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Abstract
We present a new method for automatically providing feedback for
introductory programming problems. In order to use this method,
we need a reference implementation of the assignment, and an er-
ror model consisting of potential corrections to errors that students
might make. Using this information, the system automatically de-
rives minimal corrections to student’s incorrect solutions, providing
them with a measure of exactly how incorrect a given solution was,
as well as feedback about what they did wrong.

We introduce a simple language for describing error models
in terms of correction rules, and formally define a rule-directed
translation strategy that reduces the problem of finding minimal
corrections in an incorrect program to the problem of synthesizing
a correct program from a sketch. We have evaluated our system on
thousands of real student attempts obtained from the Introduction to
Programming course at MIT (6.00) and MITx (6.00x). Our results
show that relatively simple error models can correct on average
64% of all incorrect submissions in our benchmark set.

Categories and Subject Descriptors D.1.2 [Programming Tech-
niques]: Automatic Programming; I.2.2 [Artificial Intelligence]:
Program Synthesis

Keywords Automated Grading; Computer-Aided Education; Pro-
gram Synthesis

1. Introduction
There has been a lot of interest recently in making quality educa-
tion more accessible to students worldwide using information tech-
nology. Several education initiatives such as EdX, Coursera, and
Udacity are racing to provide online courses on various college-
level subjects ranging from computer science to psychology. These
courses, also called massive open online courses (MOOC), are typ-
ically taken by thousands of students worldwide, and present many
interesting scalability challenges. Specifically, this paper addresses
the challenge of providing personalized feedback for programming
assignments in introductory programming courses.

The two methods most commonly used by MOOCs to provide
feedback on programming problems are: (i) test-case based feed-
back and (ii) peer-feedback [12]. In test-case based feedback, the
student program is run on a set of test cases and the failing test cases
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are reported back to the student. This is also how the 6.00x course
(Introduction to Computer Science and Programming) offered by
MITx currently provides feedback for Python programming exer-
cises. The feedback of failing test cases is however not ideal; es-
pecially for beginner programmers who find it difficult to map the
failing test cases to errors in their code. This is reflected by the num-
ber of students who post their submissions on the discussion board
to seek help from instructors and other students after struggling for
hours to correct the mistakes themselves. In fact, for the classroom
version of the Introduction to Programming course (6.00) taught at
MIT, the teaching assistants are required to manually go through
each student submission and provide qualitative feedback describ-
ing exactly what is wrong with the submission and how to correct it.
This manual feedback by teaching assistants is simply prohibitive
for the number of students in the online class setting.

The second approach of peer-feedback is being suggested as a
potential solution to this problem [43]. For example in 6.00x, stu-
dents routinely answer each other’s questions on the discussion fo-
rums. This kind of peer-feedback is helpful, but it is not without
problems. For example, we observed several instances where stu-
dents had to wait for hours to get any feedback, and in some cases
the feedback provided was too general or incomplete, and even
wrong. Some courses have experimented with more sophisticated
peer evaluation techniques [28] and there is an emerging research
area that builds on recent results in crowd-powered systems [7, 30]
to provide more structure and better incentives for improving the
feedback quality. However, peer-feedback has some inherent limi-
tations, such as the time it takes to receive quality feedback and the
potential for inaccuracies in feedback, especially when a majority
of the students are themselves struggling to learn the material.

In this paper, we present an automated technique to provide
feedback for introductory programming assignments. The approach
leverages program synthesis technology to automatically determine
minimal fixes to the student’s solution that will make it match the
behavior of a reference solution written by the instructor. This tech-
nology makes it possible to provide students with precise feedback
about what they did wrong and how to correct their mistakes. The
problem of providing automatic feedback appears to be related to
the problem of automated bug fixing, but it differs from it in fol-
lowing two significant respects:

• The complete specification is known. An important challenge
in automatic debugging is that there is no way to know whether
a fix is addressing the root cause of a problem, or simply
masking it and potentially introducing new errors. Usually the
best one can do is check a candidate fix against a test suite or
a partial specification [14]. While providing feedback on the
other hand, the solution to the problem is known, and it is safe
to assume that the instructor already wrote a correct reference
implementation for the problem.



• Errors are predictable. In a homework assignment, everyone
is solving the same problem after having attended the same lec-
tures, so errors tend to follow predictable patterns. This makes
it possible to use a model-based feedback approach, where the
potential fixes are guided by a model of the kinds of errors stu-
dents typically make for a given problem.

These simplifying assumptions, however, introduce their own set
of challenges. For example, since the complete specification is
known, the tool now needs to reason about the equivalence of the
student solution with the reference implementation. Also, in order
to take advantage of the predictability of errors, the tool needs to
be parameterized with models that describe the classes of errors.
And finally, these programs can be expected to have higher density
of errors than production code, so techniques which attempts to
correct bugs one path at a time [25] will not work for many of these
problems that require coordinated fixes in multiple places.

Our feedback generation technique handles all of these chal-
lenges. The tool can reason about the semantic equivalence of stu-
dent programs with reference implementations written in a fairly
large subset of Python, so the instructor does not need to learn a
new formalism to write specifications. The tool also provides an er-
ror model language that can be used to write an error model: a very
high level description of potential corrections to errors that students
might make in the solution. When the system encounters an incor-
rect solution by a student, it symbolically explores the space of all
possible combinations of corrections allowed by the error model
and finds a correct solution requiring a minimal set of corrections.

We have evaluated our approach on thousands of student solu-
tions on programming problems obtained from the 6.00x submis-
sions and discussion boards, and from the 6.00 class submissions.
These problems constitute a major portion of first month of assign-
ment problems. Our tool can successfully provide feedback on over
64% of the incorrect solutions.

This paper makes the following key contributions:

• We show that the problem of providing automated feedback for
introductory programming assignments can be framed as a syn-
thesis problem. Our reduction uses a constraint-based mecha-
nism to model Python’s dynamic typing and supports complex
Python constructs such as closures, higher-order functions, and
list comprehensions.
• We define a high-level error model language EML that can be

used to provide correction rules to be used for providing feed-
back. We also show that a small set of such rules is sufficient to
correct thousands of incorrect solutions written by students.
• We report the successful evaluation of our technique on thou-

sands of real student attempts obtained from 6.00 and 6.00x
classes, as well as from PEX4FUN website. Our tool can pro-
vide feedback on 64% of all submitted solutions that are incor-
rect in about 10 seconds on average.

2. Overview of the approach
In order to illustrate the key ideas behind our approach, consider
the problem of computing the derivative of a polynomial whose
coefficients are represented as a list of integers. This problem is
taken from week 3 problem set of 6.00x (PS3: Derivatives). Given
the input list poly, the problem asks students to write the function
computeDeriv that computes a list poly’ such that

poly’ =

{
{i× poly[i] | 0 < i < len(poly)} if len(poly) > 1

[0] if len(poly) = 1

For example, if the input list poly is [2,−3, 1, 4] (denoting f(x) =
4x3 + x2 − 3x + 2), the computeDeriv function should return
[−3, 2, 12] (denoting the derivative f ′(x) = 12x2 + 2x− 3). The
reference implementation for the computeDeriv function is shown

1 def computeDeriv_list_int(poly_list_int):
2 result = []
3 for i in range(len(poly_list_int)):
4 result += [i * poly_list_int[i]]
5 if len(poly_list_int) == 1:
6 return result # return [0]
7 else:
8 return result[1:] # remove the leading 0

Figure 1. The reference implementation for computeDeriv.

in Figure 1. This problem teaches concepts of conditionals and
iteration over lists. For this problem, students struggled with many
low-level Python semantics issues such as the list indexing and
iteration bounds. In addition, they also struggled with conceptual
issues such as missing the corner case of handling lists consisting
of single element (denoting constant function).

