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Absetraci—-A high-resolution raster-graphics display is usually
combined with processing power and a memory organization that
facilitates basic graphics operations. For many applications, in-
cluding interactive text processing, the ability to quickly move or
copy small rectangles of pixels is cssential. This paper proposes
a novel organization of raster-graphics memory that permits all
small rectangles to be moved cfficiently. The memory organiza-
tion is based on a doubly periodic assignment of pixels to M
memory chips according to a “Fibonacci” lattice. The memory
organization guarantees that if a rectilincarly oriented rectangle
contains fewer than M /v/5 pixels, then all pixels will reside in
different memory chips, and thus can be accessed simultaneously.

We also define a continuous analogue of the problem which
can be posed as, “What is the mazimum density of a set of points
in the plane such that no two points are contained in the tnlersor
of a rectilinearly oriented rectangle of area N.” We give a lower
bound of 1/2N on the density of such a set, and show that
1/V5N can be achieved.

1. Introduction

With the development of high-resolution raster-graphics dis-
plays, the length of one memory cycle introduces a bound on
how quickly the screen can be updated, a bound that may be
unacceptable for many real-time or interactive environments. A
natural way to avoid this bound is to access more than a single
pixel (picture clement) at a time. Since the memory is typically

partitioned among M random-access memory chips, up to M

pixels can be accessed with & single memory cycle, provided that
no two pixels reside in the same memory chip.

Figure 1 illustrates a common organization of raster-graphics
memory. Each pixel on the scrcen is assigned to one of M
memory chips in row-major order. Thus in every row, the pixels
in column m, M + m, 2M + m, and sé forth are stored in the
the same memory chip m. This organization made a good deal
of scnse when raster-graphic displays were new and the interface
between the raster memory and the CRT was considered compli-
cated. When the screen is refreshed from memory, the line-by-
line horizontal scan accesses A pixels in a row and converts them

This research was supported in part by the Defcnse Advanced Research
Projects Agency under Contract ND0014-80~C-0622 and by the National
Science Foundation under Grant MCS-8006938.

0272-5428/82/0000/0092$00.75 © 1982 IEEE

92

12314, .M1234, .M123 4, . M
1234, .M123 4, .M1234. . M
1234, .M1234. .M12314., . M
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1234. .M1234. .M1234. . M

Figure 1. A common organization for raster-graphics memory
which is efficient for raster scan operations, but poor for vertical
updates.

into an analog video signal. But although the memory system
achieves maximal parallelism for the screen refresh operation, it
can be remarkably inefficient for other operations. Updating a
vertical line of pixels, for example, requires a scparate memory
access for each pixel.

For arbitrary patterns of access there is no hope of maximal
parallelism since whatever the crganization, an adversary can
choose to access all the bits in a single memory chip. The best
.we can hope for is to achieve high concurrency for a limited set
of operations, which should be large enough to include frequent
patterns of usage. And today, since hardware support for screen
refresh is relatively well-understood, attention focuses on those
operations which make the graphics system easier to program.

Most raster-graphics applications rely on the copying or mov-
ing of a rectangle of pixels as a basic operalion, which is demon-
strated by the fact that this operation is implemented in the
microcode of most graphics processors. The ability to move
small rectangles quickly is especially important in text-oriented
applications.

Recently, a display was developed at Carnegie-Mellon Univer-
sity [2,5] that is designed to moVe small squares quickly. Figure
2 shows how pixels are assigned to memory chips in the case of
M = 16 memory chips. The screen is tiled with \/'H-by—\/]\-/f
squares, each of which contains a pixel assigned to a different
memory. The attraction of this scheme is that any v/ M—by-\/ﬂ

rectilinearly oriented square, whether aligned on tile boundaries
or not, contains pixels assigned to different memories. Thus any
square of area M can be accessed in one memory cycle.

Unfortunately, the efficicncy of the raster-scan operation is

reduced in this scheme compared with the one of Figure 1. The
line-by-line scan will only be able to access VM pixels in parallel
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Figure 2. The 4-by-4 organization for raster-graphics memory.

Buery 4-by-4 square contains pizels from distinct memory chips.

because every v/M - 1-by-one horizontal rectangle contains two
pixels in the same memory chip. A possible solution to this
problem is to stagger the tiles so that the second column of tiles
is shifted vertically by one raster, the third by two rasters, and so
on. This ad hoc solution allows simultaneous access of all pixels
in any M-by-one rectangle as well as simultaneous access of all
pixels in any v/ M-by-v/M square, but it suffers from asymmetry
of horizontal and verti¢al dimensions and introduces a variety of
other complications.

