
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2010-027 May 14, 2010

Power-Aware Computing with Dynamic Knobs
Henry Hoffmann, Stelios Sidiroglou, Michael
Carbin, Sasa Misailovic, Anant Agarwal, and
Martin Rinard

Dynamic Knobs for Power-Aware Computing

Henry Hoffmann∗ Stelios Sidiroglou∗ Michael Carbin Sasa Misailovic
Anant Agarwal Martin Rinard

Computer Science and Artificial Intelligence Laboratory
{hank,stelios,mcarbin,sasa,agarwal,rinard}@csail.mit.edu

Abstract
We present PowerDial, a system for dynamically

adapting application behavior to execute successfully in
the face of load and power fluctuations. PowerDial trans-
forms static configuration parameters into dynamic knobs
that the PowerDial control system can manipulate to dy-
namically trade off the accuracy of the computation in
return for reductions in the computational resources that
the application requires to produce its results. These re-
ductions translate into power savings.

Our experimental results show that PowerDial can en-
able our benchmark applications to execute responsively
in the face of power caps (imposed, for example, in re-
sponse to cooling system failures) that would otherwise
significantly impair the delivered performance. They
also show that PowerDial can reduce the number of ma-
chines required to meet peak load, in our experiments
enabling up to a 75% reduction in direct power and cap-
ital costs.

1 Introduction
Energy efficiency is a first-order concern in the design
of a range of computer systems. For mobile devices
battery life is a primary issue. For embedded devices
thermal constraints often limit peak power consumption.
And power issues affect virtually every aspect of data
center management, including operating expenses (e.g.,
server energy consumption), capital costs (e.g., power
delivery and cooling infrastructure), environmental im-
pact, and the need to deliver service through load and
power fluctuations (from, for example, power caps im-
posed in response to events such as cooling system or
primary power supply failure [1]).

A standard way to reduce power consumption is to re-
duce the delivered computational resources, typically by
dynamic voltage and frequency scaling (DVFS), which
can deliver cubic reductions in power consumption [34].
On modern computational platforms it is possible to
switch (almost instantaneously) between a range of sup-
ported power states, each with different voltage, fre-
quency, and power consumption characteristics [2]. Un-
fortunately, switching to a power state that reduces the

∗Stelios Sidiroglou and Henry Hoffmann have contributed equally
to the research presented in this paper

delivered resources can impair or even disable the ability
of applications to deliver acceptably responsive service.
This issue is especially relevant for applications (such as
video encoders or search engines) that need to provide
fast interactive service to human users.

For many applications it is possible to reduce the ac-
curacy (or quality) of the result in return for perfor-
mance gains, which can then be translated into power
savings. Many video encoders, for example, implement
multiple encoding algorithms, with slower algorithms
(which require more computational resources) produc-
ing higher-quality video and faster algorithms (which re-
quire fewer computational resources) producing lower-
quality video [17]. Other examples include computations
that perform heuristic searches of complex search spaces
that contain multiple acceptable solutions (with some so-
lutions potentially more desirable than others) [26, 21].
The flexibility to produce multiple answers allows sys-
tem designers to incorporate an additional dimension
into the power and performance optimization space: ac-
curacy.

Applications often expose a static interface (in the
form of configuration parameters) that enables users to
control the application’s performance versus quality of
service (QoS) trade-off.1 For example, x264 (a popular
video encoder) provides command-line parameters that
allow users to configure the motion estimation algorithm,
the number of reference frames, and other aspects of the
encoding algorithm. However, the need to execute suc-
cessfully in environments in which the load or delivered
computational resources may fluctuate makes static con-
figuration problematic — terminating, then restarting ap-
plications with new configuration parameters may be un-
desirable or even unacceptable for long-running applica-
tions or applications with long restart times.

1.1 Basic Approach
We present a new system, PowerDial, for dynamically
adapting the behavior of running applications to respond
to fluctuations in load, power, or any other event that
threatens the ability of the computing platform to deliver
adequate computing power to satisfy demand:

1In this paper quality of service refers to the accuracy or quality of
the result that the application produces, not the timing with which it
produces or delivers this result.

1

• Dynamic Knob Insertion: PowerDial uses dy-
namic influence tracing to transform static applica-
tion configuration parameters into dynamic control
variables stored in the address space of the running
application. These control variables are made avail-
able via a set of dynamic knobs that can change the
configuration (and therefore the point in the trade-
off space at which it executes) of a running applica-
tion without interrupting service or otherwise per-
turbing the execution.

• Dynamic Knob Calibration: PowerDial explores
the underlying performance versus QoS trade-off

space (originally available via the configuration pa-
rameters) to characterize the performance and QoS
of each dynamic knob setting.

• Dynamic Knob Control: PowerDial uses the Ap-
plication Heartbeats framework [20] to dynami-
cally monitor the performance of the application.
When performance drops below target, the Pow-
erDial control system uses the calibrated dynamic
knobs to move the application to a more appropriate
point in its trade-off space (the new point may, for
example, give up some QoS in return for increased
performance and decreased power consumption).
PowerDial deploys a control algorithm and novel
actuation strategy with provably good convergence
and predictability properties.

1.2 Summary of Experimental Results
We evaluate the ability of PowerDial to control the be-
havior of four benchmark applications (the x264 video
encoder, the bodytrack human body tracking applica-
tion, the swaptions financial analysis application, and the
swish++ search engine) to dynamically adapt to operate
successfully in environments with fluctuating load and
power characteristics. Our results show:

• Trade-Off Space: All of the applications exhibit a
large viable trade-off space — three of the appli-
cations (x264, bodytrack, and swaptions) can exe-
cute from four to six times faster than their base-
line (which maximizes QoS) with acceptable QoS
losses. swish++ can execute approximately 1.5
times faster than its baseline (at the cost of dropping
lower-ranked search results).

• Power Capping: PowerDial enables the applica-
tions to adapt effectively as a power cap (which
reduces the processor frequency from 2.4 GHz to
1.6 Gz) is first imposed, then lifted. When the
power cap is imposed, PowerDial preserves respon-
siveness by moving the applications to new Pareto-
optimal points with more performance and slightly
lower QoS. When the power cap is lifted, Power-
Dial restores the original QoS by moving the appli-
cations back to the baseline.

• Peak Load Provisioning: PowerDial makes it pos-
sible to service intermittent load spikes with fewer
resources — when a load spike overwhelms the
ability of the system to service the load with the
baseline application configuration, PowerDial pre-
serves responsive performance by dynamically re-
configuring the application to use less computation
to produce (slightly) lower quality results. Because
systems provisioned to meet peak loads with ap-
plications executing at baseline performance typi-
cally operate at low utilization levels [9], PowerDial
makes it possible to significantly reduce the num-
ber of provisioned machines (by a factor of 3/4 for
x264, bodytrack, and swaptions and a factor of 1/3
for swish++) required to service peak loads with ac-
ceptable QoS and (at most) negligible performance
loss, all while providing baseline QoS for the vast
majority of requests.

1.3 Contributions
This paper makes the following contributions:

• Dynamic Knobs: It introduces the concept of dy-
namic knobs, which manipulate control variables in
the address space of a running application to dy-
namically change the point in the underlying per-
formance versus QoS trade-off space at which the
application executes.

• PowerDial: It presents PowerDial, a system that
transforms static configuration parameters into cal-
ibrated dynamic knobs and uses the dynamic knobs
to enable the application operate successfully in the
face of fluctuating operating conditions (such as
load spikes and power fluctuations).