One challenge in providing feedback for student submissions is
that a given problem can be solved by using many different algo-
rithms. Figure 2 shows three very different student submissions for
the computeDeriv problem, together with the feedback generated
by our tool for each submission. The student submission shown
in Figure 2(a) is taken from the 6.00x discussion forum1. The stu-
dent posted the code in the forum seeking help and received two
responses. The first response asked the student to look for the first
if-block return value, and the second response said that the code
should return [0] instead of empty list for the first if statement.
There are many different ways to modify the code to return [0] for
the case len(poly)=1. The student chose to change the initializa-
tion of the deriv variable from [ ] to the list [0]. The problem with
this modification is that the result will now have an additional 0 in
front of the output list for all input lists (which is undesirable for
lists of length greater than 1). The student then posted the query
again on the forum on how to remove the leading 0 from result, but
unfortunately this time did not get any more response.

Our tool generates the feedback shown in Figure 2(d) for the
student program in about 40 seconds. During these 40 seconds,
the tool searches over more than 107 candidate fixes and finds the
fix that requires minimum number of corrections. There are three
problems with the student code: first it should return [0] in line 5 as
was suggested in the forum but wasn’t specified how to make the
change, second the if block should be removed in line 7, and third
that the loop iteration should start from index 1 instead of 0 in line
6. The generated feedback consists of four pieces of information
(shown in bold in the figure for emphasis):

• the location of the error denoted by the line number.
• the problematic expression in the line.
• the sub-expression which needs to be modified.
• the new modified value of the sub-expression.

The feedback generator is parameterized with a feedback-level
parameter to generate feedback consisting of different combina-
tions of the four kinds of information, depending on how much
information the instructor is willing to provide to the student.

2.1 Workflow
In order to provide the level of feedback described above, the tool
needs some information from the instructor. First, the tool needs to
know what the problem is that the students are supposed to solve.
The instructor provides this information by writing a reference im-

1 https://www.edx.org/courses/MITx/6.00x/2012_Fall/discussion/
forum/600x_ps3_q2/threads/5085f3a27d1d422500000040



Three different student submissions for computeDeriv

1 def computeDeriv(poly):
2 deriv = []
3 zero = 0
4 if (len(poly) == 1):
5 return deriv
6 for e in range(0,len(poly)):
7 if (poly[e] == 0):
8 zero += 1
9 else:

10 deriv.append(poly[e]*e)
11 return deriv

1 def computeDeriv(poly):
2 idx = 1
3 deriv = list([])
4 plen = len(poly)
5 while idx <= plen:
6 coeff = poly.pop(1)
7 deriv += [coeff * idx]
8 idx = idx + 1
9 if len(poly) < 2:

10 return deriv

1 def computeDeriv(poly):
2 length = int(len(poly)-1)
3 i = length
4 deriv = range(1,length)
5 if len(poly) == 1:
6 deriv = [0]
7 else:
8 while i >= 0:
9 new = poly[i] * i

10 i -= 1
11 deriv[i] = new
12 return deriv

(a) (b) (c)

Feedback generated by our Tool

The program requires 3 changes:

• In the return statement return deriv in line 5,
replace deriv by [0].
• In the comparison expression (poly[e] == 0) in

line 7, change (poly[e] == 0) to False.

• In the expression range(0, len(poly)) in line 6,
increment 0 by 1.

The program requires 1 change:

• In the function computeDeriv, add the base
case at the top to return [0] for len(poly)=1.

The program requires 2 changes:

• In the expression range(1, length) in line 4,
increment length by 1.

• In the comparison expression (i >= 0) in line
8, change operator >= to !=.

(d) (e) (f)

Figure 2. Three very different student submissions ((a), (b), and (c)) for the computeDeriv problem and the corresponding feedback
generated by our tool ((d), (e), and (f)) for each one of them using the same reference implementation.

plementation such as the one in Figure 1. Since Python is dynam-
ically typed, the instructor also provides the types of function ar-
guments and return value. In Figure 1, the instructor specifies the
type of input argument to be list of integers (poly_list_int) by
appending the type to the name.

In addition to the reference implementation, the tool needs a
description of the kinds of errors students might make. We have
designed an error model language EML, which can describe a set
of correction rules that denote the potential corrections to errors
that students might make. For example, in the student attempt in
Figure 2(a), we observe that corrections often involve modifying
the return value and the range iteration values. We can specify this
information with the following three correction rules:

return a → return [0]

range(a1, a2) → range(a1 + 1, a2)

a0 == a1 → False

The correction rule return a → return [0] states that the expres-
sion of a return statement can be optionally replaced by [0]. The
error model for this problem that we use for our experiments is
shown in Figure 8, but we will use this simple error model for sim-
plifying the presentation in this section. In later experiments, we
also show how only a few tens of incorrect solutions can provide
enough information to create an error model that can automatically
provide feedback for thousands of incorrect solutions.

The rules define a space of candidate programs which the tool
needs to search in order to find one that is equivalent to the ref-
erence implementation and that requires minimum number of cor-
rections. We use constraint-based synthesis technology [16, 37, 40]
to efficiently search over this large space of programs. Specifically,
we use the SKETCH synthesizer that uses a SAT-based algorithm to
complete program sketches (programs with holes) so that they meet
a given specification. We extend the SKETCH synthesizer with sup-

port for minimize hole expressions whose values are computed effi-
ciently by using incremental constraint solving. To simplify the pre-
sentation, we use a simpler language MPY (miniPython) in place of
Python to explain the details of our algorithm. In practice, our tool
supports a fairly large subset of Python including closures, higher
order functions, and list comprehensions.

2.2 Solution Strategy

FEEDBACK 
GENERATOR 
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SOLVER 

SKETCH 
TRANSLATOR 

PROGRAM 
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.out 

…..….. 
…..….. 
…..….. 
….. 
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Figure 3. The architecture of our feedback generation tool.

The architecture of our tool is shown in Figure 3. The solu-
tion strategy to find minimal corrections to a student’s solution is
based on a two-phase translation to the Sketch synthesis language.
In the first phase, the Program Rewriter uses the correction rules
to translate the solution into a language we call M̃PY; this language
provides us with a concise notation to describe sets of MPY candi-
date programs, together with a cost model to reflect the number of
corrections associated with each program in this set. In the second
phase, this M̃PY program is translated into a sketch program by the
Sketch Translator.



1 def computeDeriv(poly):
2 deriv = []
3 zero = 0

4 if ({ len(poly) == 1 , False}):

5 return { deriv ,[0]}

6 for e in range ({ 0 ,1}, len(poly)):

7 if ({ poly[e] == 0 ,False}):

8 zero += 1
9 else:

10 deriv.append(poly[e]*e)

11 return { deriv ,[0]}

Figure 4. The resulting M̃PY program after applying correction
rules to program in Figure 2(a).