This paper asks the question, “How many memory chips M
are required to guarantee that all pizels can be accesses stmul-
taneously in an arbitrary rectillinearly oriented rectangle of N
pizels?” A naive organization requires M = N2 memory chips,
but we can do much better.

This paper uses techniques from number theory to produce
novel mermory organization of M = V5N chips that allows all
pixels in any rectangle of area N to be simultaneously accessed.
The scheme is regular-—a doubly periodic function in the plane—
and the constant /5 is approached from below, so that for some
values of N, the constant is less than two. Furthermore, for
the frequently-used operation of accessing a horizontal line, our
scheme allows simultaneous access of all M memory chips.

The remainder of this extended abstract is organized as fol-
lows. Section 2 introduces a continuous model of the problem
that prompted our (discrete) solution. Section 3 presents the
doubly periodic organization, and Section 4 provides the num-
ber theoretic analysis necessary to prove that the scheme works,
Section 5 contains some concluding remarks.

2. A continuous analogue

In this section we introduce a continuous analogue to the
discrete problem. What is the mazimum density of a set of points
in the plane such that no lwo points are contained in the interior
of a rectilinearly oriented rectangle of area N 7 The set of points
in this problem corresponds in the discrete problem to the set of

pixels which reside in the same memory chip, and the density of
points corresponds to the reciprocal of the nummber of memory

chips. The principal difference in formulation is that in the
continuous model, we no longer require that the “pixels” fall on
grid points.

We shall prove that the density of a set of N-compatible
points (no two points are contained in the interior of a rectangle
of area N) is bounded from above by 1/2N, and we give a set
of N-compatible points that achiceves a density of l/\/.";N. "This
solution motivates the solution to the discrete problem that is
given in Section 3.
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Let S be a sct of points in R2, We formally define S as being
an N-compatible set of points if for any pair of points (z1, 1)
and (z3,y,) in the set, we have

[(z1 — z2)(ys —y2)] > N.

Around every point P drawn from a set S of N-compatible
points, there is an infinite-area forbidden region bounded by two
hyperbolae inside which no other point of § may lie. Figure 3
shows the forbidden region for a point at the origin. The points
in that forbidden region satisfy |zy| < N.

Figure 3. The forbidden region around the origin. Any set of
N -compatible points that contains the origin cannot contain any
other point in within the bounds of the hyperbolae.

We shall find it convenient to adopt some standard terminol-
ogy from geometry of numbers. A lattice is a set of points that
can be expressed as an integral, linear combination of linearly
independent (over R) basis vectors. If there are only two basis
vectors, we define the parallelogram with the two basis vectors
as sides the basic region of the latlice. The fundamental lattice
is the lattice gencrated by the basis vectors (0,1) and (1,0), and
we call its points grid points. Simple properties of lattices can be
found in [3].

In the discrete model, the problem is to minimize the number
M of memory chips required to allow simultancous access of



any rectangle of N pixels. For an arbitrary scheme of assigning
pixels to memory chips, in a square region of A pixels, there will
be some memory chip with the largest number & of pixels in the
area. Therefore, the number of memory chips M is at least A/k,
or 1/d where d is the maximum density of pixels from a single
memory chip in the square region.

The analogue to minimizing the number of memory chips is,
in the continuous model, to maximize the density of points in a
set of N-compatible points. Formally, we define the density of
an arbitrary set of points S as

{p€S|peB(r)}|
Area(8(r)) ’

d(S) = limsup
7~+00

where B(r) is a ball centered at the origin with radius r. The next
theorem shows that any set of N-compatible points has bounded
density, and in fact, that the density is bounded from above by
1/2N.

Theorem 1. Any set S of N-compatible points has density

d(S) which is no more than L /2N.
Proof. Consider the lattice that: is spanned by the basis vectors
(VN,VN) and (—VN,V/N) and shown in Figure 4. We first
show that in the interior of any square region of the lattice, there
cannot be two points of S.

N

U
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Figure 4. Any two points in the tilted square region are contained
n a rectangle of area at most N.

Without loss of generality, we look at the basic region defined
by the basis vectors (VN, VN) and (—v/N, V'N). It is enough to
show that any two points on the boundary of this square region
are contained in a rectilinearly oriented rectangle of area N.
Since any two points on adjacent edges of the square region are
contained in a rectangle whose corners are on opposite edges,
we may assume the lwo points are on opposite edges. Suppose
the two points are on the edges with positive slope, and are at
coordinates (z1,z;) and (z9,z3 +- 2\/1—\7). The area is

(1‘1 — Iz)(l‘g + 2\/1—V---..’L'1)
< (21 — 22)(2VN — (24 — 72))
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S ((Tl —_ 12) + Z{N — (I] el 12))2

=N,

since the geometric mean is less than the arithmetic mean.