• Analysis and Instrumentation: It presents the
PowerDial analysis and instrumentation systems,
which dynamically analyze the application to find
and insert the dynamic knobs.

• Control: It presents the PowerDial control sys-
tem, which uses a novel actuation algorithm and a
control algorithm with provably good convergence
and predictability properties to automatically opti-
mize speed and accuracy to maintain desired per-
formance while minimizing QoS loss.

• Power Savings: It shows how to use dynamic
knobs to reduce the number of machines required
to successfully service peak loads and to enable ap-
plications to tolerate the imposition of power caps.
It shows how this ability can enable considerable
power savings in a data center environment.

• Experimental Results: It presents experimental re-
sults that characterize the trade-off space that dy-
namic knobs make available in four benchmark ap-
plications. It also presents results that characterize
the ability of PowerDial to enable applications to

2

dynamically adapt to fluctuating loads and power.

2 Dynamic Knobs
Dynamic knobs are designed for applications that 1) have
command-line configuration parameters that control per-
formance versus QoS trade offs and 2) use the Applica-
tion Heartbeats API [20] (our system can automatically
insert the required API calls, see Section 2.3). These ap-
plications typically exhibit the following general compu-
tational pattern:
• Initialization: During initialization the application

parses and processes the configuration parameters
and stores the resulting values in one or more con-
trol variables in the address space of the running ap-
plication.

• Main Control Loop: The application executes
multiple iterations of a main control loop. At each
iteration it emits a heartbeat (by invoking the ap-
propriate procedure in the Application Heartbeats
API), reads the next unit of input, processes this
unit, produces the corresponding output, then exe-
cutes the next iteration of the loop. As it processes
each input unit, it reads the control variables to de-
termine which algorithm (or algorithm variant) to
use.

With this computational pattern, the point in the per-
formance versus QoS trade-off space at which the ap-
plication executes is determined (by the configuration
parameters) when the application starts and does not
change during its execution. A goal of PowerDial, as il-
lustrated in Figure 1, is to augment the application with
the ability to dynamically change the point in the trade
off space at which it is operating. At a high level, Pow-
erDial accomplishes this goal as follows:
• Parameter Identification: The user of the program

identifies a set of command-line configuration pa-
rameters and a range of settings for each such pa-
rameter. Each combination of parameter settings
corresponds to a different point in the performance
versus QoS trade-off space.

• Dynamic Knob Identification: For each combina-
tion of parameter settings, PowerDial uses dynamic
influence tracing (which traces how the parameters
influence values in the running application) to locate
the control variables and record the values stored in
each control variable.

• Dynamic Knob Calibration: Given a set of rep-
resentative inputs and a QoS metric, PowerDial ex-
ecutes a training run for each input and combina-
tion of parameter settings. For each training run it
records performance and QoS information. It then
processes this information to identify the Pareto-
optimal points in the explored performance versus
QoS trade-off space.

• Dynamic Knob Insertion: PowerDial inserts
callbacks that the PowerDial control system can
use to set the control variables to values previ-
ously recorded during dynamic knob identification,
thereby moving the application to a different Pareto-
optimal point in the performance versus QoS trade-
off space. Subsequent iterations of the main con-
trol loop will read the updated values in the control
variables to (in effect) process further input as if the
configuration parameters had been set to their cor-
responding different settings at application startup.

The result is an application that enables the PowerDial
control system to dynamically control the point in the
performance versus QoS trade-off space at which it ex-
ecutes. In standard usage scenarios PowerDial is given
a target heart rate. If the application’s dynamically ob-
served heart rate is slower than the target, PowerDial uses
the calibrated dynamic knobs to move the application to
a point in the trade-off space with higher performance at
the cost, typically small, of some QoS. If the observed
heart rate is higher than the target, PowerDial moves the
application to a point with lower performance and better
QoS.

Parameter
Identification

Inputs

Original
Program

Output
Abstraction

User Inputs

Dynamic
Knob

Identification

Dynamic
Knob

Calibration

Dynamic
Knob

Runtime
Control

PowerDial System

Dynamic
Application

Output

Figure 1: Dynamic Knob work flow.

2.1 Dynamic Knob Identification
For PowerDial to transform a given set of configuration
parameters into dynamic knobs, it must identify a set of
control variables that satisfy the following conditions:

• Complete and Pure: All variables whose values
are derived from configuration parameters during
application startup (before the application emits its
first heartbeat) are control variables. The values of
control variables are derived only from the given set
of configuration parameters and not from other pa-
rameters.

• Relevant and Constant: During executions of the
main control loop, the application reads but does not
write the values of the control variables.

PowerDial uses influence tracing [11, 18] to find the
control variables for the specified configuration param-
eters. For each combination of configuration parameter
settings, PowerDial executes a version of the application

3

instrumented to trace, as the application executes, how
the parameters influence the values that the application
computes. It uses the trace information to find the con-
trol variables and record their values, applying the above
conditions as follows:

• Complete and Pure Check: It finds all variables
that, before the first heartbeat, contain values influ-
enced by the specified configuration parameters. It
checks that these values are influenced only by the
specified configuration parameters.

• Relevance Check: It filters out any variables that
the application does not read after the first heartbeat
— the values of these variables are not relevant to
the main control loop computation.

• Constant Check: It checks that the execution does
not write a control variable after the first heartbeat.

Finally, PowerDial checks that the control variables are
consistent, i.e., that the different combinations of param-
eter settings all produce the same set of control variables.
If the application fails any of these checks, PowerDial
rejects the transformation of the specified set of configu-
ration parameters into dynamic knobs.

For each combination of parameter settings, Power-
Dial records the value of each control variable. The Pow-
erDial control system uses this information to automat-
ically change the values of the control variables at run-
time. Note that because PowerDial uses a dynamic influ-
ence analysis to find the control variables, it is possible
for unexercised execution paths to violate one or more of
the above conditions. The influence analysis also does
not trace indirect control-flow or array index influence.
To enable a developer to (if desired) check that neither of
these potential sources of imprecision affects the validity
of the control variables, PowerDial produces a control
variable report. This report lists the control variables,
the corresponding configuration parameters from which
their values are derived, and the statements in the appli-
cation that access them. We have examined the reports
for all of our benchmark applications (see Section 4)
and verified that all of the automatically computed con-
trol variables are valid.

Our influence tracing system is implemented as a
static, source-based instrumentor for C and C++. It is
built on the LLVM compiler framework [11, 22] and in-
serts code to trace the flow of influence through the val-
ues that the application computes. For each value, it
computes the command-line parameters that influenced
that value. The currently implemented system supports
control variables with datatypes of int, long, float, dou-
ble, or STL vector. It augments the production version
of the application with calls to the PowerDial control
system to register the address of each control variable
and read in the previously recorded values correspond-

ing to the different dynamic knob settings. This mecha-
nism gives the PowerDial control system the information
it needs to apply a given dynamic knob setting.

2.2 Dynamic Knob Calibration
In this step, the PowerDial explores the performance ver-
sus QoS trade-off space available to the application via
the specified configuration parameters. The user pro-
vides an application, a set of representative inputs, a set
of specified configuration parameters (along with a range
of values for each parameter), and a QoS metric. Given
these values, PowerDial produces, for each combination
of parameter settings, a specification of the point in the
trade-off space to which the parameter settings take the
application. This point is specified relative to the base-
line performance and QoS of the parameter setting that
delivers the highest QoS (which, for our set of bench-
mark applications, is the default parameter setting).

