2 = Trim(P1). In the first it-
eration of the loop in Algorithm 7, variable s = false and P ′ = P = P1 on line 3. Hence, the return
value P2 = P1. In other words, Trim(Trim(P0)) = Trim(P0). �

4.1.2 Soundness of Trim. To show that Trim produces an equivalent program, we show that
each recursive call to TrimOnce rewrites each subprogram into a corresponding subprogram that
is equivalent with respect to a path constraint.

Definition 4.14. We define the observational equivalence relation on Prog as follows: P1 ≡ P2 if
for any context σ ∈ Context, σ (P1) = σ (P2).

Proof of eqivalence relation. (1) Reflexivity: For any program P ∈ Prog, σ (P ) = σ (P ) for
all σ ∈ Context. (2) Symmetry: For any programs P1, P2 ∈ Prog such that P1 ≡ P2, σ (P2) = σ (P1) for
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all σ ∈ Context. (3) Transitivity: For any programs P1, P2, P3 ∈ Prog such that P1 ≡ P2 and P2 ≡ P3,
σ (P1) = σ (P2) = σ (P3) for all σ ∈ Context. �

Proposition 4.15. For any programs P1, P2 ∈ Prog, if P1 ≡ P2, then Infer( P1 ) = Infer( P2 ).

Proof. By Definition 4.14, σ (P1) = σ (P2) for any context σ ∈ Context. By Definition 3.9, for any

σ , we have Execute( P1 ,σ ) = Execute( P2 ,σ ). By Algorithm 1, Infer( P1 ) = Infer( P2 ). �

Definition 4.16. For any path constraintW , we define a relation on Prog as follows: P1 ≡W ,Y1,Y2

P2 if for any context σ ∈ Context that satisfiesW , σ (P ′1) = σ (P2), where P ′1 is the program obtained
from P1 after replacing all occurrences of variables in Y1 with their counterparts in Y2.

Proposition 4.17. For any programs P1, P2 ∈ Prog and list of variablesY ∈ Variable, P1 ≡Nil,Nil,Nil

P2 if and only if P1 ≡Nil,Y ,Y P2.

Proof. By definition. �

Proposition 4.18. For any programs P1, P2 ∈ Prog, P1 ≡Nil,Nil,Nil P2 if and only if P1 ≡ P2.

Proof. By definition. �

Proposition 4.19. For any programs P1, P2 ∈ Prog, path constraint W , and lists of variables

Y1,Y2 ∈ Variable, if P1 �W ,Y1,Y2 P2 then P1 ≡W ,Y1,Y2 P2.

Proof. By induction on the derivation of P1, P2, using Definition 3.18 and Figure 15. �

Proposition 4.20. For any programs P1, P2 ∈ Prog, if P1 � P2, then P1 ≡ P2.

Proof. By Proposition 4.18 and Proposition 4.19. �

Lemma 4.21. For any program P ∈ Prog and path constraintW , if TrimOnce(P ,W ) = (s, P ′), then
P ′ ≡W ,Nil,Nil P .

Proof. This proof is by induction on the derivation of P .

Case 1: P = ϵ .
By Algorithm 8, execution enters the branch on line 2. Hence, P ′ = ϵ = P . By Defini-

tion 4.16, P ′ ≡W ,Nil,Nil P .
Case 2: P is of the form “Seq”. P expands to “Q P1”, whereQ corresponds to the Query symbol and

P1 corresponds to the Prog symbol.
By Algorithm 8, execution enters the branch on line 3. By the induction hypothesis,

variable P ′1 satisfies P ′1 ≡W ,Nil,Nil P1. For any context σ ∈ Context that satisfiesW , let σ1 =

σ [Q .y �→ σ (Q )]. Sinceσ1 only adds themapping of a new variableQ .y that does not appear
in W , σ1 also satisfies W . By Definition 4.16, σ1 (P ′1) = σ1 (P1). By Figure 12, σ (Q P ′1) =
σ (Q P1). By Definition 4.16, Q P ′1 ≡W ,Nil,Nil Q P1. Since TrimOnce(P ,W ) = (s, P ′), P ′ =
Q P ′1. Hence, P ′ ≡W ,Nil,Nil P .

Case 3: P is of the form “If”. P expands to “if Q, then P1 else P2”, where Q corresponds to the
Query symbol, P1 corresponds to the first Prog symbol, and P2 corresponds to the second
Prog symbol.

By Algorithm 8, execution enters the branch on line 6.
Case 3.1: Solve(W @ 〈Q, ≥ 1, false〉) is unsatisfiable.

Execution enters the branch on line 7. By Proposition 4.6, for any context
σ ∈ Context that satisfiesW , σ (Q ) = ∅, because |σ (Q ) | ≥ 1 is impossible. Hence,
σ [Q .y �→ σ (Q )] = σ . By Figure 12, σ (Q P2) = σ (if Q, then P1 else P2). By Def-
inition 4.16, Q P2 ≡W ,Nil,Nil if Q, then P1 else P2. Since TrimOnce(P ,W ) =
(s, P ′), P ′ = Q P2. Hence, P ′ ≡W ,Nil,Nil P .
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Case 3.2: Solve(W @ 〈Q,= 0, false〉) is unsatisfiable.
Execution enters the branch on line 8. The proof is similar to the proof of Case
3.1.

Case 3.3: Both Solve(W @ 〈Q, ≥ 1, false〉) and Solve(W @ 〈Q,= 0, false〉) are satisfiable.
Execution continues after line 9. By the induction hypothesis, variables P ′1 and
P ′2 satisfy P ′1 ≡W @ 〈Q,≥1,false〉,Nil,Nil P1 and P ′2 ≡W @ 〈Q,=0,false〉,Nil,Nil P2.
For any context σ ∈ Context that satisfiesW , only one of |σ (Q ) | = 0 and |σ (Q ) | ≥
1 holds.

Case 3.3.1: If |σ (Q ) | = 0, then σ satisfiesW @ 〈Q,= 0, false〉.
By Definition 4.16, σ (P ′2) = σ (P2). Since σ (Q ) = ∅, σ [Q .y �→ σ (Q )] = σ .
By Figure 12, σ (if Q, then P ′1 else P2

′) = σ (if Q, then P1 else P2).
Case 3.3.2: If |σ (Q ) | ≥ 1, then σ satisfiesW @ 〈Q, ≥ 1, false〉.

Let σ1 = σ [Q .y �→ σ (Q )]. Since σ1 only adds the mapping of a new vari-
able Q .y that does not appear inW , σ1 also satisfies the path constraint
W @ 〈Q, ≥ 1, false〉. By Definition 4.16, σ1 (P ′1) = σ1 (P1). By Figure 12,
σ (if Q, then P ′1 else P2

′) = σ (if Q, then P1 else P2).

Either case, we have σ (if Q, then P ′1 else P2
′) = σ (if Q, then P1 else P2). By

Definition 4.16, if Q, then P ′1 else P
′
2 ≡W ,Nil,Nil if Q, then P1 else P2.

Next, consider if P ′1 and P ′2 are identical except for equivalent variables.

Case 3.3.1: If P ′1 �W ,Nil,Nil P
′
2, then execution enters the branch on line 12. By

Proposition 4.19, P ′1 ≡W ,Nil,Nil P
′
2. By Definition 4.16 and Figure 12, we

have if Q, then P ′1 else P
′
1 ≡W ,Nil,Nil if Q, then P

′
1 else P

′
2.

Since TrimOnce(P ,W ) = (s, P ′), P ′ = Q P ′1. Clearly, Q P ′1 ≡W ,Nil,Nil

if Q, then P ′1 else P
′
1. By Definition 4.16, P ′ ≡W ,Nil,Nil P .

Case 3.3.2: If P ′1 ��W ,Nil,Nil P
′
2, execution enters the branch on line 14.

Since TrimOnce(P ,W ) = (s, P ′), we have P ′ = if Q, then P ′1 else P2
′.

Hence, P ′ ≡W ,Nil,Nil P .

Case 4: P is of the form “For”. P expands to “for Q do P1 else P2”, where Q corresponds to the
Query symbol, P1 corresponds to the first Prog symbol, and P2 corresponds to the second
Prog symbol. The proof is similar to the proof of Case 3. �

Lemma 4.22. For any program P ∈ Prog, if TrimOnce(P ,Nil) = (s, P ′), then P ′ ≡ P .

Proof. By Lemma 4.21, P ′ ≡Nil,Nil,Nil P . By Proposition 4.18, P ′ ≡ P . �

Theorem 7 (Trim Preserves Semantics). For any program P ∈ Prog, Trim(P ) ≡ P .

Proof. By Lemma 4.22, P ′ ≡ P on line 3 in each iteration of the loop. By Theorem 6, the
loop terminates. By Definition 4.14, the final program P ′ preserves the semantics of the initial
program. �

We next outline the reachability properties of the simplified program. Intuitively, since
TrimOnce discards unreachable branches, the remaining branches are all reachable.

Proposition 4.23. For any program P ∈ Prog and path constraint W , if TrimOnce(P ,W ) =
(false, P ′), then the following hold for P ′:

• For any query Q ∈ Query in P ′, there exists a context σ ∈ Context such that Q is used while
evaluating σ (P ′).

• For any if-construct “if Q . . .” in P ′, there exists a context σ ∈ Context such that Q is used
while evaluating σ (P ′) and the corresponding row count r ≥ 1.
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• For any if-construct “if Q . . .” in P ′, there exists a context σ ∈ Context such that Q is used
while evaluating σ (P ′) and the corresponding row count r = 0.

• For any for-construct “forQ . . .” in P ′, there exists a context σ ∈ Context such thatQ is used
while evaluating σ (P ′) and the corresponding row count r ≥ 2.

Rationale. By induction on the derivation of P ′, using Proposition 4.6. �

Proposition 4.24 (Reachability). For any program P ∈ Prog, the following hold:

• For any query Q ∈ Query in Trim(P ), there exists a context σ ∈ Context such that Q is used
while evaluating σ (Trim(P )).

• For any if-construct “if Q . . .” in Trim(P ), there exists a context σ ∈ Context such that Q is
used while evaluating σ (Trim(P )) and the corresponding row count r ≥ 1.

• For any if-construct “if Q . . .” in Trim(P ), there exists a context σ ∈ Context such that Q is
used while evaluating σ (Trim(P )) and the corresponding row count r = 0.

• For any for-construct “for Q . . .” in Trim(P ), there exists a context σ ∈ Context such that Q
is used while evaluating σ (Trim(P )) and the corresponding row count r ≥ 2.

Rationale. In the last iteration of the loop in Algorithm 7, variable s = false on line 3. The
rest of the proof follows from Proposition 4.23. �

4.2 Source Code Characteristics

This section defines the functions T(·), R(·), and D(·), which we introduce in Section 3.1 to de-
fine the Konure DSL. To present the Konure DSL restrictions formally, we define the following
characteristics for describing the source code of a program in Prog:

Definition 4.25. For any program P ∈ Prog, function F(P ) returns the first query of P if P is
nonempty or Nil if P is empty:

F(ϵ ) = Nil

F(Q P ) = Q

F(if Q then P1 else P2) = Q

F(for Q do P1 else P2) = Q,

where P , P1, P2 ∈ Prog and Q ∈ Query.

Definition 4.26. Let SQuery be the set of skeleton queries (Appendix A). For any program P ∈
Prog and q ∈ SQuery ∪ {Nil }, function C(q, P ) returns the number of queries in P that share the
skeleton q:

C(Nil, P ) = 0

C(q, ϵ ) = 0

C(q,Q P ) =

{
1 + C(q, P ) if πSQ = q
C(q, P ) otherwise

, (q � Nil)

C(q, if Q then P1 else P2) =

{
1 + C(q, P1) + C(q, P2) if πSQ = q
C(q, P1) + C(q, P2) otherwise

, (q � Nil)

C(q, for Q do P1 else P2) =

{
1 + C(q, P1) + C(q, P2) if πSQ = q
C(q, P1) + C(q, P2) otherwise

, (q � Nil),

where P , P1, P2 ∈ Prog, Q ∈ Query, and q ∈ SQuery ∪ {Nil }.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 18. Publication date: January 2021.



Active Learning for Inference and Regeneration of Applications that Access Databases 18:39

Definition 4.27. For any program P ∈ Prog, function R(P ) returns the set of all queries in
P whose immediate subsequent query on the nonempty branch shares skeleton with other
subsequent queries:

R(ϵ ) = ∅

R(Q P ) =

{
{Q .y} ∪ R(P ) if C(πSF(P ), P ) ≥ 2
R(P ) otherwise

R(if Q then P1 else P2) =

{
{Q .y} ∪ R(P1) ∪ R(P2) if C(πSF(P1), P1) ≥ 2
R(P1) ∪ R(P2) otherwise

R(for Q do P1 else P2) =

{
{Q .y} ∪ R(P1) ∪ R(P2) if C(πSF(P1), P1) ≥ 2
R(P1) ∪ R(P2) otherwise,

where P , P1, P2 ∈ Prog and Q ∈ Query.

Definition 4.28. For any program P ∈ Prog and context σ ∈ Context, Tσ (P ) denotes the set of
queries that each returns at least two rows when executing P using σ :

Tσ (ϵ ) = ∅

Tσ (Q P ) =

{
{Q .y} ∪ Tσ [Q .y �→σ (Q )] (P ) if |σ (Q ) | ≥ 2
Tσ [Q .y �→σ (Q )] (P ) otherwise

Tσ (if Q then P1 else P2) =
⎧⎪⎪⎨⎪⎪⎩
{Q .y} ∪ Tσ [Q .y �→σ (Q )] (P1) if |σ (Q ) | ≥ 2
Tσ [Q .y �→σ (Q )] (P1) if |σ (Q ) | = 1
Tσ (P2) otherwise

Tσ (for Q do P1 else P2) =
⎧⎪⎪⎨⎪⎪⎩
{Q .y} ∪⋃r

i=1 Tσ [Q .y �→σ (Q )[i]] (P1) if |σ (Q ) | = r ≥ 2
Tσ [Q .y �→σ (Q )] (P1) if |σ (Q ) | = 1
Tσ (P2) otherwise,

where P , P1, P2 ∈ Prog, Q ∈ Query, y ∈ Variable, and r ∈ Z≥0.

Definition 4.29. For any program P ∈ Prog, function T(P ) returns the set of queries in P that
may retrieve at least two rows during any execution: T(P ) =

⋃
σ ∈Context Tσ (P ).

Definition 4.30. For any program P ∈ Prog, predicateD(P ) is true if and only if the two branches
of any conditional statement in P start with queries with different skeletons:

D(ϵ ) = true

D(Q P ) = D(P )

D(if Q then P1 else P2) =

{
true if P1 = P2 = ϵ
πSF(P1) � πSF(P2) ∧D(P1) ∧D(P2) otherwise

D(for Q do P1 else P2) =

{
true if P1 = P2 = ϵ
D(P1) ∧D(P2) otherwise,

where P , P1, P2 ∈ Prog and Q ∈ Query.

4.3 Soundness of DetectLoops

We show that the outcome of DetectLoops (Algorithm 3) is consistent with the loop layout tree
obtained from the source code (Theorem 1). To facilitate discussion, we define an auxiliary pro-
cedure, DetectLoopsAux (Algorithm 9). This procedure is the same as DetectLoops except for
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ALGORITHM 9: Loop detection algorithm (Algorithm 3) with auxiliary variables

Input: e is either Nil or a nonempty list of query-result pairs (Q1, r1) , . . . , (Qn , rn ).
Input: P ∈ Prog is an auxiliary variable used only in the soundness proof.
Input: σ ∈ Context is an auxiliary variable used only in the soundness proof.
Output: Loop layout tree constructed from e .
1: procedure DetectLoopsAux(e, P ,σ )
2: if e = Nil then

3: return Nil
4: end if

5: (Q1, r1) , . . . , (Qn , rn ) ← e
6: a ← empty list
7: for j ← 2, 3, . . . ,n do � Identify repetitions
8: if πSQ j = πSQ2 then

9: Append j to a
10: end if

11: end for

12: if r1 ≤ 1 or r1 � len(a) then � Did not find repetitions caused by any loops that iterate over Q1

13: e ′ ← (Q2, r2) , . . . , (Qn , rn )
14: σ ′ ← σ [Q1.y �→ σ (Q1)]
15: if r1 = 0 then

16: P ′ ← Subprogram of P in the empty branch
17: else

18: P ′ ← Subprogram of P in the nonempty branch
19: end if

20: l ← DetectLoopsAux(e ′, P ′,σ ′)
21: return (Q1, r1) → l
22: else � Found a loop that iterates over Q1

23: Append n + 1 to a
24: for j ← 1, 2, . . . , r1 do

25: b ← a[j]
26: c ← a[j + 1] − 1
27: e ′ ← (Qb , rb ) , . . . , (Qc , rc )
28: σ ′ ← σ [Q1.y �→ σ (Q1)[j]]
29: P ′ ← Subprogram of P in the nonempty branch
30: lj ← DetectLoopsAux(e ′, P ′,σ ′)
31: end for

32: return (Q1, r1) �(l1, . . . , lr1 )
33: end if

34: end procedure

two additional variables, P and σ , which are used in the proof but do not affect the results of the
algorithm.