Because no two N-compatible points can occupy the same
square region of this lattice, and since the area of a square region
is 2N, the deasity d(S) of a set of N-compatible points cannot
be more than 1/2N, which was to be proved.§

Whether density as high as 1/2N can be achieved is an open
question for arbitrary N-compatible sets. We can come close,
however, as the following theorem shows.

Theorem 2. The lattice that is generated by the basis vec-
tors (\/N/3,Y/N@) and (—y/N§,\/N/§) form an N-
compatible set whose density is 1/\/’5']\], where ¢ = §(1 +
V/5) is the golden ratio.
Proof. For simplicity, denote (/N /¢, vVN@) by (a, b). The
lattice points are N-compatible iff for all integers u and v, the
lattice point v(a, b)4-u(-—b, @) = (av— bu, bu+ au) is outside the
forbidden region around the origin (since the lattice is invariant
under translations by its basis vectors). Equivalently, for all pairs
(u,v) 5 (0,0), we must have

|(av — bu)(bv + au)] > N .
We can rewrite the product as

(av — bu)(bv + au) == abv® 4 (a® — b*)uv — abu®
= N(v? — (¢ —1/¢)uv — u?)
= N(v? —uv —u?),

Since the Diophantine equation v? —uv—u? == 0 has no solution
except u = v = 0, il follows that

[{av — bu)(bv 4 au)| = N|v?* —uv —u?| > N,
{

and thus the lattice points are indeed N-compatible.

The area of the basic region of the lattice is a? 4+ b2 =
N(¢ + 1/¢), which is V5N, Since there is a one-to-one cor-
respondence between lattice points and latlice squares, the den-
sity is 1/VEN.R

Although we have not yet becn able to close the gap between
the bound of Theorem 1 and that of Theorem 2, we can show
that a density of 1/y/5N is the best possible for any lattice of
N-compatible points, no matter how many basis vectors define
it.

Theorem 3. Any lattice of N-compatible points has density
at most 1/v/5N.

Proof. We shall prove the bound on density after we prove that
a lattice of N-compatible points can always be generated by two
basis vectors. Any three basis vectors in R? are linearly depen-
dent over the reals. We show that if the vectors are independent
over Z then the set of points they span will have the origin as
an accumulation point, and if they are linearly dependent over
Z then one vector can essentially be omitted.



Suppose three basis vectors are lincarly independent over the
integers. By a slight variation on Kronecker’s Theorem [3, page
382] it can be shown that there is a point in the lattice generated
by the three vectors which is arbitrarily close to the origin.
But /N is the minimum distance possible between a pair of
points in an N-compatible set, so the set of points cannot be
N-compatible. Thus we can assume the three basis vectors are

linearly dependent over the integers.
If we have three vectors in R? that are linearly dependent

over Z, then we can find a integer linear transformation with
determinant ene [1, Lemma 279, p. 311] that maps the three
vectors into another three, one of which is the zero vector. The
two nonzero vectors span exactly the same set of points because
the inverse of an integer linear transformation with determinant
one has integer components. By induction, an arbitrary set of
basis vectors can be reduced to a set of two.

We may now suppose that we have a set S of lattice points
generated by two basis vectors {a,b) and (c,d). The density d(S)
is just 1/A, where A = |ad — bc| is the area of the basic region of
the lattice. By a theorem from Minkowski’s geometry of numbers
[3, Theorem 454, p. 401], there ecxist, two integers z and y,
not both zero, such that the rectilinearly oriented rectangle with
corners at the origin and the lattice point z(a, b) 4 y(c, d) has area
not exceeding A/+v/5. Since the lattice points are N-compatible,
the area of this rectangle is at least N, from which we conclude
that N < A/V5, or d(S) = 1/A < 1/VEN.11

The lattice of Theorem 2 achieves this bound, but it is not
unique. In fact, Tom Leighton has observed that there are an
infinite number of lattices that achieve the bound. For any t the
lattice generated by the basis vectors

\/N(t, %) and s/iv“(g—t\-/jt M)

2 2t

also achieves the bound. The lattice of Theorem 2 is a member
of this family of lattices (choose t = \/1/4), although the basis
vectors given in the theorem are different. The advantage of the
basis vectors defined in the theorem is that they define a basic
region which is square, and as we shall see in Section 4, this
simplifies somewhat the analysis of the discrete solution.

