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This article presents a new analysis technique, commutativity analysis, for automatically parallelizing computa-
tions that manipulate dynamic, pointer-based data structures. Commutativity analysis views the computation as
composed of operations on objects. It then analyzes the program at this granularity to discover when operations
commute (i.e., generate the same final result regardless of the order in which they execute). If all of the operations
required to perform a given computation commute, the compiler can automatically generate parallel code. We have
implemented a prototype compilation system that uses commutativity analysis as its primary analysis technique.
We have used this system to automatically parallelize three complete scientific computations: the Barnes-Hut
N-body solver, the Water liquid simulation code, and the String seismic simulation code. This article presents
performance results for the generated parallel code running on the Stanford DASH machine. These results provide
encouraging evidence that commutativity analysis can serve as the basis for a successful parallelizing compiler.
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1. INTRODUCTION

Parallelizing compilers promise to dramatically reduce the difficulty of developing software
for parallel computing environments. Existing parallelizing compilers use data dependence
analysis to detect independent computations (two computations are independent if neither
accesses data that the other writes), then generate code that executes these computations in
parallel. In the right context, this approach works well — researchers have successfully used
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data dependence analysis to parallelize computations that manipulate dense arrays using
affine access functions [Banerjee 1988; Eigenmann et al. 1991; Hall et al. 1995; Pugh and
Wonnacott 1992]. But data dependence analysis is, by itself, inadequate for computations
that manipulate dynamic, pointer-based data structures. Its limitations include a need to
perform complicated analysis to extract global properties of the data structure topology
and an inherent inability to parallelize computations that manipulate graphs [Banerjee et al.
1993].

We believe the key to automatically parallelizing dynamic, pointer-based computations
is to recognize and exploit commuting operations, or operations that generate the same final
result regardless of the order in which they execute. Even though traditional compilers
have not exploited commuting operations, these operations play an important role in other
areas of parallel computing. Explicitly parallel programs, for example, often use locks,
monitors, and critical regions to ensure that operations execute atomically [Lampson and
Redell 1980]. For the program to execute correctly, the programmer must ensure that all
of the atomic operations commute. Four of the six parallel applications in the SPLASH
benchmark suite [Singh et al. 1992] and three of the four parallel applications in the
SAM benchmark suite [Scales and Lam 1994] rely on commuting operations to expose
the concurrency and generate correct parallel execution. This experience suggests that
compilers will be unable to parallelize a wide range of computations unless they recognize
and exploit commuting operations.

We have developed a new analysis technique called commutativity analysis. This tech-
nique is designed to automatically recognize and exploit commuting operations to generate
parallel code. It views the computation as composed of arbitrary operations on arbitrary
objects. It then analyzes the computation at this granularity to determine if operations
commute. If all of the operations in a given computation commute, the compiler can auto-
matically generate parallel code. Even though the code may violate the data dependences
of the original serial program, it is still guaranteed to generate the same result.

We have built a complete prototype compilation system based on commutativity analy-
sis. This compilation system is designed to automatically parallelize unannotated programs
written in a subset of C++. The dynamic nature of our target application set means that
the compiler must rely on a run-time system to provide basic task management func-
tionality such as synchronization and dynamic load balancing. We have implemented a
run-time system that provides this functionality. It currently runs on the Stanford DASH
machine [Lenoski 1992] and on multiprocessors from Silicon Graphics.

We have used the compilation system to automatically parallelize three complete sci-
entific applications: the Barnes-Hut N-body solver [Barnes and Hut 1986], the Water
simulation code [Woo et al. 1995], and the String seismic code [Harris et al. 1990]. Barnes-
Hut is representative of our target class of dynamic computations: it performs well because
it uses a pointer-based data structure (a space subdivision tree) to organize the computation.
Water is a more traditional scientific computation that organizes its data as arrays of objects
representing water molecules. String manipulates an array data structure, but has very
irregular data access and control patterns. We have collected performance results for the
generated parallel code running on the Stanford DASH machine. These results indicate
that commutativity analysis may be able to serve as the basis for a successful parallelizing
compiler.

This article makes the following contributions:
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—It describes a new analysis technique, commutativity analysis, that can automatically
recognize and exploit commuting operations to generate parallel code.

—It describes extensions to the basic commutativity analysis technique. These extensions
significantly increase the range of programs that commutativity analysis can effectively
parallelize.

—It presents several analysis algorithms that a compiler can use to automatically recognize
commuting operations. These algorithms allow a compiler to discover parallelizable
computations and generate parallel code.

—It presents performance results for automatically parallelized versions of three scientific
computations. These results support the thesis that it is possible to use commutativity
analysis as the basis for a successful parallelizing compiler.

Although we have designed commutativity analysis to parallelize serial programs, it
may also benefit other areas of computer science. For example, commuting operations
allow computations on persistent data in object-oriented databases to execute in parallel.
Transaction processing systems can exploit commuting operations to use more efficient
locking algorithms [Weihl 1988]. Commuting operations make protocols from distributed
systems easier to implement efficiently; the corresponding reduction in the size of the
associated state space may make it easier to verify the correctness of the protocol. In
all of these cases, the system relies on commuting operations for its correct operation.
Automatically recognizing or verifying that operations commute may therefore increase
the efficiency, safety, and/or reliability of these systems.

The remainder of the article is structured as follows. Section 2 presents an example that
shows how commutingoperations enable parallel execution. Section 3 presents an overview
of commutativity analysis. Section 4 presents the analysis algorithms that the compiler
uses. Section 5 describes how the compiler generates parallel code. Section 6 presents
the experimental performance results for three automatically parallelized applications.
Section 7 describes some directions for future research. We survey related work in Section 8
and conclude in Section 9.

2. AN EXAMPLE

This section presents an example (written in C++) that shows how commuting operations
enable parallel execution. Thenode::visit method in Figure 1 defines a computation
that serially traverses the nodes of a graph. When the traversal completes, each node’s
sum instance variable contains the sum of its original value and the values of thevalue
instance variables in all of the nodes that directly point to that node.

The traversal invokes thenode::visit method once for each edge in the graph. Each
invocation specifies the node to visit (this node is called thereceiver object) and the value of
the parameterp. By definition, an operation is a method together with a receiver object and
parameter values. Each invocation of thenode::visit method therefore corresponds
to anode::visit operation.

When anode::visit operation executes, it first adds the parameterp into the running
sum stored in the receiver’ssum instance variable. It then checks the receiver’smarked
instance variable to see if the traversal has already visited the receiver. If the traversal has
not visited the receiver, it marks the receiver and invokes thenode::visit method for
the left and right subgraphs of the receiver.
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class node f
private:

boolean marked;
int value, sum;
node *left, *right;

public:
void visit(int);

g;

void node::visit(int p) f
sum = sum + p;
if (!marked) f

marked = TRUE;
if (left != NULL) left->visit(value);
if (right != NULL) right->visit(value);

g
g

Fig. 1. Serial graph traversal.

The way to parallelize the computation is to execute the two recursive invocations
of the node::visit method in parallel. But this parallelization may violate the data
dependences of the original serial computation. Consider what may happen if the traversals
of a left subgraph and a right subgraph access the same node. In the serial computation, all
of the accesses generated by the left traversal execute before all of the accesses generated
by the right traversal. In a parallel computation, however, the right traversal may visit the
node before the left traversal, changing the order of reads and writes to that node. This
violation of the data dependences may generate cascading changes in the overall execution
of the computation. Because of the marking algorithm, the traversal executes the recursive
invocations only the first time it visits a node. If the right traversal reaches a node before
the left traversal, the parallel execution may also change the order in which the overall
traversal is generated.

In fact, none of these changes affects the overall result of the computation. It is possible
to automatically parallelize the traversal even though the resulting computations may differ
substantially from the original serial computation. The key properties that enable the
parallelization are that the parallel computation executes the same set ofnode::visit
operations as the serial computation and that thenode::visit operations can execute
in any order without affecting the overall behavior of the traversal.

Given this commutativity information, the compiler can automatically generate the par-
allel node::visit method in Figure 2. The top levelnode::visit method first
invokes thenode::parallel visit method, then invokes thewait construct, which
blocks until the entire parallel computation completes. Thenode::parallel visit
method executes the recursive invocations concurrently using thespawnconstruct, which
creates a new task for each operation. A straightforward application of lazy task creation
techniques [Mohr et al. 1990] can increase the granularity of the resulting parallel compu-
tation. The current implementation of the compiler generates code that uses a load-based
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class node f
private:

lock mutex;
boolean marked;
int value, sum;
node *left, *right;

public:
void visit(int);
void parallel visit(int);

g;

void node::visit(int p) f
this->parallel visit(p);
wait();

g

void node::parallel visit(int p) f
mutex.acquire();
sum = sum + p;
if (!marked) f

marked = TRUE;
mutex.release();
if (left != NULL) spawn(left->parallel visit(value));
if (right != NULL) spawn(right->parallel visit(value));

g else f
mutex.release();

g
g

Fig. 2. Parallel graph traversal.

serialization strategy forspawnconstructs to reduce excessive parallelism.1

The compiler also augments eachnode object with a mutual exclusion lockmutex .
The generated parallel operations use this lock to ensure that they update the receiver object
atomically.

3. BASIC CONCEPTS

Commutativity analysis exploits the structure present in object-based programs to guide the
parallelization process. In this section, we present the basic concepts behind this approach.

3.1 Model of Computation

We explain the basic model of computation for commutativity analysis as applied to
pure object-based programs. Such programs structure the computation as a sequence
of operations on objects. Each object implements its state using a set of instance variables.
Each instance variable can be either a nested object, a primitive type from the underlying

1The run-time system maintains a count of the number of idle processors. The generated code for aspawn
construct first checks the count to determine if any processors are idle. If any processors are idle, the generated
code creates a new task for the operation. If not, the generated code executes the operation serially as part of the
task executing thespawnconstruct.
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language such as an integer, a double or a pointer to an object, or an array of nested objects
or primitive types. In the example in Figure 1, each graph node is an object.

By definition, an operation consists of a method, a receiver object, and the values of
the parameters. In the graph traversal example in Figure 1, operations consist of the
node::visit method, a graph node that is the receiver object, and an integer parameter.
To execute an operation, the machine binds the operation’s receiver and parameter values
to the formal receiver and parameter variables of the method, then executes the code in
the method. When the operation executes, it can access the parameters, invoke other
operations, or access the instance variables of the receiver.

This model of computation is designed to support an imperative programming style.
As the graph traversal example illustrates, computations often interact by imperatively
updating objects. Operations often calculate a contribution to the final result, then update
the receiver to integrate the contribution into the computation.

3.1.1 Instance Variable Access Restrictions.There are several restrictions on instance
variable accesses. If the instance variable is an instance variable of a nested object, the
operation may not directly access the instance variable — it may access the variable only
indirectly by invoking operations that have the nested object as the receiver. If the instance
variable is declared in a parent class from which the receiver’s class inherits, the operation
may not directly access the instance variable — it may access the variable only indirectly
by invoking operations whose receiver’s class is the parent class.

3.1.2 Separability.Commutativity analysis is designed to work withseparableopera-
tions. An operation is separable if its execution can be decomposed into anobject section
and aninvocation section. The object section performs all accesses to the receiver. The
invocation section invokes operations and does not access the receiver. It is, of course,
possible for local variables to carry values computed in the object section into the invocation
section, and both sections can access the parameters. The motivation for separability is that
the commutativity-testing algorithm (which determines if operations commute) requires
that each operation’s accesses to the receiver execute atomically with respect to the opera-
tions that it invokes. Separability ensures that the actual computation obeys this constraint.
Separability imposes no expressibility limitations — it is possible to automatically decom-
pose any method into a collection of separable methods via the introduction of additional
auxiliary methods.

The execution of a separable operation in a parallel computation consists of two phases:
the atomic execution of the object section2 and the invocation in parallel of all of the
operations in the invocation section. In this model of parallel computation, the parallel
execution invokes operations in a breadth-first manner: the computations of the invoked
operations from each invocation section are generated and execute in parallel. The precise
order in which operations on the same object execute is determined only at run time and
may vary from execution to execution. The serial execution, on the other hand, executes the
invoked operations in a depth-first manner: the entire computation of an invoked operation
completely finishes before the next operation in the invocation section is invoked.

Separability may appear to make it difficult to develop computations that read values
from the receiver, invoke operations that use the values to compute a result, then use
the result to imperatively update the receiver. As mentioned above, it would be possible

2Automatically generated lock constructs ensure that the object section executes atomically.
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to decompose the operations in such computations to make them conform to the strict
definition of separability. A potential problem is that such an operation decomposition
would make the analysis granularity finer. In the worst case, the coarser-granularity
operations in the original computation would commute, but the finer-granularity operations
in the transformed computation would not commute. Sections 3.4.1 and 3.4.2 discuss two
extensions to the programming model —extent constantsandauxiliary methods— that
often allow the compiler to successfully analyze coarse-grain operations that read values
from the receiver, invoke operations that use the values to compute a result, then use the
result to imperatively update the receiver.

