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Brief Abstract
T We present a general signature scheme which uses any
pair of trap-door permutations (fo, /1) for which it is in-
feasible to find any «,y with f(z) = f(y). The scheme pos-
sosses the novel property of being rol}u t against an adap-
tive chosen message attack: no adversary who first asks
for and then rcceives signatures for messages of his choice
(which may depend on previous signatures seen) can later
forge the signature of even a single additional message.

For a specific instance of our general scheme, we prove
that

(1) forging signatures is provably equivalent to factoring,
while

(2) adaptive chosen message attacks are of no help to
an “enemy” who wishes to forge a signature.
Such a scheme is “paradoxical” since the above two properties
were believed (and even “proven” in the folklore) to be con-
tradictory.

The new scheme is potentially practical: signing and
verifying signatures are reasonably fast, and signatures are
not too long.

Keywords: Cryptography, digital signatures, factoring,
chosen message attacks, authentication, claw-free pairs of
functions, randomization.

LINTRODUCTION,

The idea of a “digital signature” first appeared in Diffie
and Hellman’s seminal paper, “New Directions in Cryptog-
raphy” [DH76]. They propose that user A’s signature for a
rmessage M should be a value which depends on M and on
information heid secret by A such that anyone can verify
the validity of A’s signature (using information published
by A) but no one can forge A’s signature on any messages.
They also proposed a way of implementing signatures based
on “trap-door functions” (see section IL.A).

While the notion of a digital signature is robust, useful,
and even legal [LM78, Ma79], a number of technical prob-
lems arise if they are implemented as suggested using trap-
door functions; these problems have been addressed in part
elsewhere. For example, [GMY83] showed how to handle

arbitrary or sparse messages sebs and how to ensure that
if an enemy sees previous signatures it does nect help him
to forge new signatures (this is a so-called “non-adaptive
chosen message attack”). For further discussion see section
V.

Oune difficuly problem with simple trap-door signature
schemes is proving they are secure against adupiive chosen
message atbacks, where the enemy can request signatures of
messages which depend on previously obtained signatures.

We present a new digital signature scheme that is seem-
ingly “paradoxical”, in that we prove that forgery is equiv-
alent to fzctoring, even if the enemy uses an adaptive chosen
message atback.

We can restate the paradox as follows:

e Any general technique for forging signatures can be
used as a “black box” in a construction that enables
the encmy to factor one of the signer’s public moduli
(he has two in our scheme),

but

e The technique of “forging” signatures by getting the
real signer to play the role of the “black box” (i.e.
getting the real signer to produce some desired genuine
signatures) does not help the enemy to factor either of
the signer’s moduli.

Resolving this paradox was previously believed tc be im-
possible and contradictory {Wi80, misled by Rivest].

From a crvplographer’s viewpoint, the following points

might be judged to be even more significant than resolving
the apparent paradox:

e What we prove to be diflicult is forgery, and not merely
obtaining the secret trap-door information embedded
in the signing algorithm (or obtaining an efficient
equivalent algorithm).

e Florgery is proven to be difficult for a “most general”
enemy who can mount an “adaptive chosen message
attack”: an enemy who can use the real signer as
“an oracle” can not in time polynomial in the size
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of the public keys forge a signature for any message
whose signature was not obtained from the oracle. In
contrast to all previous published work on this prob-
lem, we prove the scheme invulnerable against such
an “adaptive” attack (where each message whose sig-
nature is requested may depend on all signatures pre-
viously obtained from the oracle). We believe that such
an “adaptive chosen message attack” to be the most
powerful attack possible for an enemy who is restricted
during his attack to using the signature scheme in a
natural manner.

e The propertics we prove about the new signature
scheme do not depend in any way on the set of mes-
sages which can be signed or on any assumptions about
an input probability distribution on the message set.

e Our scheme can be generalized so that it can be based
on “hard” problems other than factoring whenever one
can create (so-called “claw-free”) pairs of trap-door
permutations (fg, f1) such that the hard problem is
equivalent to finding =,y with fo(z) == fi(y) (a “claw”
— see Tigure 1). The paradoxical nature of the signa-
ture scheme remains.
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Figure 1.
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The scheme has a “pumping” nature: using any family

of pairs of trap-door permutations we can produce a sig-
nature scheme that is tnvulnerable to a chosen message at-
tack, even if the the trap-door permutations are vulnerable
to a chosen message attack when used to make a trap-door
signature scheme (see section II).

