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ORTHOGONAL PACKINGS IN TWO DIMENSIONS*

BRENDA S. BAKER', E. G. COFFMAN, JR.} AND RONALD L. RIVEST?

Abstract. We consider problems of packing an arbitrary collection of rectangular pieces into an
open-ended, rectangular bin so as to minimize the height achieved by any piece. This problem has
numerous applications in operations research and studies of computer operation. We devise efficient
approximation algorithms, study their limitations, and derive worst-case bounds on the performance of the
packings they produce.
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1. Introduction. Efficiently packing sets of rectangular figures into a given rectan-
gular area is a problem with widespread application in operations research. Thus, one
is inclined to attribute the scarcity of results on this problem, and others of its type, to
inherent difficulty rather than to lack of importance. Motivated by the intractability
of these problems, we define and analyze certain approximation algorithms. These
algorithms are natural in the sense that they would probably be among the first to
occur to anyone wishing to design simple, fast procedures for determining easily
computed packings. The analysis of these algorithms leads to bounds on the perfor-
mance of approximate packings relative to the best achievable.

In the remainder of this section we define the model to be studied and introduce
notation. At that point we examine in more detail the applications which are served
by the model, and we review the literature bearing on this and similar models. In § 2
the main results of the paper are presented and proved. Concluding remarks and a
discussion of open problems are given in § 3.

As illustrated in Fig, 1, we consider an “open-ended” rectangle, R, of width w
and a collection of rectangles, also called pieces, organized into a list L=
(P1>P2>"* +» P,)- Each piece is defined by an ordered pair p;=(x;,y,),] Si<n, corre-
sponding to the horizontal (x;) and vertical (y;) dimensions of the rectangle.

We are concerned with the packing or assignment of the pieces in L into R so as
to minimize the height, h, of the packing; i.e., the maximum height, measured from
the bottom edge of R, of the space occupied by any piece in the packing (see Fig. 1).
In addition to the implicit requirement that the spaces occupied by distinct pieces be
disjoint, we restrict attention to packings that are orthogonal and oriented. An
orthogonal packing is one in which every edge of every rectangle is parallel to either
the bottom edge or the vertical edges of R. An orthogonal packing is also oriented if
the rectangles are regarded strictly as ordered pairs; i.e., a rectangle (x;,y;) must be
packed in such a way that the edges of length x, are parallel to the bottom edge of R.
Thus, rotations of 90° (which preserve orthogonality) are not allowed.

Returning to applications we see that our model applies to industrial or commer-
cial situations in which objects are to be packed on floors, shelves, truck beds, etc.,
where concern is limited to the objects in two prespecified dimensions. Another
important application concerns systems containing a shared resource. A prime exam-
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ple is the main memory resource in multiprogrammed computer systems. In such
systems a number of tasks compete for a resource which they can share, but only
within the limit provided by the total amount of resource available.

This application of the model was defined almost 20 years ago by E. F. Codd [1]
in a study of multiprogramming systems. More recently, Garey and Graham (2]
considered a related problem oriented to multiprocessor systems. In their study
arbitrary numbers of processors and additional resources were considered. The
analysis focused on worst-case bounds on the ratios of schedule-lengths (packing
heights) for arbitrary lists; approximation algorithms were not considered. Moreover,
the model of resources is basically different: Whenever an amount of the resource is
available, no matter how it is configured, it can be used to satisfy any demand no
greater than this amount; i.e., fragmentation of the resource is not a consideration.

Little else appears to have been published which bears on the packing problem
we have defined. Erdos and Graham [3] have shown that orthogonal packings of
squares into rectangles are not always optimum; i.e., there exist examples for which all
orthogonal packings have greater height than the minimum achievable by exploiting
the ability to rotate the squares. Based on earlier work of Meir and Moser [6],
Kleitman and Krieger have considered the problem of finding a smallest rectangle
into which a collection of squares can be packed [4], [S]. Specifically, they prove that a
V2 X2/V3 rectangle is always sufficient to pack a set of squares whose cumulative
area is unity, and that no rectangle of smaller area can have this property.

Even when x;=x; for all i and j, our packing problem is intractable; it can be
shown that it becomes the NP-complete make-span minimization problem [7]. Hence,
we are moved to consider fast heuristics and how closely the packings they produce
approach optimum packings. For this purpose we define the following class of
packing algorithms, to be called bottom-up left-justified (or simply BL) algorithms.
(Recall that pieces must be packed so as to preserve oriented, orthogonal packings.)
Each such algorithm packs the pieces one at a time as they are drawn in sequence
from the list L. When a piece is packed into R it is first placed into the lowest possible
location, and then it is left-justified at this vertical position in R. In the sequel R will
also be referred to as a bin.