3.2 Commutativity Testing

The following conditions, which the compiler can use to test if two operations A and B
commute, form the foundation of commutativity analysis.

—Instance Variables:The new value of each instance variable of the receiver objects of
A and B must be the same after the execution of the object section of A followed by
the object section of B as after the execution of the object section of B followed by the
object section of A.

—Invoked Operations:The multiset of operations directly invoked by either A or B under
the execution order A followed by B must be the same as the multiset of operations
directly invoked by either A or B under the execution order B followed by A.3

Note that these conditions do not deal with the entire recursively invoked computation that
each operation generates: they deal only with the object and invocation sections of the
two operations. Furthermore, they are not designed to test that the entire computations of
the two operations commute. They test only that the object sections of the two operations
commute and that the operations together directly invoke the same multiset of operations
regardless of the order in which they execute. As we argue below, if all pairs of operations
in the computation satisfy the conditions, then all parallel executions generate the same
result as the serial execution.

The instance-variables condition ensures that if the parallel execution invokes the same
multiset of operations as the serial execution, the values of the instance variables will be
the same at the end of the parallel execution as at the end of the serial execution. The basic
reasoning is that for each object, the parallel execution will execute the object sections
of the operations on that object in some arbitrary order. The instance variables condition
ensures that all orders yield the same final result.

The invoked-operations condition provides the foundation for the application of the
instance variables condition: it ensures that all parallel executions invoke the same multiset
of operations (and therefore execute the same object sections) as the serial execution.

3.2.1 Symbolic Commutativity Testing.The compiler can usesymbolic commutativity
testing to apply the commutativity-testing conditions. Symbolic commutativity testing
works withsymbolic operationsto reason about the values computed in the two different
execution orders. By definition, a symbolic operation consists of a method and symbolic
expressions that denote the receiver and parameter values.

We illustrate the concept of symbolic commutativity testing by applying it to the ex-
ample in Figure 1. The compiler determines that it must test if two symbolic operations

3Two operations are the same if they execute the same method and have the same receiver and parameter values.
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r->visit (p1) andr->visit (p2) commute. The symbolic operationr->visit (p1)
has parameterp1; the symbolic operationr->visit (p2) has parameterp2; and both
operations have the same receiverr .

To apply the commutativity-testing conditions, the compiler symbolically executes the
two symbolic operations in both execution orders. Symbolic execution simply executes
the operations, computing with expressions instead of values [Kemmerer and Eckmann
1985; King 1976; 1981]. Table I contains the two expressions that the symbolic execution
extracts for thesum instance variable. In these expressions,sum represents the old value
of thesum instance variable before either operation executes. It is possible to determine
by algebraic reasoning that the two expressions denote the same value.4 The compiler can
use a similar approach to discover that the values of the other instance variables are always
the same in both execution orders and that, together, the operations always directly invoke
the same multiset of operations.

Table I. New Values ofsum under Different Execution Orders

Execution Order New Value ofsum
r->visit (p1); r->visit (p2) (sum + p 1) + p 2

r->visit (p2); r->visit (p1) (sum + p 2) + p 1

In certain circumstances, the compiler may be unable to extract expressions that precisely
represent the values that operations compute. In the current compiler, this may happen,
for example, if one of the methods contains unstructured flow of control constructs such
asgoto constructs. In this case, the compiler marks the method as unanalyzable. The
commutativity-testing algorithm conservatively assumes that invocations of unanalyzable
methods do not commute with any operation.

3.2.2 Independence Testing.Independent operations commute (two operations are in-
dependent if neither accesses a variable that the other writes). It may improve the efficiency
or effectiveness of the commutativity-testing algorithm to test first for independence, then
apply the full symbolic commutativity-testing algorithm only if the independence test
fails. Although it is possible to apply arbitrarily complicated independence-testing algo-
rithms [Hendren et al. 1994; Pugh and Wonnacott 1992], the current compiler applies two
simple, efficient independence tests. It tests if the two operations have different receivers
or if neither operation writes an instance variable that the other accesses. In both of these
cases, the operations are independent.

3.3 Extents

A policy in the compiler must choose the computations to attempt to parallelize. The current
policy is that the compiler analyzes one computation for each method in the program. The
computation consists of all operations that may be either directly or indirectly invoked as a
result of executing the method. To reason about the computation, the compiler computes a
conservative approximation to the set of invoked operations. This approximation is called

4We ignore here potential anomalies caused by the finite representation of numbers. A compiler switch that
disables the exploitation of commutativity and associativity for operators such as+ will allow the programmer to
prevent the compiler from performing transformations that may change the order in which the parallel program
combines the summands.
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theextentof the method. By definition, the extent of a method is the set of methods that
could be invoked either directly or indirectly during an execution of the method. In the
example in Figure 1, the extent of thenode::visit method isfnode::visit g. This
extent specifies that any execution of thenode::visit method will invoke only the
node::visit method, but that thenode::visit method may be invoked multiple
times with different receivers and arguments. By definition, an operation is in an extent if
its method is in the extent.

If the compiler can verify that all pairs of operations in the extent commute, it marks the
method as a parallel method. If some of the pairs may not commute, the compiler marks
the method as a serial method.

3.4 Extensions

We have found it useful to extend the analysis framework to handle several situations that
fall outside the basic model of computation outlined in Section 3.1. These extensions
significantly increase the range of programs that the compiler can successfully analyze.

3.4.1 Extent Constants.All of the conditions in the commutativity-testing algorithm
check expressions for equality. In certain cases, the compiler may be able to prove that
two values are equal without representing the values precisely in closed form. Consider
the execution of an operation in the context of a given computation. If the operation reads
a variable that none of the operations in the computation write, the variable will have the
same value regardless of when the operation executes relative to all of the other operations.
We call such a variable anextent constant variable.

If an operation computes a value that does not depend on state modified by other
operations in the computation, the value will be the same regardless of when the operation
executes relative to the other operations. In this case, the compiler can represent the value
with an opaque constant instead of attempting to derive a closed form expression. We call
such a value anextent constant value, the expression that generated it anextent constant
expression, and the opaque constant anextent constant. Extent constants improve the
analysis in several ways:

—They support operations that directly access global variables and instance variables of
objects other than the receiver of the operation. The constraint is that such variables
must be extent constants.

—They improve the efficiency of the compiler by supporting compact representations of
expressions. These representations support efficient simplification- and equality-testing
algorithms.

—They extend the range of constructs that the compiler can effectively analyze to include
otherwise unanalyzable constructs that access only extent constants.

The compiler relaxes the model of computation to allow operations to freely access extent
constant variables.

3.4.2 Auxiliary Methods.For modularity purposes, programmers often encapsulate the
computation of values inside methods. The method obtains the computed values either as
the return value of the called method or via local variables passed by reference into the
called method. We call these methodsauxiliary methods. Integrating auxiliary methods
into their callers for analysis purposes can improve the effectiveness of the commutativity-
testing algorithm. The integration coarsens the granularity of the analysis, reducing the

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.



10 � Martin C. Rinard and Pedro C. Diniz

number of pairs that the algorithm tests for commutativity and increasing the ability of the
compiler to recognize parallelizable computations.

The compiler relaxes the model of computation to allow programs to contain two kinds
of methods: full methods and auxiliary methods. Full methods may access objects, read
reference parameters, or invoke full or auxiliary methods, but they do not return values or
write values into reference parameters. Auxiliary methods may return values, read and write
reference parameters, compute extent constant values, or invoke other auxiliary methods,
but they do not write instance variables, read instance variables that other methods in the
extent may write, read variables that may not contain extent constant values, or invoke full
methods. As described in Sections 4.4 and 5.3, the compiler automatically recognizes full
and auxiliary methods and treats them differently in the analysis and code generation.

Auxiliary methods are conceptually part of their callers, and they execute serially with
respect to the enclosing full methods. Full methods therefore observe the correct sequence
of values for local variables passed by reference to auxiliary methods. Extents contain
only full methods. We also relax the notion of separability to allow the object section
to invoke auxiliary methods. Auxiliary methods therefore support computations that read
values from the receiver, invoke an auxiliary method to compute new results, and then use
the computed results to imperatively update the receiver.

4. ANALYSIS ALGORITHMS

In this section, we present analysis algorithms that a compiler can use to realize the basic
approach outlined in Section 3. We first generalize several concepts to include methods.
By definition, two methods are independent if all invocations of the two methods are
independent. By definition, two methods commute if all invocations of the two methods
commute. By definition, a method is separable if all invocations of the method are separable.

The analysis algorithms use the type information to characterize how methods access
variables. This variable access information is then used to identify extent constant variables,
auxiliary methods, and independent methods. The basic assumption behind this approach
is that the program does not violate its type declarations.

To simplify the presentation of the algorithms, we assume that no method returns a
value to its caller using the call/return mechanism. Auxiliary methods instead write the
computed values into reference parameters. The caller can then access the values by reading
the variables passed by reference into the auxiliary method. The presented algorithms
generalize in a straightforward way to handle auxiliary methods that return values. The
implemented algorithms in the prototype compiler handle auxiliary methods that return
values.

4.1 Overview

The commutativity analysis algorithm determines if it is possible to parallelize a given
method. The algorithm performs the following steps:

—Extent Constant Variable Identification:The algorithm traverses the call graph to find
the set of extent constant variables.

—Extent and Full and Auxiliary Call Site Identification:The algorithm performs another
traversal of the call graph to compute the extent and to divide the call sites into call sites
that invoke full methods and call sites that invoke auxiliary methods. The classification is
based on how the entire executions of methods read and write externally visible variables.
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If the set of externally visible variables that any execution of the method writes includes
only instance variables and if the set of externally visible variables that any execution of
the method reads includes only reference parameters and instance variables, the method
is classified as a full method, and all call sites that invoke that method are classified as
full call sites. Otherwise, the method is classified as an auxiliary method, and all call
sites that invoke the method are classified as auxiliary call sites.

—Full Call Site Checks:The analysis algorithms require that all variables passed by
reference into full methods contain only extent constant values.5 The algorithm checks
this condition, in part, by visiting the full call sites to check that the caller writes only
extent constant values into variables that are passed by reference into full methods.

—Auxiliary Call Site Checks:The analysis algorithms require that any execution of an
auxiliary method computes only extent constant values. They also require that the set
of externally visible variables that any execution of an auxiliary method writes includes
only local variables of the caller. The algorithm checks all of the auxiliary call sites to
make sure that they satisfy these conditions.

—Separability and Input/Output Checks:The algorithm checks that all of the methods
in the extent are separable and that they do not perform input or output. Parallelizing
computations that may perform input or output may change the order of the input or
output operations, which may violate the semantics of the original serial program.

—Commutativity Testing:The algorithm uses independence tests and symbolic commuta-
tivity tests to determine if all operations in the extent commute.

Figure 3 presents the algorithm that determines if it is possible to parallelize the execution
of a given method. In the succeeding sections, we present the basic functionality that the
algorithm is based on and discuss each of the routines that it uses to perform the analysis.

4.2 Basic Functionality

The program defines a set of classescl 2 CL, primitive instance variablesv 2 V, nested
object instance variablesn 2 N, local variablesl 2 L, methodsm 2 M, call sitesc 2 C,
primitive typest 2 T, and formal reference parametersp 2 P. The compiler considers
any parameter whose declared type is a pointer to a primitive type, an array of primitive
types, or a reference (in the C++ sense) to a primitive type to be a reference parameter. If
a parameter’s declared type is a pointer or reference to a class, it is not considered to be a
reference parameter. Parameters of primitive type are treated as local variables. An array
of nested objects is treated as a nested object of the corresponding type.

In the remainder of this section, we will use the code in Figure 4 as a running example
to illustrate the application of the analysis algorithms. We have numbered the method
invocation sites in this code to distinguish between different invocations of the same method.

5A variable that contains only extent constant values is different from an extent constant variable. An extent
constant variable is a variable that is not written by any operation in the extent. A variable that contains only
extent constant values may be written multiple times during the computation, but each time the written value is
an extent constant value. The concept of variable that contains only extent constant values is useful because,
as described in Sections 3.4.1 and 3.4.2, extent constant values improve the analysis framework in many ways.
Programs typically use local variables to transfer extent constant values between full and auxiliary methods and
between computations in the same method. Recognizing local variables that contain only extent constant values
therefore enhances the ability of the compiler to recognize when computations only access extent constant values,
which in turn improves the analysis framework as described in Sections 3.4.1 and 3.4.2.
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IsParallel (m)
ec= ExtentConstantVariables(m);
hextent; full;auxi = ExtentAndFullAndAuxiliaryCallSites(m; ;; ;; ;);
if (not CheckFullCallSites(m; full; ec)) return false;
if (not CheckAuxiliaryCallSites(aux;ec)) return false;
for all m0 2 extent

if (not Separable(m0; aux;ec)) return false;
if (MayPerformInputOrOutput(m0)) return false;

for all hm1;m2i 2 extent� extent
if (not Commute(m1;m2;aux;ec)) return false;

return true;

Fig. 3. Algorithm to recognize parallel methods.

