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Abstract. We present a new purity and side effect analysis for Java
programs. A method is pure if it does not mutate any location that
exists in the program state right before the invocation of the method.
Our analysis is built on top of a combined pointer and escape analysis,
and is able to determine that methods are pure even when the methods
mutate the heap, provided they mutate only new objects.
Our analysis provides useful information even for impure methods. In
particular, it can recognize read-only parameters (a parameter is read-
only if the method does not mutate any objects transitively reachable
from the parameter) and safe parameters (a parameter is safe if it is
read-only and the method does not create any new externally visible heap
paths to objects transitively reachable from the parameter). The analysis
can also generate regular expressions that characterize the externally
visible heap locations that the method mutates.
We have implemented our analysis and used it to analyze several applica-
tions. Our results show that our analysis effectively recognizes a variety
of pure methods, including pure methods that allocate and mutate com-
plex auxiliary data structures.

1 Introduction

Accurate side effect information has several important applications. For example,
many program analyses need to understand how the execution of invoked meth-
ods may affect the information that the analysis maintains [15,17,20]. In program
understanding and documentation, the knowledge that a method is pure, or has
no externally visible side effects, is especially useful because it guarantees that in-
vocations of the method do not inadvertently interfere with other computations.
Pure methods can safely be used in program assertions and specifications [3,23].
As a final example, when model checking Java programs [11,12,34,36], the model
checker can reduce the search space by ignoring irrelevant interleavings between
pure methods, or, more generally, between methods that access disjoint parts of
the heap.

This paper presents a new method purity analysis for Java programs. This
analysis is built on top of a combined pointer and escape analysis that accurately
extracts a representation of the region of the heap that each method may access.



We use an updated version of the Whaley and Rinard pointer analysis [37].
The updated analysis retains many ideas from the original analysis, but has
been completely redesigned in order to allow the analysis correctness proof from
[31]. Our analysis conservatively tracks object creation, updates to the local
variables and updates to the object fields. This information enables our analysis
to distinguish objects allocated within the execution of a method from objects
that existed before the method was invoked.

Therefore, our analysis can check that a method is pure, in the sense that it
does not mutate any object that exists in the prestate, i.e., the program state
right before the method invocation; this is also the definition of purity adopted in
the Java Modeling Language (JML) [23]. This definition allows a pure method
to perform mutation on temporary objects (e.g., iterators) and/or construct
complex object structures and return them as a result.

Our analysis applies a more flexible purity criterion than previously imple-
mented purity analyses, e.g., [8,22], that consider a method to be pure only if it
does not perform any writes on heap locations at all, and does not invoke any
impure method.

Other researchers have used different pointer analyses to infer side effects [9,
18,27,30]. While our pointer analysis is not the only choice for the basis of a side
effect analysis, it has several advantages that recommend it for this task. First,
the analysis abstraction distinguishes between prestate objects and newly allo-
cated objects, enabling the support of a more general purity property. Second,
the additional information that the analysis computes can identify other useful
side effect information (see below). Third, our underlying pointer analysis has
already been proved correct [31], implemented, and used for a variety of tasks,
including optimizations like stack allocation and synchronization removal [37],
and modular reasoning about aspect-oriented programs [29].

Purity Generalizations. Even when a method is not pure, it may have some
useful generalized purity properties. For example, our analysis can recognize
read-only parameters; a parameter is read-only if the method does not mutate
any object reachable from the parameter. It can also recognize safe parameters;
a parameter is safe if it is read-only and the method does not create any new
externally visible heap paths to objects reachable from the parameter.

For compositionality reasons, our analysis examines each method once, under
the assumption that objects from the calling context are maximally unaliased.
The intraprocedural analysis computes a single parameterized result for each
method; the interprocedural analysis instantiates this result to take into account
the aliasing at each call site. Similarly, the clients of the analysis should use the
read-only/safe parameter information in the context of the aliasing information
at each call site.1 For example, to infer that a call to an impure method does not
mutate a specific object, one needs to check that the object is unreachable from
parameters that are not read-only. This is the common approach in detecting
and specifying read-only annotations for Java [2].