Fundamental ideas in the construction are the use of
randomization, signing by using two authentication steps
(the first step authenticates a random value which is used
in the second step to authenticate the message), and the use
of a tree-like branching authentication structure to produce
short signatures.

We note that because our signature scheme is ran-
domized it is not of the simple Diffie-I{ellman “trap-door”
type. (For example, a given message can have many signa-
tures.)

The rest of the paper is organized as follows. In section
1T we review the fundamental notions of what it means to
“break” a signature scheme and what it means to “attack”
a signature scheme. In section Il we review more closely the
nature of the “paradox”, and present the folklore “proof”
that it is impossible to have a signature scheme for which
forgery is prevably equivalent to factoring and which is
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simultaneously invulnerable to an adaptive chosen message
attack. In scction IV we review previously proposed sig-
nature schemes. In section V we give the details of our
proposed signature scheme, and in section VI we prove that
it has the desired properties.

O. FUNDAMENTAL NOTIONS
To properly characterize the results of this paper, it is
helpful to answer the {ollowing questions:

o What is a digital signature scheme?
e What kinds of attacks can the enemy mount against a
digital signaturc scheme?

e What is meant by “breaking” the signature scheme?

ILA. WHAT IS 4 DIGITAL SIGNATURE SCHEME?
A digital signature scheme contains the following com-
ponents:

o A key generation clgorithm k(R, k) which any user A
can usc to produce a pair (P%,.S%) of matching public
and secret keys from inpuls k£ and (random) input
R. (The secret key is sometimes called the trap-door
information. The parameter k is called the security
parameter; a number of quantities (e.g. length of sig-
natures, overall security) may depend on k.

e A message space M which is the set of messages to
which the signature algorithm may be applied. We
assume here that the messages are represented in some
encoding suitable for the signature algorithm.

e A signature algorithm which produces a signature
(M, S4, R) for a message M using the secret key Sy
and random input R. (This is the memoryless model;
it is also permissible to have the signature algorithm
depend on the number of messages previously signed
and even how they were signed. The scheme proposed
in this paper is not memoryless.)

e A verification predicate (S, M, P4) which tests whether
S is valid signature for message M using the public key
Py.

‘We note that there are other kinds of “signature” prob-
lems which are not dealt with here; the most notable be-
ing the “contract signing problem” where two parties wish
to exchange their signatures to an agreed-upon contract
stmultaneously (for example, see [EGL82]).

ILA.1 TRAP-DOOR SIGNATURES

To create a signature scheme Diffie and Hellman proposed
that 4 use a “trap-door function” f: a function for which it
is easy to evaluate f(z) for any argument z but for which,
given only f(z), it is computationally infeasible to find any
y with f(y) = f(z) without the secret “trap-door” infor-
mation. Then A publishes f and anyone can validate a
signature by checking that f(signature) = message. Only
A possesses the “trap-door” information allowing her to in-
vert f: f~(message) = signature. A trap-door permuta-
tion is a trap-door function which is one-to-one and onto;
then any message can be signed since the domain of f~!
is the entire message space. We call any signature scheme




that fits info this model (i.e. uses trap-door functions and
signs by apply f~* to the message) a trap-door signature
scheme.

We note that not all signature schemes are trap-door
schemes, although most of the proposals in the literature
arc of this type.