The example is a simple force calculation algorithm inspired by the force calculation phase
of the Barnes-Hut algorithm described in Section 6.2. Figure 5 presents theCL, V, N, L,
M, C, T, andP sets for the example.

The analysis uses storage descriptorss 2 S= P[ L [ T[ (CL� V) [ (CL� Q� V)
to represent how computations access variables. In this definition,q 2 Q = seq(N) is the
set of nonempty sequences of nested object names. We write an element ofQ in the form
n1:n2: � � � :ni, an element ofCL� Q� V in the formcl:n1:n2: � � � :ni:v, and an element of
CL� V in the formcl:v. The functionclass : CL�Q ! CL gives the class of a nested
object. The functiontype : S! Tgives the type of a storage descriptor. Figure 6 presents
thetype function in the example. The functionlift : S! T[ (CL�V)[ (CL�Q�V)
translates local variables and parameters to their primitive types. By definitionlift (s) =
type (s) whens2 P[ L andsotherwise.

There is a partial order� on S. Conceptually,s1 � s2 if the set of variables thats1

represents is a subset of the set of variables thats2 represents. By definition,cl1:v � cl2:v
if cl1 inherits fromcl2 or cl1 = cl2. Also by definition,cl1:q1:v � cl2:v andcl1:q1:q2:v �
cl2:q2:v if class (cl1:q1) inherits fromcl2 or if class (cl1:q1) = cl2. Finally, s1 � s2 if
type (s1) = s2.

Given a method, the functioncallSites : M ! 2C returns its set of call sites, and
the functionreferenceParameters : M ! 2P returns its set of formal reference
parameters. Given a call site, the functionmethod : C! M returns the invoked method.
We also use the standard functionsmap(f;A) = ff(a):a 2 Ag andI : S! S(the identity
function fromSto S).

Bindingsb : B = P ! S represent bindings of formal reference parameters to storage
descriptors. Given a bindingb, the extensionb of b to S is defined byb(s) = swhens 62 P
and byb(s) otherwise. Given a call site and a binding,bind : C� B ! B represents
the binding of formal to actual parameters that takes place when the method at the call
site is invoked in the context of the given binding. Figure 7 presents thecallSites ,
referenceParameters , method andbind functions in the example.

The compiler performs some local analysis on each method to extract several functions
that describe the way the method accesses variables. Given a method and a binding,
read : M�B! 2Sreturns a set of storage descriptors that represent how the method reads
variables. For example,hcl; vi 2 read (m; b) if the methodm in the context of the binding
b reads the instance variablev in an object of classcl. Similarly,p 2 read (m; b) if mreads
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class node f
private:

double mass, position, force;
node *left, *right;

public:
void stop(node *, double, double, boolean *);
void interact(double, double);
void traverse(node *, double, double);

g;

void node::stop(node *n, double l, double r, boolean *ret) f
if ((n->left == NULL) && (n->right == NULL)) f

*ret = true;
g else f

double ratio = (l - r) / (this->position - n->position);
ratio = ratio * ratio;
if (ratio < 1.0) *ret = true; else *ret = false;

g
g

void node::interact(double m, double d) f
this->force = this->force + (this->mass * m)/(d * d);

g

void node::traverse(node *n, double l, double r) f
boolean flag = 0;

1:this->stop(n, l, r, &flag);
if (flag) f

2: this->interact(n->mass, n->position - this->position);
g else f

double m = (r + l) / 2;
3: if (n->left != NULL) this->traverse(n->left, l, m);
4: if (n->right != NULL) this->traverse(n->right, m, r);
g

g

class system f
private:

int num bodies;
node bodies[MAX NUMBODIES];
node *root;
double l,r;

public:
void forces();

g;

void system::forces() f
int i;
for (i = 0; i < this->num bodies; i++) f

5: this->bodies[i].traverse(root, this->l, this->r);
g

g

Fig. 4. Simple force calculation example.
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CL = fnode , system g
V = fmass, position , force , left , right , num bodies , root , l , r g
N = fbodies g
L = fnode::stop::n , node::stop::l , node::stop::r , node::stop::ret ,

node::stop::ratio , node::interact::m , node::interact::d ,
node::traverse::n , node::traverse::l , node::traverse::r ,
node::traverse::flag , node::traverse::m , system::forces::i g

M = fnode::stop , node::interact , node::traverse , system::forces g
C = f1, 2, 3, 4, 5g
T = fdouble , int , boolean , boolean * , node * , system * g
P = f*node::stop::ret g

Fig. 5. CL, V, N, L, M, C, T andP in the example.

type (*node::stop::ret ) = boolean
type (node::stop::n ) = node *
type (node::stop::l ) = double
type (node::stop::r ) = double
type (node::stop::ret ) = boolean *
type (node::stop::ratio ) = double
type (node::interact::m ) = double
type (node::interact::d ) = double
type (node::traverse::n ) = node *
type (node::traverse::l ) = double
type (node::traverse::r ) = double
type (node::traverse::flag ) = boolean
type (node::traverse::m ) = double
type (system::forces::i ) = int
type (double ) = double
type (int ) = int
type (boolean ) = boolean
type (boolean * ) = boolean *
type (node * ) = node *
type (system * ) = system *
type (node.mass ) = double
type (node.position ) = double
type (node.force ) = double
type (node.left ) = node *
type (node.right ) = node *
type (system.num bodies ) = int
type (system.bodies.mass ) = double
type (system.bodies.position ) = double
type (system.bodies.force ) = double
type (system.bodies.left ) = node *
type (system.bodies.right ) = node *
type (system.root ) = node *
type (system.l ) = double
type (system.r ) = double

Fig. 6. Thetype function in the example.
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callSites (node::stop ) = ;
callSites (node::interact ) = ;
callSites (node::traverse ) = f1,2,3,4g
callSites (system::forces ) = f5g

referenceParameters (node::stop ) = f*node::stop::ret g
referenceParameters (node::interact ) = ;
referenceParameters (node::traverse ) = ;
referenceParameters (system::forces ) = ;

method (1) = node::stop
method (2) = node::interact
method (3) = node::traverse
method (4) = node::traverse
method (5) = node::traverse

bind (1,b) = [*node::stop::ret 7! node::traverse::flag ]
bind (2,b) = ;
bind (3,b) = ;
bind (4,b) = ;
bind (5,b) = ;

Fig. 7. ThecallSites , referenceParameters , method , andbind functions in the example.

read (node::stop ,b) = fnode.left , node.right , node.position g
read (node::interact ,b) = fnode.force , node.mass g
read (node::traverse ,b) = fnode.mass , node.position , node.left , node.right g
read (system::forces ,b) = fsystem.num bodies , system.l , system.r g

write (node::stop ,b) = fb(*node::stop::ret )g
write (node::interact ,b) = fnode.force g
write (node::traverse ,b) = ;
write (system::forces ,b) = ;

dep (1) = ;
dep (2) = ;
dep (3) = ;
dep (4) = ;
dep (5) = ;

Fig. 8. Theread , write , anddep functions in the example.

the reference parameterpin the context of the bindingb. The functionwrite : M�B! 2S

returns the set of storage descriptors that represent how the method writes variables. The
functiondep : C ! 2S returns the set of storage descriptors that represent the variables
that the surrounding method reads to compute the values in the reference parameters at the
given call site. Figure 8 presents theread , write , anddep functions in the example.
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ExtentConstantVariables(m)
hrd;wri = ExternallyVisibleReadsAndWrites(m);
rd = map(lift ; rd);
wr = map(lift ; wr);
return ReadOnlyVariables(rd; wr);

ExternallyVisibleReadsAndWrites(m)
rd = ;;
wr = ;;
visited = ;;
current = fhm; Iig;
while (current 6= ;)

next = ;;
for all hm0;bi 2 current

for all c 2 callSites (m0)
next = next [ fhmethod (c); bind (c;b)ig;

rd = rd [ read (m0;b);
wr = wr [ write (m0;b);

visited = visited [ current;
current = next� visited;

rd = rd� L;
wr = wr � L;
return hrd;wri;

ReadOnlyVariables(rd;wr)
readonly = rd;
for all s 2 rd

for all s0 2 wr

if ((s � s0) or (s0 � s))
readonly = readonly � fsg;

return readonly;

Fig. 9. Algorithm to recognize extent constant variables.

4.3 Extent Constant Variables

The ExtentConstantVariables routine in Figure 9 computes the set of extent constant vari-
ables for a given method. The ExternallyVisibleReadsAndWrites routine performs the core
computation, using abstract interpretation to compute a read set and write set of storage
descriptors that accurately represent how the entire execution of the method may read and
write variables. The ReadOnlyVariables routine prunes the read set so that it contains only
storage descriptors that represent variables that the computation does not write. Figure 10
presents the results of the extent constant variables computation for all of the methods in
the example.

4.3.1 Correctness of Extent Constant Variables Algorithm.We next argue that the algo-
rithm is correct. We start with the ExternallyVisibleReadsAndWrites algorithm. Consider
the execution of any operationo invoked as a result of executing the methodm. The
ExternallyVisibleReadsAndWritesalgorithm must produce a read set and a write set that ac-
curately represent howo accesses variables. By definition, a pairhm0; bi is arepresentative
pair for o if m0 iso’s method and ifbaccurately represents its reference parameters. If the al-
gorithm ever inserts a representative pair foro intocurrent, the produced read and write sets
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will accurately represent howo accesses variables: the ExternallyVisibleReadsAndWrites
algorithm will putread (m0; b) andwrite (m0; b) into the read and write sets.

If an operation is executed as a result of executingm, there must be a call chain from an
invocation ofm to the invoked operation. We outline a proof, by induction on the length of
this call chain, that for every operationo that may be invoked either directly or indirectly
as a result of executingm, the algorithm inserts a representative pairhm0; bi for o into
current. In the base case of the induction, the call chain is of length zero; in other words,
the operation is an invocation ofm. In this case, the algorithm inserts the pairhm; Ii into
current, which is a representative pair foro.

In the induction step, we assume that for every operationon that may be invoked at
depthn of a call chain, there exists a representative pairhmn; bni for on that is inserted
into current. We show that, for every operationon+1 invoked at depthn + 1 of a call
chain, a representative pairhmn+1; bn+1i is inserted intocurrent. Any operationon+1

invoked at depthn + 1 of a call chain must be invoked by some call sitec in one of
the methods of an operationon invoked at depthn of the call chain. By the induction
hypothesis, a representative pairhmn; bni for on must have been inserted intocurrent.
The algorithm will therefore insert the pairhmethod (c); bind (c; b)i into current, and
hmethod (c); bind (c; b)i is a representative pair foron+1.

The ExternallyVisibleReadsAndWrites algorithm removes all of the local variable stor-
age descriptors from the read and write sets before it returns them. Because the lifetimes
of the local variables are contained in the execution of the methodm, accesses to these
variables are not visible outside the execution ofm.

The ReadOnlyVariables algorithm extracts the set of extent constant variables from the
read and write sets. The potential complication is that the computation may read and write
the same variable, but that the storage descriptor that represents the read may be different
from the storage descriptor that represents the write. The algorithm therefore uses the
partial order� to remove any storage descriptors from the read set that represent variables
that the computation may write. The end result is a set of storage descriptors that represent
variables that the computation may read but does not write.

4.3.2 Alternatives to the Extent Constant Variables Algorithm.The extent constant vari-
ables algorithm uses the type system to characterize how the method accesses externally
visible variables. Two advantages of this approach are its simplicity and ease of implemen-
tation. An obvious alternative is to use pointer analysis [Emami et al. 1994; Landi et al.
1993; Wilson and Lam 1995] to identify the variables that each operation may access. An
advantage of this approach for non-type-safe languages is that it would allow the compiler
to analyze programs that may violate their type declarations. It would also characterize
the accessed variables at a finer granularity than the type system, which could increase
the precision of the data usage analysis. One potential drawback is a complication of the
compiler. The use of pointer analysis would also increase the amount of code that the
compiler would have to analyze. Before the compiler could parallelize a piece of code that
manipulated a data structure, it would have to analyze the code that built the data structure.