3. A novel organization of raster-graphiecs memory

This section describes an organization of raster-graphics mem-
ory which is based on an approximation of the lattice scheme
from Theorem 2. This organization has the property that the
pixels in any rectilincarly oriented rectangle that contains no
more than N pixels can be accessed simultaneously. The num-
ber M of memory chips required is at most V5N, but for many
practical values it is less than 2NV,

The discrete, real-world problem differs from the continuous
problem in that the locations of pixels must be grid points, and
this constraint introduces subtle complications. For example,
in the continuous problem, a rectangle of area N could be ar-
bitrarily narrow, but in the discrete problein, one-by-N is as far
as we can go.

Theorem 2 suggests that, we use two basis vectors to generate
the locations of all pixels within the same chip of the raster-
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graphics memory. We assign pixels to chips using the following
general scheme. Let a and b be two relatively prime, nonnegative
integers. Use the two orthogonal vectors (a,b) and (—b,a) to
generate a lattice in the plane, consisting of all points of the
form

v(a! b) +’ u("‘b’ a),

where u and v are integers. Except for the corners, no other
grid point lies on the boundary of the basic region. Extend the
interior of the basic region to include exactly one of the four
corner points. Since the region can be used to tile the entire
plane, the number of grid points in the basic region is therefore
exactly its area, that is, a2 4- b2. The grid points in the basic
region arc mapped into M = a? 4 b? distinct memory chips.
Since each grid point in the plane has a unique “parent” in the
basic region (namely the one in the basic region that differs from
it by a unique lattice vector), we assign each grid point to the
same chip as its parent.

In the next scction, we will show that the choice of succes-
sive Fibonacci numbers a = F, and b = F, , which yields
the number of memories M == Fj, ., guarantees that every
rectilinearly oriented rectangle containing no more than M/ V5
pixels can be accessed simultaneously. Figure 5 illustrates the
organization for thirteen memory chips (a == 2, b == 3). Here, the
situation is even better than we promised—any rectangle with at
most eleven pixels contains no two pixels from the same memory
chip. In particular, horizontal and vertical lines of no more than
thirteen pixels have no conflicts. This is not mere luck.

Lemma 4: A doubly periodic memory organization based on
a lattice generated by basis vectors (a,b) and (—b, a), wherea
and b are positive and relatively prime, has the property that
any one-by-M or M-by-one rectilinearly oriented rectangle
contains no two pizels from the same chip.

Proof. Since the organization is doubly periodic, we can consider
a horizontal or vertical line that starts at the origin and deter-
mine the next lattice point that falls on the line. If the line is
vertical, all pixels on it have z-coordinate zero. The general form
of lattice points is v(a, b) -+ u(—b, a) = (av — bu, bv + au), and
thus all lattice points on the line will have av—bu = 0. It follows
that a divides bu, but since a and b are relatively prime, we can
conclude that a divides u, and similarly, b divides v. Further-
more, u and v necessarily have the same sign, which means that
the magnitude |bv 4 au] of the v-coordinate is [bv| -+ jau|. Since
a divides u, we have |u] > a, and by the same reasoning, |v| > b.
Therefore, |bv| + |au| > b? 4- a? = M, and the magnitude of
any lattice point on the vertical line is at least M. Thus any
one-by-M rectangle cannot contain two pixels from the same
chip. Horizontal lines are treated the same way.§

The following table describes the actual values we get for
M, N correspondingly for values of M up to 1000.

M 5 13 34 89 233 610
N 5 11 23 53 125 307
Notice that for all these values, Lhe size NV of rectangles that
are guaranteed to have no conflicts is, in fact, larger than M /2.
Thus for practical values of M, the overhead in allowing fast
access to arbitrarily shaped rectangles of pixels is small.
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Figure 5. The lattice-based organization for M = 13 memory
chips. Every rectangle that contains no more than N = 11 pizels
has all pizels from distinct memory chips.

4. Mathematical analysis

In this section, we analyze the properties of the lattice or-
ganization described in Section 3 and show that in the organiza-
tion, the number of memory chips M is approximately v/5 times
the size N of the maximum size rectangle that is guaranteed
to have no conflicts. Our approach is to answer the question,
“What ts the minimal size MIN of any rectilinearly oriented rec-
tangle containing two distinct lattice points?” This value MIN
determines N because no rectilinearly oriented rectangle of size
less than MIN contains two lattice points, so all its pixels are
necessarily in different memory chips, and thus N = MIN —1.

