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2 Lessons Learned

¢ Try to solve "real-world" problems

¢ ... using computer science theory

¢ ... and humber theory.

¢ Be optimistic: do the "impossible”.

¢ Invention of RSA.

¢ Moore's Law matters.

¢ Do cryptography in public.

¢ Crypto theory matters.

¢ Organizations matter: ACM, TACR, RSA



2 Try to solve real-world problems

¢ Diffie and Hellman published "New Directions in
Cryptography” Nov 76:
"We stand today at the brink of a
revolution in cryptography.”

& Proposed "Public-Key Cryptosystem”. (This
remarkable idea developed jointly with Merkle.)

¢ Introduced even more remarkable notion of
digital signatures.

& Good cryptography is motivated by applications.
(e-commerce, mental poker, voting, auctions, ...)



2. using computer science theory

¢In 1976 "complexity theory” and
“algorithms” were just beginning...

¢ Cryptography is a "theory consumer":
It needs
- easy problems (such as multiplication or
prime-finding, for the "good guys") and
- hard problems (such as factorization, to
defeat an adversary).



2 _and number Theorx

¢ Diffie/Hellman used number theory for
"key agreement” (fwo parties agree on a
secret key, using exponentiation modulo a
prime number).

¢ Some algebraic structure seemed essential
for a PKC; we kept returning to number
theory and modular arithmetic...

¢ Difficulty of factoring not well studied
then, but seemed hard...



3 Be optimistic: do the “imEossible”

\

¢ Diffie and Hellman left open the problem
of realizing a PKC:
D(E(M)) = E(D(M)) = M
where E is public, D is private.

¢ At times, we thought it impossible...

¢ Since then, we have learned
"Meta-theorem of Cryptography":
Any apparently contradictory set
of requirements can be met using
right mathematical approach...



2 Invention of RSA

¢ Tried and discarded many approaches,
including some “"knapsack-based" ones.
(Len was great at killing off bad ideas.)

¢ "Group of unknown size" seemed useful
N/
idea... as did "permutation polynomials"»Y"{~
2y

¢ After a "seder” at a student's... 'f;} \::
¢ "RSA" uses n=pg product of primes:

C = Meé(mod n) [public key (e,n)]
M =C9 (mod n)  [private key (d,n)]

2



2 $100 RSA SciAm Challenge

¢ Martin Gardner publishes Scientific American
column about RSA in August 77, including our

$100 challenge (129 digit n) and our infamous "40
quadrillion years" estimate required to factor

RSA-129 =
114,381,625,757,888,867,669,235,779,976,146 61
2,010,218,296,721,242,362,562,561,842,935,706,
935,245,733,897,830,597,123 563,958,705,058,9
89,075,147 599,290,026,879,543 541

(129 digits)

or to decode encrypted message.



TM-82 4/77. CACM 2/78

LABORATORY FOR :
COM l"l]!]{ ”.“Iil('Il",_\('l", TECHNOLOG ‘.

= 5

MIT/LCSITM-82

A METHOD FOR OBTAINING
DIGITAL SIGNATURES AND
PUBLIC-KEY CRYPTOSYSTEMS

Ronald Rivest
Adi Shamir
Len Adleman

April 1977

\= Z

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

(4000 mailed)

Programming S.L. Graham, R L. Rivest®
Techniques Editors

A Method for Obtaining
Digital Signatures and Public-
Key Cryptosystems

R. L. Rivest, A. Shamir, and L. Adleman
MIT Laboratory for Computer Science
and Department of Mathematics

An encryption method is presented with the novel
property that publicly revealing an encryption key
does not thereby reveal the corresponding decryption
key. This has two important consequences:

(1) Couriers or other secure means are not needed to
transmit keys, since » message can be enciphered
using an encryption key publicly revealed by the
intended recipient. Only he can decipher the message,
since only he knows the corresponding decryption key.
(2) A message can be “signed” using a privately held
decryption key. Anyone can verify this signature using
the corresponding publicly
Signatures cannot be forger
deny the validity of his signature. This has obvious
applications in “clectronic mail” and *‘electronic funds
transfer” systems. A message is emrypcad by
representing it as a number M, raising M to a publicly
specified power e, and then taking the remainder
when the result is divided by the pnumtg specified
product, i, of two large secrel prime numbers p and q.
Decryption is similar; only a different, secret, power d
is used, where e = d = 1(mod (p — 1) = (g — 1)). The
security of the system resis in part on the difficulty of
factoring the published divisor, n.

Key Words and Phrases: digital signatures, public-
key cryptosystems, privacy, authentication, security,
factorization, prime number, electronic mail, message-
passing, electronic funds transfer

L Introduction

The era of “electronic mail” [10] may soon be upon
us; we must ensure that two important properties of
the current “‘paper mail” system are preserved: (a)
messages are privae, and (b) messages can be signed .
We demonstrate in this paper how to build these
capabilities into an electronic mail system.