It would also be possible to use aneffect systemto characterize how operations access
data [Gifford et al. 1987; Hammel and Gifford 1988]. The advantage would be a more
precise characterization of how the program accesses data. The integration with the type
system would also allow the programmer to manage the granularity of the characterization.
The disadvantage would be the need to change the type system of the language.
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ExternallyVisibleReadsAndWrites(node::stop ) =
hfnode.left ,node.right ,node.position g,f*node::stop::ret gi

ExternallyVisibleReadsAndWrites(node::interact ) =
hfnode.force ,node.mass g,fnode.force gi

ExternallyVisibleReadsAndWrites(node::traverse ) =
hfnode.left ,node.right ,node.position ,node.force ,node.mass g,
fnode.force gi

ExternallyVisibleReadsAndWrites(system::forces ) =
hfnode.left ,node.right ,node.position ,node.force ,node.mass ,

system.num bodies , system.l ,system.r g,fnode.force gi

ExtentConstantVariables(system::forces ) =
fnode.left ,node.right ,node.position , node.mass ,
system.num bodies , system.l ,system.r g

Fig. 10. Results of externally visible reads and writes and extent constant variables computations.

ExtentAndFullAndAuxiliaryCallSites(m; extent; full;aux)
if (m 62 extent)

extent= extent[ fmg;
for all c 2 callSites (m)

m0 = method (c);
hrd;wri = ExternallyVisibleReadsAndWrites(m0);
if ((wr 6� (CL� V) [ (CL� Q� V)) or (rd 6� (CL� V) [ (CL�Q� V) [ P))

aux= aux[ fcg;
else

full = full [ fcg;
hextent; full; auxi = ExtentAndFullAndAuxiliaryCallSites(m0;extent; full; aux);

return hextent; full;auxi;

Fig. 11. Full and auxiliary call site algorithm.

ExtentAndFullAndAuxiliaryCallSites(system::forces ,;,;,;) =
hfnode::interact , node::traverse , system::forces g, f2,3,4,5g,f1gi

Fig. 12. Results of full and auxiliary call site computation forsystem::forces .

4.4 Extent Full and Auxiliary Call Sites

The algorithm in Figure 11 performs a traversal of the call graph to compute the extent and
the set of full and auxiliary call sites. The algorithm does not traverse edges in the call
graph that correspond to auxiliary call sites. The union of the set of full call sites and the
set of auxiliary call sites are the sets of call sites in the methods in the extent. Figure 12
presents the results of this computation for thesystem::forces method.

The ExtentAndFullAndAuxiliaryCallSites algorithm must satisfy several correctness
conditions. The first correctness condition is that the produced extent must contain all full
methodsm0 that can be invoked either directly or indirectly via a call chain of invocations
of full methods that starts with an invocation of the methodm. The second condition is that
the extent contains onlym or full methods (the CheckFullCallSites algorithm presented in
Section 4.5 will check thatm is a full method). The third condition is that the produced full
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and auxiliary call site sets are disjoint and that their union is the set of all call sites in the
full methods in the extent.

We outline a simple induction proof on the length of the call chain from an invocation
of m to a potentially invoked full methodm0 that establishes the first condition. In the base
case of the induction, the length of the call chain is zero; in other words,m0 = m. In this
case, the algorithm clearly insertsm into the extent. In the induction step, we assume that
all full methods invoked at depthn of a call chain frommhave been inserted into the extent.
We show that all full methods invoked at depthn + 1 of a call chain are inserted into the
extent. All methods invoked at depthn+ 1 of a call chain are invoked from a call site in a
method invoked at depthn.

A method is inserted into the extent if and only if ExtentAndFullAndAuxiliaryCallSites
is called on the method. In this case, the algorithm visits each call site in the method,
classifying it either as a full call site or as an auxiliary call site. If the call site is a full call
site, the algorithm recursively calls itself on the method at the call site, and that method
will be inserted into the extent. Therefore, the algorithm visits all of the call sites in the
full methods that are invoked at depthn of a call chain, and it inserts all of the full methods
that may be invoked at depthn+ 1 of a call chain into the extent.

We next address the second correctness condition. The condition in the algorithm for re-
cursively calling the ExtentAndFullAndAuxiliaryCallSites routine on a methodm0 ensures
that it is called onm0 only if m0 is a full method. The ExtentAndFullAndAuxiliaryCallSites
routine is therefore called only onm and for full methods. The extent therefore contains
only m and full methods.

We next address the third correctness condition. Every time the algorithm inserts a
method into the extent, the algorithm visits all of its call sites and inserts them into either
the set of full call sites or the set of auxiliary call sites. Every call site in methods in the
extent is classified either as a full call site or as an auxiliary call site. Furthermore, the
condition that determines how call sites are classified ensures that no call site is classified
as both a full call site and as an auxiliary call site.

4.5 Full Call Site Checks

The current symbolic execution algorithm uses extent constants to represent the values of
variables passed by reference into full methods. To help ensure that this representation
is correct, the CheckFullCallSites algorithm checks each full call site to make sure that
the caller writes only extent constant values into the variables that are passed by reference
into the method. Auxiliary methods are the only other methods that may write these
variables. The CheckAuxiliaryCallSites algorithm presented in Section 4.6 ensures that if
the reference parameters contain only extent constant values, the auxiliary methods will
compute only extent constant values. The full call site checks therefore combine with the
auxiliary call site checks to ensure that all variables passed by reference into either full or
auxiliary methods contain only extent constant values.

The algorithm also checks that the methodm that the commutativity analysis algorithm
is attempting to parallelize is a full method.

4.6 Auxiliary Call Site Checks

To ensure that the symbolic execution operates correctly, the compiler performs several
auxiliary call site checks. To help ensure that the symbolic execution builds expressions
that correctly denote the new values of instance variables, the compiler checks that no
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CheckFullCallSites(m; full; ec)
hrd; wri = ExternallyVisibleReadsAndWrites(m);
if ((wr 6� (CL� V) [ (CL�Q� V)) or (rd 6� (CL� V) [ (CL� Q� V) [ P)) return false;
for all c 2 full

if (dep (c) 6� ec) return false;
return true;

Fig. 13. Algorithm to check full call sites.

CheckAuxiliaryCallSites(aux; ec)
for all c 2 aux

m= method (c);
hrd;wri = ExternallyVisibleReadsAndWrites(m);
rd = map(bind (c;I); rd);
wr = map(bind (c; I); wr);
if (rd 6� L [ ecor wr 6� L or dep(c) 6� ec) return false;

return true;

Fig. 14. Algorithm to check auxiliary call sites.

auxiliary method writes an instance variable of the receiver. It enforces this constraint
by requiring that, at each auxiliary call site, the set of externally visible variables that the
auxiliary method writes includes only local variables of the caller.

The current symbolic execution algorithm uses extent constants to represent the values
of variables passed by reference into auxiliary methods. The compiler checks several
conditions to ensure that these variables hold only extent constant values:

—The set of externally visible variables that the auxiliary method reads must include only
extent constant variables and its reference parameters.

—Before any auxiliary method is invoked, its reference parameters must contain extent
constant values. The compiler enforces this constraint, in part, by checking that the
caller writes only extent constant values into variables that are passed by reference into
auxiliary methods. The other conditions ensure that other auxiliary methods are the
only other methods that may write these variables. The caller site condition check, in
combination with the other auxiliary call site checks, ensures that the variables passed
by reference to auxiliary methods always contain extent constant values.

These conditions ensure that the entire executions of auxiliary methods are not visible
outside the caller. It is therefore possible for the compiler to check only full methods for
commutativity. Figure 14 presents the algorithm that checks that auxiliary call sites satisfy
the conditions. It is a direct translation of the conditions presented above.

The fact that the symbolic execution uses extent constants to represent the values com-
puted in auxiliary methods drives the conditions that auxiliary call sites must meet. An
interprocedural symbolic execution algorithm would enable the compiler to extract a more
precise representation of the values that auxiliary methods compute, which would allow
the compiler to relax these conditions.
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4.7 Separability

The compiler must also check that each method in the extent is separable. It therefore scans
each method to make sure that it never accesses a non-extent-constant instance variable
after it executes a call site that invokes a full method. As part of the separability test, the
compiler also makes sure that the method writes only local variables or instance variables of
the receiver and reads only parameters, local variables, instance variables of the receiver, or
extent constant variables. The separability may depend on the set of auxiliary call sites and
the set of extent constant variables. The separability-testing routine, Separable(m; aux; ec),
therefore takes these two sets as parameters.

4.8 Commutativity Testing

The commutativity-testing algorithm presented in Figure 15 determines if two methods
commute. The algorithm first applies a series of simple tests that determine if the two
methods are independent. The first test relies on the type system; if the classes of the
receivers of the two methods are different, then the two methods are guaranteed to be
independent.6 The second test analyzes the instance variable usage to check that neither
method writes an instance variable that the other accesses. If the methods are independent,
then they commute and the algorithm performs no further checks.

If the independence tests fail to determine that the methods are independent, the
commutativity-testing algorithm checks if it can symbolically execute the methods. If
it cannot symbolically execute the methods, the commutativity-testing algorithm conser-
vatively assumes that the methods may not commute. Otherwise, the compiler generates a
symbolic receiver and symbolic parameter values for the two methods, then symbolically
executes the methods in both execution orders. It then simplifies the resulting expressions
and compares corresponding expressions for equality. If corresponding expressions denote
the same value, the operations commute.

Two routines deal with the symbolic execution. The routine Analyzable(m; aux; ec)
determines if it is possible to symbolically execute a method. The actual symbolic execu-
tion is performed by the routine SymbolicallyExecute(m1;m2; aux; ec). The result of the
symbolic execution is a pairhi; ni, wherei(v) is the expression denoting the new value of
the instance variablev, andn is a multiset of expressions denoting the multiset of directly
invoked operations. Because the symbolic execution depends on the set of auxiliary call
sites and the set of extent constant variables, both routines take these two sets as parameters.

We illustrate how the commutativity-testing algorithm works by applying it to the
system::forces method. The compiler must check that all of the methods in its
extent commute. Becausenode::traverse andsystem::forces compute only
extent constant values and write only local variables, they commute with all methods in the
extent. The compiler is left to check thatnode::interact commutes with itself. The
compiler uses the symbolic commutativity-testing algorithm to check this property.

4.9 The Symbolic Commutativity Testing Algorithm

To test that methods commute, the compiler must reason about the new values of the
receiver’s instance variables and the multiset of operations directly invoked when the

6The two methods are independent even if one of the classes inherits from the other. Recall that the model of
computation imposes the constraint that a method cannot access an instance variable declared in a class from
which its receiver’s class inherits.
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Commute(m1;m2;aux; ec)
if (Independent(m1;m2)) return true;
if (not Analyzable(m1;aux;ec)) return false;
if (not Analyzable(m2;aux;ec)) return false;
hi1; n1i = SymbolicallyExecute(m1;m2;aux;ec);
hi2; n2i = SymbolicallyExecute(m2;m1;aux;ec);
for all v 2 instanceVariables(receiverClass(m1))

if (not Compare(Simplify(i1(v));Simplify(i2(v)))) return false;
if (not Compare(Simplify(n1);Simplify(n2))) return false;
return true;

Fig. 15. Commutativity-testing algorithm.

ex 2 EX ::= EX � EX j 	EX j if (EX,EX,EX) j v j e
mx2 MX ::= EX->op (EX, : : :,EX ) j if (EX,MX) j for (l = EX; l < EX; l += EX) MX j

for (l = EX; l < EX; l++) MX

Fig. 16. Expressions for symbolic analysis.

methods execute. The compiler represents the new values and multisets of invoked methods
using symbolic expressions. Figure 16 presents the symbolic expressions that the compiler
uses. These expressions include standard arithmetic and logical expressions, conditional
expressions, and expressions that represent values computed in simplefor loops.

The compiler uses extent constantse 2 E to represent values computed in auxiliary
methods. The symbol� represents an arbitrary binary operator. The symbol	 represents
an arbitrary unary operator. The compiler usesEXexpressions to represent instance variable
values and multisets ofMXexpressions to represent invoked methods.

4.9.1 Symbolic Execution.The symbolic execution algorithm can operate successfully
on only a subset of the constructs in the language. To execute an assignment statement, the
algorithm symbolically evaluates the expression on the right-hand side using the current
set of bindings, then binds the computed expression to the variable on the left-hand side
of the assignment. It executes conditional statements by symbolically executing the two
branches, then using conditional expressions to combine the results. It executes auxiliary
methods by internally generating a new extent constant for each variable that is passed by
reference into the method, then binding each variable to its extent constant.