IL.B. XINDS OF ATTACKS

The enemy may mount an attack knowing only the real
signer’s public key — what we call a direct attack. Of more
concern, however, are what we call known or chosen mes-
sage attacks where the enemy is able to examine some signa-
tures corresponding to either known or chosen messages be-
fore his attempt to break the scheme. (These are analogous
to “chosen ciphertext attacks” for encryption schemes.)

We identify the following four kinds of message attacks,
which are characterized by how the messages whose signa-
tures the enemy sees are constructed. (Here we let A denote
the user whose signature method is being attacked.)

e Known Message Attack: The enemy sees signatures
for a set of messages Mj,..., Mx. The messages are
known to the enemy but are not in any way chosen by
him.

e Generic Chosen Message Attack: Here the enemy
is allowed to obtain from A valid signatures for a
chosen list of messages M), ..., My before he attempts
to break A’s signature scheme. These messages are
chosen by the enemy, but they are fized and indepen-
dent of A’s public key (for example the M;’s may be
chosen at random). This attack is nonadaptive: the
entire message list is constructed before any signatures
are seen. This attack is “generic” since it does not
depend on the A’s public key; the same attack is used
against everyone.

Directed Chosen Message Attack: This is similar
to the generic chosen message attack, except that the
list of messages to be signed may depend on A’s public
key. However, it is still nonadaptive as before. This
attack is “directed” against a particular user A.

Adaptive Chosen Message Attack: This is more
general yet: here the enemy is also allowed to use A as
an “oracle”; not only may he request from A signatures
of messages which depend on A’s public key but he
may also request signatures of messages which depend
additionally on previously obtained signatures.

We use the term “non-adaptive message attack” to
mean a known, generic chosen, or directed chosen message
attack.

I.C. WHAT DOES IT MEAN TO “BREAK”

A SIGNATURE SCHEME?

One might say that the enemy has “broken” user A’s
signature scheme if his attack allows him to do any of the
following with a non-negligible probability:

e A Total Break: Compute A’s secret trap-door infor-

mation.
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e Universal Forgery: Find an efficient signing algo-
rithin functionally equivalent to A’s signing algorithm
(based on possibly different but cquivalent trap-door
information).

e Selective Forgery: Forge a signature for a particular
message chosen a priors by the enemy.

* Existential Forgery: Forge a signature for at least
one message. The enemy has no control over the mes-
sage whose signature he obtains, so it may be random
or nonsensical. Consequently this forgery may only be
a minor nuisance to A.

We say that a scheme is respectively totally breakable,
untversally forgeable, selectively forgeable, or existentially
forgeable if it is breakable in one of the above senses. Note
that it is more desirable to prove that a scheme is not even
existentially forgeable than to prove that it is not totally
breakable. The above list is not exhaustive; there may be
other ways of “breaking” a signature scheme which fit in
between those listed, or are somehow different in character.

Qur notion of forgery means that the enemy must
produce a signature for a message whose signature he was
not given by A during his attack; it is not forgery to ob-
tain from A a valid signature for a message and then claim
that he has now “forged” that signature, any more than
photocopying a signed document is an instance of forgery.

To say that the scheme is “broken”, we insist that it be
broken with a non-negligible probability - for at least some
positive fraction € of all possible public keys.

‘We note here that the characteristics of the signa-
ture scheme may depcnd on its message space in subtle
ways. For example, a scheme may be cxistentially forge-
able for a message space M but not existentially forgeable
if restricted to a message space which is a sparse subset of
M.

For examples of the notions, sec scction IV {where we
review previously proposed signature schemes).

UL THE PARADOXICAL PROBLEM OF

PROVING SIGNATURE SCHEMES SECURE

The paradoxical nature of signature schemes which are
provably secure against chosen message attacks made its
first appearance in Rabin’s paper, “Digitalized Signatures
as Intractable as Factorization”. The signature scheme
he proposed therc works as follows. User A publishes a
number n which is the product of two large primes. To
sign a message M, A computes as M’s signature one of M’s
square roots modulo n. (When M is not a square modulo n,
A modifies a few bits of M to find a nearby square.) Here
signing is essentially just extracting square roots modulo
n. Using the fact that extracting square roots module n
enables one to factor n, it follows that selective forgery in
Rabin’s scheme is equivalent to factoring if the enemy is
restricted to at most a known message attack.