In the case of example in Figure 2(a), the Program Rewriter

produces the M̃PY program shown in Figure 4 using the correc-
tion rules from Section 2.1. This program includes all the possi-
ble corrections induced by the correction rules in the model. The
M̃PY language extends the imperative language MPY with expres-
sion choices, where the choices are denoted with squiggly brack-
ets. Whenever there are multiple choices for an expression or a
statement, the zero-cost choice, the one that will leave the ex-
pression unchanged, is boxed. For example, the expression choice
{ a0 , a1, · · · , an} denotes a choice between expressions a0, · · ·,
an where a0 denotes the zero-cost default choice.

For this simple program, the three correction rules induce a
space of 32 different candidate programs. This candidate space is
fairly small, but the number of candidate programs grow exponen-
tially with the number of correction places in the program and with
the number of correction choices in the rules. The error model that
we use in our experiments induces a space of more than 1012 can-
didate programs for some of the benchmark problems. In order to
search this large space efficiently, the program is translated to a
sketch by the Sketch Translator.

2.3 Synthesizing Corrections with Sketch
The SKETCH [37] synthesis system allows programmers to write
programs while leaving fragments of it unspecified as holes; the
contents of these holes are filled up automatically by the synthe-
sizer such that the program conforms to a specification provided
in terms of a reference implementation. The synthesizer uses the
CEGIS algorithm [38] to efficiently compute the values for holes
and uses bounded symbolic verification techniques for performing
equivalence check of the two implementations.

There are two key aspects in the translation of an M̃PY program
to a SKETCH program. The first aspect is specific to the Python
language. SKETCH supports high-level features such as closures
and higher-order functions which simplifies the translation, but
it is statically typed whereas MPY programs (like Python) are
dynamically typed. The translation models the dynamically typed
variables and operations over them using struct types in SKETCH
in a way similar to the union types. The second aspect of the
translation is the modeling of set-expressions in M̃PY using ??
(holes) in SKETCH, which is language independent.

The dynamic variable types in the MPY language are modeled
using the MultiType struct defined in Figure 5. The MultiType
struct consists of a flag field that denotes the dynamic type
of a variable and currently supports the following set of types:
{INTEGER, BOOL, TYPE, LIST, TUPLE, STRING, DICTIONARY}. The
val and bval fields store the value of an integer and a Boolean

struct MultiType{
int val, flag;
bit bval;
MTString str; MTTuple tup;
MTDict dict; MTList lst;

}

struct MTList{
int len;
MultiType[len] lVals;

}

Figure 5. The MultiType struct for encoding Python types.

variable respectively, whereas the str, tup, dict, and lst fields
store the value of string, tuple, dictionary, and list variables re-
spectively. The MTList struct consists of a field len that denotes
the length of the list and a field lVals of type array of MultiType
that stores the list elements. For example, the integer value 5 is
represented as the value MultiType(val=5, flag=INTEGER) and
the list [1,2] is represented as the value MultiType(lst=new
MTList(len=2,lVals={new MultiType(val=1,flag=INTEGER),
new MultiType(val=2,flag=INTEGER)}), flag=LIST).

The second key aspect of this translation is the translation of ex-
pression choices in M̃PY. The SKETCH construct ?? denotes an un-
known integer hole that can be assigned any constant integer value
by the synthesizer. The expression choices in M̃PY are translated
to functions in SKETCH that based on the unknown hole values
return either the default expression or one of the other expression
choices. Each such function is associated with a unique Boolean
choice variable, which is set by the function whenever it returns
a non-default expression choice. For example, the set-statement
return { deriv ,[0]}; (line 5 in Figure 4) is translated to return
modRetVal0(deriv), where the modRetVal0 function is defined as:

MultiType modRetVal0(MultiType a){
if(??) return a; // default choice
choiceRetVal0 = True; // non-default choice
MTList list = new MTList(lVals={new

MultiType(val=0, flag=INTEGER)}, len=1);
return new MultiType(lst=list, type = LIST);

}

The translation phase also generates a SKETCH harness that
compares the outputs of the translated student and reference im-
plementations on all inputs of a bounded size. For example in case
of the computeDeriv function, with bounds of n = 4 for both the
number of integer bits and the maximum length of input list, the
harness matches the output of the two implementations for more
than 216 different input values as opposed to 10 test-cases used in
6.00x. The harness also defines a variable totalCost as a function
of choice variables that computes the total number of corrections
performed in the original program, and asserts that the value of
totalCost should be minimized. The synthesizer then solves this
minimization problem efficiently using an incremental solving al-
gorithm CEGISMIN described in Section 4.2.

After the synthesizer finds a solution, the Feedback Generator
extracts the choices made by the synthesizer and uses them to
generate the corresponding feedback in natural language. For this
example, the tool generates the feedback shown in Figure 2(d) in
less than 40 seconds.

3. EML: Error Model Language
In this section, we describe the syntax and semantics of the error
model language EML. An EML error model consists of a set of
rewrite rules that captures the potential corrections for mistakes that
students might make in their solutions. We define the rewrite rules
over a simple Python-like imperative language MPY. A rewrite rule
transforms a program element in MPY to a set of weighted MPY
program elements. This weighted set of MPY program elements is



[[a]] = {(a, 0)}

[[{ ã0 , · · · , ãn}]] = [[ã0]] ∪ {(a, c+ 1) | (a, c) ∈ [[ãi]]0<i≤n}
[[ã0[ã1]]] = {(a0[a1], c0 + c1) | (ai, ci) ∈ [[ãi]]i∈{0,1}}

[[while b̃ : s̃]] = {(while b : s, cb + cs) |
(b, cb) ∈ [[b̃]], (s, cs) ∈ [[s̃]]}

Figure 7. The [[ ]] function (shown partially) that translates an M̃PY
program to a weighted set of MPY programs.

represented succinctly as an M̃PY program element, where M̃PY
extends the MPY language with set-exprs (sets of expressions) and
set-stmts (sets of statements). The weight associated with a pro-
gram element in this set denotes the cost of performing the corre-
sponding correction. An error model transforms an MPY program
to an M̃PY program by recursively applying the rewrite rules. We
show that this transformation is deterministic and is guaranteed to
terminate on well-formed error models.

3.1 MPY and M̃PY languages

The syntax of MPY and M̃PY languages is shown in Figure 6(a)
and Figure 6(b) respectively. The purpose of M̃PY language is to
represent a large collection of MPY programs succinctly. The M̃PY

language consists of set-expressions (ã and b̃) and set-statements
(s̃) that represent a weighted set of corresponding MPY expres-
sions and statements respectively. For example, the set expres-
sion { n0 , · · · , nk} represents a weighted set of constant inte-
gers where n0 denotes the default integer value associated with
cost 0 and all other integer constants (n1, · · · , nk) are associated
with cost 1. The sets of composite expressions are represented suc-
cinctly in terms of sets of their constituent sub-expressions. For
example, the composite expression { a0 , a0 + 1}{ < ,≤, >,≥
,==, 6=}{ a1 , a1 + 1, a1 − 1} represents 36 MPY expressions.