1 Our underlying pointer analysis already provides such aliasing information.



Here is an example scenario for using the safe parameter information: a types-
tate checker, e.g., [15], is a tool that tracks the state of objects and usually checks
the correct usage of finite state machine-like protocols. The typestate checker can
precisely track only the state of the objects for which all aliasing is statically
known. Consider the case of a method invocation that uses a tracked object in
the place of a safe parameter. As the typestate checker knows all aliasing to
the tracked object, it can check whether the tracked object is not aliased with
objects transitively reachable from non-safe arguments at the call site. In that
case, the typestate checker can rely on the fact that the method call does not
change the state of the object, and that it does not introduce new aliasing to
the object.

Finally, our analysis is capable of generating regular expressions that com-
pletely characterize the externally visible heap locations that a method mutates.
These regular expressions identify paths in the heap that start with a parameter
or static class field and end with a potentially mutated object field.

The side effect information that our analysis computes for impure methods —
read-only/safe parameters and the aforementioned regular expressions — can
provide many of the same benefits as the purity information because it enables
other program analyses and developers to bound the potential effects of an im-
pure method.

Contributions:

– Purity Analysis: We present a new analysis for finding pure methods in
unannotated Java programs. Unlike previously implemented purity analy-
ses, we track variable and field updates, and allow pure methods to mutate
newly allocated data structures. Our analysis therefore supports the use of
important programming constructs such as iterators in pure methods.

– Experience: We present our experience using our analysis to find pure
methods in a number of benchmark programs. We found that our analysis
was able to recognize the purity of methods that 1) were known to be pure,
but 2) were beyond the reach of previously implemented purity analyses
because they allocate and mutate complex internal data structures.

– Beyond Purity: Our analysis detects read-only and safe parameters. In
addition, our analysis generates regular expressions that conservatively ap-
proximate all externally visible locations that an impure method mutates.

Paper Structure: Section 2 introduces our analysis through an example. Sec-
tion 3 presents our analysis, and Section 4 shows how to interpret the raw analy-
sis results to infer useful side effect information. Section 5 presents experimental
results, Section 6 discusses related work, and Section 7 concludes.

2 Example

Figure 1 presents a sample Java program that manipulates singly linked lists.
Class List implements a list using cells of class Cell, and supports two opera-
tions: add(e) adds object e to a list, and iterator() returns an iterator over the



list elements.2 We also define a class Point for bidimensional points, and two
static methods that process lists of Points: Main.sumX(list) returns the sum of
the x coordinates of all points from list, and Main.flipAll(list) flips the x
and y coordinates of all points from list.

1 class List {
2 Cell head = null;
3 void add(Object e) {
4 head = new Cell(e, head);
5 }
6 Iterator iterator() {
7 return new ListItr(head);
8 }
9 }
10
11 class Cell {
12 Cell(Object d, Cell n) {
13 data = d; next = n;
14 }
15 Object data;
16 Cell next;
17 }
18
19 interface Iterator {
20 boolean hasNext();
21 Object next();
22 }
23
24 class ListItr implements Iterator {
25 ListItr(Cell head) {
26 cell = head;
27 }
28 Cell cell;
29 public boolean hasNext() {
30 return cell != null;
31 }
32 public Object next() {
33 Object result = cell.data;
34 cell = cell.next;
35 return result;
36 }
37 }

39 class Point {
40 Point(float x, float y) {
41 this.x = x; this.y = y;
42 }
43 float x, y;
44 void flip() {
45 float t = x; x = y; y = t;
46 }
47 }
48
49 class Main {
50 static float sumX(List list) {
51 float s = 0;
52 Iterator it = list.iterator();
53 while(it.hasNext()) {
54 Point p = (Point) it.next();
55 s += p.x;
56 }
57 return s;
58 }
59
60 static void flipAll(List list) {
61 Iterator it = list.iterator();
62 while(it.hasNext()) {
63 Point p = (Point) it.next();
64 p.flip();
65 }
66 }
67
68 public static void main(String args[]) {
69 List list = new List();
70 list.add(new Point(1,2));
71 list.add(new Point(2,3));
72 sumX(list);
73 flipAll(list);
74 }
75 }

Fig. 1. Sample Code for Section 2.

Method sumX iterates over the list elements by repeatedly invoking the next()
method of the list iterator. The method next() is impure, because it mutates
the state of the iterator; in our implementation, it mutates the field cell of the
iterator. However, the iterator is an auxiliary object that did not exist at the
beginning of sumX. Our analysis is able to infer that sumX is pure, in spite of
the mutation on the iterator. Our analysis is also able to infer that the impure
method flipAll mutates only locations that are accessible in the prestate3 along
paths that match the regular expression list.head.next*.data.(x|y).