Lemma 4.31. For any program P0 ∈ K and context σ0 ∈ Context if σ0 � P0 ⇓exec e0, dur-
ing the calculation of DetectLoopsAux(e0, P0,σ0), if the parameters of a recursive call
DetectLoopsAux(e, P ,σ ) satisfy σ � P ⇓exec e and Algorithm 9 enters line 5 then:

(1) F(P ) = Q1,
(2) |σ (Q1) | = r1, and
(3) if r1 ≥ 2 then Q1.y ∈ T(P0).

Proof. This proof is by induction on the derivation of P .
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Case 1: P = ϵ . Since σ � P ⇓exec e , by Figure 16, e = Nil. Algorithm 9 returns before line 5.
Case 2: P is of the form “Seq”. P expands to “Q P1”, whereQ corresponds to the Query symbol and

P1 corresponds to the Prog symbol. Since σ � P ⇓exec e , by Figure 16, Q1 = Q and r1 =
|σ (Q ) | = |σ (Q1) |. By Definition 4.25, F(P ) = Q = Q1. By Definition 4.28, if r1 ≥ 2, then
Q1.y ∈ Tσ (P ) and Q1.y ∈ Tσ0 (P0). By Definition 4.29, Qy .y ∈ T(P0).

Case 3: P is of the form “If”. P expands to “if Q, then P1 else P2”, where Q corresponds to the
Query symbol, P1 corresponds to the first Prog symbol, and P2 corresponds to the second
Prog symbol. The proof is similar to the proof of Case 2.

Case 4: P is of the form “For”. P expands to “for Q do P1 else P2”, where Q corresponds to the
Query symbol, P1 corresponds to the first Prog symbol, and P2 corresponds to the second
Prog symbol. The proof is similar to the proof of Case 2. �

Lemma 4.32. For any program P0 ∈ K and context σ0 ∈ Context if σ0 � P0 ⇓exec e0,
during the calculation of DetectLoopsAux(e0, P0,σ0), if the parameters of a re-
cursive call DetectLoopsAux(e, P ,σ ) satisfy σ � P ⇓exec e and σ � P ⇓loops l , then
DetectLoopsAux(e, P ,σ ) = l .

Proof. This proof is by induction on the derivation of P .

Case 1: P = ϵ . Since σ � P ⇓exec e , by Figure 16, e = Nil. Since σ � P ⇓loops l , by Figure 17, l = Nil.
By Algorithm 9, DetectLoopsAux(Nil, P ,σ ) = Nil.

Case 2: P is of the form “Seq”. P expands to “Q P1”, whereQ corresponds to the Query symbol and
P1 corresponds to the Prog symbol.

Let r = |σ (Q ) | and σ1 = σ [Q .y �→ σ (Q )].
Since σ � P ⇓exec e , by Figure 16, there exists a list of query-result pairs e1 such that

e = (Q, r ) @ e1 and σ1 � P1 ⇓exec e1. By Lemma 4.31, e = (Q1, r1) @ e1.
Since σ � P ⇓loops l , by Figure 17, there exists a loop layout tree l1 such that l =

(Q, r )→ l1 and σ1 � P1 ⇓loops l1. By Lemma 4.31, l = (Q1, r1)→ l1.
Case 2.1: r ≤ 1. In Algorithm 9, execution enters the branch on line 12.
Case 2.2: r ≥ 2. By Lemma 4.31, Q .y ∈ T(P0). By Definition 3.4, Q .y � R(P0). By Defini-

tion 4.27, C(πSF(P1), P1) ≤ 1. By Figure 16, πSF(P1) appears at most once in e1.
In Algorithm 9, the branch on line 8 never executes, so the length of a in the
procedure remains zero. Execution enters the branch on line 12.

In both cases, by Lemma 4.31, variable σ ′ = siдma1. Also, variables e ′ = e1
and P ′ = P1. Algorithm 9 recursively calls DetectLoopsAux(e1, P1,σ1) on line 20,
which returns l1 by the induction hypothesis. Hence, DetectLoopsAux(e, P ,σ ) =
(Q1, r1)→ DetectLoopsAux(e1, P1,σ1) = (Q, r )→ l1 = l .

Case 3: P is of the form “If”. P expands to “if Q, then P1 else P2”, where Q corresponds to the
Query symbol, P1 corresponds to the first Prog symbol, and P2 corresponds to the second
Prog symbol.
Case 3.1: σ (Q ) = ∅.

Since σ � P ⇓exec e , by Figure 16, there exists a list of query-result pairs e2 such
that e = (Q, 0) @ e2 and σ � P2 ⇓exec e2. By Lemma 4.31, e = (Q1, r1) @ e2.
Since σ � P ⇓loops l , by Figure 17, there exists a loop layout tree l2 such that
l = (Q, 0)→ l2 and σ � P2 ⇓loops l2. By Lemma 4.31, l = (Q1, r1)→ l2.
By Lemma 4.31, r1 = |σ (Q ) | = 0. In Algorithm 9, execution enters the branch
on line 12. By Definition 3.7, variable σ ′ = σ . Also, variables e ′ = e2 and P ′ =
P2. Algorithm 9 recursively calls DetectLoopsAux(e2, P2,σ ) on line 20, which
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returns l2 by the induction hypothesis. Hence, DetectLoopsAux(e, P ,σ ) =
(Q1, r1)→ DetectLoopsAux(e2, P2,σ ) = (Q, 0)→ l2 = l .

Case 3.2: σ (Q ) � ∅. The proof is similar to the proof of Case 2.
Case 4: P is of the form “For”. P expands to “for Q do P1 else P2”, where Q corresponds to the

Query symbol, P1 corresponds to the first Prog symbol, and P2 corresponds to the second
Prog symbol.

Case 4.1: σ (Q ) = ∅. The proof is similar to the proof of Case 3.1.
Case 4.2: |σ (Q ) | = 1. The proof is similar to the proof of Case 2.
Case 4.3: |σ (Q ) | = r ≥ 2.

Let x1, . . . ,xr be the rows of σ (Q ), σ (Q ) = (x1, . . . ,xr ). For i = 1, . . . , r , let σi =

σ [Q .y �→ xi ].
Since σ � P ⇓exec e , by Figure 16, there exists lists of query-result pairs e1, . . . , er

such that e = (Q, r ) @ e1 @ . . . @ er and σi � P1 ⇓exec ei for each i = 1, . . . , r . By
Lemma 4.31, r = r1 and e = (Q1, r1) @ e1 @ . . . @ er1 .

Since σ � P ⇓loops l , by Figure 17, there exists loop layout trees l1, . . . , lr such that
l = (Q, r )�(l1, . . . , lr ) and σi � P1 ⇓loops li for each i = 1, . . . , r .

Since r ≥ 2, by Lemma 4.31, Q .y ∈ T(P0). By Definition 3.4, Q .y � R(P0). By Defini-
tion 4.27, C(πSF(P1), P1) ≤ 1.

By Definition 3.4 and Algorithm 8, P1 � ϵ . By Definition 4.26, C(πSF(P1), P1) ≥ 1.
Hence, C(πSF(P1), P1) = 1.

By Figure 16, πSF(P1) appears in the first query-result pair in each ei (i = 1, . . . , r1)
and not in any other query-result pairs. In Algorithm 9, the branch on line 8 executes
if and only if the query under inspection comes from the first query-result pair of any
ei (i = 1, . . . , r1). Hence, the length of a equals r1 on line 12. Execution does not enter
the branch on this line.

Execution continues to the loop on line 24. In the ith iteration of this loop,
variable b is the index of the first query-result pair of ei and variable c is
the index of the last query-result pair of ei (i = 1, . . . , r1). By Lemma 4.31,
variable σ ′ = σ [Q1.y �→ xi ] = σi . Also, variables e ′ = ei and P ′ = P1. Algo-
rithm 9 recursively calls DetectLoopsAux(ei , P1,σi ) on line 30, which re-
turns li by the induction hypothesis. Hence, DetectLoopsAux(e, P ,σ ) =
(Q1, r1)�(DetectLoopsAux(e1, P1,σ1), . . . ,DetectLoopsAux(er , P1,σr1 )) = (Q, r )�
(l1, . . . , lr ) = l . �

Theorem 1 (Loop Detection). For any program P ∈ K and context σ ∈ Context, if σ � P ⇓exec e
and σ � P ⇓loops l , then DetectLoops(e ) = l .

Proof. By Lemma 4.32, DetectLoopsAux(e, P ,σ ) = l . Since Algorithm 9 and Algorithm 3 dif-
fer only in the auxiliary variables, DetectLoops(e ) = l . �

4.4 Soundness of GetTrace

We show that the outcome of MatchPath corresponds to a path through the program’s abstract
syntax tree (Lemma 4.41) and corresponds to a path through the loop layout tree (Lemma 4.41).
We then show the soundness of GetTrace (Theorem 2).

To facilitate discussion, we first introduce notation for reasoning about subtrees of the program
AST (Section 4.4.1) and subtrees of the loop layout tree (Section 4.4.2).

4.4.1 Traversing the Program AST.

Proposition 4.33. For any programs P1, P2, P3 ∈ Prog and annotated traces t1, t2:

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 18. Publication date: January 2021.



Active Learning for Inference and Regeneration of Applications that Access Databases 18:43

(1) if P1
t1−→ P2 and P2

t2−→ P3, then P1
t1 @ t2−−−−−→ P3.

(2) if P1
t1−→ P2 and P1

t1 @ t2−−−−−→ P3, then P2
t2−→ P3.

Proof. By induction on the length of t1 and the derivation of P1. �

Remark. Note that the reverse direction of subtraction does not hold. If P2
t2−→ P3 and P1

t1 @ t2−−−−−→
P3, then P1

t1−→ P2 may not hold. Consider the following programs:

P1 = Q1 Q2,

P2 = if Q2 then Q3 else ϵ,

P3 = ϵ .

Let t1 = 〈Q1, 0,NotLoop〉 and t2 = 〈Q2, 0,NotLoop〉. By Figure 18, P2
t2−→ ϵ , P1

t1 @ t2−−−−−→ ϵ , and P1
t1−→

Q2. However, Q2 � P2.

Proposition 4.34. For any programs P1, P2 ∈ Prog and annotated traces t1, t2, if P1
t1 @ t2−−−−−→ P2, then

there exists program P3 ∈ Prog such that P1
t1−→ P3.

Proof. The proof is by induction on the length of t1 and the derivation of P1.

Case 1: t1 = Nil. Let P3 = P1. By Figure 18, P1
Nil−−→ P1.

Case 2: t1 = 〈Q ′, r , λ〉@ t ′1. We have t1 @ t2 = 〈Q ′, r , λ〉@ t ′1 @ t2.

Case 2.1: P1 = ϵ . Since t1 @ t2 � Nil, it is not possible to have P1
t1 @ t2−−−−−→ P2 by Figure 18.

Case 2.2: P1 is of the form “Seq”. P1 expands to “Q P ′1”, where Q corresponds to the Query
symbol and P ′1 corresponds to the Prog symbol.

Since P1
t1 @ t2−−−−−→ P2, by Figure 18, Q � Q ′ and P ′1

t ′1 @ t2
−−−−−→ P2. By the induction

hypothesis, there exists program P3 ∈ Prog such that P ′1
t1−→
′
P3. By Figure 18,

P1
〈Q ′,r,λ〉
−−−−−−→ P ′1. By Proposition 4.33, P1

t1−→ P3.
Case 2.3: P is of the form “If”. P expands to “ifQ, then P ′1 else P

′
2”, whereQ corresponds

to the Query symbol, P ′1 corresponds to the first Prog symbol, and P ′2 corresponds
to the second Prog symbol.

Case 2.3.1: r > 0. The proof is similar to the proof of Case 2.2.
Case 2.3.2: r = 0.

Since P1
t1 @ t2−−−−−→ P2, by Figure 18, Q � Q ′ and P ′2

t ′1 @ t2
−−−−−→ P2.

By the induction hypothesis, there exists program P3 ∈ Prog such that

P ′2
t1−→
′
P3. By Figure 18, P1

〈Q ′,r,λ〉
−−−−−−→ P ′2. By Proposition 4.33, P1

t1−→ P3.

Case 2.4: P is of the form “For”. P expands to “forQ do P1 else P2”, whereQ corresponds
to the Query symbol, P1 corresponds to the first Prog symbol, and P2 corresponds
to the second Prog symbol. The proof is similar to the proof of Case 2.3. �

Proposition 4.35. For any program P ∈ Prog, context σ ∈ Context, loop layout tree l such that

σ � P ⇓loops l , and annotated trace t ∈ GetAnnotatedTrace(l ), we have P
t−→ ϵ .

Proof. This proof is by induction on the derivation of P .

Case 1: P = ϵ .
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By Figure 17, σ � P ⇓loops Nil. By Algorithm 4, GetAnnotatedTrace(Nil) = {Nil }.
Hence, t = Nil. By Figure 18, ϵ

Nil−−→ ϵ .
Case 2: P is of the form “Seq”. P expands to “Q P1”, whereQ corresponds to the Query symbol and

P1 corresponds to the Prog symbol.
Let σ1 = σ [Q .y �→ σ (Q )] and r = |σ (Q ) |.
Since σ � P ⇓loops l , by Figure 17, there exists a loop layout tree l1 such

that l = (Q, r )→ l1 and σ1 � P1 ⇓loops l1. By Algorithm 4, GetAnnotatedTrace(l ) =
{ 〈Q, r ,NotLoop〉@ t ′ | t ′ ∈ GetAnnotatedTrace(l1) }.

Since t ∈ GetAnnotatedTrace(l ), there exists t ′ ∈ GetAnnotatedTrace(l1) such
that t = 〈Q, r ,NotLoop〉@ t ′.

By the induction hypothesis, P1
t ′−→ ϵ . By Figure 18, P

t−→ ϵ .
Case 3: P is of the form “If”. P expands to “if Q, then P1 else P2”, where Q corresponds to the

Query symbol, P1 corresponds to the first Prog symbol, and P2 corresponds to the second
Prog symbol. The proof is similar to the proof of Case 2.

Case 4: P is of the form “For”. P expands to “for Q do P1 else P2”, where Q corresponds to the
Query symbol, P1 corresponds to the first Prog symbol, and P2 corresponds to the second
Prog symbol.
Case 4.1: |σ (Q ) | ≤ 1. The proof is similar to the proof of Case 2.
Case 4.2: |σ (Q ) | = r ≥ 2.

Let x1, . . . ,xr be the rows of σ (Q ), σ (Q ) = (x1, . . . ,xr ). Let σi = σ [Q .y �→ xi ] for
each i = 1, . . . , r .
Since σ � P ⇓loops l , by Figure 17, there exists loop layout trees l1, . . . , lr
such that l = (Q, r )�(l1, . . . , lr ) and σi � P1 ⇓loops li for each i = 1, . . . , r .
By Algorithm 4, GetAnnotatedTrace(l ) = ∪r

i=1{ 〈Q, r , i〉@ t ′ | t ′ ∈
GetAnnotatedTrace(li ) }.
Since t ∈ GetAnnotatedTrace(l ), there exists integer i ∈ {1, . . . , r } and t ′ ∈
GetAnnotatedTrace(li ) such that t = 〈Q, r , i〉@ t ′.

By the induction hypothesis, P1
t ′−→ ϵ . By Figure 18, P

t−→ ϵ . �

4.4.2 Traversing the Loop Layout Tree.

Proposition 4.36. For any loop layout trees l1, l2, l3 and annotated traces t1, t2:

(1) if l1
t1
↪−→ l2 and l2

t2
↪−→ l3, then l1

t1 @ t2
↪−−−−→ l3.

(2) if l1
t1
↪−→ l2 and l1

t1 @ t2
↪−−−−→ l3, then l2

t2
↪−→ l3.

Proof. By induction on the length of t1 and the derivation of l1. �

Remark. Note that the reverse direction of subtraction does not hold. If l2
t2
↪−→ l3 and l1

t1 @ t2
↪−−−−→ l3,

then l1
t1
↪−→ l2 may not hold. Consider the following loop layout trees:

l1 = (Q1, 0) → (Q2, 2) � ( (Q3, 0) → Nil , (Q3, 3) → Nil
)
,

l2 = (Q2, 2) � ( (Q3, 0) → Nil , (Q3, 1) → Nil
)
,

l3 = (Q3, 0) → Nil.