Each MPY program in the set of programs represented by an
M̃PY program is associated with a cost (weight) that denotes the
number of modifications performed in the original program to
obtain the transformed program. This cost allows the tool to search
for corrections that require minimum number of modifications. The
weighted set of MPY programs is defined using the [[ ]] function
shown partially in Figure 7, the complete function definition can
be found in [36]. The [[ ]] function on MPY expressions such as
a returns a singleton set {(a, 0)} consisting of the corresponding
expression associated with cost 0. On set-expressions of the form
{ ã0 , · · · , ãn}, the function returns the union of the weighted set
of MPY expressions corresponding to the default set-expression
([[ã0]]) and the weighted set of expressions corresponding to other
set-expressions (ã1, · · · , ãn), where each expression in [[ãi)]] is
associated with an additional cost of 1. On composite expressions,
the function computes the weighted set recursively by taking the
cross-product of weighted sets of its constituent sub-expressions
and adding their corresponding costs. For example, the weighted
set for composite expression x̃[ỹ] consists of an expression xi[yj ]
associated with cost cxi + cyj for each (xi, cxi) ∈ [[x̃]] and
(yj , cyj ) ∈ [[ỹ]].

3.2 Syntax of EML

An EML error model consists of a set of correction rules that are
used to transform an MPY program to an M̃PY program. A correc-
tion rule C is written as a rewrite rule L → R, where L and R de-
note a program element in MPY and M̃PY respectively. A program

element can either be a term, an expression, a statement, a method
or the program itself. The left hand side (L) denotes an MPY pro-
gram element that is pattern matched to be transformed to an M̃PY
program element denoted by the right hand side (R). The left hand
side of the rule can use free variables whereas the right hand side
can only refer to the variables present in the left hand side. The
language also supports a special ′ (prime) operator that can be used
to tag sub-expressions inR that are further transformed recursively
using the error model. The rules use a shorthand notation ?a (in
the right hand side) to denote the set of all variables that are of
the same type as the type of expression a and are in scope at the
corresponding program location. We assume each correction rule
is associated with cost 1, but it can be easily extended to different
costs to account for different severity of mistakes.

INDR: v[a] → v[{a+ 1, a− 1, ?a}]
INITR: v = n → v = {n+ 1, n− 1, 0}

RANR: range(a0, a1) → range({0, 1, a0 − 1, a0 + 1},
{a1 + 1, a1 − 1})

COMPR: a0 opc a1 → {{a′0 − 1, ?a0} õpc {a
′
1 − 1, 0, 1, ?a1},

True, False}
where õpc = {<,>,≤,≥,==, 6=}

RETR: return a → return{[0] if len(a) == 1 else a,

a[1 :] if (len(a) > 1) else a}

Figure 8. The error model E for the computeDeriv problem.

Example 1. The error model for the computeDeriv problem is
shown in Figure 8. The INDR rewrite rule transforms the list access
indices. The INITR rule transforms the right hand side of constant
initializations. The RANR rule transforms the arguments for the
range function; similar rules are defined in the model for other
range functions that take one and three arguments. The COMPR
rule transforms the operands and operator of the comparisons.
The RETR rule adds the two common corner cases of returning [0]
when the length of input list is 1, and the case of deleting the first
list element before returning the list. Note that these rewrite rules
define the corrections that can be performed optionally; the zero
cost (default) case of not correcting a program element is added
automatically as described in Section 3.3.

Definition 1. Well-formed Rewrite Rule : A rewrite rule C : L →
R is defined to be well-formed if all tagged sub-terms t′ in R have
a smaller size syntax tree than that of L.

The rewrite rule C1 : v[a]→ {(v[a])′+ 1} is not a well-formed
rewrite rule as the size of the tagged sub-term (v[a]) of R is the
same as that of the left hand side L. On the other hand, the rewrite
rule C2 : v[a]→ {v′[a′] + 1} is well-formed.

Definition 2. Well-formed Error Model : An error model E is
defined to be well-formed if all of its constituent rewrite rules
Ci ∈ E are well-formed.

3.3 Transformation with EML

An error model E is syntactically translated to a function TE that
transforms an MPY program to an M̃PY program. The TE function
first traverses the program element w in the default way, i.e. no
transformation happens at this level of the syntax tree, and the
function is called recursively on all of its top-level sub-terms t to
obtain the transformed element w0 ∈ M̃PY. For each correction
rule Ci : Li → Ri in the error model E , the function contains a



Arith Expr a := n | [ ] | v | a[a] | a0 opa a1
| [a1, · · · , an] | f(a0, · · · , an)

| a0 if b else a1

Arith Op opa := + | − | × | / | ∗ ∗
Bool Expr b := not b | a0 opc a1 | b0 opb b1

Comp Op opc := == | < | > | ≤ | ≥
Bool Op opb := and | or
Stmt Expr s := v = a | s0; s1 | while b : s

| if b : s0 else: s1

| for a0 in a1 : s | return a
Func Def. p := def f(a1, · · · , an) : s

Arith set-expr ã := a | { ã0 , · · · , ãn} | ã[ã] | ã0 õpa ã1

| [ã0, · · · , ãn] | f̃(ã0, · · · , ãn)

set-op õpx := opa | { õpx0
, · · · , õpxn

}

Bool set-expr b̃ := b | { b̃0 , · · · , b̃n} | not b̃ | ã0 õpc ã1 | b̃0 õpb b̃1

Stmt set-expr s̃ := s | { s̃0 , · · · , s̃n} | ṽ := ã | s̃0; s̃1

| while b̃ : s̃ | for ã0 in ã1 : s̃

| if b̃ : s̃0 else : s̃1 | return ã
Func Def p̃ := def f(a1, · · · , an) s̃

(a) MPY (b) M̃PY

Figure 6. The syntax for (a) MPY and (b) M̃PY languages.

Match expression that matches the term w with the left hand side
of the rule Li (with appropriate unification of the free variables in
Li). If the match succeeds, it is transformed to a term wi ∈ M̃PY
as defined by the right hand side Ri of the rule after calling the
TE function on each of its tagged sub-terms t′. Finally, the method
returns the set of all transformed terms { w0 , · · · , wn}.

Example 2. Consider an error model E1 consisting of the follow-
ing three correction rules:

C1 : v[a] → v[{a− 1, a+ 1}]
C2 : a0 opc a1 → {a′0 − 1, 0} opc {a′1 − 1, 0}

C3 : v[a] → ?v[a]

The transformation function TE1 for the error model E1 is shown
in Figure 9.

TE1(w : MPY) : M̃PY =

let w0 = w[t→ TE1(t)] in (∗ t : a sub-term of w ∗)
let w1 = Match w with

v[a]→ v[{a+ 1, a− 1}] in
let w2 = Match w with

a0 opc a1 → {TE1(a0)− 1, 0} opc
{TE1(a1)− 1, 0} in

{ w0 , w1, w2}

Figure 9. The TE1 method for error model E1.