At the heart of our proposal is a new encryption
method. This method provides an implementation of a
“public-key cryptosystem”, an elepant concept in-
vented by Diffie and Hellman [1]. Their article moti-
vated our research, since they presented the concept
but not any practical implementation of such a system.
Readers familiar with [1] may wish to skip direetly to
Section V for a description of our method.

II. Public-Key Cryptosystems

In a “public-key eryptosystem™ each user places in
a public file an encryption procedure E. That is, the
public file is a directory giving the encryption proce-
dure of each user. The user keeps secret the details of
his corresponding decryption procedure D. These pro-
cedures have the following four properties:

(a) Deciphering the enciphered form of a message M
yields M. Formally,

D(E(M))= M. m

(b) Both E and D are easy to compute

(c) By publicly revealing E the user does not reveal an
easy way to compute D. This means that in practice
only he can decrypt messages encrypted with E, or
compute D cfficiently.

(d) If a message M is first deciphered and then enci-
phered, M is the result. Formally,

E(D(M))= M @
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An ion (or typically
consists of a general method ind anen:rypuon key. The
general method, under control of the key, enciphers a
message M to obtain the enciphered form of the
message, called the ciphertext C. Everyone can use the
same general method; the security of a given procedure
will rest on the security of the key. Revealing an
encryption algorithm then means revealing the key.

‘When the user reveals E he reveals a very inefficient
method of computing D{C): testing all possible mes-
sages M until one such that E(M) = C is found. If
propérty (c) is satisfied the number of such messages to
test will be so large that this approach is impractical.

A function E satisfying (a)-(c) is a ““trap-door one-
way function;” if it also satisfies (d) it is a “trap-door
one-way permutation.” Diffie and Hellman [1] intro-
duced the concept of trap-door one-way functions but

Communications February 1078
Volume 21
the ACM Number 2



2 S R and Ain'78




2 S R and Ain'78



2 The wonderful Zn*

¢ Zn* = multiplicative group modulo n = pq

¢ Factoring makes it hard for adversary
- to compute size of group
- to compute discrete logs

¢ Taking e-th roots modulo n is hard
("RSA Assumption”)

¢ Taking e-th roots is hard, where the
adversary can pick e>1.
("Strong RSA Assumption”)



2 Moore's Law matters.

¢ Time to do RSA decryption onal MIPS
VAX was around 30 seconds (VERY SLOW...)

¢ IBM PC debuts in 1981

¢ Still, we worked on efficient special-purpose
implementation (e.g. special circuit board,

and then the "RSA chip”, which did RSA in
0.4 seconds) to prove practicality of RSA.

¢ Moore's Law to the rescue---software now
runs 2000x faster...

¢ Now software and the Web rule...



2 Photo of RSA chi




2 Do cryptography in public.

¢ Confidence in cryptographic schemes
derives from intensive public review.

& Public standards (e.g. PKCS series)

¢ Vigorous public research effort
results in many new cryptographic
proposals, definitions, and attacks



2 Other PKC proposals

¢ 1978: Merkle/Hellman (knapsack)

¢ 1979: Rabin/Williams (factoring)

¢ 1984: Goldwasser/Micali (QR)

¢ 1985: El Gamal (DLP)

¢ 1985: Miller/Koblitz (elliptic curves)
¢ 1998: Cramer/Shoup

¢ .. many others, too



2 $100 RSA Challenge Met '94

¢ RSA-129 was factored in 1994, using
thousands of computers on Internet.
"The magic words are squeamish ossifrage.”

¢ Cheapest purchase of computing time
everl

¢ Gives credibility to difficulty of
factoring, and helps establish key
sizes needed for security.



2 Factori ng milestones

¢ '84. 69D (D ="digits")
(Sandia; Time magazine)
¢ '91: 100D
(Quadratic sieve)

¢ '94: 129D ($100 challenge number)
(Distributed QS)

¢ '99: 155D
(512-bits; Number field sieve)

¢'01:15=3*5
(4 bits; IBM quantum computerl!)



2 Other attacks on RSA

¢ Cycling attacks (?)
¢ Attacks based on "weak keys" (?)

¢ Attacks based on lack of randomization or
improper “padding”
(use e.g. Bellare/Rogaway’'s OAEP '94)

¢ Timing analysis, power analysis, fault
attacks, ...

¢ See Boneh's "Twenty Years of Attacks on
the RSA Cryptosystem”.



2 Crypto Theorz matters

¢ probabilistic encryption,

¢ chosen-ciphertext attacks
¢ GMR digital signatures,

¢ zero-knowledge protocols,

¢ concrete complexity of cryptographic
reductions; practice-oriented
provable security

\



2 Organizations matter

* ACM
- e.g. CACM published RSA paper

¢ IACR (David Chaum)
- sponsors CRYPTO conferences

¢ RSA (Jim Bidzos)
- sponsors RSA conferences
- leader in many policy debates
- helped to set crypto standards



(The End)