2 In real code, the classes Cell and ListItr would be implemented as inner classes of
List; we use a flat format for simplicity.

3 I.e., the state of the program right before the execution of an invoked method.
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Fig. 2. Points-To Graph for the end of Main.sumX(List)

2.1 Analysis Overview

For each method m and for each program point inside m, the analysis computes
a points-to graph that models the part of the heap that the method m accesses
up to that program point. During the analysis of method m, the analysis scope
contains m and its transitive callees. Figure 2 presents the points-to graph for
the end of Main.sumX(List).

The nodes from the points-to graphs model heap objects. The inside nodes
model the objects created by the analyzed method; there is one inside node for
each allocation site; this node models all objects allocated at that site during
the current execution of the analyzed method. The parameter nodes model the
objects passed as arguments; there is one parameter node for each formal pa-
rameter of object type (i.e., not an int, boolean, etc.). The load nodes model
the objects read from outside the method; there is at most one load node for
each load instruction. In Fig. 2, the parameter node P12 models the List object
pointed by the formal parameter list, the inside node I2 models the iterator
allocated to iterate over the list, and the load node L6 represents the first list
cell (read from P12 by the invoked method List.iterator, at line 7). For each
analyzed program, the number of nodes is bounded, ensuring the termination of
our fixed-point computations.

The edges from the points-to graphs model heap references; each edge is la-
beled with the field it corresponds to. We write 〈n1, f, n2〉 to denote an edge from
n1 to n2, labeled with the field f; intuitively, this edge models a reference from
an object that n1 models to a node that n2 models, along field f. The analysis
uses two kinds of edges: the inside edges model the heap references created by
the analyzed method, while the outside edges model the heap references read by
the analyzed method from escaped objects. An object escapes if it is reachable
from outside the analyzed method (e.g., from one of the parameters); otherwise,
the object is captured. An outside edge always ends in a load node. In Fig. 2, the
outside edge 〈P12, head, L6〉 models a reference read from the escaped node P12;
the inside edges 〈I2, cell, L6〉 and 〈I2, cell, L5〉 model the references created by
sumX4 from the iterator I2 to the first, respectively to the next list cells. “Loop”

4 Indirectly, through the iterator-related methods it invokes.
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Fig. 3. Analysis results for several simple methods. We use the conventions from Fig. 2.

edges like 〈L5, next, L5〉 are typical for methods that manipulate recursive data
structures.

For each method m, the analysis also computes a set W m containing the
modified abstract fields that are externally visible (the term will become clear
later in this section). An abstract field is a field of a specific node, i.e., a pair of
the form 〈n, f〉. There are no externally visible modified fields for Main.sumX.

The analysis examines methods starting with the leaves of the call graph. The
analysis examines each method m without knowing m’s calling context. Instead,
the analysis uses parameter/load nodes to abstract over unknown nodes, and
computes a single parameterized result for m. This result is later instantiated
for the aliasing relation at each call site that may invoke m; the interprocedural
analysis contains an algorithm that disambiguates parameter/load nodes. Nor-
mally, the analysis processes each method once; still, recursive methods may
require several analysis passes in order to reach a fixed point.

2.2 Analysis of the Example

Figure 3.a presents the analysis results for the end of the constructor of class
Cell. The analysis uses the parameter nodes P2, P3, and P4 to model the objects
that the three parameters — this5, d, and n — point to. The analysis uses inside
edges to model the references that the Cell constructor creates from P2 to P3
and P4. The constructor of Cell mutates the fields data and next of P2.

Parts b and c of Fig. 3 present the analysis results at different points inside
the method List.add. The analysis of method List.add uses the parameter node
P5 to model the this object (the list we add to), and the parameter node P6
to model the object to add to the list. The method reads the field this.head.
The analysis does not know what this.head points to in the calling context.
Instead, the analysis uses the load node L1 to model the loaded object and adds
the outside edge 〈P5, head, L1〉. Next, the method allocates a new Cell, that we
model with the inside node I1 (see Fig. 3.b), and calls the Cell constructor with
the arguments I1, P6, and L1. Based on the points-to graph before the call, and
the points-to graph for the invoked constructor (Fig. 3.a), the analysis maps each

