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Abstract

We describe a resource discovery and communication
system designed for security and privacy. All objects
i the system, e.g., appliances, wearable gadgets, soft-
ware agents, and users have associated trusted soft-
ware proxies that either run on the appliance hard-
ware or on a trusted computer. We describe how se-
curity and privacy are enforced using two separate
protocols: a protocol for secure device-to-proxy com-
munication, and a protocol for secure proxy-to-proxy
communication. Using two separate protocols allows
us to run a computationally-inexpensive protocol on
impoverished devices, and a sophisticated protocol for
resource authentication and communication on more
powerful devices.

We detail the device-to-prozy protocol for
lightweight wireless devices and the prozy-to-
prozy protocol which is based on SPKI/SDSI (Simple
Public Key Infrastructure / Simple Distributed Se-
curity Infrastructure). A prototype system has been
constructed, which allows for secure, yet efficient,
access to networked, mobile devices. We present a
quantitative evaluation of this system using various
metrics.

1 Introduction

Attaining the goals of ubiquitous and pervasive com-
puting [6, 2] is becoming more and more feasible as
the number of computing devices in the world in-
creases rapidly. However, there are still significant
hurdles to overcome when integrating wearable and
embedded devices into a ubiquitous computing en-
vironment. These hurdles include designing devices
smart enough to collaborate with each other, increas-
ing ease-of-use, and enabling enhanced connectivity
between the different devices.

When connectivity is high, the security of the sys-
tem is a key factor. Devices must only allow access to
authorized users and must also keep the communica-
tion secure when transmitting or receiving personal
or private information.

Implementing typical forms of secure, private com-
munication using a public-key infrastructure on all
devices is difficult because the necessary crypto-
graphic algorithms are CPU-intensive. A common
public-key cryptographic algorithm such as RSA us-
ing 1024-bit keys takes 43ms to sign and 0.6ms to
verify on a 200MHz Intel Pentium Pro (a 32-bit pro-
cessor) [30]. Some devices may have 8-bit micro-
controllers running at 1-4 MHz, so public-key cryp-
tography on the device itself may not be an op-
tion. Nevertheless, public-key based communication
between devices over a network 1s still desirable.

We describe the architecture of our resource dis-
covery and communication system in Section 2. The
device-to-proxy security protocol is described in Sec-
tion 3. We review SPKI/SDST and present the proxy-
to-proxy protocol that uses SPKI/SDSI in Section 4.
Related work is discussed in Section 5. The system
is evaluated in Section 6.

1.1 Owur Approach

To allow the architecture to use a public-key security
model on the network while keeping the devices them-
selves simple, we create a software proxy for each de-
vice. All objects in the system, e.g., appliances, wear-
able gadgets, software agents, and users have associ-
ated trusted software proxies that either run on an
embedded processor on the appliance, or on a trusted
computer. In the case of the proxy running on an em-
bedded processor on the appliance, we assume that
device to proxy communication is inherently secure.?
If the device has minimal computational power,? and
communicates to its proxy through a wired or wire-
less network, we force the communication to adhere
to a device-to-proxy protocol (cf. Section 3). Proxies
communicate with each other using a secure proxy-to-
proxy protocol based on SPKI/SDSI (Simple Public
Key Infrastructure / Simple Distributed Security In-

1For example, in a video camera, the software that controls
various actuators runs on a powerful processor, and the proxy
for the camera can also run on the embedded processor.

2This is typically the case for lightweight devices, e.g., re-
mote controls, active badges, etc.



frastructure). Having two different protocols allows
us to run a computationally-inexpensive security pro-
tocol on impoverished devices, and a sophisticated
protocol for resource authentication and communi-
cation on more powerful devices. We describe both
protocols in this paper.

1.2 Prototype Automation System

Using the ideas described above, we have constructed
a prototype automation system which allows for se-
cure, yet efficient, access to networked, mobile de-
vices. In this system, each user wears a badge called a
K21 which identifies the user and is location-aware: 1t
“knows” the wearer’s location within a building. User
identity and location information is securely trans-
mitted to the user’s software proxy using the device-
to-proxy protocol.

Devices themselves may be mobile and may change
locations. Attribute search over all controllable de-
vices can be performed to find the nearest device, or
the most appropriate device under some metric.?