Fig. 1 shows a BL packing. Note that from a combinatorial point of view our
problem remains essentially unchanged if we replace left-justification by right-
justification and consider BR packings instead. Note also that two BL algorithms
differ only in the ordering of L.

24

W/ )

//

P L=(py, P2, P3: Ps> P5)
x:381141

) . //// y:64435

FiG 1. Two-dimensional packing.
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2. Performance bounds for BL packings. We shall see that the basic BL algorithm,
using a poorly ordered list L, can perform arbitrarily badly relative to an optimization
algorithm. Thus, it is natural to inquire about the improvement possible by ordering L
on the basis of some simple measure of piece size. Some obvious orderings to consider
are increasing height, decreasing height, increasing width, and decreasing width. With
the proper ordering the improvement can indeed be striking, as we shall see. However,
with a badly chosen ordering, we can be just as poorly off as before. In particular, this
will be true if we order pieces by increasing width (or decreasing height).

As a matter or notation let hy; and hgpr denote the respective heights of a BL
and optimum packing of a list L which will always be clear by context.

THEOREM 1. For any M >0, there exists a list of pieces ordered by increasing width
such that hg; [hopr> M.

Proof. We shall define a class of lists which proves this result. First, let k= 2 be
given and define r,=max{m|i=0 mod k™}, i>0. Thus, r;=1 if i is a multiple of 4 but
not 16, ;=2 if i is a multiple of 16 but not 64, r,=3 if i is a multiple of 64 but not 256,
etc.;7;=0 if i is not a multiple of 4.

Let the bin width be w=k* and let s=k*~!. Rectangles are packed in the order
given. Along the bottom row we pack k* unit-width pieces, the ith of which has height
1 —r;e, where ¢ is much smaller than 1. The remaining rectangles all have unit height
but widths in the order given by

s of width 1 (the second row)
s/k of width k (the third row)
s/k?* of width k2 (the fourth row)
s/k¥=1=1 of width k*~! (the k + 1)st row).

Since 5, =0 for i not a multiple of k, one obtains the “notching” structure
illustrated in the first row of Fig. 2; i.e., every k th piece is lower than the intervening
k—1 pieces of unit height. Thus, the s=k*~! unit squares of the second row are
placed on top of every kth piece of the first row. Now every kth piece of the second
row corresponds to every (k?)th piece of the first row and reaches a height at most
2—2¢ which is less than that of the intervening k— 1 pieces of the second row, all at
height 2 —e. Thus, the third row left-justifies pieces of width k over each of the lower
pieces of the second row. Note that a width exceeding k— 1 is necessary so that the
piece width exceeds the width of spaces in the second row.

A similar pattern applies to the heights reached in the third row: The height
reached by every kth piece is determined by that of every (k>)th piece of the first
row. Thus, in the third row every k th piece achieves a height at most 3 — 3¢ while the
remaining pieces all achieve a height of 3—2¢. It follows that the fourth row
left-justifies pieces of width k2 over each of the lower pieces of the third row. In
general, then, the spaces in the (j+ I)st row (2 1) all have width k/(k— 1), the s/k’
pieces have width k7, and every kth piece reaches a height less than the others. Thus,
when the next s/k’*' pieces of width k/*' are added, they are placed on top of every
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FiG 2. The increasing widths example.

kth piece in the (j+ 1)st row and each abuts the piece to the left in the (j+ 1)st row.
Overall, the pattern looks like Fig. 2, drawn for k=4. (Distinctions of O(e) are not all
represented, because of scaling.)

Since there are k + 1 rows, we see that hy =k+1— O(ke). But a different packing
can be found which packs rows 2 through £+ 1 into one row of height 1. (Note that
the sum of widths of all pieces in rows 2 through k+1is k"' X1+ k¥ 2xk+--- +1
Xk*“'=k¥=w.) Therefore, an optimum packing has a height not exceeding 2.
Hence, we obtain a BL packing at least k/2 times higher than an optimum packing.
Since k is arbitrary, the result follows. []

A dramatic improvement in the performance of BL packings is obtained when
the list of rectangles is ordered by decreasing width. In fact, the ratio of BL to
optimum packing height is guaranteed to be no worse than 3 when L is in decreasing
order by width. For the case of squares, where decreasing width is equivalent to
decreasing height, the bound is further reduced to 2. First, we shall show that the
bounds of 3 and 2 can be approached as closely as desired; thus, these bounds are
best possible.