5 For each non-static Java method, the parameter this points to the receiver object.



parameter node from the Cell constructor to one or more corresponding nodes
from the calling context. In this case, P2 maps to (i.e., stands for) I1, P3 maps
to P6, and P4 maps to L1. The analysis uses the node mapping to incorporate
information from the points-to graph of the Cell constructor: the inside edge
〈P2, data, P3〉 translates into the inside edge 〈I1, data, P6〉. Similarly, we have
the inside edge 〈I1, next, L1〉. As P2 stands for I1, the analysis knows that the
fields data and next of I1 are mutated. However, I1 represents a new object,
that did not exist in the prestate; hence, we can ignore the mutation of I1. This
illustrates two features of our analysis: 1) the analysis propagates mutations
interprocedurally, using the mappings for the callee nodes and 2) the analysis
ignores mutations on inside nodes. Finally, the analysis of List.add adds the
inside edge 〈P5, head, I1〉, and records the mutation on the field head of P5.
Figure 3.c presents the result for the end of the method.

The analysis of the rest of the program proceeds in a similar fashion (see [32,
Section 2] for the full details). Figure 2 presents the points-to graph for the
end of Main.sumX (the set of modified abstract fields is empty). The results for
Main.flipAll are similar to those for Main.sumX, with the important difference
that the method flipAll mutates the fields x and y or node L4.

Analysis Results: For the method Main.sumX, the analysis does not detect any
mutation on the prestate. Therefore, the method sumX is pure, and we can freely
use it in assertions and specifications.

The analysis detects that the method Main.flipAll is not pure, due to the
mutations on the node L4 that is transitively loaded from the parameter P12.
Still, the analysis is able to conservatively describe the set of modified prestate
locations: these are locations that are reachable from P12 (the only parameter),
along paths of outside edges. These paths are generated by the regular expres-
sion head.next*.data. Hence, flipAll may modify only the prestate locations
reachable along a path that matches list.head.next*.data.(x|y). We can
still propagate information across calls to flipAll, as long as the information
refers only to other locations. For example, as none of the list cells matches the
aforementioned regular expression (by a simple type reasoning), the list spine
itself is not affected, and we can propagate list non-emptiness across calls to
flipAll.

3 Analysis

This section continues the presentation of the analysis that we started in Sec. 2.1.
Due to space constraints, we give an informal presentation of the analysis. A
formal presentation is available in a companion technical report [32].

In addition to the points-to relation, each points-to graph records the nodes
that escape globally, i.e., those nodes that are potentially accessed by unknown
code: nodes passed as arguments to native methods and nodes pointed from
static fields; in addition, any node that is transitively reachable from these nodes
along inside/outside edges escapes globally too. The analysis has to be very



conservative about these nodes: in particular, they can be mutated by unknown
code. We use the additional special node nGBL as a placeholder for other unknown
globally escaping nodes: nodes loaded from a static field and nodes returned from
an unanalyzable/native method.

3.1 Intraprocedural analysis

At the start of each method, each object-type parameter (i.e., not an int,
boolean, etc.) points to its corresponding parameter node. Next, our analy-
sis propagates information along the control flow edges, using transfer functions
to abstractly interpret [13] statements from the analyzed program. At control
flow join points, the analysis merges the incoming points-to graphs: e.g., the
resulting points-to graph contains any edge that exists in one or more of the
incoming points-to graphs. The analysis iterates over loops until it reaches a
fixed point.

As a general rule, we perform strong updates on variables, i.e., assigning
something to a variable removes its previous values, and weak updates on node
fields, i.e., the analysis of a store statement that creates a new edge from n1.f
leaves the previous edges in place. Because n1 may represent multiple objects,
all of these edges may be required to correctly represent all of the references that
may exist in the heap.

A copy statement “v1 = v2” makes v1 point to all nodes that v2 points to.
A new statement “v = new C” makes v point to the inside node attached to
that statement. For a store statement “v1.f = v2”, the analysis introduces an
f-labeled inside edge from each node to which v1 points to each node to which
v2 points.

The case of a load statement “v1 = v2.f” is more complex. First, after the
load, v1 points to all the nodes that were pointed by an inside edge from v2.f.
If one of the nodes that v2 points to, say n2, escapes, a parallel thread or an
unanalyzed method may create new edges from n2.f, edges that point to objects
created outside the analysis domain. The analysis represents these objects using
the load node nL attached to this load statement. The analysis sets v1 to point
to nL too, and introduces an outside edge from n2 to nL. The interprocedural
analysis uses this outside edge to find nodes from the calling context that may
have been loaded at this load statement.