By exploiting SPKI/SDSI, security is not compro-
mised as new users and devices enter the system, or
when users and devices leave the system. We believe
that the use of two different protocols, and the use
of the SPKI/SDSI framework in the proxy-to-proxy
protocol has resulted in a secure, scalable, efficient,
and easy-to-maintain automation system.

2 System Architecture

The system has three primary component types: de-
vices, proxies and servers. A device refers to any
type of shared network resource, either hardware or
software. It could be a printer, a wireless security
camera, a lamp, or a software agent. Since communi-
cation protocols and bandwidth between devices can
vary widely, each device has a unique prozy to unify
its interface with other devices. The servers provide
naming and discovery facilities to the various devices.

We assume a one-to-one correspondence between
devices and proxies. We also assume that all users
are equipped with K21s, whose proxies run on trusted
computers. Thus our system only needs to deal with
devices, proxies and the server network.

The system we describe is illustrated in Figure 1.

2.1 Devices

Each device, hardware or software, has an associated
trusted software proxy. In the case of a hardware

3For example, a user may wish to print to the nearest
printer that he/she has access to.
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Figure 1: System Overview

device, the proxy may run on an embedded proces-
sor within the device, or on a trusted computer net-
worked with the device. In the case of a software
device, the device can incorporate the proxy software
itself.

Each device communicates with 1ts own proxy over
the appropriate protocol for that particular device.
A printer wired into an Ethernet can communicate
with its proxy using TCP/IP. A wireless camera uses
a wireless protocol for the same purpose. The K21
(a simple device with a lightweight processor) com-
municates with its proxy using the particular device-
to-proxy protocol described in Section 3. Thus, the
device-side portion of the proxy must be customized
for each particular device.

2.2 Proxy

The proxy is software that runs on a network-visible
computer. The proxy’s primary function is to make
access-control decisions on behalf of the device it rep-
resents. It may also perform secondary functions such
as running scripted actions on behalf of the device
and interfacing with a directory service.

The proxy provides a very simple API to the de-
vice. The sendToProxzy() method is called by the
device to send messages to the proxy. The send-
ToDevice() method is a called by the proxy to send
messages to the device. When a proxy receives a mes-
sage from another proxy, depending on the message,
the proxy may translate it into a form that can be
understood by the proxy’s particular device. It then



forwards the message to the device. When a proxy re-
ceives a message from its device, it may translate the
message into a general form understood by all proxies,
and then forward the message to other proxies. Any
time a proxy receives a message, before performing
a translation and passing the message on to the de-
vice, it performs the access control checks described
in Section 4.

For ease of administration, we group proxies by
their administrators. An administrator’s set of prox-
ies is called a prozy farm. This set specifically in-
cludes the proxy for the administrator’s K21, which
is considered the root proxy of the proxy farm. When
the administrator adds a new device to the system,
the device’s proxy is automatically given a default
ACL, a duplicate of the ACL for the administrator’s
K21 proxy. The administrator can manually change

the ACL later, if he desires.

2.3 Servers and the Server Network

This network consists of a distributed collection of
independent name servers and routers. In fact, each
server acts as both a name server and a router. This
i1s similar to the name resolvers in the Intentional
Naming System (INS) [1], which resolve device names
to IP addresses, but can also route events. If the des-
tination name for an event matches multiple proxies,
the server network will route the event to all match-
ing destinations.

When a proxy comes online, it registers the name
of the device it represents with one of these servers.
When a proxy uses a server to perform a lookup on a
name, the server searches its directory for all names
that match the given name, and returns their IP ad-
dresses.

2.4 Communication via Events

We use an event-based communication mechanism in
our system. That is, all messages passed between
proxies are signals indicating that some event has
occurred. For example, a light bulb might generate
light-on and light-off events. To receive these mes-
sages, proxy x can add itself as an event-listener to
proxy y. Thus, when y generates an event, = will
recelve a copy.

In addition, the system has several pre-defined
event categories which receive special treatment at ei-
ther the proxy or server layer. They are summarized
in Figure 2. A developer can define his own events
as well. The server network simply passes developer-
defined events through to their destination.

The primary advantage of the event-based mecha-
nism is that it eliminates the need to repeatedly poll

CommandEvent Used to instruct a device to turn on or off,
for example.

ErrorEvent Generated and broadcast to all listeners when

an error condition occurs.

StatusChangeEvent Generated when, for example, a device
changes its location.