The recursive steps of application of TE1 function on expression
(x[i] < y[j]) are shown in Figure 10. This example illustrates two
interesting features of the transformation function:

• Nested Transformations : Once a rewrite rule L → R is ap-
plied to transform a program element matching L to R, the in-
structor may want to apply another rewrite rule on only a few
sub-terms of R. For example, she may want to avoid trans-
forming the sub-terms which have already been transformed
by some other correction rule. The EML language facilitates
making such distinction between the sub-terms for performing
nested corrections using the ′ (prime) operator. Only the sub-
terms in R that are tagged with the prime operator are visited

for applying further transformations (using the TE function re-
cursively on its tagged sub-terms t′), whereas the non-tagged
sub-terms are not transformed any further. After applying the
rewrite rule C2 in the example, the sub-terms x[i] and y[j] are
further transformed by applying rewrite rules C1 and C3.
• Ambiguous Transformations : While transforming a program

using an error model, it may happen that there are multiple
rewrite rules that pattern match the program element w. After
applying rewrite rule C2 in the example, there are two rewrite
rules C1 and C3 that pattern match the terms x[i] and y[j]. After
applying one of these rules (C1 or C3) to an expression v[a], we
cannot apply the other rule to the transformed expression. In
such ambiguous cases, the TE function creates a separate copy
of the transformed program element (wi) for each ambiguous
choice and then performs the set union of all such elements
to obtain the transformed program element. This semantics
of handling ambiguity of rewrite rules also matches naturally
with the intent of the instructor. If the instructor wanted to
perform both transformations together on array accesses, she
could have provided a combined rewrite rule such as v[a] →
?v[{a+ 1, a− 1}].

Theorem 1. Given a well-formed error model E , the transforma-
tion function TE always terminates.

Proof. From the definition of well-formed error model, each of its
constituent rewrite rule is also well-formed. Hence, each applica-
tion of a rewrite rule reduces the size of the syntax tree of terms that
are required to be visited further for transformation by TE . There-
fore, the TE function terminates in a finite number of steps.

4. Constraint-based Solving of M̃PY programs
In the previous section, we saw the transformation of an MPY pro-
gram to an M̃PY program based on an error model. We now present
the translation of an M̃PY program into a SKETCH program [37].

4.1 Translation of M̃PY programs to SKETCH

The M̃PY programs are translated to SKETCH programs for efficient
constraint-based solving for minimal corrections to the student
solutions. The two main aspects of the translation include : (i) the
translation of Python-like constructs in M̃PY to SKETCH, and (ii)
the translation of set-expr choices in M̃PY to SKETCH functions.



T (x[i] < y[j]) ≡ { T (x[i]) < T (y[j]) , {T (x[i])− 1, 0} < {T (y[j])− 1, 0}}

T (x[i]) ≡ { T (x)[T (i)] , x[{i+ 1, i− 1}], y[i]}

T (y[j]) ≡ { T (y)[T (j)] , y[{j + 1, j − 1}], x[j]}

T (x) ≡ { x } T (i) ≡ { i } T (y) ≡ { y } T (j) ≡ { j }

Therefore, after substitution the result is:

T (x[i] < y[j]) ≡ { { x [ i ] , x[{i+ 1, i− 1}], y[i]} < { y [ j ] , y[{j + 1, j − 1}], x[j]} ,

{{ x [ i ] , x[{i+ 1, i− 1}], y[i]} − 1, 0} < {{ y [ j ] , y[{j + 1, j − 1}], x[j]} − 1, 0}}

Figure 10. Application of TE1 (abbreviated T ) on expression (x[i] < y[j]).

Handling dynamic typing of M̃PY variables The dynamic typ-
ing in M̃PY is handled using a MultiType variable as described in
Section 2.3. The M̃PY expressions and statements are transformed
to SKETCH functions that perform the corresponding transforma-
tions over MultiType. For example, the Python statement (a = b)
is translated to assignMT(a, b), where the assignMT function as-
signs MultiType b to a. Similarly, the binary add expression (a +
b) is translated to binOpMT(a, b, ADD_OP) that in turn calls the
function addMT(a,b) to add a and b as shown in Figure 11.

1 MultiType addMT(MultiType a, MultiType b){
2 assert a.flag == b.flag; // same types can be added
3 if(a.flag == INTEGER) // add for integers
4 return new MultiType(val=a.val+b.val, flag =

INTEGER);
5 if(a.flag == LIST){ // add for lists
6 int newLen = a.lst.len + b.lst.len;
7 MultiType[newLen] newLVals = a.lst.lVals;
8 for(int i=0; i<b.lst.len; i++)
9 newLVals[i+a.lst.len] = b.lst.lVals[i];

10 return new MultiType(lst = new
MTList(lVals=newLVals, len=newLen),
flag=LIST);}

11 · · · · · ·
12 }

Figure 11. The addMT function for adding two MultiType a and b.

Translation of M̃PY set-expressions The set-expressions in M̃PY
are translated to functions in SKETCH. The function bodies ob-
tained by the application of translation function (Φ) on some of the
interesting M̃PY constructs are shown in Figure 12. The SKETCH
construct ?? (called hole) is a placeholder for a constant value,
which is filled up by the SKETCH synthesizer while solving the
constraints to satisfy the given specification.

The singleton sets consisting of an MPY expression such as
{a} are translated simply to the corresponding expression itself.
A set-expression of the form { ã0 , · · · , ãn} is translated recur-
sively to the if expression :if (??) Φ(ã0) else Φ({ã1, · · · , ãn}),
which means that the synthesizer can optionally select the default
set-expression Φ(ã0) (by choosing ?? to be true) or select one
of the other choices (ã1, · · · , ãn). The set-expressions of the form

Φ({a}) = a

Φ({ ã0 , · · · , ãn}) = if (??) Φ(ã0) else Φ({ã1, · · · , ãn})
Φ({ã0, · · · , ãn}) = if (??) {choicek = True; Φ(ã0)}

else Φ({ã1, · · · , ãn})
Φ(ã0[ã1]) = Φ(ã0)[Φ(ã1)]

Φ(ã0 = ã1) = Φ(ã0) := Φ(ã1)

Figure 12. The translation rules (shown partially) for converting
M̃PY set-exprs to corresponding SKETCH function bodies.

{ã0, · · · , ãn} are similarly translated but with an additional state-
ment for setting a fresh variable choicek if the synthesizer selects
the non-default choice ã0.

The translation rules for the assignment statements (ã0 :=
ã1) results in if expressions on both left and right sides of the
assignment. The if expression choices occurring on the left hand
side are desugared to individual assignments. For example, the left
hand side expression if (??) x else y := 10 is desugared to
if (??) x := 10 else y := 10. The infix operators in M̃PY are first
translated to function calls and are then translated to sketch using
the translation for set-function expressions. The remaining M̃PY
expressions are similarly translated recursively and the translation
can be found in more detail in [36].

Translating function calls The translation of function calls for
recursive problems and for problems that require writing a function
that uses other sub-functions is parmeterized by three options:
1) use the student’s implementation of sub-functions, 2) use the
teacher’s implementation of sub-functions, and 3) treat the sub-
functions as uninterpreted functions.

Generating the driver functions The SKETCH synthesizer sup-
ports the equivalence checking of functions whose input arguments
and return values are over SKETCH primitive types such as int,
bit and arrays. Therefore, after the translation of M̃PY programs to
SKETCH programs, we need additional driver functions to integrate
the functions over MultiType input arguments and return value to
the corresponding functions over SKETCH primitive types. The
driver functions first converts the input arguments over primitive
types to corresponding MultiType variables using library functions



such as computeMTFromInt, and then calls the translated M̃PY func-
tion with the MultiType variables. The returned MultiType value
is translated back to primitive types using library functions such
as computeIntFromMT. The driver function for student’s programs
also consists of additional statements of the form if(choicek)
totalCost++; and the statement minimize(totalCost), which
tells the synthesizer to compute a solution to the Boolean variables
choicek that minimizes the totalCost variable.