3.2 Interprocedural analysis

For each call statement “vR = v0.s(v1, . . . , vj)”, the analysis uses the points-
to graph G before the call and the points-to graph Gcallee from the end of
the invoked method callee to compute a points-to graph for the program point
after the call. If there are multiple possible callees (this may happen because of
dynamic dispatch), the analysis considers all of them and merges the resulting
set of points-to graphs.

The interprocedural analysis operates in two steps. First, the analysis com-
putes a node mapping that maps the parameter and load nodes from the callee
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Fig. 4. Rules for the construction of the interprocedural node mapping.

to the nodes they may represent. Next, the analysis uses the node mapping to
project Gcallee and merge it with the points-to graph from before the call.

Due to space constraints, we describe only the construction of the node map-
ping, and we refer the reader to [32] for an in-depth description of the second
step. Intuitively, the second step projects the callee graph through the node
mapping, and next merges the result with the graph before the call.

Initially, the analysis maps each parameter node to the nodes to which the
corresponding actual argument points. It then repeatedly applies the two rules
from Fig. 4 to match outside edges (from read operations) against inside edges
(from corresponding write operations) and discover additional node mappings,
until a fixed point is reached. The first rule matches outside edges from the callee
against inside edges from the caller. This rule handles the case when the callee
reads data from the calling context. If node n1 maps to node n2, we map each
outside edge 〈n1, f, n3〉 from Gcallee against each inside edge 〈n2, f, n4〉 from G,
and add a mapping from n3 to n4. The second rule maps outside and inside
edges from the callee. This rule handles the unknown aliasing introduced at the
calling context. If nodes n1 and n2 have a common mapping, or one of them is
mapped to the other one, they may represent the same location. This potential
aliasing was unknown during the analysis of the callee, and we have to handle it
now. Therefore, we match each callee outside edge 〈n1, f, n3〉 from Gcallee against
each callee inside edge 〈n2, f, n4〉 and map n3 to n4, and to all nodes that n4

maps to.

3.3 Effect Analysis

We piggy-back the side-effect analysis on top of the pointer analysis described
in the previous two sections. For each analyzed method m, the analysis main-
tains a set W m containing the abstract fields (pairs of nodes and fields) that
m mutates. The set W m is initialized to the empty set. Each time the analysis
of m encounters an instruction that writes a heap field, it records into W m the
relevant field and node(s). For example, the analysis of the Cell constructor
records the mutations of 〈P2, data〉 and 〈P2, next〉.



The analysis propagates effects interprocedurally as follows: when the anal-
ysis of method m encounters a call instruction, it uses the interprocedural node
mapping to project the effects of the callee and include these effects in the
set W m . For example, when the analysis of List.add encounters the call to
the Cell constructor, as P2 from the constructor maps to I1, the constructor’s
effects {〈P2, data〉, 〈P2, next〉} are projected into {〈I1, data〉, 〈I1, next〉}. How-
ever, these abstract fields are not added to W List.add because of the following
additional rule: the analysis does not record mutations on inside nodes — these
nodes represent new objects that do not exist in the prestate.

4 Inferring the Side Effect Information

After the analysis terminates, for each analyzable method m, we can use the
points-to graph G for the end of m, and the set W m of modified abstract fields
to infer method purity, read-only parameters, safe parameters, and write effects.
We explain each such application in the next paragraphs.

Method Purity. To check whether m is pure, we compute the set A of nodes
that are reachable in G from parameter nodes, along outside edges. These nodes
represent prestate objects read by the method. The method m is pure iff ∀n ∈ A,
1) n does not escape globally, and 2) no field of n is mutated, i.e., ∀f.〈n, f〉 6∈ W m .

For constructors, we can follow the JML convention of allowing a pure con-
structor to mutate fields of the “this” object: it suffices to ignore all modified
abstract fields for the parameter node that corresponds to the “this” parameter.

Read-Only Parameters. A parameter p is read-only iff none of the locations
transitively reachable from p is mutated. To check this, consider the correspond-
ing parameter node np , and let S1 be the set that contains np and all the load
nodes reachable from np along outside edges. Parameter p is read-only iff 1)
there is no abstract field 〈n, f〉 ∈ W m such that n ∈ S1, and 2) no node from S1

escapes globally.

