
LINEAR TIME BOUNDS FOR MEDIAN COMPUTATIONS 

by Manuel Blum, Robert W. Floyd• Vaughan Pratt• 

Ronald L. Rivest, and Robert E. Tarjan 

August 1971 

Abstract 

New upper and lower bounds are presented for 
the maximum number of comparisons• f(i,n) , 
required to select the i-th largest of n numbers. 
An upper bound is found, by an analysis of a new 
selection algorithm, to be a linear function of n : 

f(i,n) ~ 103n/18 < 5.73n , for i < i < n . 

A lower bound is shown deductively to be: 

f(i,n) > n+ min(i,n-i+l) + [log2(n )] - 4 , 

for 2 < i < n-i , 

or, for the case of computing medians: 

f([n/2],n) >3n/2 -3 

I. Introduction 

New upper and lower bounds are presented for 
the minimax number of comparisons~ f(i,n) • 
required to select the i-th largest of a set S 
of n distinct numbers. The i-th largest number 
is that element of S which is less than exactly 
i-1 other elements. Each comparison determines 
which of two numbers is larger. 

An upper bound for f(i~n) , linear in n 
is derived from the analysis of a new selection 
algorithm in Section II: 

f(i,n) ~ i03n/18 < 5.73n • for 1 < i < n . 

This is essentially an asymptotic bound; for small 
values of n better results are obtainable with 
other algorithms° The best previous upper bound 
was established in 1969 by Hadian and Sobel [2]: 

f(i•n) ~ n-i+ (i-l) [log2(n-i+2)~ , 

for i < i < n . 

A lower bound is proved analytically in Section III: 

f(i•n) ~ n+min(i,n-i+l) + [log2(n)] -4 , 

for 2 < i < n-i . 

The values of f(i,n) for i = i and i = n are 
trivial: 

f(l•n) = f(n,n) = n-1 

In 1932 • Josef Schreier [5] showed by construction 
that: 

f(2•n) = f(n-l•n) ~ n+ [log2(n)] -2 . 

S. S. Kislitsin [4] proved in 1965 that Schreier's 
algorithm was in fact optimal~ a result which will 
be used in Section III. No lower bounds for 
f(i,n) have previously been published for other 
values of i . 

There is no evidence to suggest that either 
of the new bounds presented is indeed optimal. 
Thus, it remains an open problem to determine 
f(i•n) more accurately. 

II. An Upper Bound 

In this section an upper bound for f(i~n) is 
established by analysis of a new selection algorithm. 
The algorithm is presented first in a simplified 
form• then in a more efficient version. 

The new algorithm operates by discarding all 
elements of S that are "too large" or "too small"• 
until only the i-th largest element remains. Any 
element which is: 

(i) less than i (or more) other elements~ or 

(ii) greater than n-i+l (or more) other 
elements 

may clearly be discarded. Approximately one quarter 
of the remaining elements are discarded on each pass 
of the algorithm, at a cost per pass proportional 
to the number of elements remaining -- yielding a 
total cost proportional to n . PreviOus algorithms 
have discarded elements one at a timer each at a 
cost proportional to log(n) -- yielding a total 
cost proportional to n log(n) for finding medians. 

The new algorithm is similar to Hoare's selec- 
tion algorit~n [3]~ in that the basic iteration 
involves choosing an element x of the set S 
about which to partition S • and then discarding 
either all those elements larger or all those 
elements smaller than x . The new algorithm, 
however• selects an element x which is guaranteed 
to be far from extremal. 

II.A. The Simplified Algorithm 

The simplified algorithm iterates five steps 
until the i-th largest element is found. At each 
iteration approximately one quarter of the remain- 
ing elements are discarded. The algorithm is 
stated in terms of a fixed (odd) integer k 
k ~ 5 ~ which will be chosen later: 

Repeat indefinitely: 

i. If n < 3k ~ sort S ~ select the i-th largest~ 
and halt. 

2. Arrange S into [n/~ columns of k ele- 
ments each• with b elements left over 
(0 ~ b < k) ~ and sort each column. 

3. Find the median• M ~ of the column medians by 
applying the algorithm recursively. 

4. Determine j • the number of elements in S 
that are > M • by comparing M as needed to 
every other element (including the b "left- 
overs"). 

This research was supported by the National Science 
Foundation under grant number GJ-992. 

-I 19- 



5- If j = i-i , halt (M is the i-th largest), 
else 

if j > i-i ~ set n ~ j , and discard all 
elements < M , else 

if j < i-i , sit n ~ n-j-i , i ~ i-j-I , 
and discard all elements > M . 