QueryEvent When a server receives a QueryEvent, it per-
forms a DNS (Domain Name Service) or INS lookup on
the query, and returns the results of the lookup in a Re-
sponseEvent.

ResponseEvent Generated in response to a QueryEvent.

Figure 2: Predefined Event Types

a device to determine changes in its status. Instead,
when a change occurs, the device broadcasts an event
to all listeners. Systems like Sun Microsystem’s Jini
[26] issue “device drivers” (RMI stubs) to all who
wish to control a given device. It is then possible to
make local calls on the device driver, which are trans-
lated into RMI calls on the device itself. Repeatedly
polling the device driver to determine a change of
status 1s not necessarily efficient.

2.5 Resource discovery

The mechanism for resource discovery is similar to
the resource discovery protocol used by Jini. When a
device comes online, it instructs its proxy to repeat-
edly broadcast a request for a server to the local sub-
network. The request contains the device’s name and
the IP address and port of its proxy. When a server
receives one of these requests, it issues a lease to the
proxy.* That is, it adds the name/IP address pair to
its directory. The proxy must periodically renew its
lease by sending the same name/IP address pair to
the server, otherwise the server removes it from the
directory. In this fashion, if a device silently goes of-
fline, or the IP address changes; the proxy’s lease will
no longer get renewed and the server will quickly no-
tice and either remove it from the directory or create
a new lease with the new IP address.

For example, imagine a device with the name
[name=foo] which has a proxy running on
10.1.2.3:4011. When the device i1s turned on, it
informs its proxy that it has come online, using
a protocol like the device-to-proxy protocol de-
scribed in Section 3. The proxy begins to broadcast
lease-request packets of the form ([name=foo],
10.1.2.3:4011) on the local subnetwork. When (or
if) a server receives one of these packets, it checks
its directory for [name=foo]. If [name=foo] is not

4Handling the scenario where the device is making false
claims about its attributes in the lease request packet is the
subject of ongoing research.
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there, the server creates a lease for it by adding
the name/IP address pair to the directory. If
[name=foo] is in the directory, the server renews
the lease. Suppose at some later time the device is
turned off. When the device goes down, it brings
the proxy offline with it, so the lease request packets
no longer get broadcast. That device’s lease stops
getting renewed.  After some short, pre-defined
period of time, the server expires the unrenewed
lease and removes it from the directory.

3 Device-to-Proxy Protocol for
Wireless Devices

3.1 Overview

The device-to-proxy protocol varies for different types
of devices. In particular, we consider lightweight de-
vices with low-bandwidth wireless network connec-
tions and slow CPUs, and heavyweight devices with
higher-bandwidth connections and faster CPUs. We
assume that heavyweight devices are capable of run-
ning proxy software locally (i.e., the proxy for a
printer could run on the printer’s CPU). With a local
proxy, a sophisticated protocol for secure device-to-
proxy communication is unnecessary, assuming crit-
ical parts of the device are tamper resistant. For
lightweight devices, the proxy must run elsewhere.
This section gives an overview of a protocol which
is low-bandwidth and not CPU-intensive that we use
for lightweight device-to-proxy communication.

3.2 Communication

Our prototype system layers the security protocol
described below over a simple radio frequency (RF)
protocol. The RF communication between a device
and 1its proxy is handled by a gateway that translates
packetized RF communication into UDP /TP packets,
which are then routed over the network to the proxy.

The gateway also works in the opposite direction by
converting UDP/IP packets from the proxy into RF
packets and transmitting them to the device.

An overview of the communication is shown in Fig-
ure 3. This figure shows a computer running three
proxies; one for each of three separate devices. The
figure also shows how multiple gateways can be used;
device A 1s using a different gateway from devices B

and C.

3.3 Security

The proxy and device communicate through a secure
channel that encrypts and authenticates all the mes-
sages. The HMAC-MD5 [13][20] algorithm is used for
authentication and the RC5 [21] algorithm is used for
encryption. Both of these algorithms use symmetric
keys; the proxy and the device share 128-bit keys.

3.3.1 Authentication

HMAC (Hashed Message Authentication Code) pro-
duces a MAC (Message Authentication Code) that
can validate the authenticity and integrity of a mes-
sage. HMAC uses secret keys, and thus only someone
who knows a particular key can create a particular
MAC or verify that a particular MAC is correct.