Safe Parameters. A parameter p is safe iff it is read-only and the method
m does not create any new externally visible heap paths to an object transi-
tively reachable from p. To detect whether a read-only parameter p is safe, we
compute, as before, the set S1 that contains the corresponding parameter node
np and all the load nodes reachable from np along outside edges. We also com-
pute the set S2 of nodes reachable from the parameter nodes and/or from the
returned nodes, along inside/outside edges; S2 contains all nodes from G that
may be reachable from the caller after the end of m. To check the absence of
a new externally visible path to an object reachable from p, it suffices to check
the absence of any inside edges from nodes in S2 to nodes in S1.

Write Effects. We can infer regular expressions that describe all the
prestate locations modified by m as follows: we construct a finite state automa-



ton F with the following states: 1) all the nodes from the points-to graph G,
2) an initial state s, and 3) an accepting state t. Each outside edge from G
generates a transition in F , labeled with the field that labels the outside edge.
For each parameter p of m, we create a transition from s to the corresponding
parameter node, and label it with the parameter p. For each mutated abstract
field 〈n, f〉, we add a transition from n to the accepting state t, and label it with
the field f. In addition, for each globally escaped node n, we add a transition
from n to t, and label it with the special field REACH. The heap path P.PATH
matches all objects that are transitively reachable from an object that matches
P.

The regular expression that corresponds to the constructed automaton F
describes all modified prestate locations. We can use automaton-minimization
algorithms to try to reduce the size of the generated regular expression.

Note: The generated regular expression is valid if G does not contain an
inside edge and a load edge with the same label. This condition guarantees
that the heap references modeled by the outside edges exist in the prestate
(the regular expressions are supposed to be interpreted in the prestate). An
interesting example that exhibits this problem is presented in [33]. If this “bad”
situation occurs, we conservatively generate a regular expression that covers all
nodes reachable from all parameters, with the help of the REACH field.

5 Experience

We implemented our analysis in the MIT Flex compiler infrastructure [1], a
static compiler for Java bytecode. To increase the analysis precision (e.g., by
reducing the number of nodes that are mistakenly reported as globally escaped
and therefore mutated) we manually provide the points-to graphs for several
common native methods. Also, we attach type information to nodes, in order
to prevent type-incorrect edges, and avoid inter-procedural mappings between
nodes of conflicting types.

5.1 Checking Purity of Data Structure Consistency Predicates

We ran our analysis on several benchmarks borrowed from the Korat project [3,
26]. Korat is a tool that generates non-isomorphic test cases up to a finite bound.
Korat’s input consists of 1) a type declaration of a data structure, 2) a finitization
(e.g., at most 10 objects of type A and 5 objects of type B), and 3) repOk, a pure
boolean predicate written in Java that checks the consistency of the internal
representation of the data structure. Given these inputs, Korat generates all
non-isomorphic data structures that satisfy the repOk predicate. Korat does so
efficiently, by monitoring the execution of the repOk predicate and back-tracking
only over those parts of the data structure that repOk actually reads.

Korat relies on the purity of the repOk predicates but cannot statically check
this. Writing repOk-like predicates is considered good software engineering prac-
tice; during the development of the data structure, programmers can write as-
sertions that use repOk to check the data structure consistency. Programmers do



not want assertions to change the semantics of the program, other than abort-
ing the program when it violates an assertion. The use of repOk in assertions
provides additional motivation for checking the purity of repOk methods.

We analyzed the repOk methods for the following data structures:

BinarySearchTree - Binary tree that implements a set of comparable keys.
DisjSet - Array-based implementation of the fast union-find data structure,

using path compression and rank estimation heuristics to improve efficiency
of find operations.

HeapArray - Array-based implementation of heaps (priority queues).
BinomialHeap and FibonacciHeap - Alternative heap implementations.
LinkedList - Doubly-linked lists from the the Java Collections Framework.
TreeMap - Implementation of the Map interface using red-black trees.
HashSet - Implementation of the Set interface, backed by a hash table.

LinkedList, TreeMap, and HashSet are from the standard Java Library. The
only change the Korat developers performed was to add the corresponding repOk
methods. The repOk methods use complex auxiliary data structures: sets, linked
lists, wrapper objects, etc. (see [32, Appendix A] for an example). Checking
the purity of these methods is beyond the reach of simple purity checkers that
prohibit pure methods to call impure methods, or to do any heap mutation.