THEOREM 2. For any 8>0 there exists a list L of rectangles ordered by decreasing
width such that the BL packing gives a height hy; for which

h
(1) —BL >3-4,

hopr

If the pieces are restricted to squares then an L can be found such that for any § >0

h
) B >2-4.
hOI’T

Proof. We shall prove the second result first, since the first result is but a slight
modification.

The list proving (2) corresponds to the “checkerboard” packing in Fig. 3. The
pieces are all either unit squares or approximately 2X2 squares. In particular, the
larger squares are disposed on the bottom of the bin with the dimensions stepping
down by ¢ from piece to piece. Hence the assignment of pieces in the second row must
be made from right to left according to the bottom-up rule. Since two unit squares
exceed the dimension of any larger square and squares are left-justified, only one unit
square is placed on each large square. Except for the first and last pieces, this type of
assignment repeats on the second row since the “holes” in the second row all have
width less than 1 and squares to the right are lower than squares to the left. In general,
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FiG 3. The checkerboard example.

the ith row of unit squares alternates holes and pieces except for at most the initial
and final i—1 pieces of the row. Note that an optimum packing can be found which,
except for possibly the last row, is within O(e) of being fully occupied.

The edge effects inhibiting the waste of half the space in the BL packing consist
of

1. the row of larger pieces on the bottom, and

2. the triangular-shaped solidly packed collections of squares on the left and

right of the packing.

Holding piece sizes constant, the influence of the first edge effect is reduced by
increasing the height of the packing, while the second is attenuated by widening the
bin. Let k be two greater than the number of rows of unit squares. If the width of the
bin is selected to be k2, then the area of the bottom row and side edge effects is
O(k?). Thus, ignoring O(¢) terms, we can find a list such that

hpr _ k3
horr  k3/2+0(k?)

In the limit k— o0, we have the bound of 2.

For the case of rectangles, it is only necessary to augment the list for Fig. 3 by
adding as a new, last piece a rectangle of unit width and a height which equals the
height of the optimum packing corresponding to the new list. Omitting the details, the
BL packing will correspond to Fig. 3 with the new piece placed on top. It is easy to
verify that the height ratio can now be made to approach 3 as closely as desired. []

THEOREM 3. Let L be a list of rectangles ordered by decreasing widths. Then

(3) e g
hOPT

This bound is best possible in the sense of Theorem 2.

Proof. Let h* denote the height of the lower edge of a tallest piece whose upper
edge is at height sy, . If y denotes the height of this piece, then hp =y +h*. Let 4
denote the region of the bin up to height A*.

Suppose we can show that 4 is at least half occupied. Then we have hgpr2
max{y,h*/2}; hence, y >h*/2 implies

h *
BL §y+h <y+2y =3,
hoer = ¥ y
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and if ySh*/2, we have
hu, Bt/24R*
hoer —  h*/2 '

The result will thus be proved. It remains to show that A4 is at least half occupied.

Any horizontal cut or line through 4 can be partitioned into alternating segments
corresponding to cuts through unoccupied and occupied areas of the BL packing. We
shall show that the sum of the occupied segments is at least the sum of the unoccupied
segments. For convenience we may restrict ourselves to lines which do not coincide
with the (upper or lower) edges of any piece. Since the set of such lines is of measure
zero, ignoring them will not influence our claim that A4 is at least half occupied.

Initially, consider the partition of a given line just prior to when the first
rectangle, say g, is assigned with a lower edge at a height exceeding the height, A, of
the line. The piece ¢ need not be in A; its existence is guaranteed by the fact that there
is a piece packed above 4. We claim that at that point in the assignment sequence the
line is “half occupied.”

First, bottom-up packing implies that all lines must cut through at least one
piece. Second, all lines must cut through a piece abutting the left bin edge. For
suppose not; then the left-most piece, say ¢’, cut by the line must abut another piece,
say q”, to the left and entirely below the line. Thus, the length, x, of the unoccupied,
initial segment of the line must be at least the width of ¢”. But since ¢” was packed
prior to g, the width of ¢ must be less than that of ¢” and hence less than x. Since at
the point in time we are considering, no piece has been assigned entirely above the
line, the space vertically above the initial segment must be completely unoccupied.
Thus, we have the contradiction that ¢ would have fit into the space above ¢” in such
a way that its lower edge is at a height less than A.