We now focus our attention on finding the minimum size
MIN over all rectangles containing two lattice points. The
basis vectors for the raster-graphics memory organization are
(Fy, Fy4+1) and (—F, 14, F;), where F; is the rth Fibonacei num-
ber. We shall find it convenient, when we do not rely on the
Fibonacci properties basis-vector components, to denote the basis
vectors by (a, b} and (—b,a). Since the lattice is invariant under
translations by its basis vectors, we lose no generality if, instead
of discussing all pairs of lattice points, we restrict ourselves to
those pairs onc of whose elements is the origin. FFurthermore,
since we are interested in the minimal size, it suffices to consider
rectangles that have the two lattice points at opposite corners.

The second lattice point has the form v(a, b) 4 u(—b, a), and
the size of the rectangle, denoted by S(u, v), is its area plus half
its perineter plus one, i.e.,

S(u, v) = (Jau + bv| -+ 1)(|—bu -} av] 1) .
Notice that the size is exactly the number of pixcls contained in
the closed rectangle. The value MIN is the minimum of S(u, v)

over all integers u and » not both 0. In order to find MIN, we
first translate S(v, v) into a simpler form.

Lemma 5. Let
S(u,v) == (|Fru + Frgqv] + 1)(|—Frpru + Fool +1),

and let §(u, v) = (|Fa,u — Fyy 4 19| + 1)(Ju| + 1). Then
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MIN.?:c:f min  S(u,v)

(4,v)7#(0,0)

= min 5(u,v).
o ")

Proof. We shall show that the range of S is the same as the

range of & by using an intermediate form B. For simplicity, we

shall use the notation a = F, and b = [, introduced above.
Define the intermediate form

B(u,v) = S(ku — bv, —lu + av),

where k and [ are integers such that ak — b/ = 1. (The integers
k and | exist because the greatest common divisor of a and b is
one.) The linear transformation given by

U k —b\(u
)~ 6
is a bijection gince the determinant of the matrix is one. Thus as
(u, v) ranges over Z2, the ordered pair (ku — bv, —Iu + av) also
takes on all values in Z2, and hence the range of S is the same
as the range of B. Since the linear transformation is a bijection
which maps (0, 0) to (0, 0), we have

S(u,v) = B(u,v).

min min
(,v)7(0,0) (u,v)74(0,0)

If we expand B(u, v), we get
B(u,v) = S(ku — bv, —lu +- av)
= (la(ku — bv) + b(—lu + av)] + 1)
“(I=b(ku — bv) + a(~lu + av)| +- 1)
= (ju| + 1)(|(® 4 b*)v — (bk + al)u| + 1),
which has the form (ju| 4 1)(|Mv — Cu| + 1). (Note that M =
a? 4 b? is the number of memory chips.)

In order to obtain 3(u,v), we first determine the explicit
coefficients M and C in B(u, v) when the components of the basis
vectors are the Fibonacci numbers @ = F, and b = Frqq. We
use the following two Fibbonaci identities:

Fipj =FFi+F_F,
FipFiy —F2 = (—1).
From the first identity, we get that the number of memories M
* M = a® +p?
=Fi+Fl,,
= Farpy.
To find C, observe that the k& and [ such that ak — bl == 1 are
k = (—1)*1F, and | = (—1)"+'F,_,. Hence, by using the
second identity, we have that
C = bk + al
= ("1)'+‘(Fr+va + Fro—l)
= (“1)'+lFr+v
— (-—1)"HF3.» .
Thus for @ = F, and b = F,;;, we have



B(u,v) = (ful + )(l(—1) Farte 4 Fargrv| +1).
The forra S was defined in the statement of the lemma as
S(u, v) == (Jul + )(|Faru — Far 10| +1).

If 7 is odd, then (—1)" = —1, and therefore B(u, v) = S(u, v).
If r is even, on the other band, then B(u, —v) = S(u,v). Since
we have already shown that

min  S(u,v) = min B(u,v

(4,9)7#(0,0) (t0) (u,9)7(0,0) (),

we get X
S(u,v) = min S(u,v),

min
(u,v)5(0,0) (%,)7(0,0)

which was to be proved.§

The next lemma gives the exact solution for MIN, which by-

Lemma 5 is the minimum value of 5(u, v).
Lemma 6. Let 5(u,v) = (|u| + 1)(|Foyu — Fy, 10| 4 1).
Then min(y,v)(0,0) S(u,v) = (Fr + 1)1 + 1)

Proof. We first show that

MIN = min S(u,v)
(u,v)5£(0,0)
= min ul -1 F,u--F L .
(u,u)-;vé(o,n)(I [-+1)(1F2 arp19] + 1)
= 057{22'4.1(1"‘ + 1)(F2'.-.,.+, + 1)’

and then show that the latter minimum is (¥, + 1)(Fy 41 + 1).