Let t1 = 〈Q1, 0,NotLoop〉 and t2 = 〈Q2, 2, 1〉. By Figure 19, l2
t2
↪−→ l3, l1

t1 @ t2
↪−−−−→ l3, and l1

t1
↪−→ l ′2 where

l ′2 = (Q2, 2)�( (Q3, 0)→ Nil , (Q3, 3)→ Nil ). However, l2 � l ′2.
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Proposition 4.37. For any loop layout trees l1, l2 and annotated traces t1, t2, if l1
t1 @ t2
↪−−−−→ l2, then

there exists loop layout tree l3 such that l1
t1
↪−→ l3.

Proof. The proof is by induction on the length of t1 and the derivation of l1.

Case 1: t1 = Nil. Let l3 = l1. By Figure 19, l1
Nil
↪−−→ l1.

Case 2: t1 = 〈Q ′, r , λ〉@ t ′1. We have t1 @ t2 = 〈Q ′, r , λ〉@ t ′1 @ t2.

Case 2.1: l1 = Nil. Since t1 @ t2 � Nil, it is not possible to have l1
t1 @ t2
↪−−−−→ l2 by Figure 19.

Case 2.2: l1 = (Q, r )→ l ′1.

Since l1
t1 @ t2
↪−−−−→ l2, by Figure 19, Q � Q ′, λ = NotLoop, and l ′1

t ′1 @ t2
↪−−−−→ l2. By the

induction hypothesis, there exists loop layout tree l3 such that l ′1
t1
↪−→
′
l3. By

Figure 19, l1
〈Q ′,r,λ〉
↪−−−−−−→ l ′1. By Proposition 4.36, l1

t1
↪−→ l3.

Case 2.3: l1 = (Q ′, r )�(l ′1, . . . , l
′
r ).

Since l1
t1 @ t2
↪−−−−→ l2, by Figure 19,Q � Q ′, 1 ≤ λ ≤ r , and l ′

λ

t ′1 @ t2
↪−−−−→ l2. By the induc-

tion hypothesis, there exists loop layout tree l3 such that l ′
λ

t1
↪−→
′
l3. By Figure 19,

l1
〈Q ′,r,λ〉
↪−−−−−−→ l ′

λ
. By Proposition 4.36, l1

t1
↪−→ l3. �

Proposition 4.38. For any loop layout tree l and annotated trace t , we have t ∈
GetAnnotatedTrace(l ) if and only if l

t
↪−→ Nil.

Proof. By induction on the length of t . �

4.4.3 Consistency with Program AST, Path Constraint, and Loop Layout Tree.

Lemma 4.39. For any program P ∈ Prog, path constraint W that is derived from P , con-
text σ ∈ Context that satisfies W , if σ � P ⇓loops l , then there exists an annotated trace t ∈
GetAnnotatedTrace(l ) such that t ∼W .

Proof Sketch. The proof is by induction on the derivation of P .

Case 1: P = ϵ .
By Figure 17, l = Nil. By Algorithm 4, GetAnnotatedTrace(l ) = {Nil }.
Let t = Nil, then t ∈ GetAnnotatedTrace(l ).

Case 1.1:W = Nil.
By Definition 3.19, t ∼W .

Case 1.2:W = 〈Q ′, r ′, s ′〉.
By Definition 4.25, F(P ) = Nil. By Definition 4.4, this case is not possible.

Case 1.3:W = (〈Q ′1, r ′1, s ′1〉, . . . , 〈Q ′m , r ′m , s ′m〉), wherem ≥ 2.

By Definition 4.4, there exists an annotated trace t ′ such that P
t ′−→ ϵ and t ′ ∼

W ′, where W ′ = (〈Q ′1, r ′1, s ′1〉, . . . , 〈Q ′m−1, r ′m−1, s ′m−1〉, 〈Q ′m , r ′, s ′m〉) for some row
constraint r ′. By Figure 18, t ′ = Nil. By Definition 3.19, this case is not possible.

Case 2: P is of the form “Seq”. P expands to “Q P1”, whereQ corresponds to the Query symbol and
P1 corresponds to the Prog symbol.

Let σ ′ = σ [Q .y �→ σ (Q )]. By Figure 19, there exists a loop layout tree l ′ such that l =
(Q, |σ (Q ) |)→ l ′ and σ ′ � P1 ⇓loops l ′.

Case 2.1:W = Nil.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 18. Publication date: January 2021.



18:46 J. Shen and M. C. Rinard

By Algorithm 4, GetAnnotatedTrace(l ′) � ∅. Hence, there exists an anno-
tated trace t ′ ∈ GetAnnotatedTrace(l ′). Let t = 〈Q, |σ (Q ) |,NotLoop〉@ t ′. By Algo-
rithm 4, t ∈ GetAnnotatedTrace(l ). By Definition 3.19, t ∼W .

Case 2.2:W = 〈Q ′, r ′, s ′〉.
By Definition 3.16, |σ (Q ′) | � r ′. By Definition 4.25, F(P ) = Q . By Definition 4.4,

Q ′ �Nil,Nil,Nil Q . By Definition 3.18, Definition 3.17, and Definition 3.7, σ (Q ) = σ (Q ′).
Hence, |σ (Q ) | � r ′.

By Algorithm 4, GetAnnotatedTrace(l ′) � ∅. Hence, there exists an anno-
tated trace t ′ ∈ GetAnnotatedTrace(l ′). Let t = 〈Q, |σ (Q ) |,NotLoop〉@ t ′. By Algo-
rithm 4, t ∈ GetAnnotatedTrace(l ). By Definition 3.19, t ∼W .

Case 2.3:W = (〈Q ′1, r ′1, s ′1〉, . . . , 〈Q ′m , r ′m , s ′m〉), wherem ≥ 2.

By Definition 4.4, there exists an annotated trace t ′ such that P
t ′−→ ϵ and t ′ ∼W ′,

whereW ′ = (〈Q ′1, r ′1, s ′1〉, . . . , 〈Q ′m−1, r ′m−1, s ′m−1〉, 〈Q ′m , r ′, s ′m〉) for some row constraint
r ′.

Let t ′ = 〈Q ′′, r ′′, λ′′〉@ t ′′. By Definition 3.19, Q ′′ �Nil,Nil,Nil Q
′
1. Also, r ′′ � r ′1. By

Figure 18, Q ′′ �Nil,Nil,Nil Q .
Hence, Q ′1 �Nil,Nil,Nil Q . By Definition 3.18, Definition 3.17, and Definition 3.7,

σ (Q ) = σ (Q ′1).
Since σ satisfies W , by Definition 3.16, there exists a sequence of contexts

σ1, . . . ,σm ∈ Context that are updated according to the evaluation of the queries
Q ′1, . . . ,Q

′
m in σ and |σi (Q ′i ) | � r ′i for all i = 1, . . . ,m. Since σ1 = σ , we have σ (Q ) =

σ1 (Q ′1). Hence, |σ (Q ) | � r ′1.

Since P
t ′−→ ϵ , by Figure 18, P1

t ′′−−→ ϵ .
LetW ′′ = (〈Q ′2, r ′2, s ′2〉, . . . , 〈Q ′m−1, r ′m−1, s ′m−1〉, 〈Q ′m , r ′, s ′m〉). By Definition 3.19, t ′′ ∼

W ′′.
LetW ′′′ = (〈Q ′2, r ′2, s ′2〉, . . . , 〈Q ′m , r ′m , s ′m〉). By Definition 4.4,W ′′′ is derived from P1.
By Definition 3.16, σ2 satisfies W ′′′. Also, σ2 = σ1[Q ′1.y �→ σ1 (Q ′1)] = σ [Q .y �→

σ (Q )] = σ ′. Hence, σ ′ satisfiesW ′′′.
Since σ ′ � P1 ⇓loops l ′, by the induction hypothesis, there exists an annotated trace

t ′′′ ∈ GetAnnotatedTrace(l ′) such that t ′′′ ∼W ′′′.
Let t = 〈Q, |σ (Q ) |,NotLoop〉@ t ′′′. Since l = (Q, |σ (Q ) |)→ l ′, by Algorithm 4, t ∈

GetAnnotatedTrace(l ).
Since |σ (Q ) | � r ′1, by Definition 3.19, t ∼W .

Case 3: P is of the form “If”. P expands to “if Q, then P1 else P2”, where Q corresponds to the
Query symbol, P1 corresponds to the first Prog symbol, and P2 corresponds to the second
Prog symbol.

Case 3.1: |σ (Q ) | ≥ 1.
Let σ ′ = σ [Q .y �→ σ (Q )]. By Figure 19, there exists a loop layout tree l ′ such that

l = (Q, |σ (Q ) |)→ l ′ and σ ′ � P1 ⇓loops l ′.

Case 3.1.1:W = Nil. The proof is similar to the proof of Case 2.1.
Case 3.1.2:W = 〈Q ′, r ′, s ′〉. The proof is similar to the proof of Case 2.2.
Case 3.1.3:W = (〈Q ′1, r ′1, s ′1〉, . . . , 〈Q ′m , r ′m , s ′m〉), wherem ≥ 2.

The proof is similar to the proof of Case 2.3. The main modification is the

proof of P1
t ′′−−→ ϵ : Since |σ (Q ) | ≥ 1, by Definition 3.15, r ′1 = (≥ 1) or r ′1 = (≥ 2).

Either case, since r ′′ � r ′1, we have r ′′ ≥ 1. Since P
t ′−→ ϵ , by Figure 18, P1

t ′′−−→ ϵ .

Case 3.2: |σ (Q ) | = 0. The proof is similar to the proof of Case 3.1.
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Case 4: P is of the form “For”. P expands to “for Q do P1 else P2”, where Q corresponds to the
Query symbol, P1 corresponds to the first Prog symbol, and P2 corresponds to the second
Prog symbol.
Case 4.1: |σ (Q ) | ≥ 2.

Let σ (Q ) = (x1, . . . ,xr ), where r = |σ (Q ) | ≥ 2. Let σ ′i = σ [Q .y �→ xi ] for each
i = 1, . . . , r . By Figure 17, there exists loop layout trees l ′1, . . . , l

′
r such that l =

(Q, r )�(l ′1, . . . , l
′
r ) and σ ′i � P1 ⇓loops l ′i for all i = 1, . . . , r .

Case 4.1.1:W = Nil. The proof is similar to the proof of Case 2.1.
Case 4.1.2:W = 〈Q ′, r ′, s ′〉. The proof is similar to the proof of Case 2.2.
Case 4.1.3:W = (〈Q ′1, r ′1, s ′1〉, . . . , 〈Q ′m , r ′m , s ′m〉), wherem ≥ 2.

The proof is similar to the proof of Case 3.1.3. The main modifications
are the reasoning after definingW ′′′:
By Definition 4.4, s ′1 = true. By Definition 3.16, there exists inte-
ger k1 such that 1 ≤ k1 ≤ |σ1 (Q ′1) | = |σ (Q ) | = r and σ2 = σ1[Q ′1.y �→
σ1 (Q ′1)[k1]] = σ [Q .y �→ xk1 ] = σ ′

k1
. Hence, σ ′

k1
satisfiesW ′′′.

Since σ ′
k1
� P1 ⇓loops l ′

k1
, by the induction hypothesis, there exists an an-

notated trace t ′′′ ∈ GetAnnotatedTrace(l ′
k1

) such that t ′′′ ∼W ′′′.
Let t = 〈Q, r ,k1〉@ t ′′′. Since l = (Q, r )�(l ′1, . . . , l

′
r ), by Algorithm 4, t ∈

GetAnnotatedTrace(l ).
Since r = |σ (Q ) | � r ′1, by Definition 3.19, t ∼W .

Case 4.2: |σ (Q ) | = 1. The proof is similar to the proof of Case 3.1.
Case 4.3: |σ (Q ) | = 0. The proof is similar to the proof of Case 3.1.

In this proof sketch, we reuse the notation in Definition 3.19 when stating “t ′′ ∼W ′′” in Case 2.3.
To complete the proof, we slightly revise this expression, as well as the expression “t ∼W ” in the
induction hypothesis, as follows: Generalize Definition 3.19 to work with subprograms. Specifi-
cally, define what it means for a suffix of an annotated trace to be consistent with a suffix of a
path constraint, with respect to a prefix of the path constraint. This prefix of the path constraint
specifies the path through the program to reach the subprogram that generates the trace suffix.
Passing along this prefix of the path constraint is straightforward, as we have done systematically
in Figure 15, Algorithm 8, and Lemma 4.21. This prefix of the path constraint is useful for reasoning
about the equivalence of the queries in t ′′ andW ′′. �

Lemma 4.40. For any program P ∈ Prog, path constraint W that is derived from P , context σ ∈
Context that satisfiesW , if σ � P ⇓loops l and l � Nil, then MatchPath(l ,W ) � Nil.

Proof.

Case 1:W = Nil.
Since l � Nil, by Algorithm 4, there exists an annotated trace t ∈

GetAnnotatedTrace(l ) such that t � Nil. By Definition 3.19, t ∼ Nil. In Algorithm 4,
execution enters the branch on line 6 with t � Nil.

Case 2:W = (〈Q ′1, r ′1, s ′1〉, . . . , 〈Q ′m , r ′m , s ′m〉) andm ≥ 1.
By Lemma 4.39, there exists an annotated trace t ′ ∈ GetAnnotatedTrace(l ) such that

t ′ ∼W . Since m ≥ 1, by Definition 3.19, t ′ � Nil. In Algorithm 4, execution eventually
enters the branch on line 6 with variable t � Nil. �

Lemma 4.41. For any program P ∈ Prog, path constraint W that is derived from P , context
σ ∈ Context that satisfies W , loop layout tree l such that σ � P ⇓loops l , and annotated trace t =
MatchPath(l ,W ):

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 18. Publication date: January 2021.



18:48 J. Shen and M. C. Rinard

(1) t ∼W .

(2) P
t−→ ϵ .

(3) l
t
↪−→ Nil.

Proof.

Case 1: l = Nil.
By Figure 17, P = ϵ . By Algorithm 4, GetAnnotatedTrace(l ) = {Nil }. In Algo-

rithm 4, execution never enters line 6 and thus returns Nil on line 10. Hence, t =

MatchPath(l ,W ) = Nil. By Figure 18, P
t−→ ϵ . By Figure 19, l

t
↪−→ Nil.

By Definition 4.4,W = Nil. By Definition 3.19, t ∼W .
Case 2: l � Nil.

By Lemma 4.40, t = MatchPath(l ,W ) � Nil. In Algorithm 4, executionmust not return
on line 10. Since GetAnnotatedTrace(l ) contains a finite number of annotated traces,
the execution must return on line 7. Hence, t ∈ GetAnnotatedTrace(l ) and t ∼W .

By Proposition 4.35, P
t−→ ϵ . By Proposition 4.38, l

t
↪−→ Nil. �

Theorem 2 (Trace-Code Correspondence). For any program P ∈ K, path constraint W
that is derived from P , context σ ∈ Context that satisfies W , and annotated trace t , if t =

GetTrace( P ,W ,σ ), then there exists a loop layout tree l ′ such that:

(1) σ � P ⇓loops l ′,
(2) t ∼W ,

(3) P
t−→ ϵ ,

(4) l ′
t
↪−→ Nil, and

(5) l ′ and the variable l are identical except for equivalent variables.

Proof. Let e ′ be a list of query-result pairs such that σ � P ⇓exec e ′. By Proposition 4.7, the
variable e in Algorithm 2 and e ′ are identical except for equivalent variables.

Let l ′ = DetectLoops(e ′). Since the variable l = DetectLoops(e ), l and l ′ are also identical
except for equivalent variables. By Theorem 1, σ � P ⇓loops l ′.

Let t ′ = MatchPath(l ′,W ). Since the variable t = MatchPath(l ,W ), t and t ′ are also identical

except for equivalent variables. By Lemma 4.41, t ′ ∼W , P
t ′−→ ϵ , and l ′

t ′

↪−→ Nil.

By Figure 18, P
t−→ ϵ . By Definition 3.19, t ∼W . By Figure 19, l ′

t
↪−→ Nil. �

4.5 Soundness of the Core Inference Algorithm

To help characterize the execution of the core inference algorithm InferProg, we first present a
notation for reasoning about context updates (Section 4.5.1). We then present the soundness proof
of InferProg in Section 4.5.2. We conclude with the soundness proof of Infer in Section 4.5.3.

4.5.1 Updating the Context while Traversing the Program AST. Figure 20 presents the definition
of simultaneously updating the context, traversing a program P ∈ Prog, and traversing a loop
layout tree, by following an annotated trace.

