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Abstract. A high-resolution raster-graphics display is usually combined with processing power and a 
memory organization that facilitates basic graphics operations. For many applications, including 
interactive text processing, the ability to quickly move or copy small rectangles of pixels is essential. 
This paper proposes a novel organization of raster-graphics memory that permits all small rectangles to 
be moved elBciently. The memory organization is based on a doubly periodic assignment of pixels to 
M memory chips according to a “Fibonacci” lattice. The memory organization guarantees that, if a 
rectilinearly oriented rectangle contains fewer than M/A pixels, then all pixels will reside in different 
memory chips and thus can be accessed simultaneously. Moreover, any M consecutive pixels, arranged 
either horizontally or vertically, can be accessed simultaneously. 

We also define a continuous analog of the problem, which can be posed as: “What is the maximum 
density of a set of points in the plane such that no two points are contained in the interior of a 
rectilinearly oriented rectangle of unit area 7” We show the existence of such a set with density I/&, 
and prove this is optimal by giving a matching upper bound. 

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles-interleaved memories; 
1.3. I [Computer Graphics]: Hardware Architecture-raster display devices 

General Terms: Design, Performance, Theory 

Additional Key Words and Phrases: BITBLT, Fibonacci lattices, golden ratio, interleaving, memory 
organization, raster graphics, rectangles 

1. Introduction 

The length of one memory cycle is a bound on how quickly a single pixel (picture 
element) of a raster-graphics display can be updated. If each pixel in a region is 
updated individually, the time to update the entire region is unacceptably large for 
many real-time or interactive environments. A natural way to avoid this problem 
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is to access more than a single pixel at a time. Since the memory is typically 
partitioned among A4 random-access memory chips, as many as A4 pixels can 
be accessed simultaneously, provided that no two pixels reside in the same 
memory chip. 

Figure 1 illustrates a common organization of raster-graphics memory. Each 
pixel on the screen is assigned to one of M memory chips in row-major order. 
Thus, in every row, the pixels in column m, M + m, 2M + m, and so forth are 
stored in the same memory chip m. This organization made a good deal of sense 
when raster-graphics displays were new and the interface between the raster memory 
and the cathode-ray tube (CRT) was considered complicated. When the screen is 
refreshed from memory, the line-by-line horizontal scan accesses M pixels in a row 
and converts them into an analog video signal. But although the memory system 
achieves maximal parallelism for the screen refresh operation, it can be remarkably 
inefficient for other operations. Updating a vertical line of pixels, for example, 
requires a separate memory access for each pixel. 

For arbitrary patterns of access there is no hope of maximal parallelism, since, 
whatever the organization, an adversary can choose to access all the bits in a single 
memory chip. The best we can hope for is to achieve high concurrency for a limited 
set of frequently used operations. And today, since hardware support for screen 
refresh is relatively well understood, attention focuses on those operations that 
make the graphics system easier to program. 

Many raster-graphics applications rely on the copying or moving of a rectangle 
of pixels as a basic operation, which is demonstrated by the fact that this operation 
is implemented in the microcode of most graphics processors. The ability to move 
small rectangles quickly is especially important in text-oriented applications. 

Recently, displays have been developed [3, 5, 91 that are designed to move small 
squares quickly. Figure 2 shows how pixels are assigned to memory chips in the 
case of A4 = 16 memory chips. The screen is tiled with &-by-&? squares, each 
of which contains a pixel assi ned to a different memory. The attraction of this 
scheme is that any &-by- A4 rectilinearly oriented square, whether aligned on $ 
tile boundaries or not, contains pixels assigned to different memories. Thus any 
square of area M can be accessed in one memory cycle. 

Unfortunately, the efficiency of the raster-scan operation is reduced in this 
scheme corn ared with the one of Figure 1. The line-by-line scan will only be able 
to access P M pixels in parallel because every J;i? + l-by-one horizontal rectangle 
contains two pixels in the same memory chip. A possible solution to this problem 
is to stagger the tiles so that the second column of tiles is shifted vertically by one 
raster, the third by two rasters, and so on. This ad hoc solution allows simultaneous 
access of all pixels in an M-by-one rectangle as well as simultaneous access of all 
pixels in any a-by- M square, but it suffers from asymmetry of horizontal and / 
vertical dimensions and introduces a variety of other complications. 

This paper asks the question, “How many memory chips M are required to 
guarantee that all pixels can be accessed simultaneously in an arbitrary rectilinearly 
oriented rectangle of N pixels ?” A nai’ve organization requires M = IV* memory 
chips, but we can do much better. 

This paper uses techniques from number theory to produce a novel memory 
organization of A4 = AN chips that allows all pixels in any rectangle of area N to 
be simultaneously accessed. The scheme is regular-a doubly periodic function in 
the plane-and the constant fi is approached from below, so that for small values 
of N, the constant is less than 2. Furthermore, for the frequently used operation of 
accessing a horizontal or vertical line, our scheme allows simultaneous access of 
all M memory chips. 
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FIG. 1. A common organization for raster-graphics memory, 
which is efficient for raster scan, but inefficient for vertical updates. 
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FIG. 2. The 4-by-4 organization for raster-graphics memory. 
Every 4-by-4 square contains pixels from distinct memory chips. 

The remainder of this paper is organized as follows. Section 2 discusses a 
continuous model of the problem that prompted our (discrete) solution. Section 3 
presents the doubly periodic “Fibonacci” organization of graphics memory, and 
Section 4 provides the number theoretic analysis necessary to prove that the scheme 
works. The optimality of the Fibonacci organization is proved in Section 5, and 
Section 6 discusses the addressing mechanisms needed to make the scheme work 
in practice. Section 7 contains some concluding remarks. 