However, it is true (and was noticed by Rabin) that
an enemy might totally break the scheme using a directed
chosen message attack. By asking A to sign a value z°
(mod n) (where z was picked at random), the enemy would




obtain with probability 3 another square root y of z? such
that ged(z -+ y,n) was a prime factor of n.

Rabin suggested that one could overcome this problem
by, for example, having the siguer concatenate a fairly long
randomly chosen pad U to the message before signing it.
In this way the enemy can not force A to extract a square
root of any particular number.

However, the reader may now observe that the proof of
the equivalence of selective forgery to factoring no longer
works for the modified scheme. That is, being able to
selectively forge no longer cnables the enemy to directly
extract square roots and thus to factor. Of course, breaking
this equivalence was really the whole point of making the
modification.

OIL.A. THE PARADOX

We now “prove” that it is impossible to have a signature
scheme for which it is both true that forgery is provably
equivalent to factoring, and yet the scheme is invulnerable
to adaptive chosen message attacks. (This is essentially
the argument given in [Wi80].) By forgery we mean in this
section any of universal, selective, or existential forgery -
we assume that we are given a proof that forgery of the
soocified type is cquivalent to factoring.

Let us begin by considering this given proof. The main
part of the proof presumably goes as follows: given a sub-
routine for forging signatures, a constructive method is
specified for factoring. (The other part of the equivalance,
showing that factoring enables forgery, is usually easy, since
factoring usually enables the enemy to totally break the
scheme.)

But it is trivial then to show that an adaptive chosen
message abtack enables an enemy to totally break the
scheme. The enemy merely executes the constructive
method given in the proof. Whenever he needs to execute
the forgery subroutine, he merely performs an “adaptive
chosen message attack” step - getting the real user to sign a
message. In the end the unwary user has enabled the enemy
to factor his modulus! (If the proof relates to universal or
selective forgery, we have to get real user to sign a par-
ticular message. If the proof relates to existential forgery,
we can get him to sign anything at all.)

I0.B. BREAKING THE PARADOX

How can one hope to get around the apparent contradic-
tory natures of equivalence to factoring and invulnerability
to an adaptive chosen message attack?

A major idea in both the construction and the proof
is the notion of “random rooting”. Kach user publishes
not only his two composite moduli nl and n2, but also a
“random root” [y. This value R is used when validating
the user’s signatures. The paradox is resolved using this
notion as follows:

e It is provably equivalent to factoring for an enemy to
have a uniform algorithm for forging; uniform in the
sense that for each pair of composite numbers n1 and
n2, if the enemy can randomly forge signatures for a
significant fraction of the poessible random roots Ry,
then he can factor either nl or n2.
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e The above proof requires that the enemy be able to
pick Ry himself — the forgery subroutine is fed triples
{n1,n2, Ry) where the Ry part is chosen by the encmy
according the procedure specified in the constructive
proof. IHowever, the user has picked a fixed Iy at
random to put in his public file, so an adaptive chosen
message abtack will not enable the enemy to “forge”
signatures corresponding to any other values of Rp.
Thus the constructive method given in the proof can
not be applied!

IV. PREVIOUS SIGNATURE SCHEMES

In this section we list a number of previously proposed
signature schemes and briefly review some facts about their
security.

Trap-Door Signature Schemes [DH76]: Any trap-door
signature scheme is existentially forgeable with a diréct at-
tack since a valid (message, signature) pair can be created
by beginning with a random “signature” and applying the
public verification algorithm to obtain the corresponding
message. A common heuristic for handling this problem in
practice is to require that the message space be sparse (e.g.
by having each message contain a reasonably long check-
sum); in this case the proposed attack is not likely to result
in a successful existential forgery.