Proposition 4.42. For any programs P1, P2, P3 ∈ Prog, contexts σ1,σ2,σ3 ∈ Context, loop layout
trees l1, l2, l3, and annotated traces t1, t2:

(1) if

⎡⎢⎢⎢⎢⎢⎣
σ1

P1

l1

⎤⎥⎥⎥⎥⎥⎦
t1−→→

⎡⎢⎢⎢⎢⎢⎣
σ2

P2

l2

⎤⎥⎥⎥⎥⎥⎦ and

⎡⎢⎢⎢⎢⎢⎣
σ2

P2

l2

⎤⎥⎥⎥⎥⎥⎦
t2−→→

⎡⎢⎢⎢⎢⎢⎣
σ3

P3

l3

⎤⎥⎥⎥⎥⎥⎦ then

⎡⎢⎢⎢⎢⎢⎣
σ1

P1

l1

⎤⎥⎥⎥⎥⎥⎦
t1 @ t2−−−−−→→

⎡⎢⎢⎢⎢⎢⎣
σ3

P3

l3

⎤⎥⎥⎥⎥⎥⎦ .

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 18. Publication date: January 2021.



Active Learning for Inference and Regeneration of Applications that Access Databases 18:49

Fig. 20. Traverse a program and a corresponding loop layout tree by following an annotated trace, updating

the context.

(2) if

⎡⎢⎢⎢⎢⎢⎣
σ1

P1

l1

⎤⎥⎥⎥⎥⎥⎦
t1−→→

⎡⎢⎢⎢⎢⎢⎣
σ2

P2

l2

⎤⎥⎥⎥⎥⎥⎦ and

⎡⎢⎢⎢⎢⎢⎣
σ1

P1

l1

⎤⎥⎥⎥⎥⎥⎦
t1 @ t2−−−−−→→

⎡⎢⎢⎢⎢⎢⎣
σ3

P3

l3

⎤⎥⎥⎥⎥⎥⎦ then

⎡⎢⎢⎢⎢⎢⎣
σ2

P2

l2

⎤⎥⎥⎥⎥⎥⎦
t2−→→

⎡⎢⎢⎢⎢⎢⎣
σ3

P3

l3

⎤⎥⎥⎥⎥⎥⎦ .

Proof. By induction on the length of t1 and the derivation of P1. �

Remark. Note that the reverse direction of subtraction does not hold. If [
σ2
P2
l2
]

t2−→→ [
σ3
P3
l3
] and

[
σ1
P1
l1
]

t1 @ t2−−−−−→→ [
σ3
P3
l3
], [

σ1
P1
l1
]

t1−→→ [
σ2
P2
l2
] may not hold. Counter examples are similar to that of Sections 4.4.1

and 4.4.2.

Proposition 4.43. For any programs P , P ′ ∈ Prog, contexts σ ,σ ′ ∈ Context, loop layout trees l , l ′,

annotated trace t , if [
σ
P
l
]

t−→→ [
σ ′

P ′

l ′
], then P

t−→ P ′ and l
t
↪−→ l ′.
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Proof. By induction on the derivation of P . �

Proposition 4.44. For any programs P , P ′ ∈ Prog, context σ ∈ Context, loop layout trees l , l ′, and
annotated query tuple 〈Q ′, r , λ〉:

(1) if σ � P ⇓loops l , P
〈Q ′,r,λ〉
−−−−−−→ P ′, and l

〈Q ′,r,λ〉
↪−−−−−−→ l ′, then there exists σ ′ ∈ Context such that

[
σ
P
l
]
〈Q ′,r,λ〉
−−−−−−→→ [

σ ′

P ′

l ′
].

(2) for any context σ ′ ∈ Context, if σ � P ⇓loops l and [
σ
P
l
]
〈Q ′,r,λ〉
−−−−−−→→ [

σ ′

P ′

l ′
], then σ ′ � P ′ ⇓loops l ′.

Proof.

(1) By induction on the derivation of P .
(2) This proof is by induction on the derivation of P .

Case 1: P = ϵ .

By Figure 20, it is not possible to have [
σ
P
l
]
〈Q ′,r,λ〉
−−−−−−→→ [

σ ′

P ′

l ′
].

Case 2: P is of the form “Seq”. P expands to “Q P1”, where Q corresponds to the Query
symbol and P1 corresponds to the Prog symbol.
By Figure 20, r = |σ (Q ) |, σ ′ = σ [Q .y �→ σ (Q )], P ′ = P1, and l = (Q, r )→ l ′.
Since σ � P ⇓loops l , by Figure 17, σ ′ � P ′ ⇓loops l ′.

Case 3: P is of the form “If”. P expands to “if Q, then P1 else P2”, where Q corresponds
to the Query symbol, P1 corresponds to the first Prog symbol, and P2 corresponds
to the second Prog symbol. The proof is similar to the proof for Case 2.

Case 4: P is of the form “For”. P expands to “for Q do P1 else P2”, where Q corresponds
to the Query symbol, P1 corresponds to the first Prog symbol, and P2 corresponds
to the second Prog symbol.

Case 4.1: |σ (Q ) | ≤ 1. The proof is similar to the proof for Case 2.
Case 4.2: |σ (Q ) | ≥ 2.

Let (x1, . . . ,xr ) = σ (Q ).
By Figure 20, r = |σ (Q ) | ≥ 2, λ ∈ {1, . . . , r }, σ ′ = σ [Q .y �→ xλ], P ′ = P1,
and l ′ = lλ . Also, there exists l1, . . . , lr such that l = (Q, r )�(l1, . . . , lr ).
Since σ � P ⇓loops l , by Figure 17, σ ′ � P ′ ⇓loops l ′. �

Proposition 4.45. For any programs P , P ′ ∈ Prog, context σ ∈ Context, loop layout trees l , l ′, and
annotated trace t :

(1) if σ � P ⇓loops l , P
t−→ P ′, and l

t
↪−→ l ′, then there exists σ ′ ∈ Context such that [

σ
P
l
]

t−→→ [
σ ′

P ′

l ′
].

(2) for any context σ ′ ∈ Context, if σ � P ⇓loops l and [
σ
P
l
]

t−→→ [
σ ′

P ′

l ′
], then σ ′ � P ′ ⇓loops l ′.

Proof.

(1) This proof is by induction on the length of t .
Case 1: t = Nil.

By Figure 18, P ′ = P . By Figure 19, l ′ = l . By Figure 20, [
σ
P
l
]

Nil−−→→ [
σ
P
l
].

Case 2: t = 〈Q ′, r , λ〉@ t ′′.
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By Proposition 4.34, there exists P ′′ ∈ Prog such that P
〈Q ′,r,λ〉
−−−−−−→ P ′′. By Proposi-

tion 4.37, there exists l ′′ such that l
〈Q ′,r,λ〉
↪−−−−−−→ l ′′. By Proposition 4.44, there exists

σ ′′ ∈ Context such that [
σ
P
l
]
〈Q ′,r,λ〉
−−−−−−→→ [

σ ′′

P ′′

l ′′
]. By Proposition 4.44, σ ′′ � P ′′ ⇓loops l ′′.

Since P
t−→ P ′, we have P

〈Q ′,r,λ〉@ t ′′

−−−−−−−−−−→ P ′. By Proposition 4.33, P ′′
t ′′−−→ P ′.

Since l
t
↪−→ l ′, we have l

〈Q ′,r,λ〉@ t ′′

↪−−−−−−−−−−→ l ′. By Proposition 4.36, l ′′
t ′′

↪−→ l ′.

By the induction hypothesis, there exists σ ′′′ ∈ Context such that [
σ ′′

P ′′

l ′′
]

t ′′−−→→ [
σ ′′′

P ′

l ′
].

Since [
σ
P
l
]
〈Q ′,r,λ〉
−−−−−−→→ [

σ ′′

P ′′

l ′′
], by Proposition 4.42, [

σ
P
l
]
〈Q ′,r,λ〉@ t ′′

−−−−−−−−−−→→ [
σ ′′′

P ′

l ′
]. Hence, [

σ
P
l
]

t−→→

[
σ ′′′

P ′

l ′
].

(2) This proof is by induction on the length of t .
Case 1: t = Nil.

By Figure 20, σ ′ = σ , P ′ = P , and l ′ = l . Since σ � P ⇓loops l , σ ′ � P ′ ⇓loops l ′.
Case 2: t = 〈Q ′, r , λ〉@ t ′′.

By Proposition 4.43, P
t−→ P ′ and l

t
↪−→ l ′. By Proposition 4.34, there exists P ′′ ∈

Prog such that P
〈Q ′,r,λ〉
−−−−−−→ P ′′. By Proposition 4.37, there exists l ′′ such that

l
〈Q ′,r,λ〉
↪−−−−−−→ l ′′.

Since σ � P ⇓loops l , by Proposition 4.44, there exists σ ′′ such that [
σ
P
l
]
〈Q ′,r,λ〉
−−−−−−→→

[
σ ′′

P ′′

l ′′
]. By Proposition 4.44, σ ′′ � P ′′ ⇓loops l ′′.

Since [
σ
P
l
]

t−→→ [
σ ′

P ′

l ′
], by Proposition 4.42, [

σ ′′

P ′′

l ′′
]

t ′′−−→→ [
σ ′

P ′

l ′
].

By the induction hypothesis, σ ′ � P ′ ⇓loops l ′. �

4.5.2 Soundness of InferProg. To facilitate discussion, we define an alternative implementa-
tion of InferProg in Algorithm 10. This version is equivalent to Algorithm 6 and uses annotated
traces more explicitly. We first present a detailed case-by-case discussion on the properties of the
variables in Algorithm 10 by line 16. We then conclude with the proof of Theorem 3.

Proposition 4.46. Consider any programs P ∈ Prog and P ′ ∈ K and annotated traces t , t ′ such

that t � Nil, t ′ � Nil, P ′
t ′−→ P , and P

t−→ ϵ . During the execution of InferProg( P ′ , t ′, t ), for each
i = 0, 1, 2, the variableWi on line 9 of Algorithm 10 is derived from P ′.

Proof. By Proposition 4.33, P ′
t ′@ t
−−−−→ ϵ . By Definition 3.19, Definition 4.4, and the definition of

MakePathConstraint,Wi is derived from P ′. �

Lemma 4.47. Consider any programs P ∈ Prog and P ′ ∈ K and annotated traces t , t ′ such that t �

Nil, t ′ � Nil, P ′
t ′−→ P , and P

t−→ ϵ . During the execution of InferProg( P ′ , t ′, t ), let σ ′i be the context
variable in SolveAndGetTrace on line 10 of Algorithm 10 for each integer i ∈ {0, 1, 2}. If variable

fi = true on line 16, then there exists σi ,σ
′′
i , P

′′, li , l
′
i , l
′′
i such that [

σ ′
i

P ′

l ′
i

]
〈Q1,ri,1,λi,1〉, ...,〈Qk ,ri,k ,λi,k 〉−−−−−−−−−−−−−−−−−−−−−−−−→→

[
σi

P
li

] and [
σi

P
li

]
〈Qk+1,ri,k+1,λi,k+1〉−−−−−−−−−−−−−−−→→ [

σ ′′
i

P ′′

l ′′
i

].
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ALGORITHM 10: Recursively infer a subprogram (Algorithm 6) with more detail

Input: P is the executable of a program P ∈ K.
Input: s1 is a prefix of an annotated trace.
Input: s2 is a suffix of an annotated trace.
Output: Subprogram equivalent to P ’s subprogram after trace s1.

1: procedure InferProg( P , s1, s2)
2: if s2 = Nil then return ϵ � Prog � ϵ
3: end if

4: k ← The length of s1
5: if k > 0 then 〈Q1, r1, λ1〉 , . . . ,

〈
Qk , rk , λk

〉← s1
6: end if

7:
〈
Qk+1, rk+1, λk+1

〉
, . . . , 〈Qn , rn , λn〉 ← s2

8: for i = 0, 1, 2 do

9: Wi ←MakePathConstraint(s1,Qk+1, i)

10: ( fi , ti ) ← SolveAndGetTrace( P ,Wi )
11: if fi then � Satisfiable
12:

〈
Q1, ri,1, λi,1

〉
, . . . , 〈Qk+1, ri,k+1, λi,k+1〉,

〈Qi,k+2, ri,k+2, λi,k+2〉, . . . ,
〈
Qi,mi

, ri,mi
, λi,mi

〉← ti
13: ti,1 ←

〈
Q1, ri,1, λi,1

〉
, . . . , 〈Qk+1, ri,k+1, λi,k+1〉 � New trace prefix

14: ti,2 ← 〈Qi,k+2, ri,k+2, λi,k+2〉, . . . ,
〈
Qi,mi

, ri,mi
, λi,mi

〉 � New trace suffix
15: end if

16: end for

17: if f2 and λ2,k+1 � NotLoop then

18: bt ← InferProg( P , t2,1, t2,2)

19: if f0 then bf ← InferProg( P , t0,1, t0,2)
20: elsebf ← ϵ
21: end if

22: return “for Qk+1 do bt else bf ” � Prog � For
23: else if f0 and f1 and ((t0,2 = Nil and t1,2 � Nil) or (t0,2 � Nil and t1,2 = Nil) or

(t0,2 � Nil and t1,2 � Nil and πSQ0,k+2 � πSQ1,k+2)) then

24: bt ← InferProg( P , t1,1, t1,2)

25: bf ← InferProg( P , t0,1, t0,2)
26: return “if Qk+1 then bt else bf ” � Prog � If
27: else

28: if f0 then b ← InferProg( P , t0,1, t0,2)

29: elseb ← InferProg( P , t1,1, t1,2)
30: end if

31: return “Qk+1 b” � Prog � Seq
32: end if

33: end procedure

Proof. In Algorithm 10, variables s1 = t ′ and s2 = t . By Proposition 4.46,Wi is derived from P ′.

Since fi = true, by Algorithm 5, variable ti = GetTrace( P ′ ,Wi ,σ
′
i ). By Theorem 2, there ex-

ists a loop layout tree l ′i such that:

σ ′i � P ′ ⇓loops l ′i , (1)

ti ∼Wi , (2)
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P ′
ti−→ ϵ, (3)

l ′i
ti

↪−→ Nil. (4)

Since fi = true, variables ti,1 and ti,2 are defined on line 16 and satisfy:

ti = ti,1 @ ti,2. (5)

Since t ′ � Nil, variable k ≥ 1 on line 6. Let t ′i,1 = 〈Q1, ri,1, λi,1〉, . . . , 〈Qk , ri,k , λi,k 〉, then:

ti,1 = t ′i,1 @
〈
Qk+1, ri,k+1, λi,k+1

〉
. (6)

By Equations (4), (5), (6), and Proposition 4.37, there exists li , l ′′i such that:

l ′i
t ′

i,1
↪−−→ li , (7)

li
〈Qk+1,ri,k+1,λi,k+1〉
↪−−−−−−−−−−−−−−−→ l ′′i . (8)

For all j = 1, . . . ,k , by Equation (2), variable ri, j = 0 if and only if variable r j = 0. Hence, travers-

ing a program by following t ′ or t ′i,1 will use the same rules in Figure 18. Since P ′
t ′−→ P ,

P ′
t ′

i,1−−→ P . (9)

By Equations (1), (9), (7), and Proposition 4.45, there exists σi such that:⎡⎢⎢⎢⎢⎢⎣
σ ′i
P ′

l ′i

⎤⎥⎥⎥⎥⎥⎦
t ′

i,1−−→→
⎡⎢⎢⎢⎢⎢⎣
σi

P
li

⎤⎥⎥⎥⎥⎥⎦ . (10)

By Equations (3), (5), (6), (9), and Proposition 4.33,

P
〈Qk+1,ri,k+1,λi,k+1〉@ ti,2
−−−−−−−−−−−−−−−−−−−−→ ϵ . (11)

By Equation (11) and Proposition 4.34, there exists P ′′ such that:

P
〈Qk+1,ri,k+1,λi,k+1〉−−−−−−−−−−−−−−−−→ P ′′. (12)

By Equations (1), (10), and Proposition 4.45,

σi � P ⇓loops li . (13)

By Equations (13), (12), (8), and Proposition 4.45, there exists σ ′′i such that [
σi

P
li

]
〈Qk+1,ri,k+1,λi,k+1〉−−−−−−−−−−−−−−−→→

[
σ ′′

i

P ′′

l ′′
i

]. �

Lemma 4.48. Consider any programs P ∈ Prog and P ′ ∈ K and annotated traces t , t ′ such that

t � Nil, P ′
t ′−→ P , and P

t−→ ϵ . During the execution of InferProg( P ′ , t ′, t ), if variable f2 = true on
line 16, then variable λ2,k+1 � NotLoop if and only if P is of the form “For”.