It suffices to consider nonnegative values of u since S’(u, v) =
S(—u, —v). The value MIN cannot exceed S‘(O, 1) == Fap g +
1, but because S(u,v) > u + 1 (the right factor is at least one),
we need only seek a better value for MIN in the interval 0 <
u < F2r+l~

The key idea is to divide the half-open interval [1, F3, 41) into
subintervals [Fy,, Fn 1), for n = 2,3,...,2r. (Notice that Fy =
Fy =1, and thus n starts from 2.) The integer u lies inside one
of these intervals. Consider the fraction Fy, /F,, 1. The conver-
gents of its continued fraction expansion are Fy/Fy, Fo[Fs, ...,
Iy, [Fyr.41. By the continued-fraction approximation theorern
(3, Theorem 181, p. 151), if Fy, < u < Fypyy, then for every
integer v we have

P v P Faa
Fg,,*.l u| F2'+1 Fa

Multiplying through on both sides yields

ulFpy — vFayqy

FyrFpyp — Fp_ 11, 1y ‘
-F2r+11'1n )

uF2r 41

Using the Fibonacci identity |FiFy — Fy 1 Fy—1| = Fy—j41, We
get
u
[uFa3y — vy 44| 2 ;‘—lean — Fp_1For |
n
2 IFZan
= Far—nt1-

— Fp_1Fap 41|

To summarize, if u falls in the interval [Fy,, Fay), then
Iqu, - ‘UF;,.,{..]I 2 Fg,_..n.'.l, Therefore,

(lul "!" 1)(|F27u - 127-}-!'”' + 1) 2 (Fn 4‘ 1)(-F2r—-n+l + 1) )

and equality is achieved when v = F,, and v = F,,__{. As a
result, we have

min  (Ju| -+ )(|Fayu — Fyyyyv| + 1
(u,u);é(o,ﬂ)(l | -+ 1)(1F2 2r-419] + 1)

= min

0<n<2r+1(Fn + 1)(F2r—n+l + l) ’

which completes the first part of the proof.
The second part of the proof is to show that indeed

OSnn_é.igr-l-l(Fn -+ 1)(F2r—n+l + 1) = (Fr + l)(P‘r-I‘l + 1) .

If we define

de,
E(nr T) =f(Fn + 1)(F2r—n+1 + 1) ]
then what we want to show is

os"n—%x;\'.‘_l E(n,r) = E(r,r).

Since E(n,r) is invariant when n is replaced by 2r + 1 —n, it
suflices to consider values of n in the interval [0, 7].

We now show that E(n,r) is no larger than E(n + 1,7) for
n = 1,...,7r — 1, after which we shall complete the proof by
demonstrating that £(0,7) > E(r,r). We make use of the ex-
plicit formula
¢ —9¢

V5
for a Fibonacci number in terms of the golden ratio ¢ and its
conjugate ¢ = 1(1 — V/5) in order to obtain an alternative
expression for the high-order term of E(n,r):

n__ 3" 2rdl—n __ ~2r41-—-n
FoFars1on = (¢ é )(¢ $ )

r

V5 V5
_ $2r+1 4 &2'“ — garH1-ng” &2'4'1—'"‘»11
5
(_l)n+l 2&2'-—2»4»1
= Cy + —- For—on ],
+ NG 2r—2n+1+ 7

where C, is a constant depending on r alone. Taking advantage
of the fact that |@| is less than 1 and using the basic recurrence
for Fibonacci numbers, we have

E(n,r)— E(n+1,r)

(=t
=Farq1—n+Fn+ “'\757—— Far_2nq1 +

—1)n+2 2»21—-27;-—1
- F2r—-n - Fn+l - ( ) "—(F2r——2n—l + '¢—T—‘—

V5 V5
Fo,
2 F2r—n—l "“Fn-—l — Aroin 1
v
Z Fﬂr-—n—-l - Fn—-l - FZr-—zn
20,
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and hence E(n,r) is at least as large as E(r,r) for n = 1,...,
r—1.