The first problem we faced while analyzing the data structures is that our
analysis is a whole-program analysis that operates under a closed world as-
sumption: in particular, it needs to know the entire class hierarchy in order to
infer the call graph. Therefore, we should either 1) give the analysis a whole
program (clearly impossible in this case), or 2) describe the rest of the world
to the analysis. In our case, we need to describe to the analysis the objects
that can be put in the data structures. The methods that our data struc-
ture implementations invoke on the data structure elements are overriders of
the following methods: java.lang.Object.equals, java.lang.Object.hashCode,
java.util.Comparable.compareTo, and java.lang.Object.toString.

We call these methods, and all methods that override them, special methods.
We specified to the analysis that these methods are pure and all their parameters
are safe.6 Therefore, these methods do not mutate their parameters and do not
introduce new externally visible aliasing. Hence, the analysis can simply ignore
calls to these methods (even dynamically dispatched calls).7

We ran the analysis and analyzed the repOk methods for all the data struc-
tures, and all the methods transitively called from these methods. The analysis
was able to verify that all repOk methods mutate only new objects, and are
therefore pure. On a Pentium 4 @ 2.8Ghz with 1Gb RAM, our analysis took
between 3 and 9 seconds for each analyzed data structure.

6 These assumptions correspond to the common intuition about the special methods.
E.g., we do not expect equals to change the objects it compares.

7 Additional processing is required to model the result of the toString special meth-
ods: as Strings are supposed to be values, each call to toString is treated as an
object creation site. The other special methods return primitive values.



Application Description

BH Barnes-Hut N-body solver

BiSort Bitonic Sort

Em3d Simulation of electromagnetic waves

Health Health-care system simulation

MST Bentley’s algorithm for minimum spanning tree in a graph

Perimeter Computes region perimeters in an image represented as a quad-tree

Power Maximizes the economic efficiency of a community of power consumers

TSP Randomized algorithm for the traveling salesman problem

TreeAdd Recursive depth-first traversal of a tree to sum the node values

Voronoi Voronoi diagram for random set of points

Table 1. Java Olden benchmark applications.

Of course, our results are valid only if our assumptions about the special
methods are true. Our tool tries to verify our assumptions for all the special
methods that the analysis encountered. Unfortunately, some of these meth-
ods use caches for performance reasons, and are not pure. For example, sev-
eral classes cache their hashcode; other classes cache more complex data, e.g.,
java.util.AbstractMap caches its set of keys and entries (these caches are nul-
lified each time a map update is performed).

Fortunately, our analysis can tell us which memory locations the mutation
affects. We manually examined the output of the analysis, and checked that all
the fields mutated by impure special methods correspond to caching.

Discussion. In order to analyze complex data structures that use the real Java
library, we had to sacrifice soundness. More specifically, we had to trust that
the caching mechanism used by several classes from the Java library has only a
performance impact, and is otherwise semantically preserving. We believe that
making reasonable assumptions about the unknown code in order to check com-
plex known code is a good tradeoff. As our experience shows, knowing why ex-
actly a method is impure is useful in practice: this feature allows us to identify
(and ignore) benign mutation related to caching.

5.2 Pure Methods in the Java Olden Benchmark Suite

We also ran the purity analysis on the applications from the Java Olden bench-
mark suite [6,7]. Table 1 presents a short description of the Java Olden applica-
tions. On a Pentium 4 @ 2.8Ghz with 1Gb RAM, the analysis time ranges from
3.4 seconds for TreeAdd to 7.2 seconds for Voronoi. In each case, the analysis
processed all methods, user and library, that may be transitively invoked from
the main method.

Table 2 presents the results of our purity analysis. For each application, we
counted the total number of methods (user and library), and the total number



Application All Methods User Methods
count % pure count % pure

BH 264 55% 59 47%

BiSort 214 57% 13 38%

Em3d 228 55% 20 40%

Health 231 57% 27 48%

MST 230 58% 31 54%

Perimeter 236 63% 37 89%

Power 224 53% 29 31%

TSP 220 56% 14 35%

TreeAdd 203 58% 5 40%

Voronoi 308 62% 70 71%
Table 2. Percentage of Pure Methods in the Java Olden benchmarks.

of user methods. For each category, we present the percentage of pure methods,
as detected by our analysis. Following the JML convention, we consider that
constructors that mutate only fields of the “this” objects are pure. As the data
from Table 2 shows, our analysis is able to find large numbers of pure methods
in Java applications. Most of the applications have similar percentages of pure
methods, because most of them use the same library methods. The variation
is much larger for the user methods, ranging from 31% for Power to 89% for
Perimeter.