Proof. In Algorithm 10, variables s1 = t ′ and s2 = t . By Proposition 4.46,W2 is derived from P ′.
Let σ ′2 be the context variable in SolveAndGetTrace on line 10 for i = 2. Since f2 = true, by

Algorithm 5, variable t2 = GetTrace( P ′ ,W2,σ
′
2 ). By Theorem 2, there exists a loop layout tree

l ′2 such that σ ′2 � P ′ ⇓loops l ′2, t2 ∼W2, and l ′2
t2
↪−→ Nil.
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Case 1: t ′ = Nil.

Since P ′
t ′−→ P , by Figure 18, P ′ = P .

Let σ2 = σ ′2, l2 = l
′
2, then σ2 � P ⇓loops l2.

Since t ′ = Nil, variable k = 0 on line 6. Variable t2,1 = 〈Q1, r2,1, λ2,1〉 on line 16. Variable
t2 = t2,1 @ t2,2 = 〈Q1, r2,1, λ2,1〉@ t2,2.

Since l ′2
t2
↪−→ Nil, by Proposition 4.37, there exists l ′′2 such that l ′2

〈Q1,r2,1,λ2,1〉
↪−−−−−−−−−→ l ′′2 . Hence,

l2
〈Q1,r2,1,λ2,1〉
↪−−−−−−−−−→ l ′′2 .
By the definition of MakePathConstraint, the first query in W2 is the first query

in t . By Definition 3.19, the first queries in t2 andW2 are identical except for equivalent
variables. In other words, Q1 and the first query in t are identical except for equivalent

variables. Since P
t−→ ϵ and t � Nil, by Figure 18, there exists P ′′ such that P

〈Q1,r2,1,λ2,1〉−−−−−−−−−−→
P ′′.

By Proposition 4.44, there exists σ ′′ such that [
σ2
P
l2
]
〈Q1,r2,1,λ2,1〉−−−−−−−−−−→→ [

σ ′′2
P ′′

l ′′2
].

Case 2: t ′ � Nil.

By Lemma 4.47, there exists σ2,σ
′′
2 , P

′′, l2, l
′′
2 such that [

σ ′2
P ′

l ′2
]
〈Q1,r2,1,λ2,1〉, ...,〈Qk ,r2,k ,λ2,k 〉−−−−−−−−−−−−−−−−−−−−−−−−→→

[
σ2
P
l2
] and [

σ2
P
l2
]
〈Qk+1,r2,k+1,λ2,k+1〉−−−−−−−−−−−−−−−→→ [

σ ′′2
P ′′

l ′′2
].

Either case, we have [
σ2
P
l2
]
〈Qk+1,r2,k+1,λ2,k+1〉−−−−−−−−−−−−−−−→→ [

σ ′′2
P ′′

l ′′2
].

The rest of the proof is by induction on the derivation of P .

Case 1: P = ϵ .

Since P
t−→ ϵ , by Figure 18, it is not possible to have t � Nil. Hence, the proposition

trivially holds.
Case 2: P is of the form “Seq”. P expands to “Q P1”, whereQ corresponds to the Query symbol and

P1 corresponds to the Prog symbol.

Since [
σ2
P
l2
]
〈Qk+1,r2,k+1,λ2,k+1〉−−−−−−−−−−−−−−−→→ [

σ ′′2
P ′′

l ′′2
], by Figure 20, λ2,k+1 = NotLoop.

Case 3: P is of the form “If”. P expands to “if Q, then P1 else P2”, where Q corresponds to the
Query symbol, P1 corresponds to the first Prog symbol, and P2 corresponds to the second
Prog symbol. The proof is similar to the proof of Case 2.

Case 4: P is of the form “For”. P expands to “for Q do P1 else P2”, where Q corresponds to the
Query symbol, P1 corresponds to the first Prog symbol, and P2 corresponds to the second
Prog symbol.

Since t2 ∼W2, by Definition 3.19 and the definition of MakePathConstraint, r2,k+1 ≥

2. Since [
σ2
P
l2
]
〈Qk+1,r2,k+1,λ2,k+1〉−−−−−−−−−−−−−−−→→ [

σ ′′2
P ′′

l ′′2
], by Figure 20, λ2,k+1 � NotLoop. �

Lemma 4.49. Consider any programs P ∈ Prog and P ′ ∈ K, where P is of the form “Seq”, and any

annotated traces t , t ′ such that P ′
t ′−→ P and P

t−→ ϵ . Let P expand to “Q P1” whereQ corresponds to the

Query symbol and P1 corresponds to the Prog symbol. During the execution of InferProg( P ′ , t ′, t ),

for any integer i ∈ {0, 1, 2}, if variable fi = true on line 16, then P ′
ti,1−−→ P1 and P1

ti,2−−→ ϵ .

Proof. In Algorithm 10, variables s1 = t ′ and s2 = t . By Proposition 4.46,Wi is derived from P ′.
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Since fi = true, by Algorithm 5, variable ti = GetTrace( P ′ ,Wi ,σ
′
i ) for some σ ′i . By Theo-

rem 2,

ti ∼Wi , (14)

P ′
ti−→ ϵ . (15)

Since P
t−→ ϵ , by Figure 18, Q � Qk+1. Hence, by Figure 18,

P
〈Qk+1,ri,k+1,λi,k+1〉−−−−−−−−−−−−−−−−→ P1. (16)

Case 1: t ′ = Nil.

Variable k = 0 on line 6. Variable ti,1 = 〈Q1, ri,1, λi,1〉 on line 16. By Equation (16), P
ti,1−−→

P1.

Since P ′
t ′−→ P , by Figure 18, P ′ = P . By Equation (15), P

ti−→ ϵ .

Since ti = ti,1 @ ti,2, by Proposition 4.33, P1
ti,2−−→ ϵ .

Case 2: t ′ � Nil.
Variable k ≥ 1 on line 6. Since fi = true, variables ti,1 and ti,2 are defined on line 16

and satisfy:
ti = ti,1 @ ti,2. (17)

Let t ′i,1 = 〈Q1, ri,1, λi,1〉, . . . , 〈Qk , ri,k , λi,k 〉, then:

ti,1 = t ′i,1 @
〈
Qk+1, ri,k+1, λi,k+1

〉
. (18)

By Equation (14), Definition 3.19, and the definition of MakePathConstraint, ri, j = 0
if and only if r j = 0 for any j = 1, . . . ,k . Hence, traversing a program by following t ′ or

by following t ′i,1 will use the same rules in Figure 18. Since P ′
t ′−→ P ,

P ′
t ′

i,1−−→ P . (19)

By Equations (19), (16), (18), and Proposition 4.33,

P ′
ti,1−−→ P1. (20)

By Equations (15), (20), (17), and Proposition 4.33,

P1
ti,2−−→ ϵ . (21)

�

Lemma 4.50. Consider any programs P ∈ Prog and P ′ ∈ K, where P is of the form “Seq”, and any

annotated traces t , t ′ such that P ′
t ′−→ P and P

t−→ ϵ . During the execution of InferProg( P ′ , t ′, t ),
if variables f0 = f1 = true on line 16, then either t0,2 = t1,2 = Nil, or t0,2 � Nil and t1,2 � Nil and
πSQ0,k+2 = πSQ1,k+2.

Proof. Let P expand to “Q P1”, where Q corresponds to the Query symbol and P1 corresponds

to the Prog symbol. By Lemma 4.49, P1
ti,2−−→ ϵ for each i = 0, 1. The rest of the proof is by induction

on the derivation of P1.

Case 1: P1 = ϵ .
By Figure 18, ti,2 = Nil for each i = 0, 1.
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Case 2: P1 is of the form “Seq”. P1 expands to “Q ′ P2”, where Q ′ corresponds to the Query symbol
and P2 corresponds to the Prog symbol.

By Figure 18, for each i = 0, 1, we have ti,2 � Nil and Qi,k+2 � Q ′. Hence, πSQ0,k+2 =

πSQ1,k+2 = πSQ
′.

Case 3: P1 is of the form “If”. The proof is similar to the proof of Case 2.
Case 4: P1 is of the form “For”. The proof is similar to the proof of Case 2. �

Lemma 4.51. Consider any programs P ∈ Prog and P ′ ∈ K, where P is of the form “If”, and any

annotated traces t , t ′ such that P ′
t ′−→ P and P

t−→ ϵ . Let P expand to “if Q, then P1 else P2”, where
Q corresponds to the Query symbol, P1 corresponds to the first Prog symbol, and P2 corresponds to the

second Prog symbol. During the execution of InferProg( P ′ , t ′, t ):

(1) if variable f0 = true on line 16, then P ′
t0,1−−→ P2 and P2

t0,2−−→ ϵ .

(2) if variable f1 = true on line 16, then P ′
t1,1−−→ P1 and P1

t1,2−−→ ϵ .

Proof.

(1) By Proposition 4.46, W0 is derived from P ′. Since f0 = true, by Algorithm 5, variable

t0 = GetTrace( P ′ ,W0,σ
′
0 ) for some σ ′0. By Theorem 2, t0 ∼W0. By the definition of

MakePathConstraint, r0,k+1 = 0 on line 16. The rest of the proof is similar to the proof
of Lemma 4.49.

(2) The proof is similar to the proof of 1. �

Lemma 4.52. Consider any programs P ∈ Prog and P ′ ∈ K, where P is of the form “For”, and any

annotated traces t , t ′ such that P ′
t ′−→ P and P

t−→ ϵ . Let P expand to “for Q do P1 else P2”, where Q
corresponds to the Query symbol, P1 corresponds to the first Prog symbol, and P2 corresponds to the

second Prog symbol. During the execution of InferProg( P ′ , t ′, t ):

(1) if variable f0 = true on line 16, then P ′
t0,1−−→ P2 and P2

t0,2−−→ ϵ .

(2) if variable f2 = true on line 16, then P ′
t2,1−−→ P1 and P1

t2,2−−→ ϵ .

Proof. The proof is similar to the proof of Lemma 4.51. �

Theorem 3 (Core Recursion). For any programs P ∈ Prog and P ′ ∈ K and annotated traces t , t ′,

if P ′
t ′−→ P and P

t−→ ϵ, then P � InferProg( P ′ , t ′, t ).

Proof. This proof is by induction on the derivation of P .

Case 1: P = ϵ .

By Figure 18, t = Nil. By Algorithm 10, InferProg( P ′ , t ′,Nil) = ϵ .
Case 2: P is of the form “Seq”. P expands to “Q P1”, whereQ corresponds to the Query symbol and

P1 corresponds to the Prog symbol.
By Lemma 4.48, if f2 = true, then λ2,k+1 = NotLoop, so execution does not enter the

branch on line 17. By Lemma 4.50, execution does not enter the branch on line 23. Hence,
execution enters the branch on line 27.

Since P ′
t ′−→ P , by Figure 18, P is a subprogram of P ′. Hence,Q is a query in P ′. Since P ′ ∈

K, by Definition 3.4 and Proposition 4.13, Trim(P ′) = P ′. Hence,Q is a query in Trim(P ′).
By Proposition 4.24, there exists a contextσ ∈ Context such thatQ is usedwhile evaluating
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σ (P ′). So at least one of the path constraintsW0,W1 is satisfiable. By Proposition 4.6, at
least one of the variables f0, f1 is true.

If fi = true (i = 0, 1), then by Lemma 4.49, P ′
ti,1−−→ P1 and P1

ti,2−−→ ϵ . By the induction

hypothesis, P1 � InferProg( P ′ , ti,1, ti,2). Either case, P1 and variable b on line 31 are
identical except for equivalent variables.

Since P
t−→ ϵ , by Figure 18, Q � Qk+1.

Case 3: P is of the form “If”. P expands to “if Q, then P1 else P2”, where Q corresponds to the
Query symbol, P1 corresponds to the first Prog symbol, and P2 corresponds to the second
Prog symbol.

By Lemma 4.48, if f2 = true, then λ2,k+1 = NotLoop, so execution does not enter the
branch on line 17.

Since P ′
t ′−→ P , by Figure 18, P is a subprogram of P ′. Hence,Q is a query in P ′. Since P ′ ∈

K, by Definition 3.4 and Proposition 4.13, Trim(P ′) = P ′. Hence,Q is a query in Trim(P ′).
By Proposition 4.24, there exists a contextσ ∈ Context such thatQ is usedwhile evaluating
σ (P ′) and the corresponding row count is zero (or positive). So both of the path constraints
W0,W1 are satisfiable. By Proposition 4.6, variables f0 = f1 = true.

Since Trim(P ′) = P ′ and P is subprogram of P ′, by Algorithm 8, it is not possible to
have P1 = P2 = ϵ . By Definition 3.4 and Definition 4.30, πSF(P1) � πSF(P2).

By Lemma 4.51, P ′
t0,1−−→ P2 and P2

t0,2−−→ ϵ . By Lemma 4.51, P ′
t1,1−−→ P1 and P1

t1,2−−→ ϵ .
Case 3.1: P1 = ϵ and P2 � ϵ .

By Figure 18, t1,2 = Nil and t0,2 � Nil.
Case 3.2: P1 � ϵ and P2 = ϵ .

By Figure 18, t1,2 � Nil and t0,2 = Nil.
Case 3.3: P1 � ϵ and P2 � ϵ .

By Figure 18, t1,2 � Nil and t0,2 � Nil. Q0,k+2 � F(P2). Q1,k+2 � F(P1). Since
πSF(P1) � πSF(P2), we have πSQ0,k+2 � πSQ1,k+2.

In all of these cases, execution enters the branch on line 23.

By the induction hypothesis, P2 and the variable bf = InferProg( P ′ , t0,1, t0,2) on
line 26 are identical except for equivalent variables. Also, P1 and the variable bt =

InferProg( P ′ , t1,1, t1,2) are identical except for equivalent variables.

Since P
t−→ ϵ , by Figure 18, Q � Qk+1.

Case 4: P is of the form “For”. P expands to “for Q do P1 else P2”, where Q corresponds to the
Query symbol, P1 corresponds to the first Prog symbol, and P2 corresponds to the second
Prog symbol.

Since P ′
t ′−→ P , by Figure 18, P is a subprogram of P ′. Hence, Q is a query in P ′. Since

P ′ ∈ K, by Definition 3.4 and Proposition 4.13, Trim(P ′) = P ′. Hence, Q is a query in
Trim(P ′). By Proposition 4.24, there exists a context σ ∈ Context such thatQ is used while
evaluating σ (P ′) and the corresponding row count is at least two. So the path constraint
W2 is satisfiable. By Proposition 4.6, variable f2 = true.

By Lemma 4.48, variable λ2,k+1 � NotLoop. Execution enters the branch on line 17.

By Lemma 4.52, P ′
t2,1−−→ P1 and P1

t2,2−−→ ϵ . By the induction hypothesis, P1 and the vari-

able bt = InferProg( P ′ , t2,1, t2,2) on line 22 are identical except for equivalent variables.
Case 4.1: f0 = true.
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By Lemma 4.52, P ′
t0,1−−→ P2 and P2

t0,2−−→ ϵ . By the induction hypothesis, P2 and the

variable bf = InferProg( P ′ , t0,1, t0,2) on line 22 are identical except for equiv-
alent variables.

Case 4.2: f0 = false.
The path constraintW0 is unsatisfiable. Since Trim(P ′) = P ′, by Algorithm 8, P2 =

ϵ . Hence, P2 = bf on line 22.

Since P
t−→ ϵ , by Figure 18, Q � Qk+1. �

4.5.3 Soundness of Infer.

Theorem 4 (Soundness of Inference). For any program P ∈ K, P � Infer( P ).

Proof. By Definition 3.16, the variable σ in Algorithm 1 satisfies the trivial path constraint Nil.

By Figure 18, there exists an annotated trace t ′ such that P
t ′−→ ϵ . By Definition 3.19, t ′ ∼ Nil. By

Definition 4.4, the trivial path constraint Nil is derived from P .

Since P ∈ K, by Theorem 2, variable t satisfies P
t−→ ϵ . By Figure 18, P

Nil−−→ P . By Theorem 3,

P � InferProg( P ,Nil, t ). �

Corollary 4.53. For any programs P1, P2 ∈ K, if P1 ≡ P2, then P1 � P2.

Proof. By Proposition 4.15, Infer( P1 ) = Infer( P2 ). Since P1, P2 ∈ K, by Theorem 4, P1 �

Infer( P1 ) and P2 � Infer( P2 ). �

Corollary 4.54. For any programs P1, P2 ∈ K, P1 ≡ P2 if and only if P1 � P2.

Proof. By Proposition 4.20 and Corollary 4.53. �

4.6 Complexity

We show that the number of recursive calls to Algorithm 6 is linear in the size of the given program.