Rivest-Shamir-Adleman [RSA78]: The RSA scheme is
selectively forgeable using a directed chosen message at-
tack, since RSA is multiplicative: the signature of a product
is the product of the signatures. (This can be handled in
practice as above using a sparse message space.)

Merkle-Hellman [MH78]: Shamir showed the basic Merkle-
Hellman “knapsack” scheme to be universally forgeable us-
ing just a direct attack [Sh82]. (This scheme was perhaps
more an encryption scheme than a signature scheme, but
had been proposed for use as a signature scheme as well.)

Rabin [Ra79]: As noted earlier, Rabin’s signature scheme
is. totally breakable if the enemy uses a directed chosen
message attack. However, for non-sparse message spaces
selective forgery is as hard as factoring if the enemy is
restricted to a known message attack.

Williams [Wi80]: This scheme is similar to Rabin’s. The
proof that selective forgery is as hard as factoring is slightly
stronger, since here only a single instance of selective for-
gery guarantees factoring (Rabin needed a probabilistic ar-
gument). Williams uses effectively (as we do) the properties
of pumbers which are the product of a prime p = 3 (mod 8)
and a prime ¢ == 7 (mod 8).

Williams'.

Shamir [Sh78]: This knapsack-type signature scheme has
recently been shown by Tulpan [Tu84] to be universally
forgeable with a direct attack for auy practical values of
the security parameter.

Goldwasser-Micali-Yao [GMYB83]: This paper presents
two signature schemes, which are not of the trap-door type.
These schemes have the interesting property that their




characteristics hold for any message space (even a sparse
one). The first signature scheme presented in [GMY83]
was proven not to be even existentially forgeable against
a generic chosen message attack unless factoring is easy.
However, it is not known to what extent directed chosen
message attacks or adaptive chosen message attacks might
ald an enemy in “breaking” the scheme.

The second scheme presented there (based on the RSA
function) was also proven not to be even existentially forge-
able against a generic chosen message attack. This scheme
may also resist existentially forgery against an adaptive
chosen message attack, although this has not been proven:
(A proof would probably require showing certain properties
about the distribution of prime numbers and making a
stronger intractability assumption about inverting RSA.)

By comparison, the scheme presented here is much faster,
produces much more compact signatures, and is based on
much simpler assumptions (only the difficulty of factoring
or more generally the existence of sets of claw-free pairs of
functions).

Several of the ideas and techniques presented in [GMY83],

such as bit-by-bit authentication, are used in the present
paper.
Ong-Schnorr-Shamir [OSS84]: Totally breaking this
scheme using an adaptive chosen message attack has been
shown to be as hard as factoring. However, Pollard [Po84]
has recently been able to show that the “OSS” signature
scheme is universally forgcable in practice using just a
dircet attack; he developed an algorithm to forge a signa-
ture for any given message without obtaining the secret
trap-door information. A more recent “cubic” version has
recently been shown to be universally forgeable in practice
using just a direct attack (also by Pollard).

El Gamal[EG84): This scheme, based on the difficulty
of computing discrete logarithms, is existentially forgeable
with a generic message attack and selectively forgeable us-
ing a directed chosen message attack.

V. DESCRIPTION OF THE SCHEME

A General Scheme: It is convenient to present our
scheme in a general manner that is divorced from any par-
ticular assumptions, such as that factoring is hard. This
clarifies the exposition, and helps to establish the true
generality of the proposed scheme,

Definition: We define a claw-free family to be a set of pairs
of trap-door permutations such that:

o It is easy, given a security parameter k, to select mem-
bers of the family at random which have the given
security parameter together with the trap-door infor-
mation allowing inversion of the permutations chosen.
‘We note that the family may contain many pairs of per-
mutations associated with a given security parameter,
just as there are many composite numbers of a given
length.

o For cach such pair (fo, fi) we have domain(fo) =
domain(fi).

o Given a pair (fo, f1) of permutations from the family
it is computationally infeasible (even by a probabilistic
algorithm) given just a description of the pair to find
any (z,y) with fo(z) = fi(y) (a “claw” - specifically,
an “f-claw”) with a non-negligible probability.