2. A Continuous Analog 
In this section we introduce a continuous analog to the discrete problem. We define 
a set of compatible points as a set of points in the plane such that no two points in 
the set are contained in the interior of a rectilinearly oriented rectangle of unit 
area. The question we ask in this section is: “What is the maximum density of a 
set of compatible points?” We construct a set of compatible points whose density 
is l/h, and we prove that this density is maximum. 

The correspondence between this problem and the discrete problem introduced 
in the previous section is as follows. First, the continuous problem deals with 
rectangles of unit area. A closer correspondence to the discrete problem uses 
rectangles of area N. The set of compatible points then corresponds, in the discrete 
problem, to the set of pixels that reside in the same memory chip, and the density 
of points corresponds to the reciprocal of the number M of memory chips. The 
principal difference in formulation is that, in the continuous model, we no longer 
require that the “pixels” fall on grid points. 

The statement in the continuous problem that the rectangles have unit area 
instead of area N, however, results in no loss of generality. Any set of points such 
that no two are contained in a rectangle of area N can be mapped to a set of 
compatible points by shrinking the coordinates of each point by a factor of a. 
Observe, however, that this linear transformation does not work for the discrete 
case in which all points must have integer coordinates. 
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FIG. 3. The forbidden region around a point at the origin. If the origin is in a 
compatible set, then all the other points in the compatible set must fall outside 
the region defined by the hyperbolas. 

We find it convenient to adopt some standard terminology from geometry of 
numbers. A lattice is a set of points that can be expressed as an integral, linear 
combination of linearly independent (over R) basis vectors. If there are only two 
basis vectors, we define the parallelogram with the two basis vectors as sides of the 
basic region of the lattice. The fundamental lattice is the lattice generated by the 
basis vectors (0, 1) and (1, 0), and we call its points grid points. Many properties 
of lattices can be found in [6]. 

We formally define a set S of points in R* as being a set of compatible points if 
for any pair of points (xl, yI ) and (x2, ~2) in the set, we have 

I(& - XZNYI - Y2)l 2 1. 

Around every point P drawn from a set S of compatible points, there is an infinite- 
area forbidden region bounded by two hyperbolas inside which no other point of S 
may lie. Figure 3 shows the forbidden region for a point at the origin. The points 
in that forbidden region satisfy ] xy ] < 1. 

In the discrete model, the problem is to minimize the number A4 of memory 
chips required to allow simultaneous access of any rectangle of N pixels. For an 
arbitrary scheme of assigning pixels to memory chips, in a square region of A 
pixels, there will be some memory chip with the largest number k of pixels in the 
area. Therefore, the number of memory chips M is at least A/k, or l/d where d is 
the maximum density of pixels from a single memory chip in the square region. 
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The analog to minimizing the number of memory chips is, in the continuous 
model, to maximize the density of points in a set of compatible points. Formally, 
we define the density of an arbitrary set of points S as 

d(S) = lim sup IlPIPESn%ll 
, r-m 7rr2 

where % is a disk centered at the origin with radius r. 
We construct a set S of compatible points in the plane whose density is l/A, 

and then demonstrate the optimality of the construction by proving a matching 
upper bound on the density of compatible sets. 

THEOREM 1. The lattice that is generated by the basis vectors a, 4) and 
(-4, m> f orm a compatible set whose density is l/ J- 5, where 4 = 
i( 1 + &) is the golden ratio. 

PROOF. For simplicity, denote (m, 4) by (a, b). The lattice points 
are compatible if and only if for all integers u and u, the lattice point u(a, b) + 
u(-b, a) = (au - bu, bu + au) is outside the forbidden region around the origin 
(since the lattice is invariant under translations by its basis vectors). Equivalently, 
for all pairs (u, u) # (0, 0), we must have 

[(au - bu)(bu + au)1 2 1. 

We can rewrite the product as 

(au - bu)(bu + au) = abu2 + (a2 - b2)uu - abu2 

2 1 =u - 
( ) 
c$ - ; llu - Ll2 

=u 2 - uu - u2. 

Since the Diophantine equation u2 - uu - u2 = 0 has no solution except u = u = 
0, it follows that 

I(au-bu)(bu+au)l=Iu2-uu-u21rl, 

and thus the lattice points are indeed compatible. 
The basic region of the lattice is square, and its area is a2 + b2 = C#J + I/@, which 

is A. Since there is a one-to-one correspondence between lattice points and lattice 
squares, the density is l/&. Cl 

This lattice is not the only one that achieves a density of l/d. In fact, Tom 
Leighton has observed that there are an infinite number of lattices of compatible 
points that have this density. For any t the lattice generated by the basis vectors 

(t,f) and (y&G) 

also achieves the bound. The lattice of Theorem 1 is a member of this family of 
lattices (choose t = m), although the basis vectors given in the theorem are 
different. The advantage of the basis vectors defined in the theorem is that they 
define a basic region that is square, which, as we shall see in Section 4, simplifies 
somewhat the analysis of the discrete solution. 

3. A Fibonacci Lattice Organization of Raster-Graphics Memory 

This section describes an organization of raster-graphics memory using integer 
approximations of the lattice scheme from Theorem 1. The lattices are defined in 
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terms of Fibonacci numbers, which are described by the recurrence 

Fo = 0, 
F, = 1, 
F, = F,-, + Fr-2, r z 2. 

91 

The memory organization has the property that all pixels in a rectilinearly oriented 
rectangle can be accessed simultaneously as long as the rectangle contains no more 
than N pixels. The number M of memory chips required is at most AN, but for 
many practical values it is less than 2N. 

The real-world problem differs from the continuous analog given in Section 2 in 
that the locations of pixels must have integer coordinates. This subtle constraint 
causes the problem to change in two ways. First, the actual bounds are better for 
the discrete case than for the continuous case, although asymptotically they are the 
same. Second, the proofs become more involved. 