After step 3, M is less than half of the 
column medians. Since each column median is less 
than half of the elements in its column, M is 
less than approximately n/4 elements. Symmetri- 
cally, M is also greater than approximately 
another n/4 elements. This can be represented 
graphic ally: 

Ln/k 3 columns 
. . . . .  . ° . .° 

* * * * *  . * * * * * *  , 

• * * * * *  * ** * ** 

* * * * * • * * * * * * • medians of 
sorted 

® ® ®® ® • ~'I ®® ® ® ® ~- columns of 
*** , ***** ".'I ............ 
. . . ! . . . * . ! * * * * * length k, 

b "left- , *I * * * * * largest 
* * * * * * * * * * * elements overs" [ 

on top. 

columns with columns with 
medians < M medians > M 

Figure i 

Every element in the dotted box above is > M 
while every element in the dashed box is < M . 
Therefore at least n/4 elements (approximately) 
are discarded at each iteration. 

It is easy to show that no elements are incor- 
rectly discarded in step 5. If j > i-1 , then M 
and every element < M is less than i or more 
elements. If j < i-1 ~ then M and all elements 
greater than M are greater than n-i+l or more 
elements. 

Using the following notation the basic algor- 
ithm can be analyzed: 

C(n) ~ the maximum number of comparisons 
required by the basic algorithm to 
find the i-th largest of n numbers, 
for all i . 

S(k) ~ the number of comparisons required to 
sort k numbers° 

The algorithm implies: 

C(n) = S(n) for n < 3k, else 

C(n) < tn/kJ S(k) (for step 2) 

+ C ( [n/kJ ) (for step 3) 

+ n-i (for step 4) 

+ C((3n+k)/4) (for subsequent itera- 
tions) 

For k > 5 , and n > kt2/(k-4) , the sum of the 
arguments of Q on the right hand side of the 
latter inequality total less than n , yielding by 
mathematical induction: 

C(n) S (l+S(k)/k)(4k/(k-4-(k~2)/n))n , 

for k > 5, n > (kt2)/(k-4)3 

1 < i < n . 

Asymptotically, the optimal value of k is 21 , 
implying: 

C(n) S 348n/17 < 20.5n (as n~) • 

(See [i] for verification that S(21) = 66 .) 
Choosing k = 21 , the above inequality is valid 
for all values of n , since S(n) < 20n for 
n < 3k • 

ll.B. A More Efficient Algorithm 

A better upper bound for f(i,n) can be 
established by modifying the basic algorithm of 
Section II.A to make it more efficient. The algor- 
ithm of this section will be shown to yield the 
improved bound: 

f(i,n) S 103n/18 < 5.73n 

The major changes to the basic algorithms are: 

(i) The sorting step (step 2) is done only 
once, after which the columns are 
restored to full length by a merge step 
(step 6) after each pass. 

(ii) The partitioning step (step 4) is modified 
to avoid redundant comparisons and to 
create a situation where the number of 
comparisons used is a linear function of 
the number of elements discarded. 

(iii) The discard operation (step 5) is modified 
to break not more than half the columns, 
so that the above modifications work well. 

The new algorithm will be presented, with 
steps numbered to correspond to those of the sim- 
plified algorithm, and then analyzed. The term 
"k-columns" will be used to denote sorted columns 
of length k . The optimal value of k , 15 , 
will be used throughout for clarity. All sorting 
operations use the Ford-Johnson algorithm [i]. 

The new algorithm (selects the i-th largest of 
a set S of n distinct numbers): 

1. If n < 45 , sort S ~ print the i-th largest, 
and halt. 

2. Arrange S into [n/l~ 15-columns, with 
possibly b elements left over. Let R 
denote the set of "leftovers". 

3. Apply the algorithm recursively to find M 3 
the median of the column medians. 

At this point, the situation is as follows: 

** * ** [ * * * * * *  

A ***** I . ***** 
** * * *  ] * ** ** * 

I ~®®®e[ M l, ®®®,® 
I ** ** * * * * *  ** 

[L ***** *I ***** 
[ ***** * j  ***** 

columns with columns with 
medians > M medians < M 

] 

GI 

[-medians of 
l q 15-columns. 

B **** 
R = (b left- 

overs) 

Figure 2 

-IZO- 



Every element in G is _~ M , every element in L 
is <M , and every element in A U B U R is of 
unknown relation to M • Let g(M) and £(M) 
denote the number of elements known at any point 
in time to be greater than M and less than M 
respect ively. 

4(a). Compare each element of R to M . 