HMAC with the MDb5 hash function produces a
16-byte MAC. The eight most significant bytes of the
MAC are appended to the end of each packet. This
limits the amount of data that must be transmitted
with each packet, but has the disadvantage of allow-
ing an attacker to have to guess fewer bits to forge a
MAC. We feel this is an acceptable tradeoff, since if
all 16 MAC bytes are included in every packet, then
more of each packet would be devoted to authentica-
tion instead of useful data.

3.3.2 Encryption

The data is encrypted using the RCH encryption al-
gorithm. We chose RCH because of its simplicity and
performance. Our RCH implementation is based on
the OpenSSL [16] code. RC5 is a block cipher, which
means 1t usually works on eight-byte blocks of data.
However, by implementing it using output feedback
(OFB) mode, it can be used as a stream cipher. This
allows for encryption of an arbitrary number of bytes
without having to worry about blocks of data. Also
by using OFB mode, only the encryption routine of
RC5 is needed; not the decryption routine.

OFB mode works by generating an encryption pad
from an initial vector and a key. The encryption pad
is then XOR’ed with the data to produce the cipher
Since X &Y @Y = X, the cipher text can
be decrypted by producing the same encryption pad

text.



and XOR’ing it with the cipher text. Since this only
requires the RC)H encryption routines to generate the
encryption pad, separate encrypt and decrypt rou-
tines are not required.

For our implementation, we use 16 rounds for RCb.
We use different 128-bit keys for encryption and au-
thentication.

3.4 Location

Device location is determined using the Cricket lo-
cation system[18, 17]. Cricket has several useful fea-
tures, including user privacy, decentralized control,
low cost, and easy deployment. Each device deter-
mines its own location. It is up to the device to decide
if it wants to let others know where it is.

In the Cricket system, beacons are placed on the
ceilings of rooms. These beacons periodically broad-
cast location information (such as “Room 4011”) that
can be heard by Cricket listeners. At the same time
that this information is broadcast in the RF spec-
trum, the beacon also broadcasts an ultrasound pulse.
When a listener receives the RF message, it measures
the time until it receives the ultrasound pulse. The
listener determines its distance to the beacon using
the time difference.

4 Proxy to Proxy Protocol

SPKI/SDSI  (Simple Public Key Infrastruc-
ture/Simple Distributed Security Infrastructure)
[7, 22] is a security infrastructure that is designed
to facilitate the development of scalable, secure,
distributed computing systems. SPKI/SDSI provides
fine-grained access control using a local name space
architecture and a simple, flexible, trust policy
model.

SPKI/SDSI is a public key infrastructure with an
egalitarian design. The principals are the public keys
and each public key is a certificate authority. Each
principal can issue certificates on the same basis as
any other principal. There is no hierarchical global
infrastructure. SPKI/SDSI communities are built
from the bottom-up, in a distributed manner, and
do not require a trusted “root.”

4.1 SPKI/SDSI Integration

We have adopted a client-server architecture for the
proxies. When a particular principal, acting on behalf
of a device or user, makes a request via one proxy to a
device represented by another proxy, the first proxy
acts like a client, and the second as a server. Re-
sources on the server are either public or protected
by SPKI/SDSI ACLs. If the requested resource is

protected by an ACL, the principal’s request must be
accompanied by a “proof of authenticity” that shows
that it is authentic, and a “proof of authorization”
that shows the principal is authorized to perform the
particular request on the particular resource. The
proof of authenticity is typically a signed request, and
the proof of authorization is typically a chain of cer-
tificates. The principal that signed the request must
be the same principal that the chain of certificates
authorizes.

This system design, and the protocol between the
proxies, is very similar to that used in SPKI/SDSI’s
Project Geronimo, in which SPKI/SDSI was inte-
grated into Apache and Netscape, and used to pro-
vide client access control over the web. Project
Geronimo is described in two Master’s theses [3, 14].

4.2 Protocol

The protocol implemented by the client and server
proxies consists of four messages. This protocol is
outlined in Figure 4, and following is its description:

1. The client proxy sends a request, unauthenti-
cated and unauthorized, to the server proxy.

2. If the client requests access to a protected re-
source, the server responds with the ACL pro-
tecting the resource® and the tag formed from
the client’s request. A tag is a SPKI/SDSI
data structure which represents a set of requests.
There are examples of tags in the SPKI/SDSI
IETF drafts [7]. If there is no ACL protecting
the requested resource, the request is immedi-
ately honored.