Now consider any segment, S, of the line which cuts through an unoccupied
space. Let p be the piece bordering S on the left. Since when ¢ is assigned, it is placed
above the line, ¢ must be wider than the length of S. (Once again, at the time g is
assigned its height could not prevent its placement in a sufficiently wide unoccupied
space cut by the line.) But g is packed later than p; consequently, p is at least as wide
as g. It follows that for each segment representing unoccupied space along the line
there is a longer segment representing occupied space immediately to its left. Clearly,
for any given line, the sum of the segment lengths corresponding to unoccupied space
must be monotonically nonincreasing as the packing sequence progresses. Therefore,
the line continues to be at least half occupied. Finally, “integration” over the height of
A verifies that A is at least half full. []

COROLLARY 1. If L in the statement of Theorem 3 consists only of squares, then

hgL
—52.
hopr

This bound is best possible in the sense of Theorem 2.

Proof. First, define A’ as the area extending from height y to height A5, —y, where
y is the size of the tallest rectangle (now square) assigned above 4 in Theorem 2. Let p
denote this square. As in Theorem 2, 4’ C A is shown to be at least half occupied. But
now, if w denotes the width of the bin, we observe that the cumulative occupied area
of the upper and lower wXy slabs of the packing is at least wy and hence they are
(when considered together) half occupied. This follows from the facts that p is at most
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as large as any square on the bottom of the bin, the bottom of the bin is full except
possibly for a space at the right end, and the area of p must exceed y times the width
of this space. Hence, the entire packing is at least half occupied from O to Ay . It
follows immediately that hg; = 2hgpr. O

We have seen that a BL algorithm can yield reasonably good packings when the
list of pieces is sorted into decreasing order by width. That is, Theorem 3 shows that
the bin height used is no more than three times the optimal bin height, and if the
pieces are squares, then the packing can be no more than twice as high.

A natural question to ask next is, “For every set of pieces, is there some ordering
of those pieces into a list such that the BL rule, when applied to that list, yields an
optimal packing?” Our checkerboard example, which showed that a list of squares
sorted into decreasing order by size can use up to twice as much space as an optimal
packing, can be packed optimally by the BL algorithm if the list is sorted into
increasing order by size. While it might be difficult in practice to actually determine
an ordering for which the BL rule produces an optimum packing, it would be
comforting to know that one was not excluding the possibility of finding an optimum
packing by considering only bottom-up packings.

Unfortunately, there are sets of pieces for which no BL packing is optimal. That
is, no matter what ordering is used, the BL algorithm will produce a suboptimal
packing. In fact we shall present an example using squares only, which demonstrates
that an optimal packing can be as little as 15 the height of the best bottom-up
packing.

THEOREM 4. There exist sets of squares such that the ratio of the bin height used by
the best bottom-up packing to that of an optimum packing is at least 12/(11+¢) for any
sufficiently small ¢>0.

Proof. Consider the set of squares of sizes (6,6,5,5,4,4,3,1,1) and a rectangle of
width 15. An optimum packing, of height 11, is shown in Fig. 4. We first demonstrate
that (up to obvious left-right symmetries) this is the only optimum packing, and then
we modify the example slightly to obtain the theorem.

Since Fig. 4 is a tight packing, any optimum packing must have height 11. For an
arbitrary optimum packing consider the 15X 11 rectangle A that it packs to be divided
into 15 disjoint 1X 11 vertical slabs. Let the type of a slab be an ordered list of the
sizes of the squares that the slab intersects. The only possible types are:

(a) 6-5

(b) 6-4-1

(c) 6-3-1-1

(@) 5-5-1

(e) 5-4-1-1

f) 443
Let a denote the number of slabs of type (a), etc. The following equations must then
hold, for a,b,c,d,e,f nonnegative integers:

at b+c +d +e +f=15

a+ b+c =12
a +2d+e =10
b+ e +2f= 8

c +f=3

b+2c +d +2e =2
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FiG 4. Optimum vs. best BL packings.

The first equation reflects the fact that there is a total of 15 slabs; the remaining five
equations account for the presence of the squares of sizes 6,5,4,3,1 respectively. For
example, the second equation states that the presence of exactly two 6 X6 squares
requires 12 slabs of types with 6’s in them. By the last equation we have that either
¢=0 or ¢=1. Choosing c=1 yields a contradiction, and ¢=0 gives us the unique
solution to the above equations:

Any solution having the slab types in the above numbers must look like either Fig. 4
or its reflection. This can be proved by observing that (since a=10), each 5X5 is
entirely above or below a 6 X 6. Take a particular 5X5 and consider the slab which
intersects the adjacent 6 X6 but does not contain the 5X 5. This must be of type 6-4-1
or 6-5 (using the other five). The 6-5 possibility can’t happen (since there would be a
6 % 3 unfilled space next to the other 6 X6), and the pieces of the 6-4-1 must occur in
the order 6,1,4 to prevent an unfillable gap between the 4 X4 and the edge of A. The
4-4-3 slabs must come next: the pieces must be in the order 4,3,4 to leave room for the
6 X 6. Finally, the 6-4-1 and 6-5 slabs complete the picture. Thus, Fig. 4 represents the
only way to pack the given squares into a 15X 11 rectangle.

