
592 PROBLEMS

(Problem 84-2) by J. L. Bentley (Bell Laboratories), C. E. Leiserson (MIT),
R. L. Rivest (MIT), and C. J. van Wyk

Given 2n distinct endpoints of n chords on the unit circle, count the
number of intersections between chords (if k chords intersect at one point,
that point counts as

0
: intersections). What is the complexity of this

problem as a function of n?

Solution by the proposers

Label the endpoints with the integers 1 to n such that two points have the
same label if and only if they are endpoints of the same chord. Let u be the
string obtained by reading the labels in the order in which they appear
around the circle. Note that u will contain 2n labels, and each label will
appear exactly twice. The chord labeled i and the chord labeled j intersect
if and only if i appears exactly once in u between the two instances of j.

The idea behind the algorithm is to scan u once. When a label i is seen
for the first time, an interval is opened for it. When i is seen again, we close
its interval and find out how many intervals have been opened and not
closed since i was first seen. Each of these represents an intersection
between chord i and some other chord. For example, if u = 1 2 3 3 4 2 4 1,
we would open intervals for 1, 2, and 3, then close the interval for 3 (noting
no intersections), open an interval for 4, close the interval for 2 (counting
one intersection), and finally close the intervals for 4 and 1 (noting no more
intersections). Notice that when we close the interval for 2 we do not count
all open intervals (1 and 4), but only the one that opened after 2. In Fig. 2,
each arc represents an interval.

In the algorithm the intervals are represented by two arrays of length n.
Array E stores the locations of the first endpoints of chords, while seen
records that an endpoint of a chord has already been seen. The algorithm
also represents a set of S of endpoint locations using a range query data
structure that permits us to insert and delete items, and to answer the
question “How many elements in S are larger than x?” in time O(logn)
when there are n items in S (Exercise 6.2.3-15 in [l]).

1 2 3 3 4 2 4 1

1 I I I

! \Y /

FIGURE 2

PROBLEMS 593

intersections + 0
S+ 0
while (if 2n) {

j + ui
if (seeni= FALSE) {/* open an interval for j */

seeni + TRUE
Ej +- i
S 6 S U {i}

} else { /* close the interval for j and count intersections */
intersections + intersections + I{ XIX E S A x > Ej}

1
i+i+l
S + S - {Ej}

Upon completion, the value of the variable intersections is the number of
intersections. For each label i let us, = a,, = i with si < ti (si and tj index
the left and right endpoints of chord i). Consider two chords i and j with
si < sj. If chords i and j cross, then sj < ti < tj; the intersection will be
counted exactly once, namely, when a, is examined. If chords i and j do
not cross, then tj < ti, so no intersection will be counted between chords i
and j.

To analyze the algorithm’s running time, notice that each label is inserted
once into S, and one range query may be made about it before it is deleted
from S. Since each of these operations takes time O(log n), the running time
of the algorithm is O(n logn). (The algorithm can easily be modified to
report all intersections between chords in time 0(n log n + m) when there
are m intersections: when an interval i is closed, report all open intervals
that opened after i was opened.)

FIGURE 3

594 PROBLEMS

Now we consider a tight lower bound for the problem. Any algorithm
that solves this problem can be used to count the number of inversions in a
permutation 1~ of the integers 1 through n. On the unit circle, for 1 G k G n,
label the point exp(is((n - k + 1)/2n)) as k and the point exp(h((k +
n)/2n)) as TV. Figure 3 shows the construction for 7~ = 5 4 1 3 2. We claim
that the number of inversions in permutation 7~ is equal to the number of
intersections of the n chords drawn between identically labeled endpoints.

Consider chord i: the number of chords j with j > i that cross chord i is
the same as entry bi in the inversion table for 7~ defined in Section 5.1.1 of
[l]. Hence the total number of intersections between chords is the same as
the sum of the hi’s, which is just the number of inversions in 7~.

In a comparison-based model of computation, counting the inversions in
a permutation of the integers 1 through n is known to require time
O(n log n) (Exercise 5.3.1-29 in [l]). The algorithm given above meets this
time bound. The lower bound for other models of computation is not
known.

1. DONALD E. KNUTH, “The Art of Computer Programming,” Vol. 3, “Sorting and Searching,”
2nd ed., Addison-Wesley, Reading, Mass., 1973.

[Also solved by V. Akman (Rensselaer Polytechnic Institute).]