We also call each pair of permutations in the family

“claw-free”.

Remark: Note that if it is infeasible to find claws, then it
is infeasible to invert either permutation, since an inversion
algorithm enables one to create claws easily. It is thus
a stronger requirement that the pair of functions be claw-
free than that they merely be one-way in the sense that
inversion is infeasible. Note, for example, that the RSA
functions fo(z) = 2* (mod n) and f,(2) = z' (mod n) are
not easily invertible but are also not claw-free, since their
commutativity allows one to create claws easily.

Remark: This is a slight generalization of the notion of
a “claw-free” function f (one for which both inversion is
bard and finding z,y with f(z) = f(y) is hard). This
latter notion has previously been proposed in the literature,
and has been proposed as the proper notion of a one-way
function. (Sce [Yu79, Li81], for example.)

Notation: If (fo, f1) and (go,91) are claw-free pairs of
funciions, we extend the notation f; and g; to handle the
case z > 1 by:

filzy = fialfiaos (frao (- (fii(fia(2))-- )
if © = 24%4_1-..21%0 in binary.
Notation: ;! isinterpreted as (f;)™" so that T4 i) =
z.
Prefix-Free Encodings

We will be using the mapping from 7 to f;'(2) as a
one-way function, where the pair (fy, f1) and the value =
were previously known or proven to have been produced
by the rcal signer. Anyone will be able to check this result,
since f;(f7'(2)) = =.

It is important for this use that the value 7 be chosen
from a set whose elements have a prefix-free binary encod-
ing. (An encoding scheme is prefix-free if no encoding of an
element of the set is a prefix of the encoding of any other
element of the set.) If a prefix-free encoding scheme were
not used, an enemy could “forge” fj_l(x) from f;'(z) if the
encoding for 7 is a prefix of the encoding for 1.

‘We do not care to fix a particular prefix-free encoding
for use here, but note that such encodings are simple to
devise (e.g. code each 0 as 00, each 1 as 11, and terminate
the encoding with 01).

We do, however, introduce the notation [z] to denote
the chosen prefix-free encoding of the integer z. Thus, our
basic one-way function can be represented as f;j(z).
Message Space: The new signature scheme can use any
countable set as a message space, as long as a prefix-free
encoding is used. Like the schemes presented in [GMY83],
the properties of the new scheme do not depend on the
message space used (even if it is, say, sparse).



An Atomic Authentication Step: Given an “authenticated” (really created by Alice). Define

quantity @, we can authenticate two new quantities L and
Rif f{"Rll(Q) = L. This is done in a bit by bit manner: by
examining the bits of [R] one-by-one, we can easily cornpute
L. Only someone who knowns how to invert the fi’s could
have produced a valid (L, B) pair from @. (In [GM82] and
[GMY83] very similar ideas appeared.)

Randomization: The signer flips coins; there are many
valid signatures for any one message.

Signing by Two-Step Authentication: Signing the ¢-
th message M; consists of first authenticating a random
message I2;, and then authenticating the given message M

from the random starting point R;. (This is reminiscent
of the routing scheme for the boolean n-cube proposed by
Reif and Valiant [RV83].)

Tree Authentication: We begin with an aulhcaticated
root Ry {authenticated by being in the public file], and
from each authenticated point B; (resp. L;) we authenticate
two new values (Lgiy1, Roir1) (resp. (Lu:, Ry;)). Each R;
is randomly chosen and the L; values are determined from
them. This defines a tree structure on the L; and R; values.
(This tree can either be grown as new signatures arc needed
or can have a suitably large size defined initially.) A path
from any node to the root is an “authentication chain”
which authenticates the node, assuming the root has been
authenticated.