3. (a) The client proxy generates a chain of certifi-
cates using the SPKI/SDSI certificate chain
discovery algorithm [4, 3]. This certificate
chain provides a proof of authorization that
the user’s key is authorized to perform its
request.

The certificate chain discovery algorithm
takes as input the ACL and tag from the
server, the user’s public key (principal), the
user’s set of certificates, and a timestamp.
If it exists, the algorithm returns a chain of
user certificates which provides proof that
the user’s public key 1s authorized to per-
form the operation(s) specified in the tag,

5The ACL itself could be a protected resource, protected
by another ACL. In this case, the server will return the latter
ACL. The client will need to demonstrate that the user’s key is
on this ACL, either directly or via certificates, before gaining
access to the ACL protecting the object to which access was
originally requested.



at the time specified in the timestamp. If
the algorithm is unable to generate a chain
because the user does not have the neces-
sary certificates,® or if the user’s key is di-
rectly on the ACL, the algorithm returns
an empty certificate chain. The client gen-
erates the timestamp using its local clock.

The client creates a SPKI/SDSI sequence
[7] consisting of the tag and the timestamp.
It signs this sequence with the user’s private
key, and includes copy of the user’s public
key in the SPKI/SDST signature. The client
then sends the tag-timestamp sequence, the
signature, and the certificate chain gener-
ated in step 3a to the server.

4. The server verifies the request by:

(a) Checking the timestamp in the tag-
timestamp sequence against the time on the
server’s local clock to ensure that the re-
quest was made recently.”

Recreating the tag from the client’s request
and checking that it is the same as the tag
in the tag-timestamp sequence.

Extracting the public key from the signa-
ture.

Verifying the signature the
timestamp sequence using this key.

on tag-

Validating the certificates in the certificate
chain.

Verifying that there is a chain of autho-
rization from an entry on the ACL to the
key from the signature, via the certificate
chain presented. The authorization chain
must authorize the client to perform the re-
quested operation.

If the request verifies, it is honored. If it does
not verify, it 1s denied and the server proxy re-
turns an error to the client proxy. This error is
returned whenever the client presents an authen-
ticated request that 1s denied.

8If the user does not have the necessary certificates, the
client could immediately return an error. In our design, how-
ever, we choose not to return an error at this point; instead,
we let the client send an empty certificate chain to the server.
This way, when the request does not verify, the client can pos-
sibly be sent some error information by the server which lets
the user know where he should go to get valid certificates.

"In our prototype implementation, the server checks that
the timestamp in the client’s tag-timestamp sequence is within
five minutes of the server’s local time.
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verify, it is denied and an error is returned.

Figure 4: SPKI/SDSI Proxy to Proxy Access Control
Protocol

The protocol can be viewed as a typical challenge-
response protocol. The server reply in step 2 of the
protocol is a challenge the server issues the client,
saying, “You are trying to access a protected file.
Prove to me that you have the credentials to perform
the operation you are requesting on the resource pro-
tected by this ACL.” The client uses the ACL to help
it produce a certificate chain, using the SPKI/SDSI
certificate chain discovery algorithm. It then sends
the certificate chain and signed request in a second
request to the server proxy. The signed request pro-
vides proof of authenticity, and the certificate chain
provides proof of authorization. The server attempts
to verify the second request, and if it succeeds, it
honors the request.

The timestamp in the tag-timestamp sequence
helps to protect against certain types of replay at-
tacks. For example, suppose the server logs requests
and suppose that this log is not disposed of properly.
If an adversary gains access to the logs, the times-
tamp prevents him from replaying requests found in
the log and gaining access to protected resources.®

4.2.1 Additional Security Considerations

The SPKI/SDSI protocol, as described, addresses the
issue of providing client access control. The protocol
does not ensure confidentiality, authenticate servers,
or provide protection against replay attacks from the
network.

8In order to use timestamps, the client’s clock and server’s
clock need to be fairly synchronized; SPKI/SDSI already
makes an assumption about fairly synchronized clocks when
validity time periods are specified in certificates. An alter-
native approach to using timestamps is to use nonces in the
protocol.