The PowerDial calibrator executes all combinations
of the representative inputs and configuration parame-
ters. For each parameter combination it records the mean
(over all representative inputs) speedup of the applica-
tion. It computes the speedup as the execution time of
the application running with the default parameter set-
tings divided by the execution time of the application
with the current parameter combination. In a separate
instrumented execution, it also records the values of the
control variables (see Section 2.1).

For each combination of configuration parameters
PowerDial also records the mean (over all representa-
tive inputs) QoS. The QoS metric works with a user-
provided, application-specific output abstraction which,
when provided with an output from the program, pro-
duces a set of numbers o1, . . . , om. The output abstrac-
tion typically extracts relevant numbers from the output
or computes a measure of output quality (such as, for
example, the peak signal-to-noise ratio of the output).
Given the output abstraction from the baseline execution
o1, . . . , om and an output abstraction ô1, . . . , ôm from the
execution with the current parameter settings, we com-
pute the QoS as the distortion [28]:

qos =
1
m

m∑
i=1

wi

∣∣∣∣∣oi − ôi

oi

∣∣∣∣∣ (1)

Here each weight wi is optionally provided by the user
to capture the relative importance of the ith component
of the output abstraction. Note that a qos of zero indi-
cates optimal QoS, with higher numbers corresponding
to worse QoS. PowerDial supports caps on QoS loss — if
a specific parameter setting produces a QoS loss exceed-
ing a user-specified bound, the system can exclude the
corresponding dynamic knob setting from further con-
sideration.

4

Knob 1

0 100

50
7525

Knob 2

0 100

50
7525

ActuatorController Feedback

Application

Perfomance
Goal

Figure 2: The PowerDial Control System.

2.3 The PowerDial Control System
The PowerDial control system automatically adjusts the
dynamic knobs to appropriately control the application.
As shown in Figure 2, the PowerDial control system
contains the following components: a feedback mech-
anism that allows the system to monitor the performance
of the application, a control component which converts
the feedback into a desired speedup, and an actuator
which converts the desired speedup into settings for one
or more dynamic knobs.

Feedback Mechanism PowerDial uses the Applica-
tion Heartbeats framework as its feedback mecha-
nism [20]. In general, PowerDial can work with any
application that has been engineered to use this frame-
work to emit heartbeats at regular intervals and express
a desired performance in terms of a target minimum and
maximum heart rate. For our set of benchmark appli-
cations, the PowerDial instrumentation system automat-
ically inserts the API calls that emit heartbeats — it pro-
files each application to find the most time-consuming
loop (in all of our applications this is the main control
loop), then inserts a heartbeat call at the top of this loop.
In general, the PowerDial control system is designed to
work with any target minimum and maximum heart rate
that the application can achieve. For our experiments
(see Section 4), the minimum and maximum heart rate
are both set to the average heart rate measured for the
application using the default command line.

Control Strategy PowerDial employs a generalized
control strategy which can be used to control any appli-
cation which uses Application Heartbeats as a feedback
mechanism [23]. This controller monitors the feedback
mechanism and determines both when to speedup or
slowdown the application as well as how much speedup
or slowdown to apply. To use this control strategy, Pow-
erDial must work with a model of the application’s work-
load or the average amount of time between two heart-
beats. PowerDial obtains this model by first computing
the average heart rate over all the representative inputs
and then inverting that number. If the training inputs pro-
vided by the user are representative of the production in-
puts, this workload will be accurate and the control strat-
egy can guarantee several desirable properties. First, it

is stable, i.e., the performance of the application will not
oscillate between high and low values. Second, it is ac-
curate, i.e., the application will reach the desired perfor-
mance. Third, the controller has bounded settling time,
i.e., the application will reach the desired performance in
finite time. Finally, the system has a known overshoot
and thus the difference between the maximum speed of
the application and the desired speed is bounded.

Actuation Policy The PowerDial actuator must con-
vert the speedup specified by the controller into a dy-
namic knob setting. The controller is a continuous linear
system, and thus, the actuator must convert the continu-
ous signal into actions that can be realized in the applica-
tion’s discrete, potentially non-linear dynamic knob sys-
tem. For example, the controller might specify a speedup
of 1.5 while the smallest speedup available through a
knob setting is 2. To resolve this issue, the actuator
computes a set of actions to take over a time quantum
heuristically determined to be the time required to pro-
cess twenty heartbeats. In this example, the actuator
would run with a speedup of 2 for half the time quan-
tum and the default speedup of 1 for the other half.

In the general case, the actuator determines which ac-
tions to take for the next time quantum by optimizing a
system of linear constraints. Let Ho be the observed heart
rate, while Ht is the target heart rate of the system. Let
S max be the maximum achievable speedup for the appli-
cation given its dynamic knobs, and let S min be the min-
imum speedup corresponding to a knob setting such that
S min ≥ Ht/Ho. Let unknowns tmax, tmin, and tde f ault corre-
spond to the percentage of time during the next quantum
to run with the application’s knobs set to the maximum
speedup, the minimum required speedup, and the default
settings, respectively. Then, the following system of con-
straints captures the behaviors the actuator considers for
the next time quantum.

S max · tmax + S min · tmin +
Ho

Ht
· tde f ault = 1 (2)

tmax + tmin + tde f ault ≤ 1 (3)
tmax, tmin, tde f ault ≥ 0 (4)

While there are many solutions to this system of con-
straints, two are of particular interest for making pow-
er/performance/QoS trade offs. First, for platforms with
sufficiently low idle power consumption (see Section 3),
PowerDial sets tmin = tde f ault = 0, forcing the application
to run at the highest available speedup. If tmax < 1 the
system can idle for the remaining 1 − tmax portion of the
time quantum to save power. The second solution Power-
Dial considers results from setting tmax = 0 and requiring
tmin + tde f ault = 1. This solution will run the application at
the lowest obtainable speedup that will enable the appli-
cation to meet its heart rate target. This solution therefore
delivers the lowest feasible QoS loss.

5

Having determined values for tmax, tmin, and tde f ault for
the next time quantum, the PowerDial controller executes
the corresponding plan, then computes a new plan when
the quantum expires.

3 Saving power using Dynamic Knobs
In this section, we describe how dynamic knobs can en-
able power savings in large scale data centers by:

• DVFS: Enabling DVFS savings for applications
with responsiveness requirements.

• Elastic Response: Enabling elastic response, a
technique that makes applications able to operate
successfully in the presence of environmental fluc-
tuations (caused, for example, by phenomena such
as power caps and load spikes).

• Consolidation: Introducing an alternative server
consolidation technique that enables a system to ac-
ceptably process peak loads with fewer machines.

Pnodvfs

Pidle

t1 tdelay

Pdvfs

t2= t1 +tdelay
(a) (b)

Figure 3: DVFS Energy Savings

DVFS Figure 3 shows how operating at lower power
states can enable systems to reduce power consumption
at the cost of increased latency. The area within the boxes
represents the total energy required to complete a work-
load. For a task which takes time t and consumes aver-
age power of Pavg, the total energy can be calculated as:
Etask = Pavg · t. Without DVFS (Figure 3 (a)), the work-
load consumes power Pnodv f s for time t1 and power Pidle

for the remaining time tdelay. With DVFS (Figure 3 (b)),
the consumed power is reduced to Pdv f s but the execution
time increases to t2 = t1 + tdelay. To accurately calculate
DVFS energy savings, the idle power consumed by the
non-DVFS system (Pidle) must be included. Thus the en-
ergy savings due to DVFS can be computed as:

Edv f s = (Pnodv f s · t1 + Pidle · tdelay) − (Pdv f s · t2) (5)

For CPU-bound applications, t2 can be predicted by the
change in operating frequency as: t2 =

fnodv f s

fdv f s
· t1. We note

that any power savings here come at the cost of added
latency.