4.2 CEGISMIN: Incremental Solving for the Minimize holes

Algorithm 1 CEGISMIN Algorithm for Minimize expression
1: σ0 ← σrandom, i← 0, Φ0 ← Φ, φp ← null
2: while (True)
3: i← i+ 1
4: Φi ← Synth(σi−1,Φi−1) . Synthesis Phase
5: if (Φi = UNSAT) . Synthesis Fails
6: if (Φprev = null) return UNSAT_SKETCH
7: else return PE(P,φp)
8: choose φ ∈ Φi

9: σi ← Verify(φ) . Verification Phase
10: if (σi = null) . Verification Succeeds
11: (minHole, minHoleValue)← getMinHoleValue(φ)
12: φp ← φ
13: Φi ← Φi ∪ {encode(minHole < minHoleVal)}

We extend the CEGIS algorithm in SKETCH [37] to obtain the
CEGISMIN algorithm shown in Algorithm 1 for efficiently solving
sketches that include a minimize hole expression. The input state
of the sketch program is denoted by σ and the sketch constraint
store is denoted by Φ. Initially, the input state σ0 is assigned a
random input state value and the constraint store Φ0 is assigned
the constraint set obtained from the sketch program. The variable
φp stores the previous satisfiable hole values and is initialized to
null. In each iteration of the loop, the synthesizer first performs
the inductive synthesis phase where it shrinks the constraints set
Φi−1 to Φi by removing behaviors from Φi−1 that do not conform
to the input state σi−1. If the constraint set becomes unsatisfiable,
it either returns the sketch completed with hole values from the
previous solution if one exists, otherwise it returns UNSAT. On the
other hand, if the constraint set is satisfiable, then it first chooses
a conforming assignment to the hole values and goes into the
verification phase where it tries to verify the completed sketch. If
the verifier fails, it returns a counter-example input state σi and
the synthesis-verification loop is repeated. If the verification phase
succeeds, instead of returning the result as is done in the CEGIS
algorithm, the CEGISMIN algorithm computes the value of minHole
from the constraint set φ, stores the current satisfiable hole solution
φ in φp, and adds an additional constraint {minHole<minHoleVal}
to the constraint set Φi. The synthesis-verification loop is then
repeated with this additional constraint to find a conforming value
for the minHole variable that is smaller than the current value in φ.

4.3 Mapping SKETCH solution to generate feedback
Each correction rule in the error model is associated with a feed-
back message, e.g. the correction rule for variable initialization
v = n → v = {n + 1} in the computeDeriv error model is
associated with the message “Increment the right hand side of the
initialization by 1”. After the SKETCH synthesizer finds a solution
to the constraints, the tool maps back the values of unknown integer
holes to their corresponding expression choices. These expression
choices are then mapped to natural language feedback using the
messages associated with the corresponding correction rules, to-
gether with the line numbers. If the synthesizer returns UNSAT, the
tool reports that the student solution can not be fixed.

5. Implementation and Experiments
We now briefly describe some of the implementation details of the
tool, and then describe the experiments we performed to evaluate
our tool over the benchmark problems.

5.1 Implementation
The tool’s frontend is implemented in Python itself and uses the
Python ast module to convert a Python program to a SKETCH
program. The backend system that solves the sketch is imple-
mented as a wrapper over the SKETCH system that is extended with
the CEGISMIN algorithm. The feedback generator, implemented in
Python, parses the output generated by the backend system and
translates it to corresponding high level feedback in natural lan-
guage. Error models in our tool are currently written in terms of
rewrite rules over the Python AST. In addition to the Python tool,
we also have a prototype for the C# language, which we built on
top of the Microsoft Roslyn compiler framework. The C# prototype
supports a smaller subset of the language relative to the Python tool
but nevertheless it was useful in helping us evaluate the potential of
our technique on a different language.

5.2 Benchmarks
We created our benchmark set with problems taken from the Intro-
duction to Programming course at MIT (6.00) and the EdX version
of the class (6.00x) offered in 2012. Our benchmark set includes
most problems from the first four weeks of the course. We only ex-
cluded (i) a problem that required more detailed floating point rea-
soning than what we currently handle, (ii) a problem that required
file i/o which we currently do not model, and (iii) a handful of triv-
ial finger exercises. To evaluate the applicability to C#, we created a
few programming exercises2 on PEX4FUN that were based on loop-
over-arrays and dynamic programming from an AP level exam3. A
brief description of each benchmark problem follows:

• prodBySum-6.00 : Compute the product of two numbers m and
n using only the sum operator.
• oddTuples-6.00 : Given a tuple l, return a tuple consisting of

every other element of l.
• compDeriv-6.00 : Compute the derivative of a polynomial
poly, where the coefficients of poly are represented as a list.
• evalPoly-6.00 : Compute the value of a polynomial (repre-

sented as a list) at a given value x.
• compBal-stdin-6.00 : Print the values of monthly installment

necessary to purchase a car in one year, where the inputs car
price and interest rate (compounded monthly) are provided
from stdin.
• compDeriv-6.00x : compDeriv problem from the EdX class.
• evalPoly-6.00x : evalPoly problem from the EdX class.
• oddTuples-6.00x : oddTuples problem from the EdX class.
• iterPower-6.00x : Compute the value mn using only the mul-

tiplication operator, where m and n are integers.
• recurPower-6.00x : Compute the value mn using recursion.
• iterGCD-6.00x : Compute the greatest common divisor (gcd)

of two integers m and n using an iterative algorithm.
• hangman1-str-6.00x : Given a string secretWord and a list

of guessed letters lettersGuessed, return True if all letters of
secretWord are in lettersGuessed, and False otherwise.

2 http://pexforfun.com/learnbeginningprogramming
3 AP exams allow high school students in the US to earn college level credit.



• hangman2-str-6.00x : Given a string secretWord and a list of
guessed letters lettersGuessed, return a string where all letters
of secretWord that have not been guessed yet (i.e. not present
in lettersGuessed) are replaced by the letter ’_’.
• stock-market-I(C#) : Given a list of stock prices, check if the

stock is stable, i.e. if the price of stock has changed by more
than $10 in consecutive days on less than 3 occasions over the
duration.
• stock-market-II(C#) : Given a list of stock prices and a start

and end day, check if the maximum and minimum stock prices
over the duration from start and end day is less than $20.
• restaurant rush (C#) : A variant of maximum contiguous

subset sum problem.