Not surprisingly, the raster-graphics organization is similar to the scheme in 
Theorem 1, which suggests two basis vectors be used to generate the locations of 
all pixels within the same chip of the raster-graphics memory. Pixels are assigned 
to chips as follows. Let a and b be two relatively prime, nonnegative integers that 
will be specified precisely later. The two orthogonal vectors (a, b) and (-b, a) 
determine a lattice in the plane, consisting of all points of the form 

u(a, b) + M-b, a), 

where u and u are integers. Except for the comers, no other grid point lies on the 
boundary of the basic region because a and b are relatively prime. By including 
exactly one of the four corner points in the basic region, the region can be used to 
tile the entire plane. Thus the number of grid points in the basic region equals its 
area a2 + b*. Each of the grid points in the basic region is mapped into one of 
M = a2 + 6* distinct memory chips. The grid points in the plane are partitioned 
into M equivalence classes. Each equivalence class corresponds to a translation of 
the lattice. All points in the same equivalence class are assigned to the same 
memory chip. Since each equivalence class has a unique representative in the basic 
region, M memory chips are used. 

In the next section, we show that the choice of successive Fibonacci numbers 
a = F,and b = F,+,, which yields the number of memories A4 = Fzr+ ,, guarantees 
that every rectilinearly oriented rectangle containing no more than M/A pixels 
can be accessed simultaneously. Figure 4 illustrates this “Fibonacci lattice” organ- 
ization for 13 memory chips (a = 2, b = 3). Here, the situation is even better than 
we promised-any rectangle with at most 11 pixels contains no 2 pixels from the 
same memory chip. 

Furthermore, observe in the figure that I -by- 13 and 13-by- 1 rectangles have no 
conflicts, which is the best one can do with M = 13 memory chips. This circum- 
stance is not mere luck. 

LEMMA 2. Let a and b be relatively prime integers, and let A4 = a2 + b*. The 
doubly periodic memory organization with M memory chips that is based on the 
lattice generated by basis vectors (a, b) and (-b, a) has the property that any 
1 -by-A4 or M-by-l rectilinearly oriented rectangle contains no two pixels from 
the same chip. 

PROOF. Since the organization is doubly periodic, we can consider a horizontal 
or vertical line that starts at the origin and determine the next lattice point that 
falls on the line. If the line is vertical, all pixels on it have x-coordinate zero. The 
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[l 2 3 4 5 6 7 8 9 10 11 12 131 1 
6 7 8 9 10 11 12 13 1 2 3 4 5 6 

11 12 13 1 2 3 4 5 6 7 8 9 10 11 
3 4 5 6 7 8 9 10 11 12 13 1 2 3 
8 910111213 12 3 

13 1 2 3 
5 6 7 8 

5 6 7 8 
10 11 12 13 

2 3 4 5 
4 5 6 7 8 910111213 12 3 4 
9 10 11 12 13 1 2 3 4 5 6 7 8 9 

cl 
1 2 3 4 5 6 7 8 9 10 11 12 13 1 
6 7 8 9 10 11 12 13 1 2 3 4 5 6 

FIG. 4. The Fibonacci lattice organization for M = 13 memory 
chips. Every rectilinearly oriented rectangle having no more than 
N = 11 pixels has the property that all pixels are from distinct 
memory chips. 

general form of lattice points is ~(a, b) + u(-b, a) = (au - bu, bu + au), and thus 
all lattice points on the line will have au - bu = 0. It follows that .a divides bu, but 
since a and b are relatively prime, we can conclude that a divides U, and similarly, 
b divides u. Furthermore, u and u necessarily have the same sign, which means 
that the magnitude 1 bu + au 1 of the y-coordinate is 1 bu 1 + 1 au 1. Since a divides 
u, we have 1 u 1 r a, and by the same reasoning, 1 u 1 2 b. Therefore, 1 bu I + I au I 
1 b2 + u2 = M, and the magnitude of any lattice point on the vertical line is at 
least A& Thus any 1 -by-M rectangle cannot contain two pixels from the same chip. 
Horizontal lines are treated the same way. 0 

The following table describes the actual values we get for A4 and N in the 
Fibonacci lattice organization. 

M 5 13 34 89 233 610 
N 5 11 23 53 125 307 

Notice that for all these values, the size N of rectangles that are guaranteed to 
have no conflicts is, in fact, larger than M/2. Thus for practical values of M, the 
overhead in allowing fast access to arbitrarily shaped rectangles of pixels is small. 

4. Mathematical Analysis 

In this section we analyze the properties of the Fibonacci lattice organization 
described in Section 3. The basis vectors for the raster-graphics memory organiza- 
tion are (F,, F,,) and (-F,+l, F,), where F, is the rth Fibonacci number. (When 
we do not rely on the Fibonacci properties basis-vector components, we denote the 
basis vectors by (a, b) and (-b, a).) We show in this section that the number of 
memory chips M in the organization is approximately fi times the size N of the 
maximum-size rectangle guaranteed to have no conflicts. 

The approach in this section is to find the minimum size MIN of a rectilinearly 
oriented rectangle containing two distinct lattice points. The size of a rectangle is 
defined to be the number of pixels in the rectangle. Notice that this definition of 
size differs from the continuous model since the number of pixels in a rectangle 
determined by two grid points equals its area plus half its perimeter plus one. Since 
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MIN is the minimum size of any rectilinearly oriented rectangle containing two 
lattice points, N = MIN - 1 because no rectangle of size strictly less than MIN 
contains two lattice points. 

To find MIN, notice that, since the lattice is invariant under translations by its 
basis vectors, we lose no generality if, instead of discussing all pairs of lattice points, 
we restrict ourselves to those pairs one of whose elements is the origin. Furthermore, 
since we are interested in the minimal size, if suffices to consider only those 
rectangles that have the two lattice points at opposite corners. The first lattice point 
is the origin and the second lattice point has the form u(a, b) f ~(4, a), and 
hence the size of the rectangle, its area plus half its perimeter plus one, is 

S(u, u) = (I au + bu 1 + 1)( 142.4 + au 1 + 1). 