The Secure Sockets Layer (SSL) protocol is the
most widely used security protocol today. The Trans-
port Layer Security (TLS) protocol is the successor
to SSL. Principal goals of SSL/TLS [19] include pro-
viding confidentiality and data integrity of traffic be-
tween the client and server, and providing authentica-
tion of the server. There is support for client authen-
tication, but client authentication is optional. The
SPKI/SDSI Access Control protocol can be layered
over a key-exchange protocol like TLS/SSL to pro-
vide additional security. TLS/SSL currently uses the
X.509 PKI to authenticate servers, but it could just as
well use SPKI/SDSI in a similar manner. In addition
to the features already stated, SSL/TLS also provides
protection against replay attacks from the network,
and protection against person-in-the-middle attacks.
With these considerations, the layering of the proto-
cols is shown in Figure 5. In the figure, ‘Application
Protocol’ refers to the standard communication pro-
tocol between the client and server proxies, without
security.

SSL/TLS authenticates the server proxy. However,
it does not indicate whether the server proxy is au-
thorized to accept the client’s request. For example,
it may be the case that the client proxy is requesting
to print a ‘top secret’ document, say, and only cer-
tain printers should be used to print ‘top secret’ doc-
uments. With SSL/TLS and the SPKI/SDSI Client
Access Control Protocol we have described so far, the
client proxy will know that the public key of the proxy
with which it is communicating is bound to a partic-
ular address, and the server proxy will know that the
client proxy is authorized to print to it. However,
the client proxy still will not know if the server proxy
is authorized to print ‘top secret’ documents. If it
sends the ‘top secret’ document to be printed, the
server proxy will accept the document and print it,
even though the document should not have been sent
to 1t in the first place.

To approach this problem, we propose extending
the SPKI/SDSI protocol so that the client requests
authorization from the server and the server proves to
the client that it is authorized to handle the client’s
request (before the client sends the document off to
be printed). To extend the protocol, the SPKI/SDSI
protocol described in Section 4.2 is run from the client
proxy to the server proxy, and then run in the reverse
direction, from the server proxy to the client proxy.
Thus, the client proxy will present a SPKI/SDST cer-
tificate chain proving that it is authorized to per-
form its request, and the server proxy will present
a SPKI/SDSI certificate chain proving that it is au-
thorized to accept and perform the client’s request.
Again, if additional security is needed, the extended

SPKI/SDSI Access Control Protocol

Application Protocol

Key-Exchange Protocol with Server Authentication

TCP/IP

Figure 5: Example Layering of Protocols

protocol can be layered over SSL/TLS.

Note that the SPKI/SDSI Access Control Protocol
is an example of the end-to-end argument [23]. The
access control decisions are made in the uppermost
layer, involving only the client and the server.

5 Related Work

5.1 Device to Proxy Communication

The Resurrecting Duckling is a security model for ad-
hoc wireless networks [25, 24]. In this model, when
devices begin their lives, they must be “imprinted”
before they can be used. A master (the mother duck)
imprints a device (the duckling) by being the first one
to communicate with it. After imprinting, a device
only listens to its master. During the process of im-
printing, the master is placed in physical contact with
the device and they share a secret key that is then
used for symmetric-key authentication and encryp-
tion. The master can also delegate the control of a
device to other devices so that control is not always
limited to just the master. A device can be “killed”
by its master then resurrected by a new one in order
for it to swap masters.

5.2 Proxy to Proxy Communication

Jini [26] network technology from Sun Microsystems
centers around the idea of federation building. Jini
avoids the use of proxies by assuming that all devices
and services in the system will run the Java Virtual
Machine. The STESTA project [8] at the Helsinki
University of Technology has succeeded in building a
framework for integrating Jini and SPKI/SDSI. Their
implementation has some latency concerns, however,
when new authorizations are granted. UC Berke-
ley’s Ninja project [27] uses the Service Discovery
Service [5] to securely perform resource discovery in
a wide-area network. Other related projects include
Hewlett-Packard’s CoolTown [9], IBM’s TSpaces [11]
and University of Washington’s Portolano [29].

5.3 Other projects using SPKI/SDSI

Other projects using SPKI/SDSI include Hewlett-
Packard’s e-Speak product [10], Intel’s CDSA release



Component Code Size | Data Size

(KB) (bytes)
Device Functionality 2.0 191
RF Code 1.1 153
HMAC-MD5 4.6 386
RC5 3.2 256
Miscellaneous 1.0 0

[ Total | 11.9 | 986 |

Table 1: Code and data size on the Atmel processor

[12], and Berkeley’s OceanStore project [28]. HP’s
eSpeak uses SPKI/SDSI certificates for specifying
and delegating authorizations. Intel’s CDSA release,
which is open-source, includes a SPKI/SDSI service
provider for building certificates, and a module (Au-
thCompute) for performing authorization computa-
tions. OceanStore uses SPKI/SDSI names in their
naming architecture.