The symbolic execution does not handle loops in a general way. If the loop is in the
following vector loop form, whereex1 is an expression denoting the number of elements
of the arrayv andex2 is an extent constant expression, the algorithm can represent the new
value ofv.

for ( l = 0; l < ex 1; l++) v[ l] = v[ l] � ex 2;

If the loop is in one of the following two forms, whereex 1; : : : ; exn are all extent
constant expressions, the algorithm can represent the invoked set of methods.
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ec= ExtentConstantVariables(system::forces ) =
fnode.left ,node.right ,node.position , node.mass ,
system.num bodies , system.l ,system.r g

ExtentAndFullAndAuxiliaryCallSites(system::forces ,;,;,;) =
hfnode::interact ,node::traverse ,system::forces g,f2,3,4,5g,auxi, where
aux= f1g

mx1 = r->interact (m1,d 1)
mx2 = r->interact (m2,d 2)

hi1,n1i = SymbolicallyExecute(mx1,mx2,aux,ec), where
i1 = [force 7! (force + (mass * m 1)/(d 1 * d 1)) + (mass * m 2)/(d 2 * d 2) ]
n1 = ;

hi2,n2i = SymbolicallyExecute(mx2,mx1,aux,ec), where
i2 = [force 7! (force + (mass * m 2)/(d 2 * d 2)) + (mass * m 1)/(d 1 * d 1) ]
n2 = ;

Fig. 17. Results of symbolic execution of two symbolic invocations ofnode::interact .

for ( l = ex 1; l <ex 2; l += ex 3) ex 4->op(ex 5, : : :,ex n);
for ( l = ex 1; l <ex 2; l++) ex 4->op(ex 5, : : :,ex n);

The algorithm cannot currently represent expressions computed in loops that are not in
one of these two forms. We expect to enhance the algorithm to recognize a wider range
of loops. For analysis purposes, the compiler could also replace unanalyzable loops with
tail-recursive methods that perform the same computation.

In our example, the compiler determines that it must symbolically execute two symbolic
invocations ofnode::interact . Figure 17 presents the results of the symbolic exe-
cution. In this figure,r represents the receiver,m1 andd1 represent the parameters for
one symbolic operation, andm2 andd2 represent the parameters for the other symbolic
operation.

4.9.2 Expression Simplification and Comparison.The expression simplifier is organized
as a set of rewrite rules designed to reduce expressions to a simplified form for comparison.
The comparison itself consists of a simple expression equality test.

The compiler currently applies simple arithmetic rewrite rules such asex 1-ex 2 )
ex 1+(-ex 2) , -(-ex) ) ex andex 1*(ex 2+ex 3) ) (ex 1*ex 2)+(ex 1*ex 3) . It
also applies rules such as(ex 1+ex 2)+ex 3 ) (ex 1+ex 2+ex 3) that convert binary
applications of commutative and associative operators ton-ary applications. It then sorts
the operands according to an arbitrary order on expressions. This sort facilitates the eventual
expression comparison by making it easier to identify equivalent subexpressions. We have
also developed rules for conditional and array expressions [Rinard and Diniz 1996].

In the worst case, the expression manipulation algorithms may take exponential running
time. Like other researchers applying similar expression manipulation techniques in other
analysis contexts [Blume and Eigenmann 1995], we have not observed this behavior in
practice. Finally, it is undecidable in general to determine if two expressions always denote
the same value [Ibarra et al. 1996]. We therefore focus on developing algorithms that work
well for the cases that occur in practice.

Figure 18 presents the results of the expression simplification algorithm for the ex-
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Initial Expressions:
i1 = [force 7! (force + (mass * m 1)/(d 1 * d 1)) + (mass * m 2)/(d 2 * d 2) ]
i2 = [force 7! (force + (mass * m 2)/(d 2 * d 2)) + (mass * m 1)/(d 1 * d 1) ]

Conversion into n-ary application of + operator:
i1 = [force 7! force + (mass * m 1)/(d 1 * d 1) + (mass * m 2)/(d 2 * d 2) ]
i2 = [force 7! force + (mass * m 2)/(d 2 * d 2) + (mass * m 1)/(d 1 * d 1) ]

Sorting operands of + operator:
i1 = [force 7! force + (mass * m 1)/(d 1 * d 1) + (mass * m 2)/(d 2 * d 2) ]
i2 = [force 7! force + (mass * m 1)/(d 1 * d 1) + (mass * m 2)/(d 2 * d 2) ]

Fig. 18. Expression simplification for two symbolic invocations ofnode::interact .

pressions generated during the symbolic execution of the two invocations of the method
node::interact . After the expression simplification, the compiler compares cor-
responding expressions for equality. In these two cases, the expressions denoting the
new values of the instance variables and the multisets of invoked operations are equiva-
lent. The compiler has determined that all of the operations in the computation rooted
at system::forces commute. It therefore markssystem::forces as a parallel
method.

4.9.3 New Objects.The current compiler classifies any method that creates new objects
as unanalyzable. The primary motivation for this restriction is to simplify the implemen-
tation. It is possible to extend the symbolic execution to handle programs that create new
objects, although there are some complications.

To symbolically execute a statement that creates a new object, the compiler must create
an expression that denotes the new object. We call such an expression anew object name.
New object names must be different from any expression that denotes any other object. In
particular, they must be different from new object names that denote other new objects.

The compiler tests if two methods commute by comparing expressions generated during
the symbolic execution. The current compiler simply tests if the expressions are equivalent.
But the presence of new object names introduces some additional complexity. The result
of the program does not depend on where the memory allocator places objects. Operations
therefore commute if corresponding expressions are equivalent under any one-to-one map-
ping from the new object names in one expression to the new object names in the other
expression. An effective expression comparison algorithm must therefore construct and
maintain a mapping between new object names as it compares expressions.

5. CODE GENERATION

According to the compiler’s analysis, every method in the program is classified as either
a parallel method or a serial method. Operations invoked by a serial method execute
sequentially: each invoked operation completes its execution before the next invoked
operation starts to execute. Operations invoked by a parallel method execute concurrently.

Each parallel method has two versions: a serial version and a parallel version. The
parallel version invokes operations and returns without waiting for the operations to com-
plete their executions. Furthermore, the invoked operations execute in parallel. The serial
version simply invokes the parallel version, then waits for the entire parallel execution to
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complete.
When a serial method invokes a parallel method, it invokes the serial version. The

serial version then triggers a transition from sequential to parallel execution by invoking
the parallel version. The transition from parallel back to sequential execution also takes
place inside the serial version: when the serial version returns, the parallel computation
has completed.

To generate code for the parallel version of a parallel method, the compiler first generates
the object section of the method. The generated code acquires the mutual exclusion lock
in the receiver when it enters the object section, then releases the lock when it exits. The
generated code for the invocation section invokes the parallel version of each invoked
method, using thespawnconstruct to execute the operation in parallel (but see Sections 5.2
and 5.3). Auxiliary methods are an exception to this code generation policy; they execute
serially with respect to the caller.

5.1 Parallel Loops

The compiler applies an optimization that exposes parallel loops to the run-time system. If
a for loop contains nothing but invocations of parallel versions of methods, the compiler
generates parallel loop code instead of code that serially spawns each iteration of the loop.
The generated code can then apply standard parallel loop execution techniques; it currently
uses guided self-scheduling [Polychronopoulos and Kuck 1987].

5.2 Suppressing Excess Concurrency

In practice, parallel execution inevitably generates overhead in the form of synchronization
and task management overhead. If the compiler exploits too much concurrency,the resulting
overhead may overwhelm the performance benefits of parallel execution. The compiler
uses a heuristic that attempts to suppress the exploitation of unprofitable concurrency; this
heuristic suppresses the exploitation of nested concurrency within parallel loops.

To apply the heuristic, the compiler generates a third version of each parallel method, the
mutexversion. Like the parallel version, the mutex version uses the mutual exclusion lock
in the receiver to make the object section execute atomically. But the generated invocation
section serially invokes the mutex versions of all invoked methods. Any computation that
starts with the execution of a mutex version therefore executes serially. The inserted syn-
chronization constructs allow the mutex versions of methods to safely execute concurrently
with parallel versions. The generated code for parallel loops invokes the mutex versions
of methods rather than the parallel versions. Each iteration of the loop therefore executes
serially.

The heuristic trades off parallelism for a reduction in the concurrency exploitation
overhead. While it works well for our current application set, in some cases it may
generate excessively sequential code. In the future, we expect to tune the heuristic and
explore efficient mechanisms for exploiting concurrency in nested parallel loops.

5.3 Local Variable Lifetimes

The compiler must ensure that the lifetime of an operation’s activation record exceeds the
lifetimes of all operations that may access the activation record. The compiler currently
uses a conservative strategy: if a method may pass a local variable by reference into an
operation or create a pointer to a local variable, the compiler serializes the computation
rooted at that method. At auxiliary call sites, the generated code invokes the original
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version of the invoked method. At full call sites, it invokes the mutex version. This code
generation strategy also ensures that operations observe the correct values of local variables
that multiple invocations of auxiliary methods write.

5.4 Lock Optimizations

Lock constructs are a significant potential source of overhead. The code generator therefore
applies several optimizations designed to reduce the lock overhead [Diniz and Rinard
1996].

6. EXPERIMENTAL RESULTS

We have developed a prototype compiler based on the analysis algorithms in Section 4. It
uses an enhanced version of the code generation algorithms in Section 5. We have used
this compiler to automatically parallelize three applications: the Barnes-Hut hierarchical
N-body solver [Barnes and Hut 1986], the Water simulation code [Singh et al. 1992], and
the String seismic code [Harris et al. 1990]. Explicitly parallel versions of the first two
applications are available in the SPLASH [Singh et al. 1992] and SPLASH-2 [Woo et al.
1995] benchmark suites. We have developed an explicitly parallel version of String using
the ANL macro package [Lusk et al. 1987]. This section presents performance results for
the automatically parallelized and explicitly parallel versions of these applications on a
16-processor Stanford DASH machine [Lenoski 1992] running a modified version of the
IRIX 5.2 operating system. The programs were compiled using the IRIX 5.3 CC compiler
at the -O2optimization level.

6.1 The Compilation System

The compiler is structured as a source-to-source translator that takes a serial program
written in a subset of C++ and generates an explicitly parallel C++ program that performs
the same computation. We use Sage++ [Bodin et al. 1994] as a front end. The analysis
and code generation phases consist of approximately 21,000 lines of C++ code. This count
includes no code from the Sage++ system. The generated parallel code contains calls to
a run-time library that provides the basic concurrency management and synchronization
functionality. The library consists of approximately 6000 lines of C code.

The current version of the compiler imposes several restrictions on the dialect of C++
that it can analyze. The goal of these restrictions is to simplify the implementation of the
prototype while providing enough expressive power to allow the programmer to develop
clean object-based programs. The major restrictions include the following:

—The program has no virtual methods and does not use operator or method overloading.
The compiler imposes this restriction to simplify the extent computation.

—The program uses neither multiple inheritance nor templates.

—The program contains notypedef , union , struct , or enum types.

—Global variables cannot be primitive data types; they must be class types.

—The program does not use pointers to members or static members.

—The program contains no casts between base types such asint , float , anddouble
that are used to represent numbers. The program may contain casts between pointer
types; the compiler assumes that the casts do not cause the program to violate its type
declarations.
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—The program contains no default arguments or methods with variable numbers of argu-
ments.

—No operation accesses an instance variable of a nested object of the receiver or an instance
variable declared in a class from which the receiver’s class inherits.

In addition to these restrictions, the compiler assumes that the program has been type
checked and does not violate its type declarations.

The current compiler requires the entire program, with the exception of standard library
routines, to appear in a single file. It would be straightforward to relax this constraint
to allow separate compilation. To parallelize a given method, however, the envisioned
compiler would still require that all of the methods that could be invoked as a result of
executing the given method appear in the same file. It would require significant changes
for the compiler to allow these methods to appear in separate files.

The current system starts with an unannotated, sequential C++ program. It then runs
a preprocessor that replaces the standard include files with our own include files. The
standard include files contain external declarations of methods, classes, and functions. Our
include files contain empty definitions (not declarations) of these entities. The motivation
for this replacement is that Sage++ does not handle the external declarations in the standard
include files. At the end of the compilation, the compiler undoes the replacement so that
the running parallel program uses the standard include files and libraries.

The preprocessor generates another unannotated, sequential C++ program. The system
runs thepC++2dep tool from the Sage++ package on this file. This tool parses the C++
file and generates adepfile. The dep file contains a representation of the program in the
Sage++ internal representation, which is based on abstract syntax trees.

The system then reads in the dep file and translates the Sage++ internal representation
to our own internal representation. Our representation is designed to support the symbolic
execution and expression manipulation algorithms. We also build an explicit call graph.
The compiler uses these data structures to perform the analysis as described in Section 4.
The implemented system also recognizes standard library functions such assqrt ,pow, etc.
The symbolic execution generates expressions that contain invocations of these functions.

The implemented compiler does not require the entire program to conform to the model
of computation described in Section 3. If part of the program fails to conform to the model,
the compiler simply marks it as unanalyzable and does not try to parallelize it. The presence
of unanalyzable code in one part of the program does not affect the ability of the compiler
to parallelize other parts of the program.