The value MIN is the minimum of S(u, u) over all integers u and u not both 0. In 
order to find MIN, we first translate S(u, u) into a simpler form. 

LEMMA 3. Let 

S(u, u) = (I Fru + F,+Iu I + I)(1 -F,,Iu + Fru I + I), 
andlet,f?(u,~)=(IF~~u-F~,+,uI + l)(lul + 1). Then 

MIN z min S(u, u) 
(u,u)#(O,O) 

= min S(u, u). 
(u,ubw,0) 

PROOF. We show that the range of S is the same as the range of s by using an 
intermediate form B. For simplicity, we shall use the notation a = F, and b = F,+, 
introduced above. 

Define the intermediate form 

B(u, u) = S(ku - bu, 4 + au), 

where k and 1 are integers such that ak - bl = 1. (The integers k and 1 exist because 
the greatest common divisor of a and b is 1.) The linear transformation given by 

(3 -(: Y)(z) 

is a bijection since the determinant of the matrix is 1. Thus as (u, u) ranges over 
Z2, the ordered pair (ku - bu, -1u + au) also takes on all values in Z*, and hence 
the range of S is the same as the range of B. Since the linear transformation is a 
bijection which maps (0,O) to (0, 0), we have 

min S(u, u) = min B(u, u). 
(W)#(O.O) (rr,u)#c(O,O) 

If we expand B(u, u), we get 

B(u, u) = S(ku - bu, -1u + au) 
= ( I a(ku - bu) + b(-lu + au) I + I)( I -b(ku - bu) + a(-lu + au) I + 1) 
= (I u 1 + I)( 1 (a* + b*)u - (bk + al)u I + l), 

which has the form (1 u 1 + l)( 1 Mu - Cu 1 + 1). (Note that M = a2 + b* is the 
number of memory chips.) 

In order to obtain S(u, u), we first determine the explicit coefficients it4 and C 
in B(u, u) when the components of the basis vectors are the Fibonacci numbers 
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a=F,andb=F,+,. We use the following two Fibonacci identities: 

Fi+i = FjFi+, + Fj-,Fi, Fi+lFi-l - Ff = (-1)‘. 

From the first identity, we get that the number of memories M is 

A4 = a2 + b2 
= Ff + F:+, 
= F2r+,. 

To find C, observe that, by the second identity, the k and 1 such that ak - bl = 1 
are k = (- 1 )r+’ F, and I = (- 1 )r+’ Fr-, . Hence, by using the first identity, we have 
that 

C = bk + al 
= (-l)‘+‘(F,,F, + F,F,-1) 
= (-l)‘+‘F,,, 
= (-l)‘+‘Fzr. 

Thus for a = F, and b = F,+, , we have 

Wu, u) = (I ul + l)(I(-l)rF2ru + F2r+,uI + 1). 

The form 3 was defined in the statement of the lemma as 

~(u,u)=(IuI + l)(IF2r~-F2r+,uI + 1). 

If r is odd, then (-1)’ = -1, and therefore B(u, u) = ,!?(u, u). If r is even, on the 
other hand, then B(u, -u) = $u, u). Since we have already shown that 

,c,yj& W, u) = min NW 4, 
1 . (rwb+w,O) 

we get 

min 
(u,ubw.0) 

S(u, u) = ,uy200, &4 ~1, 
. . 

which was to be proved. 0 

The next lemma gives the exact solution for MIN, which by Lemma 3 is the 
minimum value of S(u, u). Before stating the lemma, we introduce some number 
theoretic notations which will be used in it. 

Let 4 be a real number, and let (h,Jk,] be the sequence of convergents in its 
continued fraction expansion (see [6, chap. lo]). By the definition of continued 
fractions, for any triple of consecutive convergents h,-I/k,,-, , h,/k,,, h,+,/k,,+, , 
there exists an integer a,+l I 0 such that h,-1 + a,+l h, = h,+ i and k,,-, + 
a,+,k, = k,+,. The rational numbers in the (finite) sequence 

h,,-, h,-, + h, h,-, + 2h, h-1 + an+lhn h,+l 
k,,-I ’ k,-I + k,, ’ k,,-, + 2k, ’ . * .’ k,-, + a,,+,k, = k,,l 

are called the secondary convergents off (see [8, pp. 162-1631). 
We say that the rational number a/b is a fair approximation to 5 if 

It is known that every fair approximation of E is either a convergent or a secondary 
convergent of [. Thus, if x/y is neither a convergent nor a secondary conver- 
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gent of ,$, then there is a rational a/b with 0 < b < 1 y 1 such that I[ - x/y 1 > 
I t - a/b I. 

LEMMA 4. Let &u, u) = (I u I + I)( I F2,u - Fzr+,u I + 1). Then we have 

y;;(1) $u, u) = (Fr + l)(Fr+, + 1). . , 

PROOF. We first show that 

MIN = min s(u, V) 
(u.~bw,O) 

= min (1~1 + 1)(lF2r~-F2r+l~I + 1) 
(1r,u)Z(O.O) 

= min (F,, + l)(FZ,-,+i + I), 
05ns2r+ I 

and then show that the latter minimum is (F,. + l)(F,+, t 1). 
It suffices to consider nonnegative values of u since S(u, u] = 3(-u, -u). The 

value MIN cannot exceed S(0, 1) = F zr+, + 1, but because S(u, u) z u + 1 (the 
right factor is at least one), we need only seek a better value for MIN in the interval 
O<ucF~r+,. 