4 ( b ) .  I f  g ( M ) >  i - 1  or ~(M) > n - i  t h e n  go 
to step 5- 

4(c). If i < n/2 let X denote A 3 else B. 
Partition X about M by inserting M 
into each 7-column of X using a binary 
insertion technique (3 comparisons/column). 

4(d). If i < n/2 let Y denote B , else A . 
Partition Y about M by inserting M 
into each column in turn with a linear 
search technique, beginning with the 
element nearest each 15-column median and 
proceeding outwards. Stop as soon as 
either g(M) = i , ~(M) = n-i+l , or 
every 7-column in Y has been partitioned 
about M • 

5. If g(M) > i , discard L and all ele- 
ments in R that are <M . If 
f(M) _> n-i ~ discard G and all ele- 
ments in R that are > M • 
Decrease n by the number of elements 
discarded. If n < 45 , go to step 1. 

In order to restore the conditions to re- 
enter the algorithm at step 3, step 6 merges the 
remaining columns into 15-columns. 

6(a). Let Z denote the set of columns remain- 
ing that have length < 15 , counting any 
remaining leftovers as columns of length 
1 . Each column in Z is of length 
< 7 • The elements in Z will be merged 
Together to form 15-columns. Arrange Z 
in columns of decreasing lengths and 
separate them into four sections U , P , 
Q , and R , such that: (Here I XI 
denotes the number of elements in a set 
X ~ x denotes the number of columns.) 

(i) U is the set of all 7-columns. 

(ii) IRI = I z l / 1 4 ,  and R has the 
shortest columns. 

(iii) P's columns are not shorter than 
QIs . 

( iv )  IPI+IQI = T p .  

Graphically: 

S T 

7 high 

columns : u p q r 

Z = U+P+Q+R 

Q' + S + T are discarded elements 

Figure 3 

Here it is easy to see: 

IQ'l : LQI = 7 p -  LPI 
ISI = 7 q - I Q I  ' 

ITI = T r - I ~ l  • 
Now ex tend  each column o f  P t o  l e n g t h  7 
by u s i n g  a b i n a r y  i n s e r t i o n  t e c h n i q u e  t o  
p l a c e  each e lement  o f  Q i n t o  a column o f  P. 

6 ( b ) .  Now every  column in  Z\R i s  o f  l e n g t h  7 • 
Merge t h e s e  7-columns p a i r w i s e  t o  form 
14-columns.  

6 ( e ) .  Using b i n a r y  i n s e r t i o n  p l a c e  each element  o f  
R into a 14-column of Z\R • Now Z has 
been restored to a set of 15-columns. Go to 
step 3. 

This completes the description of the algorithm. 

To analyze this algorithm, two lemmas shall be 
proved and some new notation introduced. Let: 

C(n) ~ aa upper bound on the comparisons needed 
to find the i-th largest of a set of n 
unordered objects. 

C2(n) ~ an upper bound on the comparisons needed 
to find the i-th largest of a set of n 
objectsj arranged in 15-columns. 

c ~ the number of comparisons made in step 
4(d) .  

d ~ the variable component of the number of 
elements discarded in step 5. 

C(n) is the cost of starting at step l, 
C2(n) is the cost of starting at step 3. 

The Ford-Johnson sorting algorithm [1] requires 
42 comparisons to sort 15-elements. Thus, 

C(n) : 42Ln/15J +C2(n) (step 2) 

The following lemma demonstrates the trade-off 
created between the number of comparisons made in 
step 4(d) and the number of elements discarded in 
step 5. 

Lemma 1. c _< d+ n/30 • 

Proof. It is assumed that i < n/2 . If i _> n/2 
a symmetrical argument applies. There are two 
cases to consider. In step 5, either elements in 
G or elements in L are discarded. 

Case 1. (G is discarded). In this case d is 
the number of elements discarded from B . 
But clearly there can be at most one compari- 
son for every 7-column in B , plus one for 
every element of B discarded, yielding the 
lemma. 

Case 2. (L is discarded). Let ga be the num- 
ber of elements in A found to be >M , gb 
the number of elements in B found to be > M , 
Ea the number of elements in A found to be 
< M , and the number of elements in B 
found to be < M . Then 

ILl + ~a+ £b > n-i (since L is discarded) 

n/2 (since i < n/2) 

> ILl + IBI 
bl+gh+~b 

- 1 2 1 -  



Thus £a ~ gb . 

But ~a = d and gb < c+n/30 (as in 
case 1)~ yielding the--lemma. 

Q.E.D. 

The following lemma allows the costs of step 6 to 
be estimated. 