Lemma 4.55. For any programs P ∈ Prog and P ′ ∈ K and annotated traces t , t ′, if P ′
t ′−→ P and

P
t−→ ϵ, then the execution of InferProg( P ′ , t ′, t ) calls the InferProg procedure at most (‖P ‖ − 1)

times.

Proof. This proof is by induction on the derivation of P .

Case 1: P = ϵ .
By Figure 18, t = Nil. By Algorithm 6, the procedure returns immediately without call-

ing InferProg. By Definition 4.5, ‖ϵ ‖ = 1.
Case 2: P is of the form “Seq”. P expands to “Q P1”, whereQ corresponds to the Query symbol and

P1 corresponds to the Prog symbol.
By the proof of Theorem 3, execution in Algorithm 6 enters the branch on line 24. This

branch calls the InferProg procedure once. At least one of the variables f0, f1 is true.

When fi = true (i = 0, 1), by the induction hypothesis, InferProg( P ′ , ti,1, ti,2) recur-
sively calls the InferProg procedure at most (‖P1‖ − 1) times. Either case, InferProg is
totally called at most 1 + (‖P1‖ − 1) = ‖P1‖ times. By Definition 4.5, ‖P ‖ = 1 + ‖P1‖.

Case 3: P is of the form “If”. P expands to “if Q, then P1 else P2”, where Q corresponds to the
Query symbol, P1 corresponds to the first Prog symbol, and P2 corresponds to the second
Prog symbol.
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By the proof of Theorem 3, execution in Algorithm 6 enters the branch on
line 20. This branch calls the InferProg procedure twice. By the induction hypothe-

sis, InferProg( P ′ , t0,1, t0,2) calls the InferProg procedure at most (‖P2‖ − 1) times and

InferProg( P ′ , t1,1, t1,2) calls the InferProg procedure at most (‖P1‖ − 1) times. Hence,
InferProg is totally called at most 2 + (‖P1‖ − 1) + (‖P2‖ − 1) = ‖P1‖ + ‖P2‖ times. By
Definition 4.5, ‖P ‖ = 1 + ‖P1‖ + ‖P2‖.

Case 4: P is of the form “For”. P expands to “for Q do P1 else P2”, where Q corresponds to the
Query symbol, P1 corresponds to the first Prog symbol, and P2 corresponds to the second
Prog symbol.

By the proof of Theorem 3, execution in Algorithm 6 enters the branch on line 14. This
branch calls the InferProg procedure at most twice. The rest of the proof is similar to the
proof of Case 3. �

Theorem 5 (Complexity). For any program P ∈ K, the execution of Infer( P ) calls the
InferProg procedure at most ‖P ‖ times.

Proof. By the proof of Theorem 4, we have P
Nil−−→ P and P

t−→ ϵ for the variable t in Algorithm 1.

By Lemma 4.55, the execution of InferProg( P ,Nil, t ) recursively calls the InferProg procedure

at most (‖P ‖ − 1) times. By Algorithm 1, the execution of Infer( P ) directly calls the InferProg
procedure once. Hence, InferProg is totally called at most 1 + (‖P ‖ − 1) = ‖P ‖ times. �

5 REMARK ON THE Konure DSL

We next discuss the outcomes of using Konure to infer programs that are not in K.

5.1 Programs in Konure DSL Grammar

Apart from the set of inferrable programs K (Definition 3.4) for which we designed Konure, we
also identify the following interesting sets of programs in Prog, where we obtain a stronger result.

Definition 5.1.

K2 = {P | P ∈ Prog, P̃ ∈ K},
K3 = {P | P ∈ Prog,∃P ′ ∈ K : P ≡ P ′},

K4 = {P | P ∈ Prog, Infer( P ) ≡ P }.
K2 represents the set of programs in Prog for which the Trim transformation produces an equiva-
lent program in K. K3 represents the set of programs in Prog that have an equivalent program in
K but the Trim transformation may not necessarily produce the program in K. K4 represents the
set of programs in Prog that Infer is able to infer correctly, although it is not designed to support
these programs (because our Konure DSL restrictions are conservative).

Corollary 5.2. For any programs P1, P2 ∈ K2, if P1 ≡ P2, then P̃1 � P̃2.

Proof. By Definition 3.2 and Theorem 7, P̃1 ≡ P1 and P̃2 ≡ P2. By Definition 4.14, P̃1 ≡ P̃2. By
the definition of K2, P̃1, P̃2 ∈ K. By Corollary 4.53, P̃1 � P̃2. �

Corollary 5.3. For any program P ∈ K3, let P ′ ∈ K such that P ≡ P ′, then P ′ � Infer( P ).

Proof. By the definition of K3, such program P ′ exists. Since P ≡ P ′, by Proposition 4.15,

Infer( P ) = Infer( P
′
). By Theorem 4, P ′ � Infer( P ′ ). �

We distinguish the sets K, K2, K3, K4, and Prog as follows:
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Proposition 5.4. K ⊂ K2.

Proof.

(1) K ⊆ K2: For any program P ∈ K, by Definition 3.4, there exists program P ′ ∈ Prog such

that P = P̃ ′. By Definition 3.2 and Proposition 4.13,
˜̃′
P = P̃ ′. In other words, P̃ = P ∈ K.

Hence, P ∈ K2.
(2) K � K2: Consider the following example: Let queries Q1,Q2 ∈ Query such that πSQ1 �

πSQ2 and that there exists contexts σ ,σ ′ ∈ Context such thatQ1 retrieves nonempty data
with σ and retrieves empty data with σ ′. Let program P ∈ Prog be as follows:

P = if Q1, then {if Q1, then Q2 else ϵ } else ϵ .
By Definition 3.2,

P̃ = if Q1, then {Q1 Q2} else ϵ .
By Definition 3.4, P̃ ∈ K. By the definition ofK2, P ∈ K2. Since P � P̃ , by Proposition 4.13,
there does not exist any program P ′ ∈ Prog such that P = P̃ ′. By Definition 3.4, P � K. �

Proposition 5.5. K2 ⊂ K3.

Proof.

(1) K2 ⊆ K3: For any program P ∈ K2, by definition, P̃ ∈ K. By Definition 3.2 and Theorem 7,
P ≡ P̃ . Hence, P ∈ K3.

(2) K2 � K3: Consider the following example: Let queries Q1,Q2,Q3,Q4 ∈ Query such that
πSQ1,πSQ2,πSQ3,πSQ4 are distinct and that there exists contexts σ ,σ ′ ∈ Context such
that Q1 retrieves nonempty data with σ and retrieves empty data with σ ′. Let programs
P1, P2 ∈ Prog be as follows:

P1 = Q1 Q2 if Q1, then Q3 else Q4,

P2 = if Q1, then {Q2 Q1 Q3} else {Q2 Q1 Q4}.

By Definition 4.14, P1 ≡ P2. By Definition 3.2, P̃1 = P1 and P̃2 = P2. By Definition 3.4, P1 ∈
K and P2 � K. Hence, P2 ∈ K3 and P2 � K2. �

Proposition 5.6. K3 ⊂ K4.

Proof.

(1) K3 ⊆ K4: For any program P ∈ K3, by definition, there exists program P ′ ∈ K such that

P ≡ P ′. By Theorem 4, P ′ � Infer( P ′ ). By Proposition 4.20, P ′ ≡ Infer( P ′ ). By Defini-

tion 4.14, Infer( P ′ ) ≡ P .
(2) K3 � K4: Consider the following program P ∈ Prog.
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Variables x1,x2,x3 are distinct input parameters. Table t1 has columns val1 and val2.
Table t2 has columns id and val1, where id is the primary key.

By Definition 3.2, P̃ = P . Since query y1 may return more than one row, y1 ∈ T(P̃ ).
Since queries y2 and y7 have the same skeleton, y1 ∈ R(P̃ ). Hence, T(P̃ ) ∩ R(P̃ ) � ∅. By
Definition 3.4, P̃ � K. Hence, P � K and P � K2.

To show that P ∈ K4, we first show that the loop detection algorithm in Algorithm 3
correctly identifies loops for P . Let ri = |yi | be the number of rows retrieved by query yi

for each i = 1, 2, . . . , 7.When execution enters queryy6, we have r1 > 0, r4 > 0, and r5 > 0.
Hence,y1 � ∅,y4 � ∅, andy5 � ∅. Note that the rows retrieved byy4 andy5 are both subsets
of the rows retrieved by y1, that is, y4 ⊆ y1 and y5 ⊆ y1. Since x2 and x3 are distinct input
parameters, the Konure inference algorithm assigns them different values (Section 3.4).
Hence, the rows retrieved by y4 and y5 are disjoint, that is, y4 ∩ y5 = ∅. Since y4 and y5 are
both nonempty, we have y4 ⊂ y1 and y5 ⊂ y1. Hence, r1 > r4 > 0, r1 > r5 > 0, and r1 ≥ 2.
Since queries y1 and y6 are identical, r1 = r6 ≥ 2. Since query y7 is repeated r6 ≥ 2 times
in the trace, the loop detection algorithm in Algorithm 3 correctly identifies query y7 as
iterations of a loop that iterates over query y6.

We next discuss the two other sets of repetitive query skeletons:
(a) Queries y2 and y7 have the same skeleton. During execution, this skeleton is repeated

(r6 + 1) times in the trace. Since r6 + 1 = r1 + 1 � r1, the loop detection algorithm does
not incorrectly identify queriesy1 andy7 as iterations of a loop that iterates over query
y1.

(b) Queries y4 and y5 have the same skeleton. Since query y3 selects data by the primary
key, r3 ≤ 1. Hence, the loop detection algorithm does not incorrectly identify queries
y4 and y5 as iterations of a loop that iterates over query y3.

For these reasons, the DetectLoops procedure is able to infer the correct loop layout trees.

The rest of the Konure inference algorithm produces Infer( P ), where P � Infer( P ).

By Proposition 4.20, P ≡ Infer( P ). By the definition of K4, P ∈ K4.
To show that P � K3, assume by way of contradiction that P ∈ K3. By the definition of

K3, there exists P ′ ∈ K such that P ≡ P ′. By Theorem 4, P ′ � Infer( P ′ ). Since P ≡ P ′,

the black box programs P and P ′ are observationally equivalent. Hence, Infer( P ) =

Infer( P ′ ). Since P � Infer( P ), we have P � P ′. No matter how we alter P with differ-
ent but equivalent origin locations, the query y1 may still return more than one row and
the queriesy2 andy7 still have the same skeleton. Hence, T(P ′) ∩ R(P ′) � ∅. Since P ′ ∈ K,
we have the desired contradiction. Hence, P � K3. �

Proposition 5.7. K4 ⊂ Prog.

Proof.

(1) K4 ⊆ Prog: By definition.
(2) K4 � Prog: Consider the following example: Let queries Q1,Q2 ∈ Query such that πSQ1

and πSQ2 are distinct and that there exists context σ ∈ Context such thatQ1 retrieves two
rows with σ . Let program P ∈ Prog be as follows:

P = Q1 Q2 Q2.

The execution of Infer( P ) may fail because the loop detection algorithm in Algorithm 3
may observe Q1 retrieve two rows in an execution and mistakenly identify the two sub-
sequent Q2 queries as two iterations of a loop. Hence, P � K4. �
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Proposition 5.4 states that the Trim transformation transforms certain programs that are not in
the Konure DSL into equivalent programs in the Konure DSL. Proposition 5.5 states that the Trim
transformation does not transform all of the potential programs into the Konure DSL. Proposi-
tion 5.6 states that the restrictions in Definition 3.4 are conservative, that is, there are programs not
expressible in the Konure DSL but still allows the Konure inference algorithm to infer the correct
program. Proposition 5.7 states that the Konure DSL syntax alone is not sufficient for inferrability.

5.2 Programs Expressible in Konure DSL

Recall that two programs in Prog are observationally equivalent (Definition 4.14) if they produce
the same concrete trace (Definition 3.8) for all contexts. In other words, when these programs are
executed as black boxes (Definition 3.9), they always produce the same list of SQL queries and the
same retrieved rows. These concrete traces are the only behavior directly observed by Konure
in the Execute procedure. We extend our results to black box programs that are not necessarily
written in the Konure DSL grammar but share the externally visible behavior of some program
in K.

Definition 5.8. ©U denotes the black box executable for a programwith an unknown implementa-
tion. To execute©U with a context σ ∈ Context, we populate the database, set the input parameters,
and collect the concrete trace as in the Execute procedure.

Definition 5.9. ©U is expressible as program P ∈ Prog if for all contexts σ ∈ Context, executing
©U with σ produces σ (P ). ©U is expressible in K if there exists a program P ∈ K such that ©U is
expressible as P .

Proposition 5.10. For any program P ∈ K3, P is expressible in K.

Proof. By the definition of K3 (Definition 5.1), there exists program P ′ ∈ K such that P ≡ P ′.

By Definition 4.14, for any context σ ∈ Context, σ (P ) = σ (P ′). By Definition 3.9, executing P

produces σ (P ′). By Definition 5.9, P is expressible as P ′ and is expressible in K. �

Proposition 5.11. For any program P ∈ Prog, if ©U is expressible as P , then Infer(©U ) =

Infer( P ).

Proof. By Definition 5.9, for any context σ ∈ Context, Execute(©U ,σ ) = Execute( P ,σ ). By

Algorithm 1, Infer(©U ) = Infer( P ). �

Corollary 5.12. For any program P ∈ K, if ©U is expressible as P , then P � Infer(©U ).

Proof. By Proposition 5.11 and Theorem 4. �

Corollary 5.12 states that, as long as the program executable is expressible in K, Konure infers
it correctly. The program can be implemented in arbitrary languages or programming styles.

Example programs that can be expressible in KonureDSL include the data retrieval components
of task managers, blogs, chat rooms, and inventory management systems. In practice, most of the
real-world programs, even if expressible in the Konure DSL, are implemented in standard pro-
gramming languages such as Java, Ruby, and Python. Because of our black box approach, Konure
can work with these programs as long as their externally visible behavior conforms to the Konure
DSL.

6 EXPERIMENTAL RESULTS

We implemented a Konure prototype and acquired five benchmark applications to evaluate this
prototype. Each application has multiple commands that access different parts of the database.
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Each command takes input parameters, translates the inputs into SQL queries against the relational
database, and returns results extracted from the results of the queries.

6.1 Applications and Commands

Our benchmark applications include:

• Fulcrum Task Manager: Fulcrum [2] is an open source project planning tool, built with
Ruby on Rails, with over 1,500 stars on GitHub. Fulcrum maintains multiple projects. Each
project may contain multiple stories. Each story may contain multiple notes. Fulcrum com-
mands enable users to navigate the contents of projects, stories, and notes, as well as the
users who created these contents.

• Kandan Chat Room: Kandan [4] is an open source chat room application, built with Ruby
on Rails, with over 2,700 stars on GitHub. Kandan maintains multiple chat rooms (so-called
channels) that users can access. Its commands enable users to navigate chat rooms and
messages (so-called activities) and display relevant user information.

• Enki Blogging Application: Enki [1] is an open source blogging application, built with
Ruby on Rails, with over 800 stars on GitHub. Enki maintains multiple pages and posts, each
of which may have comments. Enki commands enable the author of the blog to navigate
pages, posts, and comments.

• Blog: The Blog application is an example obtained from the Ruby on Rails website [3]. Blog
maintains information about blog articles and blog comments. It implements a command
that retrieves all articles and a command that retrieves a specific article and its associated
comments.

• Student Registration: The student registration application discussed in Section 2. This
application was adapted from an earlier version of a program developed by the MITRE
Corporation. The version was developed specifically for studying the detection and nul-
lification of SQL injection attacks. In the test suite titled “IARPA STONESOUP Phase 1 -
Injection for Java” [6], the version “TC_Java_89_m100” is the most similar to the program
that we used and implements largely the same functionality.

The Fulcrum, Enki, and Blog servers receive HTTP requests, interact with the database accord-
ingly, and respond the client with an HTML page that contains the data retrieved. The Kandan
server receives HTTP requests, interacts with the database accordingly, and responds with JSON
objects that contain data retrieved and HTML templates to display the JSON data. For these ap-
plications, the Konure prototype works with the retrieved database results after they are auto-
matically extracted from the surrounding HTML/JSON code. Student Registration implements a
command-line interface that receives text commands, interacts with the database accordingly, and
responds with text output.
Application Selection Criteria: We choose our real-world benchmark applications—Fulcrum,
Kandan, and Enki—from the applications studied in a recent survey paper [90]. We choose these
three applications because their core functionality shares a common pattern, as characterized by
the KonureDSL.We omit other applications in the surveymainly for three reasons: (1) In some ap-
plications, the control flow and the data flow are similar to that of the Konure DSL. However, these
applications perform computations that aremore complicated than the KonureDSL currently sup-
ports. Such computations often belong to standard domains such as stringmanipulation, aggregate
calculation, and date/time conversion. Example applications include task managers, chat rooms,
and blogs with more complicated features than Fulcrum, Kandan, and Enki. To support these ap-
plications, we anticipate that the solver for Konure would need to incorporate more knowledge
to work productively with a number of standard domains. (2) Some applications implement highly
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specialized calculations. For example, online shopping applications perform specific numeric cal-
culations specific to that domain. (3) In some applications, the control flow does not depend
primarily on the results of database queries. Example applications include file sharing applications
whose control logic relies heavily on the state of the file system. To support these applications, we
anticipate that Konure would need to observe the file system traffic and incorporate the file sys-
tem operations into the active learning algorithm. The remaining benchmark applications—Blog
and Student—implement interesting core functionality that is expressible in the Konure DSL.