The key idea is to divide the half-open interval [ 1, F2r+l) into subintervals 
[F,,, F,,,,) for n = 2, 3, . . . , 2r. (Notice that F, = F2 = 1, and thus n starts from 
2.) The integer u lies inside one of these intervals. Consider the fraction F2JF2,+, . 
The convergents of its continued fraction expansion are F,/Fl, F2/Fj, . . . , 
FdFzr+ I . Since (F,-, + F,,)/(F,, + F,,,,) = F,,+L/Fn+2, the secondary convergents 
of F2/FZr+, coincide with the convergents of its continued fraction expansion. By 
the result quoted above, if F,, 5 u < F,,, r, then for every integer u we have 

Multiplying through on both sides yields 

uF2, - uF2r+1 

uF2r+ I I I = F,rFn - Fn-I F2r+1 

F~r+lFn * 

Using the Fibonacci identity 1 Fi& - Fi+ 1 I$- 1 1 = Fi-j+ 1, we get 

I uF2r - uF2r+1 I 2 ; I FzrFn - Fn-, Fzr+, I n 
2 I FzrFn - Fn-,Fzr+, I 
= Fzr-,+I . 

To summarize, if u falls in the interval [F,,, F,,,, , then 1 uF2, - uF~~+, I 2 F+,,+, . 
Therefore, we have 

(I u I + I)( 1 F2,u - F2r+,u I + 1) I (F, + l)(F2r-n+, + l), 

and equality is achieved when u = F,, and u = F,,-, . As a result, we have 

,l,yjgo, (I ul + l)(IF2ru - &+luI + 1) = min (F, + ~)V’Z~-~+I + 11, . , 05n52rc I 
which completes the first part of the proof. 

The second part of the proof is to show that indeed 

osm$+, (Fn + 1 W2r-n+, + 1) = V’r + l)(Fr+, + 1). 
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If we define 
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then what we want to show is 

min E(n, r) = E(r, r). 
osns2r+ 1 

Since E(n, Y) is invariant when n is replaced by 2r + 1 - n, it suffices to consider 
values of n in the interval [0, r]. 

We now show that E(n, Y) is no smaller than E(n + 1, r) for 12 = 1, . . . , r - 1, 
after which we shall complete the proof by demonstrating that E(0, r) L E(r, r). 
We make use of the explicit formula 

F, = !c2c 
43 

for a Fibonacci number in terms of the golden ratio 4 and its conjugate 
4 = $( 1 - &) in order to obtain an alternative expression for the high-order term 
of E(n, r): 

2r+l-n ^2r+l-n -’ 
4 2r+1 + $,,I _ 42r+l-n4n _ 42r+l-non 

= 
5 

= C,+ 5(F2r-2n+l + ‘“;“‘), 
where C, is a constant depending on r alone. Taking advantage of the fact that 
] 6 ] is less than 1 and using the basic recurrence for Fibonacci numbers, we have 

(-l)n+’ 
E(n, r) - E(n + 1, r) = Fz,+,-, + F,, + - 

43 
F2r-2n+l + “yn+‘) 

(-l)n+2 
- F2r-n - Fn,, - - 

JJ ( 
F2r-2n-l + ‘“;-‘) 

2 F2r-n-1 
- F,-, _ F _ 1 

= F2r-n-1 - Fn-I - F2r-2n 

2 0, 

and hence E(n, r) is at least as large as E(r, r) for n = 1, . . . , r - 1. 
As for the remaining inequality E(0, r) L E(r, r), it is merely F,F,+, + F,+2 + 1 

5 F2r+I + 1, and its truth may be verified by using the identity F? + Ff+, = FP+, , 
which in turn follows from the Fibonacci identity Fi+j = FjFi+l + Fj-1 F;. Cl 

LEMMA 5. The minimum size of a rectinlinearly oriented rectangle that contains 
two points of the lattice generated by the basis vectors (F,, F,,,) and (-F,,, , F,) is 

MN = (Fr + l)(F,+, + 1). 

PROOF. The proof follows directly from Lemmas 3 and 4. Cl 
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THEOREM 6. Let A4 = Fir+,, and let N = F,F,+, + Fr+2. Then there is an 
organization for raster-graphics memory with M memory chips such that every 
rectilinearly oriented rectangle of size at most N contains pixels from distinct 
memory chips. Furthermore, N is greater than MI&. 

PROOF. From Lemma 5, we have that MIN = (Fr + l)(F,+, + I), and since 
N = MIN - 1, we get N = F,F,,, + Fr+2. All that is left to be proved is that 
N > M/A. Using the explicit formula for Fibonacci numbers, it can be verified 
that the sequence 

FrFr+, + Fr+2 m 
F2r+, r=l 

converges to l/a. We now show that this sequence is monotonically decreasing, 
so each of its elements is at least as large as the l/& limit, which will complete 
the proof. 

It is enough to show that the difference of consecutive terms in the sequence is 
positive, or equivalently, by multiplying through that 

Fzr+dFrJ’r+~ + Fr+z) - F2r+,V’r+lFr+2 + Fr+3) > 0. 

Using the explicit formula for Fibonacci numbers, we obtain the identity 

Fzr+xFr - Fzr+,Fr+z = (-V’+‘Fr+,, 
and the identity 

rLr+3Fr+2 - Fz,+,Fr+, = F2r+lFr + &Jr+2 

may be derived by induction. 
Multiplying both sides of the first identity by F,+, and adding it to the second 

yields 

F2r+dF,F,+, + Fr+2) - F2r+,(Fr+1Fr+2 + Fr+3) 

= F2,+,Fr + FzlF,+2 + (-l)‘+‘Ff+,. 

The right-hand side is positive because F,+, is less than both Fz, and Fr+2. El 

5. Optimality of the Fibonacci Lattice Organization 

This section shows that the Fibonacci lattice organization from Section 3 achieves 
essentially the best possible by providing bounds for any raster-graphics memory 
organization. In order to get the bounds for the memory organization, an upper 
bound is first proved in the continuous model for the density of a set of compatible 
points. In particular, we show that any set S of compatible points in the plane has 
density d(S) % l/6. 