The analysis phase builds data structures that control the generation of parallel code.
These data structures refer back to the original Sage++ data structures. The code generation
traverses these data structures to generate the different versions of parallel methods. The
compiler uses a configuration file to control several code generation options. For our
benchmark programs, all of the compiler flags are the same. The end result of the code
generation is an explicitly parallel C++ program that contains calls to the run-time library.
It is possible to use any standard C++ compiler to generate machine code for this parallel
program.

6.2 Barnes-Hut

Barnes-Hut is representative of our target class of applications. It performs well, in part,
because it employs a sophisticated pointer-based data structure: a space subdivision tree
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that dramatically improves the efficiency of a key phase in the algorithm. And although
Barnes-Hut is considered to be an important, widely studied computation, all previously
existing parallel versions were parallelized by hand using low-level, explicitly parallel
programming systems [Salmon 1990; Singh 1993]. We are aware of no other compiler that
is capable of automatically parallelizing this computation.

The space subdivision tree organizes the data as follows. The bodies are stored at the
leaves of the tree; each internal node represents the center of mass of all bodies below that
node in the tree. Each iteration of the computation first constructs a new space subdivision
tree for the current positions of the bodies. It then computes the center of mass for all of
the internal nodes in the new tree. The force computation phase executes next; this phase
uses the space subdivision tree to compute the total force acting on each body. The final
phase uses the computed forces to update the positions of the bodies.

6.2.1 The Serial C++ Code.We obtained serial C++ code for this computation by ac-
quiring the explicitly parallel C version from the SPLASH-2 benchmark set, then removing
the parallel constructs to obtain a serial version written in C. We then translated the se-
rial C version into serial C++. The goal of the translation process was to obtain a clean
object-based program that conformed to the model of computation presented in Section 3.

As part of the translation, we eliminated several computations that dealt with parallel
execution. For example, the parallel version used costzones partitioning to schedule the
force computation phase [Singh 1993]. The serial version eliminated the costzones code
and the associated data structures. We also split a loop in the force computation phase into
three loops. This transformation exposed the concurrency in the force computation phase,
enabling the compiler to recognize that two of the resulting three loops could execute in
parallel. As part of this transformation, we also introduced a new instance variable into
the body class. The new variable holds the force acting on the body during the force
computation phase.

When we ran the C++ version, we discovered that abstractions introduced during the
translation process degraded the serial performance. We therefore hand optimized the
computation by removing abstractions in the performance-critical parts of the code until we
had restored the original performance. These optimizations do not affect the parallelization;
they simply improve the base performance of the computation.

We used the compiler to generate a parallel C++ version of the program. The compiler
performed the complete parallelization automatically; we performed none of the analysis,
transformations, or code generation by hand.

6.2.2 Application Statistics.The final C++ version consists of approximately 1500 lines
of code. The explicitly parallel version consists of approximately 1900 lines of code. The
compiler detects four parallel loops in the C++ code. Two of the loops are nested inside
other parallel loops, so the heuristic described in Section 5.2 suppresses the exploitation
of concurrency in these loops. The generated parallel version contains two parallel loops.
Table II presents several analysis statistics. For each parallel phase, it presents the number
of auxiliary call sites in the phase, the number of full methods in the phase, the number of
independent pairs of methods in the phase, and the number of pairs that the compiler had to
symbolically execute. All of the parallel phases have a significant number of auxiliary call
sites; the compiler would be unable to parallelize any of the phases if the commutativity-
testing phase included the auxiliary methods. Most of the pairs of invoked methods in the
phases are always independent, which means that the compiler has to symbolically execute
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relatively few pairs.

Table II. Analysis Statistics for Barnes-Hut

Parallel Auxiliary Extent Independent Symbolically
Phase Call Sites Size Pairs Executed Pairs

Velocity 5 3 5 1
Force 9 6 17 4

6.2.3 Compilation Time.We report compilation times for the compiler running on a
Sun Microsystems Ultra I computer system with 64 megabytes of main memory.
To compile Barnes-Hut, it takes 0:037 seconds to load in the data structures from the dep
file, 0:648 seconds to perform the analysis, and 0:77 seconds to generate the parallel code.
It is important to realize that these numbers come from a compiler that is currently under
development. We expect that the numbers may change in the future as we modify the
analysis algorithms. In particular, the compilation times may get longer as the compiler
uses more sophisticated algorithms. We also believe that, given the current state of the art
in parallelizing compilers, the performance of the compiler should be a secondary concern.
While we believe that compilation time will eventually become an important issue for
parallelizing compilers, at present the most important questions deal with functionality
(i.e., the raw ability of the compiler to extract the concurrency) rather than compilation
times.

6.2.4 Performance Results and Analysis.Table III presents the execution times for
Barnes-Hut. To eliminate cold-start effects, the instrumented computation omits the first
two iterations. In practice, the computation would perform many iterations, and the
amortized overhead of the first two iterations would be negligible. The column labeled
Serial contains the execution time for the serial C++ program. This program contains only
sequential C++ code and executes with no parallelization or synchronization overhead. The
rest of the columns contain the execution times for the automatically parallelized version.
Figure 19 presents thespeedupas a function of the number of processors executing the
computation. The speedup is the execution time of the serial C version divided by the
execution time of the parallel version. The computation scales reasonably well, exhibiting
speedups between 11 and 12 out of 16 processors.

Table III. Execution Times for Barnes-Hut (seconds)

Number Processors
of Bodies Serial 1 2 4 8 12 16

8192 66.5 67.7 34.1 17.0 9.9 7.2 5.9
16384 147.8 149.9 76.3 37.8 21.9 15.6 12.9

We start our analysis of the performance with the parallelism coverage [Hall et al. 1995],
which measures the amount of time that the serial computation spends in parallelized
sections. To obtain good parallel performance, the compiler must parallelize a substantial
part of the computation. By Amdahl’s law, any remaining serial sections of the computation
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Fig. 19. Speedup for Barnes-Hut.

impose an absolute limit on the parallel performance. For example, even if the compiler
parallelizes 90% of the computation,the parallel computation can run at most 10 times faster
than the serial computation. Table IV presents the parallelism coverage for Barnes-Hut;
these statistics show that the compiler is able to parallelize almost all of the computation.

Table IV. Parallelism Coverage for Barnes-Hut

Number Serial Compute Time in Parallelized Parallelism
of Bodies Time (seconds) Sections (seconds) Coverage

8192 66.52 66.21 98.03%
16384 147.76 145.06 98.17%

Good parallelism coverage is by itself no guarantee of good parallel performance. To
exploit parallelism, the compiler inevitably introduces synchronization and concurrency
management overhead. If the granularity of the generated parallel computation is too small
to successfully amortize the overhead, the parallel program will perform poorly even if it
has good parallelism coverage. A standard problem with traditional parallelizing compilers,
for example, has been the difficulty of successfully amortizing the barrier synchronization
overhead at each parallel loop [Tseng 1995]. Our prototype compiler introduces four
sources of overhead when it generates parallel code:

—Loop Overhead:The overhead generated by the execution of a parallel loop. Sources
of this overhead include the communication at the beginning of the loop to inform all
processors of the loop’s execution and barrier synchronization at the end of the loop.

—Chunk Overhead:The overhead associated with acquiring a chunk of parallel loop
iterations. Sources of this overhead include the computation that determines how many
iterations the processor will take, the update of a centralized counter that records which
iterations have yet to be assigned to a specific processor for execution, and the lock
constructs that make the chunk acquisition atomic.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.



Commutativity Analysis: A New Analysis Technique for Parallelizing Compilers � 31

—Iteration Overhead: The overhead generated by the execution of one iteration of a
parallel loop. This includes function call and argument unpacking overhead.

—Lock Overhead:The overhead generated by the lock constructs that the compiler auto-
matically inserts into methods.

We developed a benchmark program to measure the cost of each source of overhead.
Table V presents the results. The loop overhead increases with the number of processors;
the table presents the loop overhead on 16 processors.

Table V. Parallel Construct Overhead on 16-Processors (microseconds)

Loop Overhead Chunk Iteration Lock
On 16 Processors Overhead Overhead Overhead

171.4 27.85 0.39 4.75

For each source of overhead, the applications execute a corresponding piece of useful
work; the loop overhead is amortized by the parallel loop; the chunk overhead is amortized
by the chunk of iterations; the iteration overhead is amortized by the iteration, and the
lock overhead is amortized by the computation between lock acquisitions. The relative
size of each piece of work determines if the overhead will have a significant impact on the
performance. Table VI presents the mean sizes of the pieces of useful work for Barnes-Hut.
The numbers in the tables are computed as follows:

—Loop Size:The time spent in parallelized sections divided by the number of executed
parallel loops. A comparison with the Loop Overhead number in Table V shows that the
amortized loop overhead is negligible.

—Chunk Size:The time spent in parallelized sections divided by the total number of
chunks. Because the number of chunks tends to increase with the number of processors,
we report the chunk size on 16 processors. A comparison with the Chunk Overhead in
Table V shows that the amortized chunk overhead is negligible.

—Iteration Size: The time spent in parallelized sections divided by the total number of
iterations in executed parallel loops. A comparison with the Iteration Overhead in
Table V shows that the amortized iteration overhead is negligible.

—Task Size:The time spent in parallelized sections divided by the number of times that
operations acquire a lock. A comparison with the Lock Overhead in Table V shows that
the amortized lock overhead is negligible.

Table VI. Granularities for Barnes-Hut (microseconds)

Number Loop Chunk Size Iteration Task
of Bodies Size on 16 Processors Size Size

8192 22.07�106 182.40�103 2.69�103 2.69�103

16384 48.35�106 366.31�103 2.95�103 2.95�103

We instrumented the generated parallel code to measure how much time each processor
spends in different parts of the parallel computation. This instrumentation makes use of a
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low-overhead timer on the DASH machine. The run-time system measures the amount of
time spent in each section of the program by reading the timer at the beginning and end
of the section. This instrumentation breaks the execution time down into the following
categories:

—Parallel Idle: The amount of time the processor spends idle while the computation is in a
parallel section. Increases in the load imbalance show up as increases in this component.

—Serial Idle: The amount of time the processor spends idle when the computation is in
a serial section. Currently every processor except the main processor is idle during the
serial sections. This component therefore tends to increase linearly with the number of
processors, since the time the main processor spends in serial sections tends not to vary
dramatically with the number of processors executing the computation.

—Blocked: The amount of time the processor spends waiting to acquire a lock that an
operation executing on another processor has already acquired. Increases in contention
for objects are reflected in increases in this component of the time breakdown. Unlike
all of the other components of the time breakdown, we measure this component using
program-counter sampling [Graham et al. 1982; Knuth 1971]: we found that using
the timer to directly measure this component significantly perturbed the performance
results.7

—Parallel Compute:The amount of time the processor spends performing useful compu-
tation during a parallel section of the computation. This component also includes the
lock overhead associated with an operation’s first attempt to acquire a lock, but does not
include the time spent waiting for another processor to release the lock if the lock is not
available. Increases in the communication of application data during the parallel phases
show up as increases in this component.

—Serial Compute:The amount of time the processor spends performing useful compu-
tation in a serial section of the program. With the current parallelization strategy, the
main processor is the only processor that executes any useful work in a serial part of the
computation.

Given the execution time breakdown for each processor, we compute the cumulative time
breakdown by taking the sum over all processors of the execution time breakdown at that
processor. Figure 20 presents the cumulative time breakdowns as a function of the number
of processors executing the computation. The height of each bar in the graph represents
the total processing time required to execute the parallel program; the different gray scale
shades in each bar represent the different time breakdown categories. If a program scales
perfectly with the number of processors, then the height of the bar will remain constant as

7The key problem is that using the timer to measure the blocked component introduces an additional read of the
timer into the critical section implemented by the acquired lock. This instrumentation can significantly increase
the amount of time the processor spends holding the lock. Water is very sensitive to sizes of its critical regions, and
we found that using the timer to measure the blocked component significantly degraded the overall performance
of this application. We validated the use of program-counter sampling by using it to measure the parallel idle
component, which does not suffer from the instrumentation effects described above. We found that, for all parallel
programs and for all data sets, there was an excellent quantitative correlation between the parallel idle time
measured with program-counter sampling and the directly measured parallel idle time: the two measurements
never varied by more than 5%. These results give us confidence in the values obtained for the blocked component
using program-counter sampling.
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the number of processors increases.8
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Fig. 20. Cumulative time breakdowns for Barnes-Hut.

These graphs show that the limit on the performance is the time spent in the serial phases
of the computation: at 16 processors, the serial idle time accounts for approximately 30%
of the cumulative compute time for both applications.

6.2.5 Comparison with the Explicitly Parallel Version.Table VII contains the execution
times for the explicitly parallel version of Barnes-Hut. For small numbers of processors,
the automatically parallelized and explicitly parallel versions exhibit roughly comparable
performance. For larger numbers of processors, the explicitly parallel version performs
significantly better; at 16 processors it runs 37% faster for 8192 bodies and 25% faster for
16384 bodies than the automatically parallelized version. The largest contribution to the
performance difference is that the explicitly parallel version builds the space subdivision
tree in parallel, while the automatically parallelized version builds the tree serially. The
explicitly parallel version also uses an application-specific partitioning and scheduling
algorithm calledCostzones in the force computationphase [Singh 1993]. This algorithm
provides better locality than the guided self-scheduling algorithm in the automatically
parallelized version.