As for the remaining inequality E(0,7) > E(r,r), it is merely
FiFp1+Frypo+1 < Forp 1+ 1, and its truth may be verified
by using the identity F? + I"f_H = For41.1

Lemma 7. The minimum size of a rectilinearly oriented
rectangle that contains two points of the lattice generated by
the basis veclors (F,, I, 41) and (—Fy1, Fy) is

MIN = (F, 4+ 1)(Fr 41 +1).

Proof. The proof follows directly from Lemmas 5 and 6.8

Theorem 8. Let M = Fy, .y, and let N = F,F, 11+ Frqa.
Then there is an organization for raster-graphics memcry
with M memory chips such that every rectilinearly oriented
rectangle of size at most N contains pizels from dislinct mem-
ory chips. Furthermore, N is greater than M [v/5.
Proof. From Lemma 7, we have that MIN = (F, 4+ 1)(Fy 41 +
1), and since N = MIN — 1, we get N = F,F, 4y + F,4,.
All that is lefl to be proved is that N > M/v/5. Using the the
explicit formula for Fibonacci numbers, it can be verified that

the sequence
{FrFr+l "*‘Fr-}—2}°°
F2r-{-l

r=1

converges to 1/ V5. We now show that this sequence is monotoni-
cally decreasing, so each of its elements is at least as large as the
1//5 limit, which will complete the proof.

It is enough to show that the difference of consecutive terms in
the sequence is positive, or equivalently, by multiplying through
that

For g 3{lvFy g1+ Fry2) — Fop gy (Fr 1 Frya + Frys) > 0.

Using the explicit formula for Fibonacei numbers, we obtain the
identity

Fap43Fy — Fap 1 Fy g = (—1)H1F, 4y,
and the identity
Far3F 9 — Fory1Frq3 = Far 1 Fy + Fo Fr o

may be derived by induction.
Multiplying both sides of the first identity by F, 4, and add-
ing it to the second yields

Farp3(FrFrqn + Frq2) = Farp1(Frp1Frga + Fras)
= Foyy1Fy 4+ For Fy 2 + ('—1)'+1F?+1 .

The right hand side is positive because Fy_, is less than both
Fy, and Fr 2.1
The next theorem is the discrete analogue of Theorem 1.
Theorem 9. For any organization of raster-graphics memory
with M memory chips such that every rectilinearly oriented

rectangle of size N contains no two pizrels in the same memory
chip, the relation M > 2N — 4V N + 2 holds.
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Proof. The proof parallels that of Theorem 1. The principal
difference is that the size of a rectangle includes not only its
area, but also half its perimeter plus 1. We tile the plane with
tilted squares generated by the two vectors (VN — 1,v/N — 1)
and (—VN +1,v'N —1). (The lattice points do not necessarily
fall on grid points.) Consider two points within a tile. By the
same argument as in the proof of Theorem 1, the area of the
rectilinearly oriented rectangle whose opposite corners are the
two points is at most (\/N — 1)%. Half the perimeter is at most
the diagonal of the square tile, that is, at most 2v/N — 2. Hence
the size of the rectangle is at most (VN —1)2 4 (2V/N —2)+1,
which equals N, and the two points must be from different chips.

Since the two points were chosen arbitrarily from within a
square tile, all grid points within the tile must be from distinct
chips. Although the number of grid points may vary from tile to
tile, there is a tile that contains at least as many grid points as
its area 2(fﬁ— 1), which cornpletes the proof.Q

5. Addressing scheme

The organization for raster-graphics memory proposed in Sec-
tion 3 guarantees that small rectangles contain pixels from dis-
tinet memory chips. In order for the entire system performance
to benefit from this organization, however, the address calcula-
tions must be easily implemented. We do not try to solve all
the engineering problems associated with making this memory
organization scherne work, but in this section we give indications
of how the address calculations can be efficiently computed.

The addressing mechanism must be able to take the z- and y-
coordinates of a pixel and generate the chip number and address
within the chip. Suppose the lattice organization is determined
by two basis vectors (a,b) and (—b,a). Two pixels at locations
(70,%0) and (z,y) which differ by an integral lincar combination
of the the basis vectors lie in the same memory chip. That
is, they have the same memory number if there exist (unique)
integers U and V such that

(2,9) — (<0, ¥0) = U(a, b) + V(—b,a).

One natural, but inefficient, addressing mechanism is based
on the fact that cach of the M = a?-+b? memory chips contains
exactly one representative in the basic region with corners (0,0),
(a,), (-—b,a) and (¢ — b,a + b). The chip number of a pixel
(z,y) can be determined by computing which pixel (0, yo) in the
basic region is from the same chip, and then using the ordered
pair (o, yy) as the chip number. By letting

= |0z tby |y —be
v= |55 V=555

the chip number (2o, yo) of a pixel (z, y) is then (zg, yo) = (z, y)—
U(a,b) — V(—b,a). Furthermore, the ordered pair (U, V') forms
an appropriate address for the pixel (z,y) within the chip.