Dynamic knobs can complement DVFS by allowing
systems to save power by reducing the amount of com-
putational resources required to accomplish a given task.
There are two cases to consider depending on the idle
power of the system Pidle as illustrated in Figure 4. Fig-
ure 4(a) illustrates the first case. This case applies to sys-
tems with low idle power consumption (i.e., small Pidle),

a common case in mobile devices. In this case, the best
energy savings strategy is to complete the task as quickly
as possible, then return to the low-power idle state, a
strategy known as race-to-idle. Dynamic knobs can fa-
cilitate race-to-idle operation by decreasing the amount
of computational resources required to complete the task
(in return for some QoS loss), thereby reducing t1. Fig-
ure 4(b) illustrates the second case, which applies to sys-
tems with high idle power consumption (i.e., large Pidle),
common in current server class machines. In this case,
dynamic knobs can allow the system to operate at a lower
power state for the time t2 allocated to complete the task.

In both cases the energy savings available through
combining DVFS and dynamic knobs can be calculated
as:

Esavings = (Pnodv f s·
t1

S (QoS)
)+Pidle·tdelay)−(Pdv f s·t2) (6)

where S (QoS) represents the speedup available as a
function of acceptable QoS loss (i.e., the desired level
of accuracy).

Pelastic
nodvfs

Pidle

t1 t2 -t1 + tdelay

Pelastic
dvfs Pidle

t2 tdelay
(a) (b)

Figure 4: Energy Savings with DVFS and Dynamic
Knobs

Elastic response Dynamic knobs enhance systems
with an elastic response mechanism that can dampen the
effects of several power saving techniques (or any other
event that affects the delivered computational resources)
on latency. Elastic response enables applications to dy-
namically degrade the QoS they deliver in return for per-
formance improvements. This ability can enable tech-
niques, such as power capping and server consolidation,
without increasing application latency.

Server consolidation Dynamic knobs can enable
power savings in the data center by reducing the total
number of machines required to meet peak load without
increasing latency. This is achieved by increasing the
throughput of each individual machine (trading QoS for
performance) when the system experiences load spikes
that exceed its capacity to service when operating with
the default application configuration. The resulting re-
duction in computational resources required to service
the load enables the system to service the load spike
without increasing the service time. The reduction in the
number of machines improves server utilization during
normal operation and reduces energy wasted on idle re-

6

sources. It also provides extra savings in the form of
reduced cooling costs.

To quantify how dynamic knobs can help improve
server consolidation, we need to examine the total work
required to meet system peak load requirements. This
can be calculated as follows:

Wtotal = (Wmachine · Norig) (7)

Wtotal represents the total work done by the data cen-
ter, where Wmachine represents the work done per machine
and Norig is the total number of machines. Let S (QoS) be
the speedup achieved as a function of QoS degradation.
For maximum quality of service the speedup is 1, that of
the original system. The number of machines required to
meet peak load with some loss of accuracy can be shown
as:

Nnew =
Wtotal

S (QoS)
·

1
Wmachine

(8)

Here Nnew is the new, lower number of machines that
can be used to meet peak load requirements after consol-
idation. To measure the savings achieved by this consol-
idation let Unew = Norig/dNnewe be the average utilization
of the consolidated system and Uorig be the average uti-
lization in the original system. Further assume that the
two systems both use machines that consume power Pload

under load and Pidle while idle. Let Porig be the average
power in the original system, while Pnew is the average
power in the smaller consolidated system. Then we can
calculate the average power savings of the consolidated
system as:

Porig = Norig(Uorig · Pload + (1 − Uorig)Pidle) (9)
Pnew = Nnew(Unew · Pload + (1 − Unew)Pidle) (10)

Psave = Porig − Pnew (11)

In existing data centers, this power savings can reduce
both direct costs (e.g., the energy bill) and indirect costs
(e.g., cooling and conversion costs). The enabled consol-
idation can also reduce the capital costs of new data cen-
ters. Considering that electricity costs in the U.S. are ap-
proximately $0.8/Watt-year (excluding cooling and con-
version costs, which typically add a 50% energy over-
head) and that capital costs for typical Tier-2 datacenters
are in the range of $10 and $20 per deployed Watt [14],
dynamic-knob-enabled server consolidation can deliver
significant cost savings.

4 Benchmarks and Inputs
We report results for four benchmarks. Swaptions, body-
track, and x264 are all taken from the PARSEC bench-
mark suite [10]; swish++ is as open-source search en-
gine [32]. For each application we acquire a set of repre-
sentative inputs, then randomly partition the inputs into
training and production sets. We use the training inputs

to obtain the dynamic knob response model (see Sec-
tion 2) and the production inputs to evaluate the behavior
on previously unseen inputs. Table 1 summarizes the
sources of these inputs. All of the applications support
both single- and multi-threaded execution. In our exper-
iments we use whichever mode is appropriate.

4.1 swaptions
Description: This financial analysis application uses
Monte Carlo simulation to solve a partial differential
equation that prices a portfolio of swaptions.
Knobs: We use a single command line parameter, -sm
as the dynamic knob. This integer parameter controls the
number of Monte Carlo simulations for each swaption.
The values range from 10, 000 to 1, 000, 000 in incre-
ments of 10, 000; one million is the default value for the
PARSEC native input.
Inputs: Each input contains a set of parameters for a
given swaption. The native PARSEC input simply re-
peats the same parameters multiple times, causing the ap-
plication to recalculate the same swaption price. We aug-
ment the evaluation input set with additional randomly
generated parameters so that the application computes
prices for a range of swaptions.
QoS Metric: Swaptions prints the computed prices for
each swaption. The QoS metric computes the distortion
of the swaption prices (see Equation 1), weighting the
prices equally. This metric directly captures the ability
of the application to produce accurate swaption prices.

4.2 x264
Description: This media application encodes a raw (un-
compressed) video according to the H.264 standard [36].
Knobs: We use three knobs: --subme (an integer pa-
rameter which determines the algorithms used for sub-
pixel motion estimation), --merange (an integer which
governs the maximum search range for motion esti-
mation), and --ref (which specifies the number of
reference frames searched during motion estimation).
--subme ranges from 1 to 7, --merange ranges from 1
to 16, and --ref ranges from 1 to 5. In all cases higher
numbers correspond to higher quality encoded video and
longer encoding times. The PARSEC defaults for these
are 7, 16, and 5, respectively.
Inputs: The native PARSEC input contains a single
high-definition (1080p) video so we use additional 1080p
inputs from xiph.org [5].
QoS Metric: The QoS metric is the distortion of the
peak signal to noise ratio (PSNR, as measured by the
H.264 reference decoder [19]) and bitrate (as measured
by the size of the encoded video file), with the PSNR and
bitrate weighted equally. This QoS metric captures the
two most important attributes of encoded video: image
quality and compression.