Number Processors
of Bodies 1 2 4 8 12 16

8192 70.8 34.4 16.3 8.2 5.5 4.3
16384 155.8 76.4 35.7 18.3 12.2 10.3

Table VII. Execution Times for Explicitly Parallel Barnes-Hut (seconds)

8There are some small discrepancies between the time breakdowns in Figure 20 and the execution times in Table III.
We attribute these discrepancies to the fact that the performance numbers come from different executions; the
time breakdowns come from a fully instrumented version of the code while the execution times come from a
minimally instrumented version.
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6.3 Water

Water computes the energy potential of a set of water molecules in the liquid state. The
main data structure is an array of molecule objects. Almost all of the compute time is
spent in twoO(N2) phases, whereN is the number of molecules. One phase computes
the total force acting on each molecule; the other phase computes the potential energy of
the collection of molecules.

6.3.1 The Serial C++ Code.The original source of Water is the Perfect Club benchmark
MDG, which is written in Fortran [Berry et al.1989]. Several students at Stanford University
translated this benchmark from Fortran to C as part of a class project. We obtained the
serial C++ version by translating this existing serial C version to C++.

As part of the translation process, we converted theO(N2) phases to use auxiliary
objects tailored for the way each phase accesses data. Before each phase, the computation
loads relevant data into an auxiliary object. At the end of the phase, the computation
unloads the computed values from the auxiliary object to update the molecule objects. This
modification increases the precision of the data usage analysis in the compiler, enabling the
compiler to recognize the concurrency in the phase.

We used the compiler to generate a parallel C++ version of the program. The compiler
performed the complete parallelization automatically; we performed none of the analysis,
transformations, or code generation by hand.

6.3.2 Application Statistics.The final C++ version consists of approximately 1850 lines
of code. The serial C version consists of approximately 1220 lines of code. The explicitly
parallel version in the SPLASH benchmark suite consists of approximately 1600 lines
of code. Much of the extra code in the C++ version comes from the pervasive use of
classes and encapsulation. Instead of directly accessing many of the data structures (as
the C versions do), the C++ version encapsulates data in classes and accesses the data via
accessor methods. The class declarations and accessor method definitions significantly
increase the size of the program. The use of a vector class instead of arrays of doubles, for
example, added approximately 230 lines of code.

The analysis finds a total of seven parallel loops. Two of the loops are nested inside
other parallel loops, so the generated parallel version contains five parallel loops. Table
VIII contains the analysis statistics. As for Barnes-Hut, all of the phases contain auxiliary
call sites, and most of the pairs in the extents are independent.

Table VIII. Analysis Statistics for Water

Parallel Auxiliary Extent Independent Symbolically
Phase Call Sites Size Pairs Executed Pairs

Virtual 9 3 5 1
Energy 1 5 14 1
Loading 5 2 2 1
Forces 3 4 9 1
Momenta 2 2 2 1
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6.3.3 Compilation Time.For Water, the compiler takes 0:087 seconds to load the inter-
mediate format, 1:443 seconds to perform the analysis, and 1:220 seconds to generate the
parallel code.

6.3.4 Performance Results and Analysis.Table IX contains the execution times for
Water. The measured computation omits initial and final I/O. In practice, the computation
would execute many iterations, and the amortized overhead of the I/O would be negligible.
Figure 21 presents the speedup curves. Water performs reasonably well, achieving a
speedup of over eight out of 16 processors for both data sets.

Table IX. Execution Times for Water (seconds)

Number Processors
of Molecules Serial 1 2 4 8 12 16

343 76.8 82.9 40.5 20.7 12.8 10.0 9.2
512 165.8 175.8 88.4 44.3 26.4 21.1 19.5
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Fig. 21. Speedup for Water.

Table X, which presents the parallelism coverage for this application, shows that the
compiler parallelizes almost all of the computation. Table XI shows that all of the sources
of overhead are negligible except for the lock overhead. The lock overhead by itself,
however, does not explain the lack of scalability.

Figure 22, which presents the cumulative time breakdowns for Water, clearly shows why
Water fails to scale beyond 12 processors. The fact that the blocked component grows
dramatically while all other components either grow relatively slowly or remain constant
indicates that contention for objects is the primary source of the lack of scalability. For this
application it should, in principle, be possible to automatically eliminate the contention by
replicating objects to enable conflict-free write access. We expect that this optimization
would dramatically improve the scalability.
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Table X. Parallelism Coverage for Water

Number of Serial Compute Time in Parallelized Parallelism
Molecules Time (seconds) Sections (seconds) Coverage

343 76.85 75.87 98.73%
512 165.82 164.05 98.94%

Table XI. Granularities for Water (microseconds)

Number of Loop Chunk Size Iteration Task
Molecules Size on 16 Processors Size Size

343 3.79�106 52.69�103 11.07�103 80.49
512 8.20�106 105.16�103 16.03�103 78.15
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Fig. 22. Cumulative time breakdowns for Water.

6.3.5 Comparison with the Explicitly Parallel Version.The SPLASH parallel bench-
mark set contains an explicitly parallel version of Water; Table XII contains the execution
times for this version. Unlike the automatically parallelized version, the explicitly parallel
version scales reasonably well to 16 processors. We attribute this difference to the fact that
the explicitly parallel version replicates several data structures, eliminating the contention
that limits the performance of the automatically parallelized version.

Table XII. Execution Times for Explicitly Parallel Water (seconds)

Number of Processors
Molecules 1 2 4 8 12 16

343 74.2 37.3 18.2 9.5 6.7 5.5
512 161.1 81.4 40.1 20.8 14.3 12.1

6.4 String

String uses seismic travel-time inversion to construct a two-dimensional discrete velocity
model of the geology between two oil wells. Each element of the velocity model records
how fast sound waves travel through the corresponding part of the geology. The seismic
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data are collected by firing non destructive wave sources in one well and recording the waves
digitally as they arrive at the other well. The travel times of the waves can be measured
from the resulting seismic traces. The application uses the travel-time data to iteratively
compute the velocity model. The computationally intensive phase of the application traces
rays from one well to the other. The velocity model determines both the simulated path
and the simulated travel time of each ray. The computation records the difference between
the simulated and the measured travel times and backprojects the difference linearly along
the path of the ray. At the end of the phase, the computation uses the backprojected
differences to construct an improved velocity model. The process continues for a specified
number of iterations. The serial computationstores the velocity model in a one-dimensional
array and the backprojected differences in another one-dimensional array. Each element
of the difference array stores the running sum of the backprojected differences for the
corresponding element of the velocity model. All updates to the difference array commute.

The analysis finds a total of five parallel loops. Two of the loops are nested inside other
parallel loops, so the generated parallel version contains three parallel loops. The important
parallel loop is the outermost loop in the phase that traces all the rays. This loop generates
all of the ray computations. For each ray, the computation determines whether or not the
ray falls within a given aperture angle and, if so, computes its propagation time through the
model. This computation generates multiple updates to the data structure that records the
difference between the simulated and measured travel times. The update operations use
synchronization constructs to make the update atomic; this is the only synchronization in
the parallel ray-tracing phase.

6.4.1 Application Statistics.The final C++ version consists of approximately 2100 lines
of code. The serial C version consists of approximately 2000 lines of code. The explicitly
parallel version consists of approximately 2400 lines of C code.

The analysis finds a total of five parallel loops. Two of the loops are nested inside other
parallel loops, so the generated parallel version contains three parallel loops. Table XIII
contains the analysis statistics. As for Barnes-Hut and Water, all of the phases contain
auxiliary call sites, and most of the pairs in the extents are independent.

Table XIII. Analysis Statistics for String

Parallel Auxiliary Extent Independent Symbolically
Phase Call Sites Size Pairs Executed Pairs

Project Forward 2 7 26 2
Project Backward 2 7 26 2
Slowness 1 4 8 2

6.4.2 Compilation Time.For String, the compiler takes 0:039 seconds to load the inter-
mediate format, 1:266 seconds to perform the analysis, and 0:834 seconds to generate the
parallel code.

6.4.3 Performance Results and Analysis.Table XIV contains the execution times for
String. The measured computation includes initial and final I/O. We have collected perfor-
mance results for this application for two input data sets, i.e., the small and big data sets.
The small data set does not correspond to a realistic production work load; it is instead
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designed solely for testing purposes. The big data set is representative of the production
data sets used for this application. Figure 23 presents the speedup curves. While String
performs very well for the big data set, for which is exhibits almost linear speedup, it does
not scale beyond four processors for the small data set.

Table XIV. Execution Times for String (seconds)

Data Processors
Set Serial 1 2 4 8 12 16

small 36.4 43.4 23.9 13.9 9.3 8.0 8.1
big 2181.3 2651.1 1333.8 663.9 337.1 230.2 171.6
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Fig. 23. Speedup for String.

Table XV, which presents the parallelism coverage for this application, shows that the
compiler parallelizes almost all of the computation for the big data set. For the small data
set the coverage is about 80%, which imposes a maximum speedup of 5. Table XVI shows
that all of the sources of overhead are negligible except for the lock overhead.

Figure 24, which presents the cumulative time breakdowns for String, clearly shows
why String fails to scale beyond four processors for the small data set. The fact that the
serial computation component is a significant portion of the total computation time for four
processors (approximately 30%) indicates that lack of parallelism is the primary source of
the lack of scalability for this data set.

6.4.4 Comparison with the Explicitly Parallel Version.We have developed an explicitly
parallel version of String using theANL macro package [Lusk et al. 1987]. Table XVII
contains the execution times for this version. For the small data set, the explicitly parallel
version does not scale beyond four processors. We attribute this lack of performance to a
lack of parallelism in the small data set. For the big data set, the explicitly parallel version
scales perfectly to 16 processors, outperforming the automatically parallelized version.
We attribute this difference to the fact that the explicitly parallel version replicates several
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Table XV. Parallelism Coverage for String

Data Serial Compute Time in Parallelized Parallelism
Set Time (seconds) Sections (seconds) Coverage

small 36.4 29.2 80.34%
big 2478.3 2468.4 99.60%

Table XVI. Granularities for String (microseconds)

Data Loop Chunk Size Iteration Task
Set Size on 16 Processors Size Size

small 14.60�106 202.78�103 37.92�103 78.89
big 411.40�106 5.71�106 1.07�106 81.50
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Fig. 24. Cumulative time breakdowns for String.

updated data structures. This replication eliminates two sources of overhead. First, because
each processor updates its own replica, the program does not need to execute locking
constructs to make the updates execute atomically. Second, the replication eliminates any
contention for shared objects.

Table XVII. Execution Times for Explicitly Parallel String (seconds)

Data Processors
Set 1 2 4 8 12 16

small 36.9 20.8 13.8 10.7 11.5 14.4
big 2119.1 1197.6 594.7 301.1 194.4 160.8

6.5 Caveats

The goal of our project is to enable programmers to exploit both the performance advan-
tages of parallel execution and the substantial programming advantages of the sequential
programming paradigm. We view the compiler as a tool that the programmer uses to obtain
reliable parallel execution with a minimum of effort. We expect that the programmer will
need a reasonable understanding of the compiler’s capabilities to use it effectively. In
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particular, we do not expect to develop a compiler capable of automatically parallelizing a
wide range of existing “dusty deck” programs.

Several aspects of our experimental methodology reflect this perspective. As part of
the translation process from C to C++, we ensured that the C++ program conformed to
the model of computation that the compiler was designed to analyze. We believe that
this approach accurately reflects how parallelizing compilers in general will be used in
practice. We expect that programmers may have to tune their programs to the capabilities
of the compiler to get good performance. The experience of other researchers supports this
hypothesis [Berry et al. 1989; Blume and Eigenmann 1992].

For all of our applications, it was relatively straightforward to produce code that the
compiler could successfully analyze. Almost all of the translation effort was devoted to
expressing the computation in a clean object-based style with classes, objects, and methods
instead of structures and procedures. The basic structure of the applications remains intact
in the final C++ versions, and the C++ versions have better encapsulation and modularity
properties than the C versions.

We selected Barnes-Hut, Water, and String as benchmark applications, in part, because
other researchers had developed explicitly parallel versions that performed well. We
therefore knew that it was possible, in principle, to parallelize the applications. The
question was whether commutativity analysis would be able to automatically discover
and exploit the concurrency. In general, we expect programmers to use the compiler to
parallelize applications that have enough inherent concurrency to keep the machine busy.

7. FUTURE RESEARCH

The ideas and results in this article suggest many possible directions for future research. In
this section, we briefly mention several future research directions.