In order to prove the density bound for a compatible set S, we consider a 
bounded region of S. The points of S in this region can be triangulated in such a 
way that most of the triangles have large area (at least A/2), and hence the density 
of S in this region is small (at most l/A - o( 1)). Taking the limit as the radius of 
the region tends to infinity then establishes the upper bound of l/A. First, however, 
we introduce some terminology. 

Definition. Let Pi = (x,, yl) and P2 = (x2, y2) be two points in the plane. 
We denote the (open) rectilinearly oriented rectangle defined by P, and P2 as 
R(PI, P2) and its area as A(PI, P2) = 1 xl - x2 1 1 yl - y2 1. We also denote the 
semiperimeter of the rectangle (the 1, norm) as L(P,, P2) = 1 xl - x2 1 + I yI - y2 I. 
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If PI and P2 are compatible points, then A (P, , P2) L 1. Also, we have 

WI, P2) = I x1 - x2 I + I Yl - Y2 I 
r2Jh -X2IIY1 -Y2l 
L 2, 

because the arithmetic mean is at least the geometric mean. 
We now define the notion of good and bad triangles, and show that a good 

triangle has area at least d/2. 

Definition. Let PI, P2, and Pj be compatible points in the plane. We say that 
triangle API P2P3 is a good triangle if PI 4 R(P2, PJ), P2 4 R(P,, P3), and 
PS 4 R(P,, P2), and a bad triangle otherwise. 

Figure 5 gives an example of a good triangle and a bad triangle. In the bad 
triangle of the figure, we call the edge P2P3 the bad edge, and we call the angle 
L P2 P, P3 the bad angle. 

The next lemma provides a lower bound on the area of a good triangle. 

LEMMA 7. Any good triangle has area at least A/2. 

PROOF. ’ Without loss of generality, we assume that the triangle is defined by 
the three points (0, 0), (xi, yl), and (x2, y2), where 0 < x2 < x1 and 0 < yl < ~2, 
because any good triangle can be brought to this position by translation and 
reflections about the axes. The areas A, B, and C of the three rectangles defined by 
pairs of these points are each constrained to be at least 1 since the points are 
compatible, and hence 

A = x,y, I 1, 
B=x2y22 1, 
c = (Xl - X2)(Y2 - Yl) 2 1. 

The area of the triangle is $(x1 y2 - x2yI), which we wish to show is at least 
&/2. 

Substituting y, = A/x, and x2 = B/y2 into this last inequality yields 

c=(x, -3(Y2-3. 

Multiplying through by x1 y2 gives 

(xi ~2)~ - (A + B + C)x, y2 + AB = 0. 

Similarly, substituting x1 = A/y, and y2 = B/x2 into the third equation gives 

(~2~1)~ - (A + B + C)xzy, + AB = 0. 

Thus, both xl y2 and x2yl are roots of the equation s2 - (A + B + C)s + AB = 0, 
and, since xl y2 > x2yI, we have 

x1 y2 = :(A + B + C + J(A + B + C)2 - 4AB) 

and 

x2y1 = :(A + B + C - J(A + B + C)2 - 4AB). 

’ Thanks to Don Coppersmith of IBM who provided this proof, which is simpler than our original. 
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FIG. 5. (a) A good triangle. (b) A bad triangle. 

(b) 

We can now bound the area of the triangle by simple algebraic manipulation: 

;(x,yz - xzy,) = fd(A + B + C)2 - 4AB 
= ;d(A - B)2 + C2 + 2AC + 2BC 
+0+1+2+2 
= ;A. cl 

Although the area of a good triangle is bounded from below, the area of a bad 
triangle can be arbitrarily small. In order to get a good upper bound on the density 
of a compatible set, we now show that any disk-shaped portion of such a set has a 
triangulation with few bad triangles. 

LEMMA 8. Let S be a set of compatible points in the plane, and let 9, be a disk 
of radius r. Then there is a triangulation of the points in S n 9, which contains no 
more than 4r bad triangles. 

PROOF. Consider the triangulations of the points in S fl 9, that minimize the 
number of bad triangles, and of those pick one that minimizes the sum of the bad 
angles of the bad triangles. Take any bad triangle API PI P3 with bad edge P2P3. If 
the bad edge P2P3 does not lie on the boundary of the convex hull of S n a,, then 
there is a fourth point P4 E S n ~3, such that triangle AP2P3P, shares the edge 
P2P3. The point P4 is lying in the half plane defined by P2P3, which does not 
contain PI. 

Figure 6 shows a bad triangle in the triangulation, which is the general case 
except for reflections about the axes. The figure also outlines the five possible 
regions in which P4 could lie. We show by case analysis that in a “minimal” 
triangulation, the only feasible region for P4 is Region 5. If P4 is in any of the other 
regions, replacing edge P2P3 with edge PI Pa would improve the triangulation thus 
contradicting its minimality. 

Case 1. If P4 is in Region I, we replace the two bad triangles AP, P2P3 and 
AP2P3P4 by the two good triangles API P2P4 and AP, P3P4. 
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FIG. 6. A bad triangle whose bad -. 
edge P2 P, IS not on the boundary, and 
the five regions in which point P4 
could lie. 

Case 2. If P4 is in Region 2, we replace the bad triangle API PzP, and the good 
triangle AP2P3P4 by two good triangles API PzP4 and API P,P,. 

Case 3. If P4 is in Region 3, we replace the bad triangles API Pz Pj and AP, PJ P4 
by the bad triangles API PzP4 and API PJP,. Although this modification does not 
reduce the number of bad triangles, it does reduce the sum of the bad angles. We 
assume without loss of generality that P4 is in the upper right portion of Region 3. 
The two bad angles were originally L P2 PI P3 and L P2 P4 P3, and they are replaced 
by the bad angles L P2 P, P., and L Pz P4Pj. This is an improvement since LA PI P4 
< LP2P1P3 and LP1P4P3 c LP2P4P3. 