7

Benchmark Training Inputs Production Inputs Source
swaptions 64 swaptions 512 swaptions PARSEC & randomly generated swaptions
x264 4 HD videos of 200+ frames 12 HD videos of 200+ frames PARSEC & xiph.org [5]
bodytrack sequence of 100 frames sequence of 261 frames PARSEC & additional input by authors
swish++ 2000 books 2000 books Project Gutenberg [3]

Table 1: Summary of Training and Production Inputs for Each Benchmark

4.3 bodytrack
Description: This computer vision application uses an
annealed particle filter and videos from multiple cameras
to track a human’s movement through a scene [13].
Knobs: bodytrack uses positional parameters, two of
which we convert to knobs: argv[5], which controls
the number of annealing layers, and argv[4], which
controls the number of particles. The number of layers
ranges from 1 to 5 (the PARSEC default); the number of
particles ranges from 100 to 4000 (the PARSEC default)
in increments of 100.
Inputs: bodytrack requires data collected from four
carefully calibrated cameras. We use of sequence of 100
frames (obtained from the maintainers of PARSEC) as
the training input and the PARSEC native input (a se-
quence of 261 frames) as the production input.
QoS Metric: bodytrack produces two outputs: a text file
containing a series of vectors representing the positions
of the body over time and a series of images graphically
depicting the information in the vectors overlaid on the
video frames from the cameras. The QoS metric is the
distortion of the vectors that represent the body position.
The weight of each vector is proportional to its magni-
tude. Vector components which represent larger body
parts (such as the torso) therefore have a larger influence
on the QoS metric than vectors that represent smaller
body parts (such as forearms).

4.4 swish++
Description: This search engine is used to index and
search files on web sites. Given a query, it searches its
index for documents that match the query and returns the
documents in rank order. We configure this benchmark
to run as a server — all queries originate from a remote
location and search results must be returned to the appro-
priate location.
Knobs: We use the command line parameter
--max-results (or -m, which controls the maxi-
mum number of returned search results) as the single
dynamic knob. We use the values 5, 10, 25, 50, 75, and
100 (the default value).
QoS Metric: We use F-measure [24] (a standard infor-
mation retrieval metric) as our QoS metric. F-measure
is the harmonic mean of the precision and recall. Given
a query, precision is the number of returned documents
that are relevant to the query divided by the total number
of returned documents. Recall is the number of relevant
returned documents divided by the total number of rele-
vant documents (returned or not). We examine precision

and recall at different cutoff values, using typical nota-
tion P @N.
Inputs: We use public domain books from Project
Gutenberg [3] as our search documents. We use
the methodology described by Middleton and Baeza-
Yates [25] to generate queries for this corpus. Specifi-
cally, we construct a dictionary of all words present in
the documents, excluding stop words, and select words
at random following a power law distribution. We divide
the documents randomly in to equally-sized training and
production sets.

5 Experimental Evaluation

In this section, we discuss the experiments used to eval-
uate the PowerDial system. We first describe our ex-
perimental platform, then each of the experiments con-
ducted. We begin by testing how well speedup and QoS
measured on training inputs correlate with that measured
on the production inputs. We next demonstrate the use
of dynamic knobs to maintain performance while trad-
ing some small QoS loss for significant power savings.
Then, we show how dynamic knobs can be used to main-
tain performance in response to external events such as
the imposition of a power-cap. Finally, we show how dy-
namic knobs can be used to maintain performance while
reducing the number of machines in the system, saving
both power and infrastructure cost.

5.1 Experimental Platform
We run all our experiments on a Dell PowerEdge R410
server with two quad-core Intel Xeon E5530 processors
running Linux 2.6.26. The processors support seven
power states with clock frequencies from 2.4 GHz to
1.6 GHz. The cpufrequtils package enables software
control of the clock frequency (and thus the power state).
We use a WattsUp device to sample and store the con-
sumed power at 1 second intervals [4]. All benchmark
applications run for significantly more than 1 second.
The maximum and minimum measured power ranges
from 220 watts (at full load) to 80 watts (idle), with a typ-
ical idle power consumption of approximately 90 watts.

We measure the overhead of the PowerDial control
system by comparing the performance of the benchmarks
with and without the control system. The overhead of the
PowerDial control system is insignificant and within the
run-to-run variations in the execution times of the bench-
marks executing without the control system.

8

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3

QoS Loss

S
pe

ed
up

all knobs optimal knobs (training) optimal knobs (test)

(a) swaptions

1

1.5

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8

QoS Loss

S
pe

ed
up

all knobs optimal knobs (training) optimal knobs (test)

(b) x264

1

2

3

4

5

6

7

8

0 5 10 15 20

QoS Loss

S
pe

ed
up

all knobs optimal knobs (training) optimal knobs (test)

(c) bodytrack

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 20 40 60 80

QoS Loss

S
pe

ed
up

optimal knobs (P@10 training) optimal knobs (P@10 test)
optimal knobs (P@100 training) optimal knobs(P@100 test)

(d) swish++

Figure 5: QoS loss versus speedup for the three PARSEC benchmarks.

5.2 Performance/QoS Trade-Offs
Dynamic knobs modulate power consumption by con-
trolling the amount of computational work required to
perform a given task. On a machine that delivers constant
baseline performance (i.e., no clock frequency changes),
changes in computational work correspond to changes in
execution time.

Figures 5a–5d present the points that dynamic knobs
make available in the speedup versus QoS trade-off space
for each benchmark application. The points in the graphs
plot the observed mean (across the training or produc-
tion inputs as indicated) speedup as a function of the ob-
served mean QoS loss for each dynamic knob setting.
Blue points plot results for the training inputs, with blue
squares (connected by a line) indicating Pareto-optimal
dynamic knob settings. Green triangles (again connected
by a line) plot the corresponding points for these Pareto-
optimal dynamic knob settings for the production inputs.
All speedups and QoS losses are calculated relative to
the dynamic knob setting which delivers the highest QoS

(and consequently the largest execution time). We ob-
serve the following facts:

• Effective Trade-Offs: Dynamic knobs provide ac-
cess to operating points across a broad range of
speedups (up to 100 for swaptions, 4.5 for x264, and
7 for bodytrack). Moreover, QoS losses are accept-
ably small for virtually all Pareto-optimal knob set-
tings (up to only 1.5% for swaptions, 7% for x264,
and, for speedups up to 6, 6% for bodytrack).
For swish++, dynamic knobs enable a speedup of
up to approximately a factor of 1.5. The QoS loss
increases linearly with the dynamic knob setting.
The effect of the dynamic knob is, however, very
simple — it simply drops lower-priority search re-
sults. So, for example, at the top dynamic knob set-
ting, swish++ returns the top five search results.

• Close Correlation: To compute how closely behav-
ior on production inputs tracks behavior on training
inputs, we take each metric (speedup and QoS loss),
compute a linear least squares fit of training data to

9

Benchmark Speedup QoS Loss
x264 0.995 0.975
bodytrack 0.999 0.839
swaptions 1.000 0.999
swish++ 0.996 0.999

Table 2: Correlation coefficient of observed values from
training with measured values on test inputs.

production data, and compute the correlation coeffi-
cient of each fit (see Table 2). The correlation coef-
ficients are all close to 1, indicating that behavior on
training inputs is an excellent predictor of behavior
on production inputs.

5.3 Power/QoS Tradeoffs
To characterize the power versus QoS trade-off space
that dynamic knobs make available, we initially config-
ure each application to run at its highest QoS point on
a processor in its highest power state (2.4 GHz) and ob-
serve the performance (mean time between heartbeats).
We then instruct the PowerDial control system to main-
tain the observed performance, use cpufrequtils to
drop the clock frequency to each of the six lower-power
states, run each application on all of the production in-
puts, and measure the resulting performance, QoS, and
mean power consumption (the mean of the power sam-
ples over the execution of the application in the corre-
sponding power state). We verify that, for all power
states, PowerDial delivers performance within 5% of the
target.