6 Evaluation

6.1 Hardware Design

Details on the the design of a board that can act
as the core of a lightweight device, or as a wearable
communicator, are given in Appendix A.

6.2 Device-to-Proxy Protocol

In this section we evaluate the device-to-proxy pro-
tocol described in Section 3 in terms of its memory
and processing requirements.

6.2.1 Memory Requirements

Table 1 breaks down the memory requirements for
various software components. The code size repre-
sents memory used in Flash, and data size represents
memory used in RAM. The device functionality com-
ponent includes the packet and location processing
routines. The RF code component includes the RF
transmit and receive routines as well as the Cricket
listener routines. The miscellaneous component is
code that is common to all of the other components.

The device code requires approximately 12KB of
code space and 1KB of data space. The security al-
gorithms, HMAC-MD5 and RC5H, take up most of
the code space. Both of these algorithms were opti-
mized in assembly, which reduced their code size by
more than half. The code could be better optimized,
but this gives a general idea of how much memory
is required. The code size we have attained is small
enough that it can be incorporated into virtually any
device.

| Function | Time (ms) | Clock Cycles |
RC5 encrypt/
decrypt (n bytes) | 0.163n+ 0.552 | 652n 4 2208
HMAC-MD5
up to 56 bytes 11.48 45,920

Table 2: Performance of encryption and authentica-
tion code

6.2.2 Processing Requirements

The security algorithms put the most demand on
the device. Table 2 breaks down the approximate
time for each algorithm. The RC5 processing time
varies linearly with the number of bytes being en-
crypted or decrypted. The HMAC-MD5 routine, on
the other hand, takes a constant amount of time up
to 56 bytes. This is because HMAC-MD) is designed
to work on blocks of data, so anything less than 56
bytes is padded. Since we limit the RF packet size to
50 bytes, we only analyze the HMAC-MDb) running
time for packets of size less than or equal to 50 bytes.

We now examine how long it takes the device to re-
ceive a packet, process it, and send a response. In this
analysis, we assume the device is receiving a packet
that has 10 data bytes, making the total packet size
27 bytes, since each packet contains 17 header bytes
made up of a 9-byte address field and an 8-byte mes-
sage authentication field. The device broadcasts at
19.2 Kbps and we encode 8 bits into 12 bits for DC
balance. To receive the packet 1t takes:

packet size + RF header 12 (27 +4)
bandwidth 19200

The device then takes 11.48ms to authenticate the
packet and 0.163 - 10 + 0.552 = 2.18ms to decrypt it.
Thus, the time for the device to receive a packet and
process 1t 1s 19.38 + 11.48 4+ 2.18 = 33.04ms. The de-
vice always sends back a response. In this analysis,
we will assume the device responds with a packet of
the same size, so the device must encrypt, authenti-
cate, and then transmit the response which will take
another 33.04ms. Thus, the device can handle ap-
proximately 3?1)900492 ~ 15 transactions per second. We
think that fifteen transactions per second is sufficient
for most purposes, with a simple device.

6.3 SPKI/SDSI Evaluation

The protocol described in Section 4 is efficient. The
first two steps of the protocol are a standard re-
quest/response pair; no cryptography is required.
The significant steps in the protocol are step 3, in
which a certificate chain is formed, and step 4, where
the chain is verified. Table 3 shows analyses of these

= 19.38ms




| Protocol step | Timing analysis

| Approx CPU time |

Cert chain discovery

The worst case is O(n3), where n = num-
ber of certs, and [ = length of longest sub-
ject. However, the expected time is O(nl).

330ms, with n = 2 and [ = 2.

Chain validation

ber of certs.

The worst case is O(n), where n = num-

200ms, with n = 2.

Table 3: Proxy-to-Proxy Protocol analysis.

two steps. The paper on Certificate Chain Discov-
ery in SPKI/SDSI [4] should be referred to for a dis-
cussion of the timing analyses. The CPU times are
approximate times measured on a Sun Microsystems

Ultra-1 running SunOS 5.7.