Random Rooting: The initial value Ry, which is placed
in the public directory, is randomly chosen.

Signatures: The signature for the j-th message M; con-
sists of

o The message Mj itself.

e A random quantity R; and an authentication chain for
it.

« An atomic authentication for Mj beginning at R;.
Thus, each message M; is authenticated by producing a pair
(8;, M;) authenticated from R; {which in turn is authenti-
cated in the tree structure defined above).

V.A. HOW TO GENERATE KEYS

Each user publishes his public key, consisting of:

» two claw-free pairs of permutations (fo, fl) and (go, 91),

and

» 2 random number Ry in the range of fy and fy.

V.B. HOW TO SIGN

Implicit: User Alice has an infinite list Ry, Ry, Ha,... of
random numbers in the range of fp, f1. She will use one
such number per signature, begining with R;. In practice,
Alice will create these as needed rather than all at the
beginning.

Authenticators: Alice will include R; as part of her j—th
signature,and provide an “authenticator” that it is valid

L — f{_le](Lj/z), if 7 is even;
T Vi Riape),  if5 s odd.
and
A = (l:RlyLl), if ]' = 1;
! (7, Ry, Ly, Ajj2))y if7 > 1.

Here “A;” is the “authenticator” for R;; only Alice
could have created it but anyone can check it. The authen-
ticators form a “tree-like” structure (see figure 2).

Signature: Alice's signature for the j-ih massage 8f; is

(Mj, Aj, 9, (R5)).
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V.C. How to Verify a Signature
First, authenticate R; using the published fi’s.
Then, authenticate M; using the published g;’s.

V.D. Efliciency of the Proposed Signature Scheme

Let us assume that all numbers and messages have
length O(k), where k is the “security parameter” for the
system. Then the time to compute a signature is O(k)
function inversions (i.e. inversions of fy or f1).

The length of the j-th signature is

O(log(y) - k).

VI. PROOF OF SECURITY
We recall that a signature scheme is existentially forge-

able if the enemy is able to forge any valid messsage/signature

pairs at all. We also recall that in an adaptive chosen mes-
sage attack the enemy can use the real signer as an “oracle”
for a while before attempting to forge a new signature.

Theorem. The proposed signature scheme is not existen-
tially forgeable, even if the enemy uses an adaptive chosen
message attack.

Proof: Assume that there exists an adaptive chosen mes-
sage attack which enables the enemy to later forge valid
signatures. We prove that this would enable an enemy to
create an f-claw or a g-claw, or to invert one of the f;’s or
the g;’s.

‘We assume that the security parameter k is given.

Choose at random a claw-free pair of functions fg, fi
with the correct security parameter from the given family
of pairs of claw-free functions, so we don’t know f; ! (i =
0,1). We will show that the existence of the effective attack
by the enemy would violate the claw-freeness assumption
for the f;’s.

We choose g; at random with corresponding trapdoor
information (¢ = 0,1). We can therefore invert each g;.

We consider two cases and apply the presumed attack
to each:

CASE 1: Apply the attack to the (f, g) signature scheme —
(i.e. as described above). Note that we can “simulate” the
attack (i.e. play the role of the actual signer when asked
to sign messages) even though we don’t know f1, since
we can a priori create the necessary tree in the “f-world”
using f in the forward direction only (since all nodes in
the “f-world” are randomly chosen). So the attack can be
executed resulting in the forgery of a new message.

CASE 2: Apply the attack as in case 1, but switching the
roles of f and g (but not their names). Here it is easy to
simulate the attack by simulating the signing of messages
as needed, without using fi-—l. To do this, given a message
M; to sign, we can compute fir,)(S) where S is randomly
chosen, resulting in a value R;. We can then “authenticate”
R; in the “g-world” by using ¢! as needed.