Case 4. If P4 is in the upper right portion of Region 4, we replace the bad 
triangle API P,P, and the good triangle AP2P,P4 by the bad triangle AP, P2P4 and 
the good triangle AP, P3 Pd. The new bad angle L P2 PI P4 is smaller than the original 
bad angle LP2PI P3. The lower left portion is dealt with similarly. 

Thus we may conclude that the point P4 is in Region 5, and without loss of 
generality we assume it is in the upper right portion of the region. The triangle 
AP2P3P4 is bad, and L(P2, P4) = L(P2, 5) + L(P3, P4). Since the points Pj and P4 
are compatible, we have already shown that L(P3, P4) 2 2, and hence L(P2, P4) 2 
w2, P3) + 2. 

Applying the same arguments to the triangle AP2P3P4, we obtain a chain of 
adjacent bad triangles with increasing bad-edge lengths in the L norm. The chain 
cannot cycle back on itself because the edge lengths are strictly increasing. Thus 
the chain must terminate with a bad edge PiPj on the boundary of the convex hull 
of S fl9,. In fact, the bad edge PiPj can be the terminating edge of more than one 
chain because there can be a tree of bad triangles rooted at the triangle with bad 
edge PiPj on the boundary of the convex hull of S n ~8~ (see Figure 7). 

If the tree contains k triangles, then the boundary edge p,pj has length L(Pi, 4) 
2 2k + 2, which we now show by induction on k. For k = 0, the length bound 
holds for any two compatible points. Let kl be the number of bad triangles in the 
subtree converging to P;P,, and let k2 be the number converging to P/Pj. (The 
values k, and k2 may be zero.) Then k = k, + k2 + 1, and hence the induction 
hypothesis holds for both subtrees because kl and k2 are each less than k. Therefore, 

UPi 4) = UPi, P/) + UP/, pi) 

2 (2k, + 2) + (2k2 + 2) 
=2(k,+k2+ 1)+2 
= 2k + 2, 

as desired. 
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FIG. 7. A tree of four bad triangles that terminate 
with edge pi. 

We have just shown that if the tree as k triangles, then the boundary edge PiPj 
has length L(Pi, Pi) 2 2k + 2, and hence k < iL(Pi, Pj). Furthermore, since the 
trees rooted at two bad boundary edges consist of disjoint sets of bad triangles, we 
can bound the total number of bad triangles in the whole triangulation in terms of 
the length (in the L norm) of the boundary of the convex hull of S n a,. But the 
length of the boundary is at most 8r, and therefore, the total number of bad 
triangles is less than 8r/2 = 4r. Ll 

Lemma 8 shows that a set of compatible points in a disk can be triangulated 
with few bad triangles. Therefore, most of the triangles are good triangles which, 
by Lemma 7, have large area. These results allow us to give a l/& upper bound 
on the density of compatible sets. 

THEOREM 9. Let S be a set of compatible points in the plane. Then the density 
d(S) of S satisfies d(S) 5 l/6 

PROOF. Let 9, be a disk of radius r, let n be the number of points in S n gl, 
and suppose the boundary of the convex hull of S fl 8, contains m points. By 
Lemma 8, there exists a triangulation of the n points with at most 4r bad triangles. 
Every triangulation of the m points contains 2n - m - 2 triangles, and thus 
the number of good triangles is at least 2n - m - 2 - 4r. A lower bound on the 
length in the L norm of the boundary of the convex hull of S tl 9, is 2m, and 
an upper bound is 8r. Hence m I 4r, and the number of good triangles is at least 
2n - 8r - 2. 

By Lemma 7 the area of a good triangle is at least &/2, and thus the total area 
occupied by the good triangles is at least (2n - 8r - 2)( A/2) = (n - 4r - 1) 4. 
The area of the good triangles cannot exceed the circle area, so (n - 4r - l)& 5 
,r* and n zz rr*/& + 4r + 1. The density of points within S rl8, is just 

L<L+4r+ 
7rr* - & 7rr* 

Letting r + a implies d(S) 5 l/&, as desired. 0 

We are now prepared to show that the Fibonacci lattice organization from 
Section 3 is essentially the best possible. 

THEOREM 10. For any organization of raster graphics memory with M memory 
chips such that every rectilinearly oriented rectan le of size N contains no two pixels 
from the same memory chip, the relation M 2 $ 5 N - O(N314) holds. 

PROOF SKETCH. The proof parallels that of Theorem 9. The principal difference 
is that the size of a rectangle includes not only its area, but also half its perimeter 
plus 1. 
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Let S be a set of grid points in the plane such that for every pair of points Pi = 
(xl, y, ), P2 = (x2, ye) in it, the compatibility condition ( ] xl - x2 ] + I)( ] yl - y2 ] 
+ 1) 2 N holds. Multiplying through yields ] xl - x2 ]I yI - y2 ] L N - ] xl - x2 ] - 
I Yl - Y2 I - 1. If PI and P2 are two points contained within a circle of 
radius r, then we have ] xl - x2 I + ] y, - y2 ] 5 2&r, so ] x1 - x2 ]I yl - y2 ] I 
N-2&r- 1. 

Letting c = N - 2fir - 1 and using the notation of Section 2, we have 
A(PI , P2) 2 c. Using the same techniques as in the proof of Lemma 7, Lemma 8, 
and Theorem 9, we can prove that the density d, of points in S tl a, satisfies cd, 
5 l/A + (4r’ + 1)/7rr”, where r’ = r/A. Letting r = N3j4, we have r’ > N’14, 
and hence 

(N - 2&N3’4 - l)d,. 5 $ + “T;,; ’ . 