6 Related Work

Modern research on effect inference stems from the seminal work of Gifford et
al on type and effect systems [19, 25] for mostly functional languages. More re-
cent research on effects is usually done in the context of program specification
and verification. JML is a behavioral specification language for Java [5] that
allows annotations containing invocations of pure methods. JML also allows the
user to specify “assignable” locations, i.e., locations that a method can mu-
tate [28]. Currently, the purity and assignable clauses are either not checked or
are checked using very conservative analyses: e.g., a method is pure iff 1) it does
not do I/O, 2) it does not write any heap field, and 3) it does not invoke impure
methods [22]. ESC/Java [16] is a tool for statically checking JML-like annota-
tions of Java programs. ESC/Java uses a theorem prover to do modular checking
of the provided annotations. A major source of unsoundness in ESC/Java is the
fact that the tool uses purity and modifies annotations, but does not check them.

Several approaches to solve this problem rely on user-provided annotations;
we mention here the work on data groups from [21, 24], and the use of region
types [14, 35] and/or ownership types [4, 10] for specifying effects at the granu-
larity of regions/ownership boundaries. In general, annotation-based approaches
are well suited for modular checking; they also provide abstraction mechanisms
to hide representation details.



Analysis-based approaches like ours are appealing because they do not require
additional user annotations. Even in situations where annotations are desired
(e.g., to facilitate modular checking), static analysis can still be used to give the
user a hint of what the annotations should look like. We briefly discuss several
related analyses.

ChAsE [8] is a syntactic tool for modular checking of JML assignable
clauses. For each method, the tool traverses the method code and collects write
effects; for method invocation, ChAsE uses the assignable clauses from the
callee specification. Although lightweight and useful in many practical situa-
tions, ChAsE is an unsound syntactic tool; in particular, unlike our analysis, it
does not keep track of the values / points-to relation of variables and fields, and
ignores all aliasing. Some of these problems are discussed in [33]. [33] contains
compelling evidence that a static analysis for this purpose should propagate not
only the set of mutated locations, but also information about the new values
stored in those locations; otherwise, the analysis results are either unsound or
overly-conservative. Our analysis uses the set of inside edges to keep track of the
new value of pointer fields. Unfortunately, we are unaware of an implementation
of the analysis proposed in [33].

Other researchers [9, 18, 27, 30], have already considered the use of pointer
analysis while inferring side effects. Unlike these previous analyses, our analysis
uses a separate abstraction (the inside nodes) for the objects allocated by the
current invocation of the analyzed method. Therefore, our analysis focuses on
prestate mutation and supports pure methods that mutate newly allocated ob-
jects. [30] offers evidence that almost all pure methods can be detected using a
very simple pointer analysis. However, the method purity definition used in [30]
is more rigid than ours; for example, pure methods from [30] are not allowed to
construct and return new objects.

Fugue [15] is a tool that tracks the correct usage of finite state machine-like
protocols. Fugue requires annotations that specify the state of the tracked ob-
jects on method entry/exit. All aliasing to the tracked objects must be stat-
ically known. Many library methods 1) do not do anything relevant to the
checked protocol, and 2) are too tedious to annotate. Hence, Fugue tries to
find “[NonEscaping]” parameters that are equivalent to our safe parameters.
The current analysis/type checking algorithm from Fugue is very conservative
as it does not allow a reference to a “[NonEscaping]” object to be stored in fields
of locally captured objects (e.g., iterators).

Javari [2] is an extension to Java that allows the programmer to specify const
(i.e., read-only) parameters and fields. A type checker checks the programmer
annotations. To cope with caches in real applications, Javari allows the program-
mer to declare mutable fields; such fields can be mutated even when they belong
to a const object. Of course, the mutable annotation must be used with extreme
caution. Our solution is to expose the mutation on caches to the programmer,
and let the programmer judge whether the mutation is allowed or not. Our tool
could complement Javari by inferring read-only parameters for legacy code.



7 Conclusions

Recognizing method purity is important for a variety of program analysis and
understanding tasks. We presented the first implemented method purity analysis
for Java that is capable of recognizing pure methods that mutate newly allocated
objects. Because this analysis produces a precise characterization of the accessed
region of the heap, it can also recognize generalized purity properties such as
read-only and safe parameters. Our experience using our implemented analysis
indicates that it can effectively recognize many complex pure methods.
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