Lemma: A successful attack will, when it forges its signa-
ture, either create an f-claw, a g-claw.
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Proof sketch: We can view the authentication structure
produced by the legitimate signer during a chosen mes-
sage attack as a collection of atomic authentication steps,
each of which authenticate two values {rom one previously
authenticated value. (Some of these steps are in g-world
and some in f-world, but it doesn’t matter here.) To forge
a new signature means to produce new atomic authentica-
tion steps (otherwise nothing new has been signed) which
“link in” to values previously authenticated by the real sig-
ner. If it “links in” in g-world we get a g-claw and if it
“links in” in f-world we get an f-claw. J

By assumption about the ways in which the f;’s and
the g;’s were chosen, the attack could not tell if it was in
case 1 or case 2. Therefore the attack will with probabil-
ity at least 1/2 (if it succeeds) “break” the given f;’s by
creating an f-claw. By assumption, however, (fo, f1) was a
claw-free pair for which we did not know the trap-door in-
formation. This contradiction proves that it is impossible
to have a uniform method of forging signatures with an
adaptive chosen signature attack. §

VI.A. An Implementation of our scheme as

intractable as factoring

The assumption of the existence of “claw-free” pairs
was made in a general manner, and not based on any par-
ticular number theoretic assumptions. Thus, the above
proof of security holds even if factoring turns out to be
in polynomial time. However for concretely implementing
our scheme the following is suggested.

We first make an assumption about the intractability
of factoring, and then exhibit a family of claw free pairs
whose existence is thereby implied.

Notation: Let Hy = {n=p-q] |p| = |¢| = k} (the set
of composite numbers which are the product of two k-bit
primes), and let H = |J, H.

Remark: Randomly selected members of H seem to be
among the “hardest” inputs for all known factoring algo-
rithms.

The following assumption about the intractability of
factoring is made throughout this section.

The Intractability Assumption for Factoring (IAF):
Let 0 < € < 1, let @ be an arbitrary polynomial, and let
O, denote the minimum size of a boolcan circuit that can

factor at least a fraction € of the numbers in Hy. Then
Ce x> Q(k) for all sufficiently large k.

Consider the subset B of H whose elements are the
product of a prime p 3 (mod 8) and prime ¢ = 7
(mod 8). (These numbers were used in [Wi80, BI82].) We
note that for n € B,:

—1 has Jacobi symbol +1 but is not a quadratic residue
(mod n).

2 has Jacobi symbol —1 (and is not a quadratic residue
(mod n)).

Let @, denote the set of quadratic residues (modulo n).
Define f3 and f7 as permutations of @n as follows:



f3(z) = 2° (mod )

[(z) = 42® (mod n).

(It is not too difficult to prove that f§ and f} are permuta-
tions of @, when n € B;,. Sce [BI82] for example.)

Claim: Under the IAF, F = {(f§, /) |n € B} is a claw:
free family of permutations.

Proof: Every = € @,, has exactly one square root y € @,
but has four square roots y,~y,w, —w altogether. Roots
w and ~w have Jacobi symbol —1, while y and —y have
Jacobi symbol +1.

Let n € B and (f3,f}) € F. First fo and f; are
permutations. Second they are trapdoor under IAF, by
Rabin’s proof. Finally, we show that if there exists a fast
algorithm that finds z and y in @, such that y? = 4z?
(mod n) then factoring is easy. Suppose such an z and y
have been found. Then, 22 = (2¢)? (mod n). Since z €
Qn ¥ € Qny2 & Qun, we have 2y & @, so that z 3# +2y
(mod n). Thus ged(z+-2y, n) will produce a nontrivial factor
of n. §

VII. Conclusions and Open Problems

o Can a signature scheme be developed with the properties
of the new scheme proposed here, except that it is
“memoryless” in the sense that the signature algorithm
does not depend on the number of messages previously
signed or how they were signed?

eIt is an open question whether the RSA scheme is
universally forgeable under an adaptive chosen mes-
sage attack.

o Can an encryption scheme be developed for which
decryption is provably equivalent to factoring yet for
which an adaptive chosen ciphertext attack is of no
help to the enemy?
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