5.3 Experiments
We now present various experiments we performed to evaluate our
tool on the benchmark problems.

Performance Table 1 shows the number of student attempts cor-
rected for each benchmark problem as well as the time taken by
the tool to provide the feedback. The experiments were performed
on a 2.4GHz Intel Xeon CPU with 16 cores and 16GB RAM. The
experiments were performed with bounds of 4 bits for input integer
values and maximum length 4 for input lists. For each benchmark
problem, we first removed the student attempts with syntax errors
to get the Test Set on which we ran our tool. We then separated the
attempts which were correct to measure the effectiveness of the tool
on the incorrect attempts. The tool was able to provide appropriate
corrections as feedback for 64% of all incorrect student attempts
in around 10 seconds on average. The remaining 36% of incorrect
student attempts on which the tool could not provide feedback fall
in one of the following categories:

• Completely incorrect solutions: We observed many student
attempts that were empty or performing trivial computations
such as printing strings and variables.
• Big conceptual errors: A common error we found in the case

of eval-poly-6.00x was that a large fraction of incorrect at-
tempts (260/541) were using the list function index to get the
index of a value in the list (e.g. see Figure 13(a)), whereas
the index function returns the index of first occurrence of the
value in the list. Another example of this class of error for the
hangman2-str problem in shown in Figure 13(b), where the so-
lution replaces the guessed letters in the secretWord by ’_’ in-
stead of replacing the letters that are not yet guessed. The cor-
rection of some other errors in this class involves introducing
new program statements or moving statements from one pro-
gram location to another. These errors can not be corrected with
the application of a set of local correction rules.
• Unimplemented features: Our implementation currently lacks

a few of the complex Python features such as pattern matching
on list enumerate function and lambda functions.
• Timeout: In our experiments, we found less than 5% of the

student attempts timed out (set as 4 minutes).

Number of Corrections The number of student submissions that
require different number of corrections are shown in Figure 14(a)
(on a logarithmic scale). We observe from the figure that a signif-
icant fraction of the problems require 3 and 4 coordinated correc-
tions, and to provide feedback on such attempts, we need a technol-
ogy like ours that can symbolically encode the outcome of different
corrections on all input values.

Repetitive Mistakes In this experiment, we check our hypothesis
that students make similar mistakes while solving a given problem.

The graph in Figure 14(b) shows the number of student attempts
corrected as more rules are added to the error models of the bench-
mark problems. As can be seen from the figure, adding a single rule
to the error model can lead to correction of hundreds of attempts.
This validates our hypothesis that different students indeed make
similar mistakes when solving a given problem.

Generalization of Error Models In this experiment, we check
the hypothesis that the correction rules generalize across problems
of similar kind. The result of running the compute-deriv error
model on other benchmark problems is shown in Figure 14(c). As
expected, it does not perform as well as the problem-specific error
models, but it still fixes a fraction of the incorrect attempts and
can be useful as a good starting point to specialize the error model
further by adding more problem-specific rules.

6. Capabilities and Limitations
Our tool supports a fairly large subset of Python types and language
features, and can currently provide feedback on a large fraction
(64%) of student submissions in our benchmark set. In compari-
son to the traditional test-cases based feedback techniques that test
the programs over a few dozens of test-cases, our tool typically per-
forms the equivalence check over more than 106 inputs. Programs
that print the output to console (e.g. compBal-stdin) pose an inter-
esting challenge for test-cases based feedback tools. Since beginner
students typically print some extra text and values in addition to the
desired outputs, the traditional tools need to employ various heuris-
tics to discard some of the output text to match the desired output.
Our tool lets instructors provide correction rules that can optionally
drop some of the print expressions in the program, and then the tool
finds the required print expressions to eliminate so that a student is
not penalized much for printing additional values.

Now we briefly describe some of the limitations of our tool.
One limitation of the tool is in providing feedback on student
attempts that have big conceptual errors (see Section 5.3), which
can not be fixed by application of a set of local rewrite rules.
Correcting such programs typically requires a large global rewrite
of the student solution, and providing feedback in such cases is
an open question. Another limitation of our tool is that it does not
take into account structural requirements in the problem statement
since it focuses only on functional equivalence. For example, some
of the assignments explicitly ask students to use bisection search or
recursion, but our tool can not distinguish between two functionally
equivalent solutions, e.g. it can not distinguish between a bubble
sort and a merge sort implementation of the sorting problem.

For some problems, the feedback generated by the tool is too
low-level. For example, a suggestion provided by the tool in Fig-
ure 2(d) is to replace the expression poly[e]==0 by False, whereas
a higher level feedback would be a suggestion to remove the cor-
responding block inside the comparison. Deriving the high-level
feedback from the low-level suggestions is mostly an engineering
problem as it requires specializing the message based on the con-
text of the correction.

The scalability of the technique also presents a limitation. For
some problems that use large constant values, the tool currently
replaces them with smaller teacher-provided constant values such
that the correct program behavior is maintained. We also currently
need to specify bounds for the input size, the number of loop un-
rollings and recursion depth as well as manually provide special-
ized error models for each problem. The problem of discovering
these optimizations automatically by mining them from the large
corpus of datasets is also an interesting research question. Our tool
also currently does not support some of the Python language fea-
tures, most notably classes and objects, which are required for pro-
viding feedback on problems from later weeks of the class.



1 def evaluatePoly(poly, x):
2 result = 0
3 for i in list(poly):
4 result += i*x**poly.index(i)
5 return result

1 def getGuessedWord(secretWord, lettersGuessed):
2 for letter in lettersGuessed:
3 secretWord = secretWord.replace(letter, ’_’)
4 return secretWord

(a) an evalPoly solution (b) a hangman2-str solution

Figure 13. An example of big conceptual error for a student’s attempt for (a) evalPoly and (b) hangman2-str problems.
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Figure 14. (a) The number of incorrect problem that require different number of corrections (in log scale), (b) the number of problems
corrected with adding rules to the error models, and (c) the performance of compute-deriv error model on other problems.

Benchmark Median Total Syntax Test Set Correct Incorrect Generated Average Median
(LOC) Attempts Errors Attempts Feedback Time(in s) Time(in s)

prodBySum-6.00 5 1056 16 1040 772 268 218 (81.3%) 2.49s 2.53s
oddTuples-6.00 6 2386 1040 1346 1002 344 185 (53.8%) 2.65s 2.54s
compDeriv-6.00 12 144 20 124 21 103 88 (85.4%) 12.95s 4.9s
evalPoly-6.00 10 144 23 121 108 13 6 (46.1%) 3.35s 3.01s

compBal-stdin-6.00 18 170 32 138 86 52 17 (32.7%) 29.57s 14.30s
compDeriv-6.00x 13 4146 1134 3012 2094 918 753 (82.1%) 12.42s 6.32s
evalPoly-6.00x 15 4698 1004 3694 3153 541 167 (30.9%) 4.78s 4.19s
oddTuples-6.00x 10 10985 5047 5938 4182 1756 860 (48.9%) 4.14s 3.77s
iterPower-6.00x 11 8982 3792 5190 2315 2875 1693 (58.9%) 3.58s 3.46s
recurPower-6.00x 10 8879 3395 5484 2546 2938 2271 (77.3%) 10.59s 5.88s
iterGCD-6.00x 12 6934 3732 3202 214 2988 2052 (68.7%) 17.13s 9.52s

hangman1-str-6.00x 13 2148 942 1206 855 351 171 (48.7%) 9.08s 6.43s
hangman2-str-6.00x 14 1746 410 1336 1118 218 98 (44.9%) 22.09s 18.98s
stock-market-I(C#) 20 52 11 41 19 22 16 (72.3%) 7.54s 5.23s
stock-market-II(C#) 24 51 8 43 19 24 14 (58.3%) 11.16s 10.28s
restaurant rush (C#) 15 124 38 86 20 66 41 (62.1%) 8.78s 8.19s

Table 1. The percentage of student attempts corrected and the time taken for correction for the benchmark problems.

7. Related Work
In this section, we describe several related work to our technique
from the areas of automated programming tutors, automated pro-
gram repair, fault localization, automated debugging, automated
grading, and program synthesis.