Figures 6a–6d plot the resulting QoS (right y axis, in
percentages) and mean power (left y axis) as a function
of the processor power state. For x264, the combination
of dynamic knobs and frequency scaling can reduce sys-
tem power by as much as 21% for less than 0.5% QoS
loss. For bodytrack, we observe a 17% reduction in sys-
tem power for less than 2.3% QoS loss. For swaptions,
we observe an 18% reduction in system power for less
than .05% QoS loss. Finally, for swish++ we observe
power reductions of up to 16% for under 32% QoS loss.
Note that for swish++ all of the QoS loss comes from
reduced recall. The dynamic knob simply truncates the
list of returned results — the top results are the same, but
swish++ returns fewer total results.

5.4 Elastic Response to Power Capping
The PowerDial system makes it possible to dynami-
cally adapt application behavior to preserve performance
(measured in heartbeats) in the face of any event that de-
grades the computational capacity of the underlying plat-
form. We next investigate a specific scenario — the ex-
ternal imposition of a temporary power cap via a forced
reduction in clock frequency. We first start the appli-
cation running on a system with uncapped power in its

highest power state (2.4 GHz). We instruct the Pow-
erDial control system to maintain the observed perfor-
mance (time between heartbeats). Approximately one
quarter of the way through the computation we impose
a power cap that drops the machine into its lowest power
state (1.6 GHz). Approximately three quarters of the way
through the computation we lift the power cap and place
the system back into its highest power state (2.4 GHz).

Figures 7a–7d present the dynamic behavior of the
benchmarks as they respond to the power cap and cor-
responding processor frequency changes. Each graph
plots the observed performance (computed as the sliding
mean of the last twenty times between heartbeats times
normalized to the target heart rate of the application) of
the application (left y axis) as a function of time. We
present the performance of three versions of the appli-
cation: a version without dynamic knobs (red points),
a baseline version running with no power cap in place
(blue points), and a version that uses dynamic knobs to
preserve the performance despite the power cap (green
points). We also present the knob “gain” or the instan-
taneous speedup achieved by the dynamic knob runtime
(right y axis).

All applications exhibit the same general pattern. At
the imposition of the power cap, the dynamic knob ad-
justments kick in, the gain increases (red Knob Gain
line), and the performance of the application first spikes
down (green points), then returns back up to the baseline
performance. When the power cap is lifted, the dynamic
knobs adjust again, the gain decreases, and the applica-
tion performance returns to the baseline after a brief up-
ward spike. For most of the first and last quarters of the
execution, the application executes with essentially no
QoS loss. For the middle half of the execution, the appli-
cation converges to the low power operating point plotted
in Figures 6a–6d as a function of the 1.6 GHz processor
frequency. Without dynamic knobs (red points), applica-
tion performance drops well below the baseline as soon
as the power cap is imposed, then rises back up to the
baseline only after the power cap is lifted.

Within this general pattern the applications exhibit
varying degrees of noise in their response. Swaptions ex-
hibits very predictable performance over time with little
noise. swish++, on the other extreme, has relatively un-
predictable performance over time with significant noise.
x264 and bodytrack fall somewhere in between. De-
spite the differences in application characteristics, our
dynamic adaptation mechanism makes it possible for the
applications to largely satisfy their performance goals in
the face of dynamically fluctuating power requirements.

5.5 Peak Load Provisioning
We next evaluate the use of dynamic knobs to reduce
the number of machines required to meet peak load in

10

 160

 170

 180

 190

 200

 210

2.4 2.26 2.13 2 1.86 1.73 1.6
 0

 0.01

 0.02

 0.03

 0.04

 0.05
P

ow
er

 in
 W

at
ts

Q
oS

 L
os

s

Frequency in GHz

QoS Loss
Power

(a) swaptions

 160

 170

 180

 190

 200

 210

2.4 2.26 2.13 2 1.86 1.73 1.6
 0

 0.1

 0.2

 0.3

 0.4

 0.5

P
ow

er
 in

 W
at

ts

Q
oS

 L
os

s

Frequency in GHz

QoS Loss
Power

(b) x264

 160

 170

 180

 190

 200

 210

2.4 2.26 2.13 2 1.86 1.73 1.6
 0

 0.5

 1

 1.5

 2

 2.5

 3

P
ow

er
 in

 W
at

ts

Q
oS

 L
os

s

Frequency in GHz

QoS Loss
Power

(c) bodytrack

 155

 160

 165

 170

 175

 180

 185

2.4 2.26 2.13 2 1.86 1.73 1.6
 5

 10

 15

 20

 25

 30

 35

P
ow

er
 in

 W
at

ts

Q
oS

 L
os

s

Frequency in GHz

QoS Loss
Power

(d) swish++

Figure 6: Power/QoS tradeoffs for each benchmark.

data centers, thereby reducing capital (e.g., machines),
direct (e.g., power consumption) and indirect (e.g., cool-
ing) costs.

We emulate data center peak load requirements by
measuring the maximum per machine performance (see
Equation 7). Given available machine resources, we
limit the total number of machines to four. We next
calculate the expected machine reduction using Equa-
tion 8. This value is determined by the maximum mea-
sured speedup achieved for a QoS bound of about 5%
(except for swish++ where the bound is 30%).

For the three PARSEC benchmarks we provision for a
peak load of 32 (4 machines · 8 cores/machine) concur-
rent instances of the application. The target performance
for each instance is the same performance achieved run-
ning a single instance of the program on one core at
the highest power state (2.4 GHz) and the default com-
mand line (which, for all applications, provides the high-
est QoS). Without dynamic knobs, these applications

therefore require four machines to meet peak load. For
swish++ we provision for a peak load of three concur-
rent instances, each with eight threads. The target per-
formance is the maximum number of requests per sec-
ond which can be served at the highest power state using
the default command line. Thus swish++ requires three
machines to meet this peak load.

Having determined the peak load and performance re-
quirement, we then run each benchmark at varying levels
of utilization and measure the system power consump-
tion using the default command line with no elastic re-
sponse. During this phase 1) the system load balances
all jobs proportionately across available machines, and
2) we leave machines not assigned jobs idle but not pow-
ered off. These assumptions are based on a description
of the usage patterns of Google servers [9].

We next compare the power consumption of the origi-
nal system with that of a consolidated system which uses
dynamic knobs to service the same peak load with fewer

11

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500
 0

 0.5

 1

 1.5

 2
M

ea
n

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

K
no

b
G

ai
n

Time

Powercap
Baseline

Dynamic Knobs
Knob Gain

(a) swaptions

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 100 200 300 400 500 600
 0

 0.5

 1

 1.5

 2

 2.5

M
ea

n
N

or
m

al
iz

ed
 P

er
fo

rm
an

ce

K
no

b
G

ai
n

Time

Powercap
Baseline

Dynamic Knobs
Knob Gain

(b) x264

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 50 100 150 200 250
 0

 0.5

 1

 1.5

 2

 2.5

M
ea

n
N

or
m

al
iz

ed
 P

er
fo

rm
an

ce

K
no

b
G

ai
n

Time

Powercap
Baseline

Dynamic Knobs
Knob Gain

(c) bodytrack

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 100 200 300 400 500 600 700 800 900 1000
 0

 0.5

 1

 1.5

 2

M
ea

n
N

or
m

al
iz

ed
 P

er
fo

rm
an

ce

K
no

b
G

ai
n

Time

Powercap
Baseline

Dynamic Knobs
Knob Gain

(d) swish++

Figure 7: Behavior of benchmarks with dynamic knobs in response to power cap.

machines. We reduce the number of machines in each
system, enable the PowerDial runtime system, set the
desired performance to the previously determined target,
launch the same workloads used previously, and measure
the power of this consolidated system. For low utilization
the applications will run at the highest QoS level. As the
utilization increases, the runtime will progressively ma-
nipulate the dynamic knobs to maintain the desired per-
formance at the cost of some QoS loss. We provision
the consolidated system based on the maximum speedup
that dynamic knobs can deliver. For the three PARSEC
benchmarks, we provision a single machine (to serve
the peak load for the original four-machine system); for
swish++ we provision two machines (to serve the peak
load for the original three-machine system).