Since d, is an upper bound on the density of pixels which can be stored on a single 
memory chip, we have M > l/d,., and thus 

Mr&N 
(1 - 2fiN-‘14 - l/N) 

(1 + (~6/7r)[(4N”~ + 1)/N”2]) 
= &N - O(N3’“). El 

6. Addressing Scheme 

The organization for raster-graphics memory proposed in Section 3 guarantees that 
small rectangles contain pixels from distinct memory chips. In order for the entire 
system performance to benefit from this organization, however, the address calcu- 
lations must be easily implemented. We do not try to solve all the engineering 
problems associated with making this memory organization scheme work, but in 
this section we give indications of how the address calculations might be efficiently 
computed. 

The addressing mechanism must be able to convert the x- and y-coordinates of 
a pixel to the chip number and address within the chip. Suppose the lattice 
organization is determined by two basis vectors (a, b) and (-b, a). Two pixels at 
locations (x0, yO) and (x, y) that differ by an integral linear combination of the 
basis vectors lie in the same memory chip. That is, they have the same memory 
number if there exist (unique) integers U and V, such that 

(x, y) - (x0, Yo) = w, b) + U-b, 4. 

One natural, but inefficient, addressing mechanism is based on the fact that each 
of the A4 = a2 + b2 memory chips contains exactly one representative in the basic 
region with corners (0, 0), (a, b), (-b, a) and (a - b, a + b). The chip number of a 
pixel (x, y) can be determined by computing which pixel (x0, yo) in the basic region 
is from the same chip, and then using the ordered pair (x0, yo) as the chip number. 
By letting 

the chip number (x0, yo) of a pixel (x, y) is then (x0, yo) = (x, y) - V(u, b) - 
V(-b, a). Furthermore, the ordered pair (U, V) forms an appropriate address for 
a pixel (x, y) within the chip. 

The addressing mechanism can be simplified substantially if we notice that any 
arbitrary set of M pixels, no two of which are from the same chip, can be used as 
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a set of representatives. In particular, any pixel differs by an integral linear 
combination of the basis vectors from a unique pixel in the horizontal line 
extending from (0, 0) to (0, M - 1). This scheme corresponds to tiling the plane 
with I-by-M bricks instead of tilted squares. (Holladay [7] uses a similar tiling 
scheme for halftone generation.) 

To derive an appropriate addressing scheme, we choose an alternative pair of 
basis vectors that span the same lattice. Since a and b are relatively prime, there 
exist integers k and I such that ak - bl = 1. The two vectors (bk + al, 1) and 
(a2 + b2, 0) generate the same lattice as the original basis vectors (a, b), (-b, a). 
Thus any pixel (x, y) can be mapped to a pixel (x0, ye) where yo = 0 and 
x0 E [0, M), which means x0 alone can serve as the chip number for the pixel. If 
we denote C = bk + al, and recalling that M = a2 + b2, the chip number for an 
arbitrary pixel (x, y) is x - Cy(mod M). The address of the pixel is the ordered 
pair (Lx/Ml, y), which is also easy to compute. 

An advantage of any doubly periodic organization that should be mentioned 
concerns the communication among the memory chips. Typically, each chip has 
a single connection to an M-pixel buffer. To move a rectangle of pixels, three steps 
are required. The rectangle of pixels is read into the buffer, the pixels in the buffer 
are permuted, and the pixels are written back to the memory chips at different 
locations. The advantage of the periodic organization is that the set of permutations 
encompasses only circular shifts of the buffer. Thus a standard barrel shifter can 
be used for all permutations. 

One issue that we have not faced is the problem of generating addresses for each 
of the A4 chips given some standard specification of the rectangle to be accessed. 
Whether the address calculations can be made possible at reasonable cost requires 
an engineering analysis. The competing concerns are the strong regularity of the 
lattice-based organization, which should help the design, versus the need to perform 
modular arithmetic, which could require much hardware. 

7. Comments 

The Fibonacci lattice organization of memory allows all rectilinearly oriented 
rectangles of a given size to be accessed. Not surprisingly, some economy in 
hardware can be gained by being more restrictive. For example, the memory 
organization based on the lattice generated by the basis vectors (1, s) and (-s, 1) 
allows three types of rectangles-s-by-s, l-by-s2 + 1, and s2 + l-by- l-to be 
accessed efficiently. The number of memories required by this scheme is M = 
s2+ 1. 

The Fibonacci lattice organization can also be used to speed up the access rate 
in machines with interleaved memories. For example, the organization might be 
useful for matrix- and image-processing applications [ 11. 

An interesting question is how to extend the constructions and bounds of this 
paper to dimensions higher than two. For example, the analogous question for 
three dimensions would be, “How does one construct a dense set of points in the 
three-dimensional space, such that no two points of the set are contained in the 
interior of a rectilinearly oriented box of volume l?” and, if such construction is 
at all possible, “What is the maximum density possible for such a set?” In fact, we 
can construct a lattice whose density is $, satisfying the “compatibility” require- 
ments. Using a tilted cube of edge len th &, we can show (by an argument similar 

$ to that in [2, Theorem 11) that l/3 3 is an upper bound on the density of such 
sets. It remains to be seen whether the techniques from Section 2 can be applied 
to achieve a tighter lower bound for the three-dimensional case. 
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Fiat and Shamir [4] have recently pointed out another application of the 
techniques in this paper. They show that a “universal” systolic array based on a 
Lucas and Fibonacci lattice can emulate any rectangular systolic array in a near 
optimal fashion. In fact, by double folding the basic square region, the Fibonacci 
lattice of our paper achieves almost all the properties they show of their “polymor- 
phic arrays.” The address calculation for their lattice seems somewhat simpler, 
however. No doubt, further research will lead to better understanding of the theory 
underlying both of our structures. 
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