7.1 AI based programming tutors
There has been a lot of work done in the AI community for building
automated tutors for helping novice programmers learn program-
ming by providing feedback about semantic errors. These tutoring
systems can be categorized into the following two major classes:

Code-based matching approaches: LAURA [1] converts
teacher’s and student’s program into a graph based representation

and compares them heuristically by applying program transforma-
tions while reporting mismatches as potential bugs. TALUS [31]
matches a student’s attempt with a collection of teacher’s algo-
rithms. It first tries to recognize the algorithm used and then ten-
tatively replaces the top-level expressions in the student’s attempt
with the recognized algorithm for generating correction feedback.
The problem with these approach is that the enumeration of all
possible algorithms (with its variants) for covering all corrections
is very large and tedious on part of the teacher.

Intention-based matching approaches: LISP tutor [13] cre-
ates a model of the student goals and updates it dynamically as the
student makes edits. The drawback of this approach is that it forces
students to write code in a certain pre-defined structure and limits



their freedom. MENO-II [39] parses student programs into a deep
syntax tree whose nodes are annotated with plan tags. This anno-
tated tree is then matched with the plans obtained from teacher’s
solution. PROUST [24], on the other hand, uses a knowledge base
of goals and their corresponding plans for implementing them for
each programming problem. It first tries to find correspondence of
these plans in the student’s code and then performs matching to find
discrepancies. CHIRON [32] is its improved version in which the
goals and plans in the knowledge base are organized in a hierar-
chical manner based on their generality and uses machine learning
techniques for plan identification in the student code. These ap-
proaches require teacher to provide all possible plans a student can
use to solve the goals of a given problem and do not perform well if
the student’s attempt uses a plan not present in the knowledge base.

Our approach performs semantic equivalence of student’s at-
tempt and teacher’s solution based on exhaustive bounded sym-
bolic verification techniques and makes no assumptions on the al-
gorithms or plans that students can use for solving the problem.
Moreover, our approach is modular with respect to error models;
the local correction rules are provided in a declarative manner and
their complex interactions are handled by the solver itself.

7.2 Automated Program Repair
Könighofer et. al. [27] present an approach for automated error lo-
calization and correction of imperative programs. They use model-
based diagnosis to localize components that need to be replaced
and then use a template-based approach for providing corrections
using SMT reasoning. Their fault model only considers the right
hand side (RHS) of assignment statements as replaceable compo-
nents. The approaches in [23, 41] frame the problem of program
repair as a game between an environment that provides the inputs
and a system that provides correct values for the buggy expressions
such that the specification is satisfied. These approaches only sup-
port simple corrections (e.g. correcting RHS side of expressions)
in the fault model as they aim to repair large programs with arbi-
trary errors. In our setting, we exploit the fact that we have access
to the dataset of previous student mistakes that we can use to con-
struct a concise and precise error model. This enables us to model
more sophisticated transformations such as introducing new pro-
gram statements, replacing LHS of assignments etc. in our error
model. Our approach also supports minimal cost changes to stu-
dent’s programs where each error in the model is associated with a
certain cost, unlike the earlier mentioned approaches.

Mutation-based program repair [10] performs mutations repeat-
edly to statements in a buggy program in order of their suspi-
ciousness until the program becomes correct. The large state space
of mutants (1012) makes this approach infeasible. Our approach
uses a symbolic search for exploring correct solutions over this
large set. There are also some genetic programming approaches
that exploit redundancy present in other parts of the code for fixing
faults [5, 14]. These techniques are not applicable in our setting as
such redundancy is not present in introductory programming prob-
lems.

7.3 Automated Debugging and Fault localization
Techniques like Delta Debugging [44] and QuickXplain [26] aim
to simplify a failing test case to a minimal test case that still exhibits
the same failure. Our approach can be complemented with these
techniques to restrict the application of rewrite rules to certain
failing parts of the program only. There are many algorithms for
fault localization [6, 15] that use the difference between faulty
and successful executions of the system to identify potential faulty
locations. Jose et. al. [25] recently suggested an approach that uses
a MAX-SAT solver to satisfy maximum number of clauses in a
formula obtained from a failing test case to compute potential error

locations. These approaches, however, only localize faults for a
single failing test case and the suggested error location might not be
the desired error location, since we are looking for common error
locations that cause failure of multiple test cases. Moreover, these
techniques provide only a limited set of suggestions (if any) for
repairing these faults.

7.4 Computer-aided Education
We believe that formal methods technology can play a big role in
revolutionizing education. Recently, it has been applied to multiple
aspects of Education including problem generation [2, 4, 35] and
solution generation [17]. In this paper, we push the frontier forward
to cover another aspect namely automated grading. Recently [3]
also applied automated grading to automata constructions and used
syntactic edit distance like ours as one of the metrics. Our work
differs from theirs in two regards: (a) our corrections for programs
(which are much more sophisticated than automata) are teacher-
defined, while [3] considers a small pre-defined set of corrections
over graphs, and (b) we use the Sketch synthesizer to efficiently
navigate the huge search space, while [3] uses brute-force search.

7.5 Automated Grading Approaches
The survey by Douce et al. [11] presents a nice overview of the
systems developed for automated grading of programming assign-
ments over the last forty years. Based on the age of these systems,
they classify them into three generations. The first generation sys-
tems [21] graded programs by comparing the stored data with the
data obtained from program execution, and kept track of running
times and grade books. The second generation systems [22] also
checked for programming styles such as modularity, complexity,
and efficiency in addition to checking for correctness. The third
generation tools such as RoboProf [9] combine web technology
with more sophisticated testing approaches. All of these approaches
are a form of test-cases based grading approach and can produce
feedback in terms of failing test inputs, whereas our technique
uses program synthesis for generating tailored feedback about the
changes required in the student submission to make it correct.

7.6 Program Synthesis
Program synthesis has been used recently for many applications
such as synthesis of efficient low-level code [29, 38], data struc-
ture manipulations [34], inference of efficient synchronization in
concurrent programs [42], snippets of excel macros [18, 33], rela-
tional data representations [19, 20] and angelic programming [8].
The SKETCH tool [37, 38] takes a partial program and a refer-
ence implementation as input and uses constraint-based reasoning
to synthesize a complete program that is equivalent to the reference
implementation. In general cases, the template of the desired pro-
gram as well as the reference specification is unknown and puts an
additional burden on the users to provide them; in our case we use
the student’s solution as the template program and teacher’s solu-
tion as the reference implementation. A recent work by Gulwani et
al. [17] also uses program synthesis techniques for automatically
synthesizing solutions to ruler/compass based geometry construc-
tion problems. Their focus is primarily on finding a solution to a
given geometry problem whereas we aim to provide feedback on a
given programming exercise solution.

8. Conclusions
In this paper, we presented a new technique of automatically pro-
viding feedback for introductory programming assignments that
can complement manual and test-cases based techniques. The tech-
nique uses an error model describing the potential corrections and
constraint-based synthesis to compute minimal corrections to stu-
dent’s incorrect solutions. We have evaluated our technique on a



large set of benchmarks and it can correct 64% of incorrect solu-
tions in our benchmark set. We believe this technique can provide
a basis for providing automated feedback to hundreds of thousands
of students learning from online introductory programming courses
that are being taught by MITx, Coursera, and Udacity.
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