Figures 8a–8d presents the results of these experi-
ments. Each graph plots the mean power consumption of
the original (blue line) and consolidated (green line) sys-
tems (left y axis) and the mean QoS loss (red line, right y

axis) as a function of system utilization (measured with
respect to the original, fully provisioned system). These
graphs show that using dynamic knobs to consolidate
machines can provide considerable power savings across
a range of system utilization. For each of the PARSEC
benchmarks, at a system utilization of 25% consolidation
can provide an average power savings of approximately
400 Watts, a reduction of 66%. For swish at 20% utiliza-
tion, we see a power savings of approximately 125 Watts,
a reduction of 25%. These power savings come from the
elimination of machines that would be idle in the origi-
nally provisioned system at these utilization levels.

Of course, it is not surprising that reducing the num-
ber of machines reduces power consumption. A key ben-
efit of the dynamic knob elastic response mechanism is
that even with the reduction in computational capacity,
it enables the system to maintain the same performance
at peak load while consuming dramatically less power.
For the PARSEC benchmarks at a system utilization of

12

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 0.2 0.4 0.6 0.8 1
 0

 0.001

 0.002

 0.003

 0.004

 0.005

P
ow

er
 in

 W
at

ts

Q
oS

 L
os

s

Utilization

QoS Loss
Consolidated Power

Original Power

(a) swaptions

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 0.2 0.4 0.6 0.8 1
 0

 2

 4

 6

 8

 10

 12

 14

P
ow

er
 in

 W
at

ts

Q
oS

 L
os

s

Utilization

QoS Loss
Consolidated Power

Original Power

(b) x264

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 0.2 0.4 0.6 0.8 1
 0

 2

 4

 6

 8

 10

 12

 14

P
ow

er
 in

 W
at

ts

Q
oS

 L
os

s

Utilization

QoS Loss
Consolidated Power

Original Power

(c) bodytrack

 300
 350
 400
 450
 500
 550
 600
 650
 700
 750

 0 20 40 60 80 100
 0

 10

 20

 30

 40

 50

P
ow

er
 in

 W
at

ts

Q
oS

 L
os

s
--

 P
@

10

Utilization

QoS Loss
Consolidated Power

Original Power

(d) swish++

Figure 8: Using dynamic knobs to consolidate data centers and clusters to save power and money.

100%, the consolidated systems consume approximately
75% less power than the original system while providing
the same performance. For swish++ at 100% utilization,
the consolidated system consumes 25% less power.

The consolidated systems save power by automatically
reducing QoS to maintain performance. For swaptions,
the maximum QoS loss required to meet peak load is
0.004%, for x264 it is 7.6%, and for bodytrack it is 2.5%.
For swish++ the QoS loss is 8% at a system utilization
of 65%, rising to 30% at a system utilization of 100%.
We note, however, that the majority of the QoS loss for
swish++ is due to a reduction in recall; top results are
generally preserved in order but fewer total results are
returned. Precision is not affected by the change in dy-
namic knob unless the P@N is less than the current knob
setting. As the lowest knob setting used by PowerDial is
five, precision is always perfect for the top 5 results.

For common usage patterns characterized by predom-

inantly low utilization punctuated by occasional high-
utilization spikes [9], these results show that dynamic
knobs can substantially reduce overall system cost, de-
liver the highest (or close to highest) QoS in predomi-
nant operating conditions, and preserve performance and
acceptable QoS even when the system experiences oc-
casional load spikes. Note that system designers can
use the equations in Section 3 to choose a consolidation
appropriate for their envisioned usage pattern that mini-
mizes costs yet still delivers acceptable QoS even under
the maximum anticipated load spike.

6 Related Work
Trading accuracy of computation for other benefits is a
well-known technique. It has been shown that one can
trade off accuracy for performance [28, 29, 15], robust-
ness [28], energy consumption [15, 12, 31, 28] and fault
tolerance [12, 31, 28].

Autotuners explore a range of equally accurate imple-

13

mentation alternatives to find the alternative or combi-
nation of alternatives that deliver the best performance
on the current computational platform [35, 37, 16]. Re-
searchers have also developed APIs that an application
can use to expose variables for external control (by, for
example, the operating system) [27, 6, 33]. This paper
presents a system (PowerDial) that transforms static con-
figuration parameters into dynamic knobs and contains a
control system that uses the dynamic knobs to maintain
performance in the face of load fluctuations, power fluc-
tuations, or any other event that may impair the ability of
the application to successfully service its load with the
given computational resources. It also presents exper-
imental results that demonstrate the effectiveness of its
approach in enabling server consolidation and effective
execution through power reductions (imposed, for exam-
ple, by power caps).

Researchers have developed several systems that al-
low programmers to provide multiple implementations
for a given piece of functionality, with different imple-
mentations occupying different points in the performance
versus accuracy trade-off space. Such systems include
Petabricks [7], Green [8], and Eon [30]. Petabricks is a
parallel language and compiler that developers can use
to provide alternate implementations of a given piece of
functionality. Green also provides constructs that devel-
opers can use to specify alternate implementations. The
alternatives typically exhibit different performance and
QoS characteristics. PetaBricks and Green both con-
tain algorithms that explore the trade-off space to find
points with desirable performance and QoS character-
istics. Eon [30] is a coordination language for power-
aware computing that enables developers to adapt their
algorithms to different energy contexts. In a similar vein,
energy-aware adaptation for mobile applications [15],
adapts to changing system demands by dynamically ad-
justing application input quality. For example, to save
energy the system may switch to a lower quality video
input to reduce the computation of the video decoder.

While each of these systems require source code mod-
ifications and/or annotations, this paper presents an ap-
proach that works directly on unmodified and unanno-
tated applications. In this paper, we present a system that
automatically transforms existing command-line config-
uration parameters into dynamic knobs, a control and
actuation system that manipulates dynamic knobs with
provably good convergence and predictability properties,
and experimental results that demonstrate how dynamic
knobs enable server consolidation and successful opera-
tion in the face of load and power fluctuations (induced,
for example, by power caps).

We have also explored the use of loop perforation
(which automatically transforms loops to skip loop iter-
ations) to augment applications with the ability to op-

erate at different points in an induced performance ver-
sus quality of service trade-off space [26, 21]. We have
demonstrated that loop perforation can help developers
find computations that are suitable for further optimiza-
tion [26] and enables applications to adapt to fluctuations
in the delivered computational resources [21]. This pa-
per presents a system that uses dynamic knobs instead of
loop perforation and more fully demonstrates how to use
dynamic knobs to solve power management issues.

7 Conclusion
Power management is an increasingly important concern
across a range of computing environments. Applications
that can flexibly adjust their computing resource require-
ments, in combination with control systems that dynam-
ically match their requirements to the fluctuating char-
acteristics of the underlying computing platform, enable
productive new solutions to many existing and future
power management problems.