We now modify things so that (i) the 3 X3 now has size (3+¢) X (3 +¢) and (ii) the
bin now has width 15+e¢. The preceding proof shows that (to within ¢) the packing in
Fig. 4 is still optimum. However, we note that in the modified packing there must be
gaps on the bottom row between the 5X5 and 4X4 and between the 4 X4 and 6 X6
which add up to ¢; otherwise the 1 X 1 and (3 +¢) X (3 +¢) will not be able to fit on top
of the 4 4. Since no BL rule can produce those gaps, the optimum packing of Fig. 4
is unachievable. The best that such an algorithm can do is a packing of height 12.
Thus we have

hey o 12
hopr — 11+

for this example. [
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As a final technical result we make an observation also made by R. E. Tarjan;
viz., that the example of Theorem 1 can be modified to show that ordering the list by
decreasing height can also lead to packings that are arbitrarily bad relative to the
optimum.

THEOREM 1”. For any M >0, there exists a list of pieces ordered by decreasing height
such that

LIV
hopr
Proof. Let k> 1 be given and let the bin width be w=k*. We shall define the BL
packings proving the theorem by specifying the pieces row by row. The first two rows
will each consist of w unit-width pieces. We shall define sequences {§;} and {§;} such
that the heights of pieces in the first row are given by

a,=1+3§,, ISisSw,

and the heights of pieces in the second row are, indexed from left to right,
b=1+¢;, 1SisSw.

The §; and &/ sequences are defined below so that a, <a,+b, and

4) a,2a,2 -+ 2a,2b,2b,_,2 -+ 2b,20.

Thus, the pieces will be packed in the order given by (4), the piece of height b,
will be on top of the piece of height a;, 1=i<w, and the cumulative heights achieved
in the second row will be A,=2+8,+8/, 1SiZw.

As in the proof of Theorem 1, define r,=max{m|k™ divides i}. Thus, if i is a
multiple of k but not k2, then r;=1; if i is a multiple of k? but not k>, then r;=2; etc.
Clearly, ;=0 if i is not a multiple of k. Note that max, <;<,{r,} =r,=k. Next, define

§=1—i/2w, iSisw,
8/ =i/2w—re, 1SiSw,

where 0<e<1/2wk, and hence /20, 1=i=w. Note that §,>6;,,, 1Si<w, and
8,=328,=1—r,e Since &/, ,—8=1/2w—(r,,,—r,)e2 1/2w—ke>0, the ordering
in (4) follows. Moreover, the cumulative heights in the second row are h;=3—re.
Note that these heights have the same notching effect as the heights of the first row of
pieces in Theorem 1.

Let s=w/k=k*"'. As in Theorem 1 the remaining rectangles will be of height 1,

with widths in the order given by:

K} of width 1,
% of width k,
% of width k2,

s ' . k_ l
= =1 of width k7",

The pieces pack in a pattern similar to that of Theorem 1, using a total height of
k+3—0(ke).
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Note that a different packing could pack all the pieces in rows 3 and above into
one row of height 1, and the remaining pieces into two rows of height 3 as in the
above packing. Thus an optimum packing has a height no greater than 4. Therefore,
the bottom-up packing is at least k/4 times higher than an optimum packing. Since k&
is arbitrary, the result follows. []

3. Conclusions. This paper is but a beginning in the study of fast, effective
approximation algorithms for packing pieces in two dimensions. We have seen that,
although performance of these algorithms can be very poor, simple measures such as
ordering on piece size can produce algorithms with much more reasonable perfor-
mance. Indeed, with such algorithms it appears that worst-case performance can only
be approached by essentially pathological cases.

Subsequent to the work [8] on which this paper is based, considerable activity has
arisen in two-dimensional bin-packing. Performance bounds have been found for
so-called level-oriented algorithms [9], [10], which in terms of worst-case performance
are superior to the bottom-up algorithms. Also, examples have been found [11] which
show that a best BL packing can be as much as 5/4 worse than the optimum packing.

Many open problems related to our models remain for future research. Questions
that should be resolved are those connected with the specialization to squares and
those arising from list orderings we have not considered. For example, what is a tight
bound for the special case of increasing squares? Another question concerns the
implementation of the BL algorithms. The complexity of such algorithms for decreas-
ing widths is open. How does one efficiently maintain the structure of available space
as the packing sequence progresses?
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