Based on our understanding and use of the applications, we identified data retrieval commands
that these applications execute as part of their standard functionality. In general, these commands
step through tables, typically using results from earlier look-ups to access the correct data in cur-
rent tables. As a command traverses tables, it collects data to return to the user. Fulcrum uses five
database tables, Kandan uses four database tables, Enki uses five database tables, Blog uses two
database tables, and Student Registration uses five database tables. For Fulcrum, we identified 8 of
14 data retrieval commands as potential inference candidates. For Kandan, we identified 6 of 11,
for Enki, 4 of 10, for Blog, 2 of 2, and for Student Registration, 1 of 1. The remaining commands in
these applications often implement specialized data or control flow that are not expressible in the
Konure DSL. We discuss unsupported commands in Section 6.2.
Results: We built virtual machines for executing these applications, then configured our Konure
prototype to operate properly in this context. Specifically, the Rails framework stores password
hashes in the database. Based on the Rails configuration, the Rails framework uses these hashes
to perform a password check at the start of specified commands. We configured our Konure pro-
totype to generate databases and parameters that, during inference, always pass the password
check. We also support the insertion of boilerplate password checking code into the regenerated
code for specified commands. We anticipate that the automated introduction of such boilerplate
code will be standard in many usage contexts. We then used Konure to infer and regenerate
the commands. The source code for the regenerated commands is available in the Appendix and
Reference [5].

Table 1 presents statistics from running the Konure prototype on the commands. The first col-
umn (Command) presents the name of the command. The second (Params) presents the number
of input parameters for the command. The third (App) presents the name of the application.

The next column (Runs) presents the number of executions that Konure used to infer the
command. Each execution involves a set of generated input values presented to the application
working with generated database contents. All commands require fewer than 30 executions to
obtain a model for the command as expressed in the Konure DSL. The next column (Solves)
presents the number of invocations of the Z3 SMT solver that Konure executed to infer the model
for the command. Because Konure may invoke the SMT solver multiple times for each infer-
ence step, the number of Z3 invocations is larger than the number of application executions. The
next column (Time) presents the wall-clock time required to infer the model for each command.
We measured time on a Ubuntu 16.04 virtual machine with 2 cores and 2 GB memory. The host
machine uses a processor with 4 cores (3.4 GHz Intel Core i5) and has 24 GB 1600 MHz DDR3
memory. The times vary from less than a minute to about two hours. In general, the times are
positively correlated with the number of solves, the length of the programs, and the number of
potentially ambiguous origin locations. Most of the inference time was spent on solving for alter-
native database contents to satisfy various constraints. The inference time also includes the time
required to set up, tear down, and execute the applications (and their web servers) in the Konure
environment.

The remaining columns present statistics from the regenerated Python implementations. The
Regen column presents the Appendix that contains the regenerated Python implementation. The

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 18. Publication date: January 2021.



Active Learning for Inference and Regeneration of Applications that Access Databases 18:65

T
a
b

le
1.

In
fe

re
n

ce
E

ff
o
rt

a
n

d
R

eg
en

er
a
te

d
C

o
d

e
S

iz
e

C
o

m
m

a
n

d
P

a
ra

m
s

A
p

p
R

u
n

s
S

o
lv

e
s

T
im

e
R

e
g

e
n

L
o

C
S

Q
L

If
F

o
r

O
u

tp
u

t

ge
t_
ho
me

1
Fu

lc
ru

m
5

43
8
m

in
s

A
pp

en
di
x
B
.1

21
5

1
0

9
ge
t_
pr
oj
ec
ts

1
Fu

lc
ru

m
5

43
8
m

in
s

A
pp

en
di
x
B
.2

21
5

1
0

9
ge
t_
pr
oj
ec
ts
_i
d

2
Fu

lc
ru

m
12

12
4

29
m

in
s

A
pp

en
di
x
B
.3

25
8

2
0

8
ge
t_
pr
oj
ec
ts
_i
d_
st
or
ie
s

2
Fu

lc
ru

m
11

42
7
m

in
s

A
pp

en
di
x
B
.4

31
8

3
0

11
ge
t_
pr
oj
ec
ts
_i
d_
st
or
ie
s_
id

3
Fu

lc
ru

m
12

50
8
m

in
s

A
pp

en
di
x
B
.5

31
9

3
0

11
ge
t_
pr
oj
ec
ts
_i
d_
st
or
ie
s_
id
_n
ot
es

3
Fu

lc
ru

m
11

41
8
m

in
s

A
pp

en
di
x
B
.6

24
9

3
0

4
ge
t_
pr
oj
ec
ts
_i
d_
st
or
ie
s_
id
_n
ot
es
_i
d

4
Fu

lc
ru

m
13

46
10

m
in

s
A
pp

en
di
x
B
.7

28
10

4
0

4
ge
t_
pr
oj
ec
ts
_i
d_
us
er
s

2
Fu

lc
ru

m
12

12
4

30
m

in
s

A
pp

en
di
x
B
.8

25
8

2
0

8
ge
t_
ch
an
ne
ls

1
K
an

da
n

21
12

5
10

5
m

in
s

A
pp

en
di
x
C
.1

63
16

4
2

27
ge
t_
ch
an
ne
ls
_i
d_
ac
ti
vi
ti
es

2
K
an

da
n

23
24

2
39

m
in

s
A
pp

en
di
x
C
.2

49
16

6
0

13
ge
t_
ch
an
ne
ls
_i
d_
ac
ti
vi
ti
es
_i
d

3
K
an

da
n

14
18

7
m

in
s

A
pp

en
di
x
C
.3

25
11

3
0

3
ge
t_
me

1
K
an

da
n

11
13

9
6
m

in
s

A
pp

en
di
x
C
.4

44
8

3
0

25
ge
t_
us
er
s

1
K
an

da
n

15
23

6
9
m

in
s

A
pp

en
di
x
C
.5

67
11

3
0

45
ge
t_
us
er
s_
id

2
K
an

da
n

11
13

9
6
m

in
s

A
pp

en
di
x
C
.6

44
8

3
0

25
ge
t_
ad
mi
n_
co
mm
en
ts
_i
d

1
E
n
ki

2
5

22
se

cs
A
pp

en
di
x
D
.1

10
1

0
0

5
ge
t_
ad
mi
n_
pa
ge
s

0
E
n
ki

2
1

22
se

cs
A
pp

en
di
x
D
.2

13
2

1
0

4
ge
t_
ad
mi
n_
pa
ge
s_
id

1
E
n
ki

2
5

23
se

cs
A
pp

en
di
x
D
.3

9
1

0
0

4
ge
t_
ad
mi
n_
po
st
s

0
E
n
ki

3
2

33
se

cs
A
pp

en
di
x
D
.4

16
3

1
1

3
ge
t_
ar
ti
cl
es

0
B
lo
g

2
11

21
se

cs
A
pp

en
di
x
E
.1

12
2

0
0

6
ge
t_
ar
ti
cl
e_
id

1
B
lo
g

6
29

42
se

cs
A
pp

en
di
x
E
.2

16
3

1
0

6
li
st
st
ud
en
tc
ou
rs
es

2
St

u
de

n
t

6
20

41
se

cs
A
pp

en
di
x
F.
1

24
5

3
1

3

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 18. Publication date: January 2021.



18:66 J. Shen and M. C. Rinard

LoC, SQL, If, For, and Output columns present the number of lines of code, SQL statements, If
statements, For statements, and the number of lines that generate output.
Quality of the Regenerated Code: We recruited a software engineer with three years of experi-
ence working with Ruby on Rails applications to evaluate the Konure inference and regeneration
by comparing the original Ruby on Rails and regenerated Python versions of each command. Start-
ing from a command URL, the software engineer locates the relevant controller, models, and views
in the original Ruby on Rails application to form an understanding of the program functionality.
The software engineer mentally translates the Ruby on Rails abstractions into concrete actions
and compares them against the regenerated Python code. (1) One complication was that the Ruby
on Rails framework automatically generates a substantial amount of database traffic that is not
directly reflected in the Ruby on Rails code. This traffic was explicitly reflected in the regenerated
code. The software engineer was occasionally surprised to see these queries in the regenerated
code, but eventually understood that they accurately reflect the low-level implementation of the
high-level aspect abstractions in Ruby on Rails. (2) Another complication was that the Ruby on
Rails implementation contains auxiliary functionality (such as sessionmanagement) that performs
database queries and checks the query results against specific values (such as checking if the user
is an admin). Our Konure implementation captures these database queries and includes them in
the regenerated code, but does not currently regenerate the associated conditional checks against
the specific values. After taking these phenomena into account, the software engineer determined
that the regenerated commands were consistent with the original Ruby on Rails implementations.

The evaluation also highlights how the Rails framework, specifically the ActiveRecord object
relational mapping abstraction, implicitly generates substantial database traffic as it assembles
the object state (including the state of objects on which it depends) when initially loading the
object. This code that generates this database traffic is explicit and therefore directly visible in the
regenerated Python code.

This comparison of the original Ruby on Rails code with the regenerated version highlights two
key properties of the regenerated version. (1) Understandability: Because the regenerated Python
code performs database queries explicitly, we anticipate that the regenerated code can help devel-
opers comprehend the program behavior at the level of database queries. (2) Streamlined imple-
mentation: The regenerated code contains only the core functionality as expressed in the Konure
DSL and does not need to implement the less common features that are required in comprehensive
abstraction frameworks such as Ruby on Rails. As a result, the regenerated program is often lighter
weight than the original application.
Noisy Specifications: We note that the regenerated programs are free of SQL injection attack
vulnerabilities, as Konure regenerates programs using a standard SQL library in Python that sys-
tematically eliminates the possibility of these attacks. However, these vulnerabilities are present
in the original student registration application. These vulnerabilities are rare corner cases that are
not captured by the Konure DSL. Thus, Konure omits them and infers only the common use cases
of the program. These results highlight the ability of Konure to work with noisy specifications.

6.2 Commands Not Expressible in Konure DSL

In our experiments, we observed data-retrieval commands that are not fully expressible in the
Konure DSL. For example, several Enki commands condition on whether a retrieved value is
“NULL” (undetected conditionals). Several other Enki commands combine multiple input param-
eters before using the combined value to access the database (unanticipated data calculations).
A Kandan command produces inconsistent traces even if the path constraints in the Konure in-
ference algorithm remain unchanged (unanticipated control flow). In addition to these real-world
applications and commands, we also developed an adversarial synthetic program that may cause
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non-termination of the Konure inference algorithm. We used Konure to infer these commands
and report the outcomes below with representative examples.
Undetected Conditionals Outside Konure DSL (Omitted Functionality): Recall from Sec-
tions 3.1.3 and 3.1.4 that Konure is designed to infer control structures that depend largely on
externally observable data, specifically, the database queries and results. A program that is not ex-
pressible in the Konure DSL may contain a conditional statement that, after retrieving data from
the database, compares a retrieved value against a specific constant value (such as “NULL”, “1”, or
“admin”). Konure is not designed to generate the specific inputs and database values for inferring
conditional statements of this form, especially when the conditional checks are not externally ob-
servable. As a result Konure may infer a slice of the program functionality that conforms to the
Konure DSL, omitting the undetected branches, without reporting any errors.

Omitting functionality in this form enables Konure to work with noisy specifications. Konure
is likely to work well with programs whose main functionality is expressible in the Konure DSL
with exceptions on rare corner cases. For example, if a program is defective when handling rare
corner case inputs (and database values), Konure is likely to omit the functionality for the rare
corner cases and end up inferring only the main functionality.

Example 19. Consider the following Python program inspired by the applications in our exper-
iments:

The database has two tables, t1 and t2. Each table has two columns, id and val, both holding
integers. The column id of each table is the unique primary key. The conn variable is an established
database connection. The inputs variable holds the list of input parameters. This programuses one
input parameter, inputs[0]. The call to util.do_sql first assembles an SQL query by replacing
“:x” with the value of the input parameter, then performs this query on the database, and finally
stores the retrieved rows in variable s1. The call to util.has_rows checks whether variable s1
holds nonempty rows. When s1 holds nonempty rows, the call to util.get_one_data extracts
from this row the integer in column val and stores it in variable v. After printing the value of v,
the program behaves differently, depending on whether this value equals a constant number, zero.
Depending on this check, the program either crashes or proceeds to perform another query. This
conditional check is not directly observable in the database traffic and causes the program to be
not expressible in Konure DSL.

When inferring this program, our current Konure implementation does not generate database
values that cause variable v to equal zero. As a result this program never enters the corresponding
branch. Konure thus infers and regenerates a slice of this program that performs the second query
regardless of the value of v. During this inference, Konure does not report any errors.

Error Reported for Unanticipated Control Flow Behavior: WedesignedKonure toworkwith
programs expressible in the Konure DSL. For example, the inference algorithm assumes that all
conditional statements in the program must condition on query results being empty or nonempty.
In other words, if a query produces the same empty/nonempty results across two executions of
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the program, the program should continue to execute the same path in both executions. This
assumption does not hold for programs that are not expressible in the Konure DSL. For these
programs, different executions may behave inconsistently, depending on unanticipated factors. In
this case, Konure may detect the unanticipated behavior, report an error, and exit prematurely.

Example 20. Consider the following Python program inspired by the applications in our exper-
iments:

The database has two tables, t1 and t2. Each table has two columns, id and val, both holding
integers. The columns id are the unique primary keys. The conn variable is an established database
connection. The inputs variable holds the list of input parameters. This program uses three input
parameters, inputs[0], inputs[1], and inputs[2]. Each call to util.do_sql first assembles an
SQL query by replacing “:x” with the value of the specified input parameter, then performs this
query on the database. The retrieved rows are then stored in the corresponding variable, s1, s2,
s3, or s4. Each call to rand obtains a random Boolean value, either True or False. Conditioned
on these random values, the program may or may not execute the branches that perform queries
for s2, s3, and s4. We use the rand function to emulate the effects of uninferrable conditional
expressions that are not captured by the Konure DSL.

When inferring this program, our current Konure implementation often observes two incon-
sistent executions. Both executions perform the query for s2 and retrieve empty data. However,
in one execution the next query is the query for s3, while in the other execution the next query is
the query for s4. This behavior is not expressible in the Konure DSL, which triggers an assertion
failure in our current Konure implementation.

Error Reported for Unanticipated Data Calculations: We designed the Konure DSL to ex-
press programs whose data flow manifests as SQL queries, which are externally observable in the
database traffic. Programs not in the Konure DSL may perform calculations, such as arithmetics
and string manipulations, using general-purpose programming language features that are not ob-
servable by Konure. These calculations may produce values that do not equal any of the inputs
or database values. In this case Konure detects the unanticipated value, reports an error, and exits
prematurely.

Example 21. Consider the following Python program inspired by the applications in our exper-
iments:

The database has a table t1with two columns, id and val, both holding integers. The conn variable
is an established database connection. The inputs variable holds the list of input parameters. This
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program uses two input parameters, inputs[0] and inputs[1], both assumed to be integers. The
program first calculates the average value of the two input parameters and stores it in variable
x. Note that this calculation is not expressible in the Konure DSL. Also, the value of x may not
equal any of the inputs or database values. The program then calls util.do_sql to perform an
SQL query using the value of x.

When inferring this program, our current Konure implementation often reports that the query
contains an unanticipated value for which Konure cannot find an origin location. This behavior
triggers an assertion failure in our current Konure implementation.

Potential Non-termination: There are adversarial programs for which Konure might not ter-
minate, nor report an error.

Example 22. Consider the following adversarial program, written in Python:

The database has a table t1 with two columns, id and val, both holding integers. The column id
is the unique primary key. The conn variable is an established database connection. The inputs
variable holds the list of input parameters. This program uses one input parameter, inputs[0].
The call to util.do_sql first assembles an SQL query by replacing “:x” with the value of variable
v, then performs this query on the database, and finally stores the retrieved rows in variable s1.
Because this query selects rows by the primary key, the query always retrieves at most one row.
The call to util.has_rows checks whether variable s1 holds nonempty rows. When s1 holds
nonempty rows, which must be exactly one row in this program, the call to util.get_one_data
extracts from this row the integer in column val. The program then uses the extracted value to
update variable v.