Lemma 2. IQI ~ 4d/5 • 

P r o o f .  d = I Q ' I  + Is l  + IT I  = IQI  + I s l  + IT I  

Thus 

(1) 

IPl Ip ~ IQI/q ~ IRI Ir (2) 
IQI/P s Isl/q ~ ITl/r (3) 
IQI/IPI ~ i/6 (u) 
141Rl = IPI+IQI+IuI (5) 

IQI d-Isl- ITI (from (i)) 
S d-Isl (q+r)/q (from (3)) 
S d-IQI (q+r)/p (from (3)) 

dl (l+q/p+ r/p) (simplifying) 

Also2 
q/p 

and 
r/p 

Thus, 

IQI/IPl ~ 1/6 (from (4)) 

IRI/IPl (from (2) 
27 IRI/(6(IPI + IQI)) (from (4) 

7 IRI/(6(IPl + IQI + Iul)) 
7/ (6(14)) (from (5)) 

1/12 . 

d/ (l+l/6+l/12) : 4d/5 
Q.E.D. 

The algorithm may now be easily analyzed: 

C2(n) ~C([n/l~) (step 3(c)) 

+ 14 (step 4(a)) 

+ 3(n/30) (step 4(c)) 
+ d+n/30 (step 4(d)) 

+ 12d/5 (step 6(a)) 

+ 13(7n/30 - d)/15 (step 6(b)) 

+ 4(7n/30 - d)/15 (step 6(c)) 

+ C2(L~n/l~ - d) (iteration) 

Simplifying, and substituting for C([n/l~ ) 
yields: 

C2(n) _< 263n(n+ (765/263)d) / (90(n+5d)) 

< 263n / 90 

Hence~ 
C2(n) _< 263n/90 < 2.93n 

and 
C(n) _< iO3n/18 < 5.73n 

III. A Lower Bound 

In this section a lower bound for f(i,n) is 
derived deductively. The following definitions are 
useful: 

Definition i. A "partially ordered set" P = (S,R) 
consists of a set S and a binary relation R on 
S satisfying the reflexives antisymmetric, and 
transitive laws. The statement " aRb " will also 
be written " a < b " 

Definition 2. A "policy" Q is a function from 
partially ordered sets P = (S,R) to unordered 
pairs of elements from S ~ such that 
Q(P) = [a,b] implies ~(a _< b V b _< a) . If 
is a total order then Q may be undefined. 

Clearly a selection procedure can be defined 
by using a policy repeatedly to specify the next 
two elements to be compared. If the policy is a 
computable functions the procedure so defined is 
an algorithm. 

Definition 3. The "extension of a partially 
ordered set P = (S,R) by an ordered pair (a,b) " 
is defined to be 

P' = (S,(R U [(a,b)}) +) 
+ 

where it is assumed that m(b _< a) and where R 
denotes the transitive closure of R . P' will 
also be written as P+(a,b) 

Definition 4. A partial ordering P = (S,R) is 
said to "select the i-th largest of S " if 

(~aeS)[(i= l{bla_<b]l)) A (n-i+l = l[blb _< a}l)]. 

Definition 5- The "cost of a policy Q to select 
the i-th largest element of S " is defined to be: 

Q(i~P) = 0 if P selects the i-th largest of $3 
else 

i+ max(Q(i,P+(a,b)),Q(i, Pv(b,a))) 

where Q(P) = [a,b] . 

The definition clearly specifies the intuitive 
notion of the "worst-case" cost of a selection 
procedure defined using the given policy. The 
following theorem shows that there exists an 
"optimal" policy. 

Theorem i. There exists a policy Z , such that 
for all finite partial orderings P = (S,R) , and 
for all i ~ 1 < i < ISI ~ and all policies Q : 

~(i,P) _< ~(i,P) 

Proof. Clearly Q(i,P) is well defined by 
Definition 5 above~ since each comparison adds new 
information, and the partial ordering must select 
the i-th largest after at most n(n-1)/2 compari- 
sons. Given i and P , a policy Q can only 
have at most a finite number of values. The policy 
Z can thus be effectively recursive defined: 

Z(i,P) e [[a,b}Imax(Z(i,P+(a,b))~Z(i,l~-(b,a)) ) 

is minimum) ] 

-122- 



If more than one value yields minimal costs any 

may be chosen. Clearly f(i,n) = Z(i, nil), 
where ISI = n and nil is the totally unordered 
set. 