The addressing mechanisin can be simplified substantially if
we notice that any arbitrary set of M pixels, no two of which
are from the same chip, can be used as a set of representatives.
In particular, any pixel differs by an integral linear combination
of the basis vectors from a unique pixel in the horizontal line
cxtending from (0, 0) to (0, M — 1). This scheme corresponds to



tiling the plane with one-by-M bricks instead of tilted squares.
(Holladay [4] uses a similar tiling scheme for halftone generation.)

To derive an appropriate addressing scheme, we choose an
alternative pair of basis vectors that span the same lattice. Since
a and b are relatively prime, there exist integers &k and [ such that
ak—bl = 1. The two vectors (bk+-al,1) and (a?-b%,0) generate
the same lattice as the original basis vectors (a, b), (—b, a). Thus
any pixel (z,y) can be mapped to a pixel (zo,yo) Where yp == 0
and z¢ € [0, M), which means zq alone can serve as the chip
number for the pixel. If we denote C == bk 4 al, and recalling
that M = a? + b2, the chip number for an arbitrary pixel (z,y)
is £ — Cy (mod M). The address of the pixel the ordered pair
(lz/M],y), which is also easy to compute.

An advantage of any doubly periodic organization that should
be mentioned concerns the communication among the memory
chips. Typically, each chip has a single connection to an M-
pixel buflfer. To move a rectangle of pixels, three steps are
required. The rectangle of pixels is read into the buffer, the pixels
in the buffer are permuted, and the pixels are written back to
the memory chips at different iocations. The advantage of the
periodic organization is that the set of permutations encompasses
only circular shifts of the buffer. Thus a standard barrel shifter
can be used for all permutations.

One issue that we have not faced is the problem of generating
addresses for each of the M chips given some standard specifica-
tion of the rectangle to be accessed. But the strong regularity of
any lattice-based organization should make the address calcula-
tions possible at reasonable cost.

6. Comments

There is still a discrepancy between the lower bound of 1/2N
and upper bound of 1/v/5N on the density of an N-compatible
set. It seems more likely that the lower bound can be improved
because in the proof of the bound, V2N-by-v/2N regions that
tile the plane account only for interactions between pairs of
points.

Another open question is how to extend our results to dimen-
sions higher than two, and whether the linear relation between
M and N (or N and the density in the continuous case) still
remains true.

There is a practical memory organization which is based on
the lattice generated by the basis vectors (1, s) and (—s, 1). This
scheme allows three types of rectangles—-s-by-s, one-by-s? 4- 1,
and s2 + 1-by-one—to be accebsed efficiently. The number of
memories required by this scheme is M = s 4-1.

The Fibonacci lattice organization can also be used to speed
up the access rate in machines with interleaved memories. Matrix
and image processing applications could find the organization
particularly useful.

Acknowledgements

A preliminary analysis of the continuous model was performed
in conjunction with Satish Gupta and Dan Hoey of Carnegie-
Mellon University. Tom Leighton of MIT suggested portions of
the argument used in the proof of Theorem 3. Ron Pinter of
MIT contributed to several programs that originally convinced

99

us that Fibonacci organization really works. We would also like
to thank Shai Haran of MIT for helpful discussions and Lyle
Ramshaw of Xerox PARC for acquainting us with [4].

References

[1] Gauss, C. F., Disquisitiones Arithmeticae, translated by A.
A. Clarke, Yale University Press, New Haven, Connecticut,
1966.

Gupta, S., Architectures and Algorithms for Parallel Updates
of Raster Scan Displays, Ph.D. Thesis, Carnegie-Mellon Uni-
versity, December 1981.

[3] Hardy, G. H., and E. M. Wright, An Introduction to the
Theory of Numbers, Oxford University Press, London, 1968.

[4] Holladay, T. M., “An optimum algorithm for halftone gen-
eration for displays and hard copies,” Proceedings of the
Society for Information Display, Vol. 21, Num. 2, 1980, pp.
185-192.

Sproull, R. F., I. E. Sutherland, A. Thompson, S. Gupta,
and C. Minter, “The 8-by-8 display,” Tech. Report CMU-
CS-82-105, Carnegie-Mellon University, December 1981.

(2]

(5]