7.1 Relative Commutativity

The current formulation of commutativity analysis is absolute. During the execution of
a parallelized section of code, the data structures in the parallel and serial versions may
diverge. But the compiler guarantees that, by the end of the parallel section, the data
structures in the two versions have converged to become identical.

This formulation is obviously overly conservative. To preserve the semantics of the serial
program, it is sufficient to preserve the property that the parallel and serial computations
generate data structures that are equivalent with respect to the rest of the computation. For
example, the output of the explicitly parallel tree construction algorithm in Barnes-Hut
depends on the relative execution speed of the different processors: different executions
on the same input may generate different data structures. But because all of these data
structures are equivalent with respect to the rest of the program, the program as a whole
executes deterministically.

It may be possible to extend commutativity analysis to automatically generate parallel
code for algorithms such as the tree construction algorithm in Barnes-Hut. The current
technique works well for algorithms that traverse pointer-based data structures. The com-
piler may need to extend the technique to recognize operations that commute relative to the
rest of the computation if it is to effectively parallelize algorithms that build pointer-based
data strcutures.
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7.2 Analysis Granularity

Our experience with auxiliary methods shows that the correct analysis granularity does not
always correspond to the granularity of methods in the source program. In both Water and
Barnes-Hut, the method granularity is too fine. For the analysis to succeed, it must coarsen
the granularity by conceptually integrating auxiliary methods into their callers. We expect a
generalized concept of auxiliary methods to eventually emerge,with the compiler promoting
the success of the analysis by partitioning the program at an appropriate granularity.

Several issues confront the designer of a partitioning algorithm. First, the analysis gran-
ularity interacts with the locking algorithm. If the analysis is performed at the granularity
of computations that manipulate multiple objects, the generated code may need to hold
multiple locks to make the computation atomic. The need to acquire these locks without
deadlock may complicate the code generation algorithm. This issue does not arise in the
current compiler because it analyzes the computation at the granularity of operations on
single objects and generates code that holds only a single lock at a time.

There is tradeoff between increased granularity and analyzability. Increasing the analysis
granularity may make it difficult for the compiler to extract expressions that accurately
denote the computed values. In some cases, the compiler may even need to analyze the
program at a finer granularity than the method granularity. This can happen, for example, if
a method contains an otherwise unanalyzable loop. Replacing the loop with a tail-recursive
method and analyzing the computation at that finer granularity may enable the analysis to
succeed.

Finally, coarsening the granularity may waste concurrency. The compiler must ensure
that it analyzes the computation at a granularity fine enough to expose a reasonable amount
of concurrency in the generated code.

7.3 A Message-Passing Implementation

The current compiler relies on the hardware to implement the abstraction of shared memory.
It is clearly feasible, however, to generate code for message-passing machines. The basic
required functionality is a software layer that uses message-passing primitives to implement
the abstraction of a single shared object store [Rinard 1994a; Scales and Lam 1994].
The key question is how well the generated code would perform on such a platform.
Message-passing machines have traditionally suffered from much higher communication
costs than shared-memory machines. Compilation research for message-passing machines
has therefore emphasized the development of data and computation placement algorithms
that minimize communication [Hiranandani et al. 1992]. Given the dynamic nature of
our target application set, the compiler would have to rely on dynamic techniques such as
replication and task migration to optimize the locality of the generated computation [Carlisle
and Rogers 1995; Rinard 1995].

8. RELATED WORK

One of the very first papers in the field of parallelizing compilers identifies the concept
of commuting computations as distinct from and more general than the concept of com-
putations that can execute concurrently [Bernstein 1966]. The commutativity conditions,
however, were formulated in terms of the variables that computations read and write and
were therefore very restrictive. In effect, the conditions relaxed the independence condi-
tions to allow commuting computations to write the same variable as long as no succeeding
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computation read the variable. Furthermore, that paper did not identify the possibility of
exploiting commutativity to parallelize computations.

The conditions presented in this article are much less restrictive. They require only that
commuting operations generate the same values in both execution orders: there is no other
restriction on how they read and write data.

Despite the early recognition of the concept of commuting computations, parallelizing
compiler research has focused almost exclusively on data dependence analysis and, to a
lesser extent, reduction analysis. The remainder of this section discusses related work
in symbolic execution and briefly surveys previous research in the area of parallelizing
compilers for computations that manipulate irregular or pointer-based data structures. We
also discuss reduction analysis and commuting operations in the context of parallel pro-
gramming languages.

8.1 Symbolic Execution

Symbolic execution is a classic technique in computer science [Clarke and Richardson
1981]. It has been applied to a wide range of problems, including program testing [Douglas
and Kemmerer 1994; King 1976], program verification [Dillon 1987a; 1987b], program
reduction [King 1981], and program optimization [Darlington 1972; Urschler 1974]. We
use symbolic execution as a tool to enable the application of commutativity analysis to
object-based programs.

Constructs that complicate the application of symbolic execution include pointers, arrays
andwhile loops. Our compiler, however, uses symbolic execution in a very structured
context, which eliminates some of the complications. For example, the compiler uses
symbolic execution only for pairs of symbolic operations that access the same object.
There is no need to deal with accesses through arbitrary pointers. Extent constants allow
the compiler to accurately represent values computed in auxiliary methods, even if it is not
possible to symbolically execute the auxiliary methods.

It is also possible for the compiler to avoid problems caused by loops. If the compiler
encountered a loop that it could not symbolically execute, it could simply replace the
loop with a symbolically executable tail-recursive method. It would then perform the
commutativity testing at the granularity of the individual loop iterations.

8.2 Data Dependence Analysis

Research on automatically parallelizing serial computations that manipulate pointer-based
data structures has focused on techniques that precisely represent the run-time topology
of the heap [Chase et al. 1990; Hendren et al. 1992; Larus and Hilfinger 1988; Plevyak
et al. 1993]. The idea is that the analysis can use this precise representation to discover
independent pieces of code. To recognize independent pieces of code, the compiler must
understand the global topology of the manipulated data structures [Hendren et al. 1992;
Larus and Hilfinger 1988]. It must therefore analyze the code that builds the data structures
and propagate the results of this analysis through the program to the section that uses the
data. A limitation of these techniques is an inherent inability to parallelize computations
that manipulate graphs. The aliases present in graphs preclude the static discovery of
independent pieces of code, forcing the compiler to generate serial code.

Commutativity analysis differs substantially from data dependence analysis in that it
neither depends on nor takes advantage of the global topology of the data structure. This
property enables commutativity analysis to parallelize computations that manipulate graphs.
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It also eliminates the need to analyze the data structure construction code. Commutativity
analysis may therefore be appropriate for computations that do not build the data structures
that they manipulate. An example of such a computation is a query that manipulates
persistent data stored in an object-oriented database. But insensitivity to the data structure
topology is not always an advantage. Standard code generation schemes for commutativity
analysis insert synchronization constructs to ensure that operations execute atomically.
These constructs impose unnecessary overhead when the operations access disjoint sets
of objects. If a compiler can use data dependence analysis to recognize that operations
are independent, it can generate parallel code that contains no synchronization constructs.
In the long run, we believe parallelizing compilers will incorporate both commutativity
analysis and data dependence analysis for pointer-based data structures, using each when
it is appropriate.

8.3 Reductions

Several existing compilers can recognize when a loop performs a reduction of many values
into a single value [Callahan 1991; Fisher and Ghuloum 1994; Ghuloum and Fisher 1995;
Pinter and Pinter 1991]. These compilers recognize when the reduction primitive (typically
addition) is associative. They then exploit this algebraic property to eliminate the data
dependence associated with the serial accumulation of values into the result. The generated
program computes the reduction in parallel. Researchers have recently generalized the basic
reduction recognition algorithms to recognize reductions of arrays instead of scalars. The
reported results indicate that this optimization is crucial for obtaining good performance
for the measured set of applications [Hall et al. 1995].

There are interesting connections between reduction analysis and commutativity analysis.
Many (but not all) of the computations that commutativity analysis is designed to parallelize
can be viewed as performing multiple reductions concurrently across a large data structure.
The need to exploit reductions in traditional data-parallel computations suggests that less
structured computations will require generalized but similar techniques.

8.4 Commuting Operations in Parallel Languages

Steele [1990] describes an explicitly parallel computing framework that includes primitive
commuting operations such as the addition of a number into an accumulator. The motivation
is to deliver a flexible system for parallel computing that guarantees deterministic execution.
He describes an enforcement mechanism that dynamically detects potential determinism
violations and mentions the possibility that a compiler could statically detect such violations.

There are two fundamental differences between Steele’s framework and commutativity
analysis: explicit parallelism as opposed to automatic parallelization and dynamic checking
as opposed to static recognition of commuting operations. Steele’s framework is designed
to deliver an improved explicitly parallel programming environment by guaranteeing de-
terministic execution. The goal of commutativity analysis is to preserve the sequential
programming paradigm while using parallel execution to deliver increased performance.
While deterministic execution is one of the most important advantages of the serial pro-
gramming paradigm, there are many others [Rinard 1994a; 1994b].

Commutativity analysis is also designed to recognize complex commuting operations that
may recursively invoke other operations. Steele’s framework focuses on atomic operations
that only update memory. In a dynamically checked, explicitly parallel framework, it is
natural to view the computation as a set of atomic operations on a mutable store. The
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concurrency generation is already explicit in the program, and the implementation must
check only that the generated primitive operations commute. But because a parallelizing
compiler must statically extract the concurrency, it has to convert the serial invocation of
operations into parallel execution. In this context, it becomes clear that the compiler must
reason about how operations are invoked as well as how they access memory.

The implicitly parallel programming language Jade explicitly supports the concept of
commuting operations on user-defined objects [Lam and Rinard 1991]. In this case, the
motivation is to extend the range of expressible computations while preserving deterministic
execution. It is the programmer’s responsibility to ensure that operations that are declared
to commute do in fact commute.

Lengauer and Hehner [1982] propose a programming methodology in which the pro-
grammer exposes concurrency by declaring semantic relations between different parts of
the program. One of these relations is that the parts of the program commute. The goal is
to help the implementation exploit concurrency while ensuring that the parallelization does
not change the semantics of the program.

Many concurrent object-oriented languages support the notion of mutually exclusive
operations on objects [Chandra et al. 1993; Yonezawa et al. 1986]. Although the concept
of commuting operations is never explicitly identified, the expectation is that all mutually
exclusive operations that may attempt to concurrently access the same object commute.

Unlike implementations of Jade and concurrent object-oriented programming languages,
a parallelizing compiler that uses commutativity analysis is responsible for verifying that
operations commute. The result is therefore guaranteed deterministic execution. If a Jade
program declares commuting operations, or if a program written in a concurrent object-
oriented programming language uses mutually exclusive methods, it is the programmer’s
responsibility to ensure that the operations commute.

9. CONCLUSION

The difficulty of developing explicitly parallel software limits the potential of parallel
computing. The problem is especially acute for irregular, dynamic computations that
manipulate pointer-based data structures such as graphs. Commutativity analysis addresses
this problem by promising to extend the reach of parallelizing compilers to include pointer-
based computations.

We have developed a parallelizing compiler that uses commutativity analysis as its main
analysis technique. We have used this compiler to automatically parallelize three complete
scientific applications. The performance of the generated code provides encouraging
evidence that commutativity analysis can serve as the basis for a successful parallelizing
compiler.
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APPENDIX

An appendix to this article is available in electronic form (PostScriptTM). Any of the
following methods may be used to obtain it; or see the inside back cover of a current issue
for up-to-date instructions.

—By anonymous ftp fromacm.org, file [pubs.journals.toplas.append]p1813.ps

—Send electronic mail tomailserve@acm.org containing the line
send [anonymous.pubs.journals.toplas.append]p1813.ps

—By Gopherfrom acm.org

—By anonymous ftp fromftp.cs.princeton.edu, file pub/toplas/append/p1813.ps

—Hardcopy fromArticle Express, for a fee: phone 800-238-3458, fax +1-516-997-0890,or
write 469 Union Avenue,Westbury NY 11550; and requestACM-TOPLAS-APPENDIX-1813.
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This appendix contains information on how to generate parallel executable programs for
the three applications studied in this article,barnes , water andstring . We describe
how to run each application, what files are generated, and how to interpret the output files.
For comparison purposes we have also provided, for each application, a sample of output
files we have obtained while running these parallel applications on the Stanford DASH
shared-memory multiprocessor.

This appendix folder is divided into two main folders, respectivelyrts andapps . The
rts folder contains the C source and include files for the run time system that supports the
execution of our compiler generated parallel programs. Theapps folder has one folders
for each of the applications, respectively,barnes , water andstring . For each of
these applications we have a folder with the source files, input files and output files for the
DASH multiprocessor.

Please read theREADMEfile in each of the folders for further directions on how to build
the run-time system and application executables.
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