Theorem 2 .  I f  P = (S,R) and P' = (S,R') are 
two partially orderings such that R c R' , then: 

Z(i,P') ~ Z(i,P) 

Proof. Clearly, Z can do at least as well on 
P' as on P ~ since Z could merely specify the 
same sequence of comparisons as it does on P , 
skipping any whose result is implied by R' . 

Corollary i. Given a partial ordering P = (S,R) 
and an xeS ~ then 

(i) if ~(Zy)(x < y) and i % 1 , then 

Z(i,P) ~ Z(i-i,P+ {(y,x) IVyeS]) 

(ii) if ~(Zy)(y < x) and i > ISI , then 

Z(i,P) ~ Z(i,P+ [(x,y) IVysS]) • 

In other words~ the cost of the optimal policy is 
bounded below by its cost when applied to the same 
partial ordering with the additional information 
that some element is maximal or minimal. This 
extremal element can then be effectively discarded, 
since the fact that it is in known relation to 
every other element of S implies that it will 
never be compared against. Discarding a maximal 
element implies decreasing the value of i by 
one~ however. 

A lower bound can now be proved from the 
above corollary and a detailed consideration of a 
particular subclass of partial orderings. 

Definition 6. Given a set S , let P(a) stand 
for that partial ordering of S in which there 
are 2a elements in pairsj and the remaining 
elements are uncompared. For examples given 
I SI = i0 , then 

The notation P' (a) shall be used to denote P(a) 
on a set S' one element smaller than S 3 e.g. 

Furthermore~ free use of graphics shall be used to 
indicate extensions of P(a) by adding relations 
to the uncompared elements, e.g. 

Definition 5 now implies: 

Z(i,P(a)) = l+min(Z(i,P(a+l)) , 

max(Z(i,P(a-l) + A),Z(i,P(a-1) + I ))' 
@ 

max(Z(i,P(a-l) + V),Z(i,P(a-i) + I ))' 

Z(i,P(a-2) + ~ ) , 

Z(i,P(a-2) + ~ ) , 

max(Z(i,P(a-2) + ~),Z(i,P(a-2) + I ))) 

By application of Theorem 2, each of the max 
expressions above can be simplified, since the 
partial ordering in the first argument of each max 
can be embedded in that of the latter. Thus: 

Z(i,P(a)) = l+min(Z(i,P(a+l)),Z(i,P(a-!) + A ) ' 

~(i,P(a-1) + ~),~(i,P(a-2) + ~) , 

~(i,P(a-l) + ~),{(i,P(a-2) + ~ ) , 

Now~ by application of Corollary i~ each of 
the last five arguments of min above can be 
bounded below by the cost of the optimal algorithm 
on a similar partial ordering~ one in which new 
information has been added specifying that one 
element is maximal (or minimal). The element 
specified will be one that is already known to be 
greater than (less than) two other elements. This 
element may be effectively discarded, since it will 
never be compared against. Thus 

Z(i,P(a)) > 

i + min({(i, P(a-1) ), Z(i-l, P' (a-l)), Z(i, P' (a-l))) • 

Given the boundary condition: 

Z(i,P(O)) = Z(n,P(O)) = n-i , 

the following solution can be obtained: 

Z(i,P(a)) > n+min(i,n-i+l) -a-2 , 

for i < i < n 

Using Schreier's and Kislitsin's results [4, 5], 
that 

Z(2,P(O)) = Z(n-i,P(0)) : n+ ~log2(n)] -2 , 

a slightly improved solution can be derived (for 
n > 4 ~ 2 < i <n-l) : 

Z(i,P(a)) _> n+min(i,n-i+l) + [log2(n)~ -a-4 . 

- 123- 



This implies, for finding medians, that 

f(Ln/~,n) = Z(Ln/~,P(O)) Z3n/2-3 

References 

[1] Ford, Lester R. and Selmer M. Johnson. "A 
Tournament Problem." American Math. Monthly, 
VOlo 66, No. 5 (May, 1959). 

[e] Hadian, Abdollah, and Milton Sobel. 
"Selecting the t-th largest using binary 
errorless comparisons." Technical Report 
1213 Dept. of Statistics, University of 
Minnesota. (May, 1969), 15 pp. 

[3] Hoare, C. A. R. "Algorithm 65, Find." 
CACM (July, 1961), 321-322. 

[4] Kislitsin, S. S. "On the selection of the 
k-th element of an ordered set by pairwise 
comparisons." Sibirsk. Math 5 (1964), 
557-564. (MR. 29, No. 2198 ) . 

[5] Schreier, Josef. Mathesis Polska 7 (1932), 
pp. 154-160. 

- l Z 4 :  