7 Conclusions

We believe that the trends in pervasive computing
are increasing the diversity and heterogeneity of net-
works and their constituent devices. Developing secu-
rity protocols that can handle diverse, mobile devices
networked in various ways represents a major chal-
lenge. In this paper, we have taken a first step to-
ward meeting this challenge by observing the need for
multiple security protocols, each with different char-
acteristics and computational requirements. While
we have described a prototype system with two dif-
ferent protocols, other types of protocols could be
included if deemed necessary.

The two protocols we have described have vastly
different characteristics, because they apply to differ-
ent scenarios. The device-to-proxy protocol was de-
signed to enable secure communication of data from
a lightweight device. The SPKI/SDSI-based proxy-
to-proxy protocol was designed to enable communi-
cation between sophisticated devices, whose access
control policies can change frequently. The proxy ar-
chitecture and the use of two different protocols has
resulted, we believe, in a secure, yet efficient, resource
discovery and communication system.
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A Board Design

This section describes a circuit board that can act as
the core of a device, or by itself as a wearable com-
municator. It contains the necessary components for
RF communication, interfacing to the Cricket system,
implementing the security algorithms, and interfacing
with devices. With a slightly different configuration
of software and hardware, the same circuit board can
act as a gateway. A photograph of the board is shown
in Figure 6. It highlights the major components of
the design which are: the battery, RF transceiver,
Cricket listener, CPU, and serial port. The current
board is 43mm x 102mm, a little large for a wearable
communicator but future prototypes will be consid-
erably smaller.

The battery is a 3-volt lithium battery with a nom-
inal capacity of 1,200mAh. This battery has a long
life so debugging the system is simpler, since there
are fewer battery outages. However, it is fairly large,
relative to the size of the circuit board. In future
boards a coin-type battery will be used to make the
board smaller.

The serial port allows the device to communicate
with a personal computer, or to control other devices
that also have a serial port. Gateways use the serial
port to send and receive RF packets from a personal



computer.

The device uses the Cricket listener to determine
its location. It consists of an RF receiver to listen for
the location information from Cricket beacons, as well
as an ultrasound receiver to listen for the ultrasound
pulses. This component is not needed on all devices,
only those that need to know their location.

The CPU is representative of the processors the
simplest devices might have. It is an Atmel AT-
MegalO3L; an 8-bit CPU that uses the Atmel AVR
instruction set and operates at 3 volts. It has 128KB
of Flash memory, 2KB of RAM, and 512 bytes of
EEPROM. It runs at 4MHz. The CPU’s flash mem-
ory 1s quite large and may not represent what most
simple devices have, but it 1s useful for software de-
velopment. All of the memory is internal so the chip
size 1s small. Tt is programmed via a simple cable
plugged into the parallel port of a computer.

The RF Monolithics TR-3001 is used for device to
gateway communication. It has a reasonable amount
of bandwidth (19.2 Kbps), does not take much cur-
rent, and does not require many external compo-
nents.

The Cricket listener uses a Linx Technologies
RFM-418-LC RF receiver, since the beacons use the
corresponding transmitter. The Cricket listener op-
erates at 418 MHz, while the device to gateway com-
munication operates at 315 MHz. Thus, there is no
interference between them.

The board was not specifically designed for low
power consumption, but power considerations are sig-
nificant in mobile devices. When the RF transceiver
1s in receive mode, the board draws 22mA of current,
or 66mW of power. At this rate, in nominal condi-
tions, the battery will last 54 hours. When the board
transmits, it draws 29.5mA of current, or 88.5mW
of power. Most of the time, the board is in receive
mode. For devices that do not need to know their
location, the Cricket listener can be removed to save
power. The Cricket listener draws 10mA of current
or 30mW of power so removing the listener reduces
the board’s power consumption by almost half.

Swapping the Atmel ATMegalO3L for a Microchip
PIC16F877 processor would reduce power by 15 mW,
but would require considerable compression of the
already tightly packed code. Other methods for re-
ducing power including modifying the communication
protocol to shut down the RF chips for short periods
of time or putting the processor to sleep when it is
inactive. More details of the device implementation
can be found in [15].

We believe that a redesign with off-the-shelf com-
ponents will result in a wearable communicator with
a coin-type battery that lasts for several days. This
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can be improved even further by building customized
silicon.