Our presented PowerDial system augments applica-
tions with dynamic knobs that the PowerDial control sys-
tem can use to adapt the behavior of the application to
execute successfully in the face of load spikes, power
fluctuations, or (in general) any event that changes the
balance between the computational demand and the re-
sources available to meet that demand. Our experimental
results demonstrate how PowerDial makes it possible to
consolidate data centers (reducing operational and capi-
tal costs) and enables applications to operate successfully
in the face of load and power fluctuations. We see Power-
Dial as an early example of an emerging class of manage-
ment systems that will enable applications operate suc-
cessfully in complex modern computing environments,
which are increasingly characterized by fluctuations in
power, load, and other key operating characteristics.

References
[1] Hp power capping and hp dynamic power

capping for proliant servers. http:

//h20000.www2.hp.com/bc/docs/support/

SupportManual/c01549455/c01549455.pdf.

[2] Intel Xeon Processor. http://www.intel.com/
technology/Xeon.

[3] Project Gutenberg.

[4] Wattsup .net meter. http://www.

wattsupmeters.com/.

[5] Xiph.org.

[6] Exposing application alternatives. In ICDCS ’99:
Proceedings of the 19th IEEE International Confer-
ence on Distributed Computing Systems, page 384,
Washington, DC, USA, 1999. IEEE Computer So-
ciety.

14

[7] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski,
Q. Zhao, A. Edelman, and S. Amarasinghe.
Petabricks: A language and compiler for algorith-
mic choice. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation,
Dublin, Ireland, Jun 2009.

[8] W. Baek and T. Chilimbi. Green: A framework
for supporting energy-conscious programming us-
ing controlled approximation. In ACM SIGPLAN
Conference on Programming Language Design and
Implementation, June 2010.

[9] L. Barroso and U. Holzle. The case for
energy-proportional computing. COMPUTER-
IEEE COMPUTER SOCIETY-, 40(12):33, 2007.

[10] C. Bienia, S. Kumar, J. P. Singh, and K. Li.
The PARSEC benchmark suite: Characterization
and architectural implications. In PACT-2008:
Proceedings of the 17th International Conference
on Parallel Architectures and Compilation Tech-
niques, Oct 2008.

[11] M. Carbin and M. Rinard. Automatically Identi-
fying Critical Input Regions and Code in Applica-
tions. In Proceedings of the International Sympo-
sium on Software Testing and Analysis, 2010.

[12] L. Chakrapani, K. Muntimadugu, A. Lingamneni,
J. George, and K. Palem. Highly energy and per-
formance efficient embedded computing through
approximately correct arithmetic: A mathemati-
cal foundation and preliminary experimental vali-
dation. In Proceedings of the 2008 international
conference on Compilers, architectures and synthe-
sis for embedded systems, 2008.

[13] J. Deutscher and I. Reid. Articulated body motion
capture by stochastic search. International Journal
of Computer Vision, 61(2):185–205, 2005.

[14] X. Fan, W. Weber, and L. Barroso. Power provi-
sioning for a warehouse-sized computer. In Pro-
ceedings of the 34th annual international sympo-
sium on Computer architecture, page 23. ACM,
2007.

[15] J. Flinn and M. Satyanarayanan. Energy-aware
adaptation for mobile applications. In Proceedings
of the seventeenth ACM symposium on Operating
systems principles, page 63. ACM, 1999.

[16] M. Frigo and S. G. Johnson. FFTW: An adaptive
software architecture for the FFT. In Proc. 1998
IEEE Intl. Conf. Acoustics Speech and Signal Pro-
cessing, volume 3, pages 1381–1384. IEEE, 1998.

[17] B. Furht, J. Greenberg, and R. Westwater. Mo-
tion Estimation Algorithms for Video Compression.
Kluwer Academic Publishers, Norwell, MA, USA,
1996.

[18] V. Ganesh, T. Leek, and M. Rinard. Taint-based
directed whitebox fuzzing. In Proceedings of the
2009 IEEE 31st International Conference on Soft-
ware Engineering, pages 474–484. IEEE Computer
Society, 2009.

[19] H.264 reference implementation.
http://iphome.hhi.de/suehring/tml/download/.

[20] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E.
Miller, and A. Agarwal. Application Heartbeats: A
Generic Interface for Specifying Program Perfor-
mance and Goals in Autonomous Computing Envi-
ronments. In ICAC’10: 7th International Confer-
ence on Autonomic Computing, 2010.

[21] H. Hoffmann, S. Misailovic, S. Sidiroglou,
A. Agarwal, and M. Rinard. Using Code Perfora-
tion to Improve Performance, Reduce Energy Con-
sumption, and Respond to Failures . Technical Re-
port MIT-CSAIL-TR-2009-042, MIT, Sept. 2009.

[22] C. Lattner and V. Adve. LLVM: A Compila-
tion Framework for Lifelong Program Analysis &
Transformation. In Proceedings of the 2004 Inter-
national Symposium on Code Generation and Op-
timization (CGO’04), Palo Alto, California, Mar
2004.

[23] M. Maggio, H. Hoffmann, M. D. Santambrogio,
A. Agarwal, and A. Leva. Controlling software ap-
plications within the heartbeats frame work. In 49th
IEEE Conference on Decision and Control, 2010.
Under Review.

[24] J. Makhoul, F. Kubala, R. Schwartz, and
R. Weischedel. Performance measures for informa-
tion extraction. In Broadcast News Workshop’99
Proceedings, page 249. Morgan Kaufmann Pub,
1999.

[25] C. Middleton and R. Baeza-Yates. A comparison of
open source search engines, 2007.

[26] S. Misailovic, S. Sidiroglou, H. Hoffmann, and
M. Rinard. Quality of service profiling. ICSE,
2010.

[27] R. Ribler, J. Vetter, H. Simitci, and D. Reed. Au-
topilot: adaptive control of distributed applications.
In High Performance Distributed Computing, Jul
1998.

15

[28] M. Rinard. Probabilistic accuracy bounds for fault-
tolerant computations that discard tasks. In Pro-
ceedings of the 20th annual international confer-
ence on Supercomputing, pages 324–334. ACM
New York, NY, USA, 2006.

[29] M. Rinard. Using early phase termination to elim-
inate load imbalancess at barrier synchronization
points. Oct. 2007.

[30] J. Sorber, A. Kostadinov, M. Garber, M. Brennan,
M. D. Corner, and E. D. Berger. Eon: a language
and runtime system for perpetual systems. In Sen-
Sys ’07.

[31] P. Stanley-Marbell, D. Dolech, A. Eindhoven, and
D. Marculescu. Deviation-Tolerant Computation in
Concurrent Failure-Prone Hardware. 2008.

[32] SWISH++. http://swishplusplus.sourceforge.net/.

[33] C. Tapus, I. Chung, and J. Hollingsworth. Active
harmony: Towards automated performance tuning.
In Supercomputing, ACM/IEEE 2002 Conference,
pages 44–44, 2002.

[34] M. Weiser, B. Welch, A. Demers, and S. Shenker.
Scheduling for reduced CPU energy. Mobile Com-
puting, pages 449–471, 1996.

[35] R. Whaley and J. Dongarra. Automatically tuned
linear algebra software. In Proceedings of the
1998 ACM/IEEE conference on Supercomputing
(CDROM), pages 1–27. IEE Computer Society,
1998.

[36] x264. http://www.videolan.org/x264.html.

[37] J. Xiong, J. Johnson, R. W. Johnson, and D. Padua.
SPL: A language and compiler for DSP algorithms.
In Programming Languages Design and Implemen-
tation (PLDI), pages 298–308, 2001.

16