If we use Konure to infer this program as a black box, the inference algorithm may not ter-
minate. Recall that the inference algorithm repeatedly represents an unvisited branch as a path
constraint and uses this path constraint to solve for a satisfying context. It is always possible for
the solver to return a context that causes Konure to infer that the program contains deeper nested
conditional branches. For example, let variable i be the input parameter and queries Qk be as fol-
lows (k = 1, 2, 3, . . .):

Q1 =y1 ← select t1.id, t1.val where t1.id = i ; print [t1.id],

Qk+1 =yk+1 ← select t1.id, t1.val where t1.id = yk .t1.val ; print [t1.id].

For each k = 1, 2, 3, . . . , the path constraint

Wk = 〈Q1, ≥ 1, true〉 , . . . 〈Qk , ≥ 1, true〉

always has a satisfying context that allows the program above to terminate when executed. If the
solver for Konure returns these contexts, the inference algorithm could update the hypothesis, P ,
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as follows:

P = ifQ1 then P1 else ϵ,

P = ifQ1 then { ifQ2 then P2 else ϵ } else ϵ,
P = ifQ1 then { ifQ2 then { ifQ3 then P3 else ϵ } else ϵ } else ϵ,
P = . . . ,

where P1, P2, P3 denote Prog nonterminals that remain to be inferred. Here, the inference algo-
rithmwould populate table t1with more andmore rows, updating the hypothesis with deeper and
deeper nested conditional statements. The hypothesis would always contain an unvisited branch
for the case where the last query in the trace retrieves nonempty data. Hence, the inference algo-
rithm would not terminate in this adversarial situation.

Our current Konure implementation uses an off-the-shelf SMT solver that is not maximally
distinct. As a result the solver often returns a context that causes the program to enter an infinite
loop when executed without allowing our Konure implementation to proceed to non-termination
as described above.

6.3 Performance on Synthetic Commands

We evaluate the scalability of the inference algorithm with experiments on the following classes
of synthetic commands. The source code for these commands is available in Appendix G and Ref-
erence [5].

• Simple Sequences (SS): A sequence of different queries, without any conditional or loop
statements. Each query does not reference any previously retrieved data.

• Nested Conditionals (NC): A series of nested conditional statements. Each except the
innermost If statement has a nested If statement in the then branch. The innermost If state-
ment has a query in the then branch. None of the queries reference previously retrieved
data.

• Unambiguous Long Reference Chains (UL): Like (NC), but each query references data
retrieved by the previous query when the data is nonempty.

• Ambiguous Long Reference Chains (AL): Like (UL), but each then block has an addi-
tional query before the nested If statement. This additional query retrieves a superset of the
data that will be retrieved by the next query.

• Ambiguous Short Reference Chains (AS): Like (NC), but each then block has an addi-
tional query before the nested If statement. This additional query retrieves a superset of the
data that will be retrieved by the next query, which prints the retrieved data.

We expect the current Konure implementation to (1) scale well for (SS) and (NC) commands—
the fact that the queries are independent makes it straightforward to translate path constraints
to a small number of logical formulas, (2) scale well for (UL) commands, because disambiguation
is unnecessary, (3) scale poorly for (AL) commands, because the number of disambiguation con-
straints grows rapidly as the length of the query reference chain increases, and (4) scale well for
(AS) commands, because the reference chains are short.

For each class above, we built representative commands with varying code sizes. We then used
Konure to infer each command. Figure 21 presents statistics from running Konure on these syn-
thetic commands. For SS commands (Figure 21(a)), the horizontal axis presents the number of
queries in the command. For the remaining commands (Figures 21(b)–21(e)), the horizontal axis
presents the number of conditionals in the command plus one. The left vertical axis presents the
number of runs, solves, or lines of code. The lines Runs (executions of the command), Solves
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Fig. 21. Performance on synthetic commands.

(invocations of Z3), and LoC (lines of code in the command) use this axis. The first right vertical
axis presents the inference time in seconds. The line Time (wall-clock time for inference) uses this
axis. The second right vertical axis presents the number of constraints that Konure sends to the
SMT solver during inference. The lines PathCstr (constraints to enforce an execution path) and
DisamCstr (constraints to disambiguate origin locations) use this axis. In Figure 21(d), Konure
ran out of memory after the version with five conditionals.

6.3.1 Discussion. Konure scales well for (SS), (NC), (UL), and (AS) commands, which is con-
sistent with results in Section 6.1. Konure does not scale well for (AL) commands, where the
major performance bottleneck is sending the solver disambiguation constraints (Section 3.4).
We did not optimize Konure to generate a small number of disambiguation constraints, so
the communication dominates the inference time. After Z3 receives constraints, it solves them
quickly.

We anticipate that commands with ambiguous long reference chains will occur rarely in prac-
tice, as the structure of database tables typically supports the application functionality well
enough to access the desired data by navigating through only several tables. The four commands
from Table 1 with the longest inference times (get_projects_id, get_projects_id_users,
get_channels, and get_channels_id_activities) all infer in feasible times. We therefore an-
ticipate the inference algorithm will scale to handle real applications.

Since we expect ambiguous long reference chains to occur rarely, we did not optimize Konure
for this case. If this issue becomes important in practice, a way to mitigate it would be to develop
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a solver that returns maximally distinct values. This solver would ensure that unrelated origin
locations hold disjoint values.

Because Konure analyzes each command separately, it scales linearly with the number of com-
mands. Therefore, it easily scales to handle applications with many commands, which is often the
primary source of complexity.

7 RELATED WORK

A prior version of this research appears in PLDI 2019 [71]. This article adds a full proof for the
theorems, along with many definitions that the PLDI version omitted.
Active Learning: Active learning is a classical topic in machine learning [69]. Our approach
is characterized by its extensive exploitation of structure present in the program inference task:
(1) learning outcomes specified by a DSL, (2) hypotheses as sentential forms in the DSL, and (3)
learning by resolving nonterminals in the current hypothesis.

We next discuss related active learning techniques in programming language research, espe-
cially for inferring program models.

Our previous research produced an active learning technique for black-box inference of pro-
grams that manipulate key/value maps [67]. Konure, in contrast, also observes database traffic,
works with a broader and more expressive class of applications, and deploys a top-down, syntax-
guided inference algorithm (as opposed to enumerating store/retrieve pairs as in Reference [67]).
Our previous research also produced an active learning technique that infers in-memory data
structure accesses in certain Python programs, models these accesses with database queries, and
uses database implementations instead of the in-memory data structures to regenerate the pro-
grams [22, 85]. Konure, in contrast, observes the use of an existing external database, works with
programs implemented in any programming language, and guarantees sound and complete infer-
ence for programs in the KonureDSL (as opposed to providing probabilistic correctness properties
as in References [22, 85]).

Brahma implements oracle-guided synthesis for loop-free programs that compute functions of
finite-precision bit-vector inputs [51]. Brahma finitizes the synthesis problem by working with
a finite set of components, with each component used exactly once in the synthesized model.
Konure, in contrast, works with an infinite space of models with nested control flow.

Mimic traces memory accesses to synthesize a model of a traced function [47]. It uses a random
generate-and-test search over a space of programs generated by code mutation operators. There
is no guarantee that the generated model is correct or that the search will find a model if one
exists.

ALPS uses active learning to prune the search space for synthesizing Datalog programs, which
consist of rules [72]. Konure, in contrast, works with database programs that contain database
queries, value references, and nested control flow.

Other related techniques include an active learning technique for learning commutativity speci-
fications of data structures [39], a technique for learning program input grammars [15], a technique
for learning points-to specifications [16], a technique for learning models of the design patterns
that Java computations implement [49], a technique for learning classifiers for event-transition be-
havior [19], and a technique for inferring the input parsing functionality of programs [22]. Unlike
Konure, all of these techniques focus on characterizing specific aspects of program behavior and
do not aspire to capture the complete behavior of the application.

Other areas of programming language research have also used active learning, such as for
ranking relevant code [82], ranking anomaly reports [55], and improving candidate assertions
[60].
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Program Synthesis: The vast majority of program synthesis research works with a given set of
input/output examples [10, 17, 32–35, 43, 50, 61, 62, 74, 80, 83, 87–89]. Because the examples typi-
cally underspecify the program behavior, there are often many programs that satisfy the examples.
The synthesized program is therefore typically selected according to either the choices the solver
makes [50] or a heuristic that ranks synthesized programs (for example, ranking shorter programs
above longer programs) [32, 35, 43]. Konure, in contrast, uses active learning to choose inputs
and database contents that eliminate uncertainty and obtain a model that completely captures the
core application functionality.

SyGuS identifies a range of program synthesis problems for which it is productive to structure
the search space as a DSL [10]. Unlike SyGuS, Konure deploys a top-down inference algorithm that
progressively refines a working hypothesis represented as a sentential form of the DSL grammar.
Unlike the vast majority of solver-driven synthesis algorithms (which require finite search spaces),
Konure works effectively with an unbounded space of models.

LaSy works with a sequence of user-provided input/output pairs to iteratively generalize an
overspecialized program [58]. Konure, in contrast, (1) automatically generates a sequence of in-
puts and database contents that uniquely identify the program within the DSL, (2) observes not
just inputs and outputs, but also the traffic between the database and the application, and (3) uses
a top-down approach that iteratively resolves DSL grammar nonterminals as opposed to a bottom-
up approach that replaces overspecialized code fragments.

Reference [14] presents a static technique that rewrites source code to optimize the execution
of loops. Konure, in contrast, does not work with the source code and uses active learning over
program executions to infer the program behavior.

To better evaluate the value of active learning in our context, we implemented a system that
observes inputs, outputs, and database traffic generated during normal use to infer models of
programs that access databases [70]. The results show that this approach often fails to infer the
full functionality of the application, because it often misses infrequent corner cases. In contrast,
Konure uses active learning to find inputs, as opposed to asking the user for examples or speci-
fications. Wrapping a standard CEGIS-style loop [74] around this system would require access to
a specification, such as the source code of a reference implementation, that describes the program
behavior to synthesize. In contrast, Konure treats the given program as a black box and infers the
program behavior based on its externally visible inputs, outputs, and database traffic.
State Machine Model Learning: State machine learning algorithms [8, 11, 23, 25, 36, 42, 48, 56,
64, 76, 79] construct partial representations of program functionality in the form of finite automata
with states and transition rules. State fuzzing tools [7, 31, 63] hypothesize state machines for pro-
grams. Network function state model extraction [86] uses program slicing and models the sliced
partial programs as packet-processing automata. Konure, in contrast, infers complete application
functionality (as opposed to a partial model of the application) and can support application regen-
eration.
Dynamic Analysis for Program Comprehension: There is a large body of research on dy-
namic analysis for program comprehension, but (due to complicated logic of Web technologies)
relatively little of this research targets Web application servers [29]. WAFA [9] analyzes Web ap-
plications, focusing on interactions between Web components, using source code annotations. In
contrast, Konure infers applications without analyzing, modifying, or requiring access to source
code. Konureworks for applications written in any language and can infer bothWeb and non-Web
applications that interact with an external relational database.

DAViS [57] visualizes the data-manipulation behavior of an execution of a data-intensive pro-
gram. DAViS detects loops whose body contains only one query. DiscoTect [91] summarizes the
software architecture of a running object-oriented system as a state machine. They both analyze
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program behavior when processing certain user-specified inputs. In contrast, Konure actively ex-
plores the execution paths of the program by solving for inputs and database contents that enable
it to infer the application behavior.
Database Reverse Engineering/Reengineering: Database reverse engineering analyzes a pro-
gram’s data access patterns, often to reconstruct implicit assumptions of the database schema
[27, 30]. Konure infers programs that interact with databases (and not the structure of the
database).

Database program reengineering often involves analyzing the source code to produce more effi-
cient database queries [24, 28]. In contrast, Konure (1) does not require dynamic program instru-
mentation or static analysis, (2) does not require the program to be written in specific languages or
patterns, and (3) regenerates a new executable program (instead of transforming database queries).
Input Generation for Discovering Defects: Concolic testing [21, 40, 41, 68] generates inputs
that systematically explore all execution paths in the program. The goal is to find inputs that expose
software defects. BuzzFuzz [38] generates inputs that target defects that occur because of coding
oversights at the boundary between application and library code. DIODE [73] generates inputs
that target integer overflow errors. All of these techniques target programs written in general-
purpose languages such as C. Given the complexity and generality of computations as expressed
in this form, completely exploring and characterizing application behavior is infeasible in this
context. Our approach, in contrast, (1) workswith applicationswhose behavior can be productively
modeled with programs in our DSL and (2) infers a model that captures the complete functionality
of the program.

8 CONCLUSION

Applications that read relational databases are pervasive in modern computing environments.
We present new active learning techniques that automatically infer and regenerate these appli-
cations. Key aspects of these techniques include (1) the formulation of an inferrable DSL that
supports the range of computational patterns that these applications exhibit and (2) the in-
ference algorithm, which progressively synthesizes inputs and database contents that produc-
tively resolve uncertainty in the current working hypothesis. Results from our implementation
highlight the ability of this approach to infer and regenerate applications that access relational
databases.

Looking towards the future, we see opportunities extending these techniques. An immediate
extension would be expanding the DSL with domain-specific knowledge that enables more ef-
fective generation of inputs and database contents. More broadly, future work might expand the
domains of computations that work with active learning and identify other crucial components
of complex systems that may benefit from inference and regeneration. Another future direction
would be to intervene, in addition to observing, the application behavior during execution. A
goal here would be to leverage the intervention to more effectively expose learnable application
behavior.
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APPENDICES

A DEFINITIONS

Figure 22 presents the syntax for skeleton programs (Definition 3.1). We write S for the set of
skeleton programs, S = SProg. Clearly, for any program P ∈ Prog, query Q ∈ Query, and expres-
sion E ∈ Expr, we have πSP ∈ S, πSQ ∈ SQuery, and πSE ∈ SExpr.

Fig. 22. Grammar for skeleton programs (S).

B REGENERATED CODE FOR FULCRUM TASK MANAGER

B.1 Fulcrum Task Manager Command get_home
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B.2 Fulcrum Task Manager Command get_projects
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B.3 Fulcrum Task Manager Command get_projects_id
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B.4 Fulcrum Task Manager Command get_projects_id_stories
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B.5 Fulcrum Task Manager Command get_projects_id_stories_id
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B.6 Fulcrum Task Manager Command get_projects_id_stories_id_notes
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B.7 Fulcrum Task Manager Command get_projects_id_stories_id_notes_id
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B.8 Fulcrum Task Manager Command get_projects_id_users
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C REGENERATED CODE FOR KANDAN CHAT ROOM

C.1 Kandan Chat Room Command get_channels
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C.2 Kandan Chat Room Command get_channels_id_activities
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C.3 Kandan Chat Room Command get_channels_id_activities_id
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C.4 Kandan Chat Room Command get_me
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C.5 Kandan Chat Room Command get_users
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C.6 Kandan Chat Room Command get_users_id
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D REGENERATED CODE FOR ENKI BLOGGING APPLICATION

D.1 Enki Blogging Application Command get_admin_comments_id

D.2 Enki Blogging Application Command get_admin_pages

D.3 Enki Blogging Application Command get_admin_pages_id
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D.4 Enki Blogging Application Command get_admin_posts

E REGENERATED CODE FOR BLOG APPLICATION

E.1 Blog Application Command get_articles
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E.2 Blog Application Command get_article_id

F REGENERATED CODE FOR STUDENT REGISTRATION SYSTEM

F.1 Student Registration System Command liststudentcourses
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G SYNTHETIC COMMANDS

G.1 Simple Sequences (SS)

Version 1:

Version 2:

Version 3:

Version 4:

Version 5:
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Version 6:

Version 7:

Version 8:

Version 9:
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G.2 Nested Conditionals (NC)

Version 1:

Version 2:

Version 3:

Version 4:

Version 5:
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Version 6:

Version 7:
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Version 8:

Version 9:
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G.3 Unambiguous Long Reference Chains (UL)

Version 1:

Version 2:

Version 3:

Version 4:
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Version 5:

Version 6:
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Version 7:

Version 8:
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Version 9:

G.4 Ambiguous Long Reference Chains (AL)

Version 1:
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Version 3:

Version 4:
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Version 5:

Version 6:
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Version 7:
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Version 8:
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Version 9:

G.5 Ambiguous Short Reference Chains (AS)

Version 1:
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Version 2:
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